[go: up one dir, main page]

CN109117575B - Method and device for determining structural parameters of surface plasmon waveguide system - Google Patents

Method and device for determining structural parameters of surface plasmon waveguide system Download PDF

Info

Publication number
CN109117575B
CN109117575B CN201810995700.7A CN201810995700A CN109117575B CN 109117575 B CN109117575 B CN 109117575B CN 201810995700 A CN201810995700 A CN 201810995700A CN 109117575 B CN109117575 B CN 109117575B
Authority
CN
China
Prior art keywords
response data
electromagnetic response
neural network
target
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810995700.7A
Other languages
Chinese (zh)
Other versions
CN109117575A (en
Inventor
张天
王佳
戴键
戴一堂
李建强
尹飞飞
周月
徐坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201810995700.7A priority Critical patent/CN109117575B/en
Publication of CN109117575A publication Critical patent/CN109117575A/en
Application granted granted Critical
Publication of CN109117575B publication Critical patent/CN109117575B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The method and the device for determining the structure parameters of the surface plasmon waveguide system provided by the embodiment of the invention are used for obtaining the structure type of the surface plasmon waveguide system. And based on the structure type, obtaining target electromagnetic response data of the surface plasmon waveguide system aiming at the structure type, wherein the target electromagnetic response data is used for indicating the performance of a target device of the surface plasmon waveguide system, and inputting the target electromagnetic response data into a pre-trained reverse calculation model corresponding to the structure type to obtain target structure parameters corresponding to the structure type. The inverse calculation model corresponding to this structure type is: and the neural network model is obtained by training in advance by using a plurality of preset sample structure parameters corresponding to the structure type and a plurality of sample electromagnetic response data respectively corresponding to each sample structure parameter one by one. Compared with a target structure parameter determination mode which needs multiple times of manual participation, the determination efficiency of the target structure parameters is improved.

Description

表面等离激元波导系统的结构参数确定方法及设备Method and device for determining structural parameters of surface plasmon waveguide system

技术领域technical field

本发明涉及光子器件技术领域,特别是涉及一种表面等离激元波导系统的结构参数确定方法及设备。The invention relates to the technical field of photonic devices, in particular to a method and device for determining the structural parameters of a surface plasmon waveguide system.

背景技术Background technique

SPPs(Surface Plasmon Polaritons,表面等离激元)波导系统是能够激发和传输SPPs的纳米量级光子器件,例如纳米量级的光开关、调制器、逻辑门、传感器等光子器件。SPPs波导系统可以利用SPPs所具有的在金属表面区域以自由电子和光子的相互作用形成电磁振荡的特性,打破光的衍射极限、进行亚波长甚至纳米尺寸的光操控,从而实现低损耗、长距离的光数据传输,同时,以纳米量级的尺寸适应片上集成,以实现高传输速率的光数据传输。SPPs (Surface Plasmon Polaritons, surface plasmon polaritons) waveguide systems are nanoscale photonic devices that can excite and transmit SPPs, such as nanoscale optical switches, modulators, logic gates, sensors and other photonic devices. The SPPs waveguide system can utilize the characteristics of SPPs to form electromagnetic oscillations through the interaction of free electrons and photons in the metal surface area, break the diffraction limit of light, and perform subwavelength or even nanometer-sized light manipulation, thereby achieving low loss and long distances. At the same time, the size of nanometer scale is suitable for on-chip integration to realize high transmission rate optical data transmission.

实际应用中,不同的SPPs波导系统可以具有不同的结构类型。例如,图1(a)和图1(b)所展示的两种不同结构的SPPs波导系统。图1(a)所示的结构包含有构成该结构的部位:谐振腔0。图1(b)所示的结构不包含部位:谐振腔0。对于任一结构的SPPs波导系统,可以根据该结构的SPPs波导系统的电磁响应数据,例如:透射谱、场分布等衡量SPPs波导系统的器件性能,确定该结构的SPPs波导系统激发和传输SPPs的能力。针对该结构的SPPs波导系统,结构参数,例如:构成该结构的各部位的尺寸等是决定该结构的SPPs波导系统的电磁响应数据的重要因素。因此,在制作某一结构的SPPs波导系统前,需要考虑如何获取能够达到目标电磁响应数据的该结构的目标结构参数,以根据目标结构参数制作具有目标器件性能的该结构的SPPs波导系统。In practical applications, different SPPs waveguide systems can have different structural types. For example, Fig. 1(a) and Fig. 1(b) show two different structures of SPPs waveguide systems. The structure shown in FIG. 1( a ) includes a part constituting the structure: the resonant cavity 0 . The structure shown in Fig. 1(b) does not include the part: resonant cavity 0 . For the SPPs waveguide system of any structure, the device performance of the SPPs waveguide system can be measured according to the electromagnetic response data of the SPPs waveguide system of the structure, such as transmission spectrum, field distribution, etc., and the SPPs waveguide system of the structure can be used to excite and transmit SPPs. ability. For the SPPs waveguide system of this structure, structural parameters, such as the size of each part constituting the structure, are important factors to determine the electromagnetic response data of the SPPs waveguide system of this structure. Therefore, before fabricating the SPPs waveguide system of a certain structure, it is necessary to consider how to obtain the target structure parameters of the structure that can achieve the target electromagnetic response data, so as to fabricate the SPPs waveguide system of the structure with the target device performance according to the target structure parameters.

为了获取上述能够达到目标电磁响应数据的某一结构的目标结构参数,通常会针对该结构,利用设定的结构参数仿真得到仿真结果,判断仿真结果是否符合目标电磁响应数据。如果不符合,则根据得到的仿真结果,人工计算需要调整的结构参数,再用调整后的结构参数,进行仿真得到新的仿真结果,并返回判断仿真结果是否符合目标电磁响应数据的步骤。如此循环直到获得符合目标电磁响应数据的结构参数。但是,仿真过程中结构参数需要人工计算调整,且多次仿真和多次人工调整使得确定目标结构参数的过程复杂,效率较低。In order to obtain the target structure parameters of the above-mentioned structure that can achieve the target electromagnetic response data, the simulation results are usually obtained by using the set structure parameters for the structure, and it is judged whether the simulation results conform to the target electromagnetic response data. If not, according to the obtained simulation results, manually calculate the structural parameters that need to be adjusted, and then use the adjusted structural parameters to simulate to obtain new simulation results, and return to the step of judging whether the simulation results conform to the target electromagnetic response data. This cycle is repeated until structural parameters that match the target electromagnetic response data are obtained. However, the structural parameters need manual calculation and adjustment during the simulation process, and multiple simulations and multiple manual adjustments make the process of determining the target structural parameters complicated and inefficient.

发明内容SUMMARY OF THE INVENTION

本发明实施例的目的在于提供一种表面等离激元波导系统的结构参数确定方法及设备,以实现在不需要多次人工参与的基础上,提高结构参数的确定效率。具体技术方案如下:The purpose of the embodiments of the present invention is to provide a method and device for determining the structural parameters of a surface plasmon waveguide system, so as to improve the efficiency of determining the structural parameters without the need for repeated manual participation. The specific technical solutions are as follows:

第一方面,本发明实施例提供了一种表面等离激元波导系统的结构参数确定方法,该方法包括:In a first aspect, an embodiment of the present invention provides a method for determining structural parameters of a surface plasmon waveguide system, the method comprising:

获得表面等离激元波导系统的结构类型;Obtain the structure type of the surface plasmon waveguide system;

基于该结构类型,获得针对该结构类型的表面等离激元波导系统的目标电磁响应数据;其中,目标电磁响应数据用于表明所述表面等离激元波导系统的目标器件性能;Based on the structure type, obtain target electromagnetic response data for the surface plasmon waveguide system of this structure type; wherein, the target electromagnetic response data is used to indicate the target device performance of the surface plasmon waveguide system;

将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数;Input the target electromagnetic response data into the pre-trained reverse calculation model corresponding to the structure type, and obtain the target structure parameters corresponding to the structure type;

其中,与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。Wherein, the reverse calculation model corresponding to the structure type is: pre-determined multiple sample structure parameters corresponding to the structure type and multiple sample electromagnetic response data corresponding to each sample structure parameter in advance. The trained neural network model.

第二方面,本发明实施例提供了一种基于神经网络的表面等离激元波导系统的结构参数确定装置,该装置包括:In a second aspect, an embodiment of the present invention provides an apparatus for determining structural parameters of a surface plasmon waveguide system based on a neural network, the apparatus comprising:

获取模块,用于获得表面等离激元波导系统的结构类型;基于该结构类型,获得针对该结构类型的表面等离激元波导系统的目标电磁响应数据;其中,目标电磁响应数据用于表明表面等离激元波导系统的目标器件性能;The acquisition module is used to obtain the structure type of the surface plasmon waveguide system; based on the structure type, the target electromagnetic response data of the surface plasmon waveguide system for the structure type is obtained; wherein, the target electromagnetic response data is used to indicate Target device performance of surface plasmon waveguide systems;

目标结构参数确定模块,用于将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数;The target structure parameter determination module is used for inputting the target electromagnetic response data into the pre-trained reverse calculation model corresponding to the structure type to obtain the target structure parameter corresponding to the structure type;

其中,与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。Wherein, the reverse calculation model corresponding to the structure type is: pre-determined multiple sample structure parameters corresponding to the structure type and multiple sample electromagnetic response data corresponding to each sample structure parameter in advance. The trained neural network model.

第三方面,本发明实施例提供了一种电子设备,该设备包括:In a third aspect, an embodiment of the present invention provides an electronic device, the device comprising:

处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序,实现上述第一方面提供的表面等离激元波导系统的结构参数确定方法的步骤。A processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the bus; the memory is used to store computer programs; the processor is used to execute the programs stored in the memory to achieve The steps of the method for determining the structural parameters of the surface plasmon waveguide system provided by the first aspect above.

第四方面,本发明实施例提供了一种计算机可读存储介质,该存储介质内存储有计算机程序,该计算机程序被处理器执行时实现上述第一方面提供的表面等离激元波导系统的结构参数确定方法的步骤。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, implements the surface plasmon waveguide system provided in the first aspect above. Steps of a method for determining structural parameters.

本发明实施例提供的一种表面等离激元波导系统的结构参数确定方法及设备,通过获得表面等离激元波导系统的结构类型。基于该结构类型,获得针对该结构类型的表面等离激元波导系统的目标电磁响应数据,其中,目标电磁响应数据用于表明所述表面等离激元波导系统的目标器件性能,将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数。其中,与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。与传统的需要多次人工参与的目标结构参数确定方式相比,由于利用预先训练得到的反向计算模型,建立了结构参数与电磁响应数据之间的映射关系,因此,在确定与某一结构类型对应的目标结构参数时,将与该结构类型对应的目标电磁响应数据输入预先训练好的反向计算模型,就可以得到能够达到目标电磁响应数据的与该结构类型对应的目标结构参数,目标结构参数的确定无需经过多次人工调整结构参数和多次仿真,从而提高了目标结构参数的确定效率。The embodiments of the present invention provide a method and device for determining the structural parameters of a surface plasmon waveguide system, by obtaining the structure type of the surface plasmon waveguide system. Based on the structure type, the target electromagnetic response data for the surface plasmon waveguide system of this structure type is obtained, wherein the target electromagnetic response data is used to indicate the target device performance of the surface plasmon waveguide system, and the target electromagnetic response data is The response data is input into the pre-trained reverse calculation model corresponding to the structure type, and the target structure parameter corresponding to the structure type is obtained. Wherein, the reverse calculation model corresponding to the structure type is: pre-determined multiple sample structure parameters corresponding to the structure type and multiple sample electromagnetic response data corresponding to each sample structure parameter in advance. The trained neural network model. Compared with the traditional method of determining the target structure parameters that requires multiple manual participation, the mapping relationship between the structure parameters and the electromagnetic response data is established by using the reverse calculation model obtained by pre-training. When the target structure parameter corresponding to the type is selected, the target electromagnetic response data corresponding to the structure type is input into the pre-trained reverse calculation model, and the target structure parameter corresponding to the structure type that can achieve the target electromagnetic response data can be obtained. The determination of the structural parameters does not require manual adjustment of structural parameters and multiple simulations, thereby improving the efficiency of determining the target structural parameters.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that are required in the description of the embodiments or the prior art.

图1(a)和图1(b)分别为表面等离激元波导系统的结构示例图;Fig. 1(a) and Fig. 1(b) are respectively the structural example diagrams of the surface plasmon waveguide system;

图2为本发明一实施例的表面等离激元波导系统的结构参数确定方法的流程示意图;FIG. 2 is a schematic flowchart of a method for determining structural parameters of a surface plasmon waveguide system according to an embodiment of the present invention;

图3为本发明一实施例的反向计算模型的结构的一种示意图;3 is a schematic diagram of a structure of a reverse calculation model according to an embodiment of the present invention;

图4为本发明一实施例的反向计算模型的训练过程的流程示意图;4 is a schematic flowchart of a training process of a reverse computing model according to an embodiment of the present invention;

图5(a)为本发明一实施例的金属-介质-金属波导耦合腔结构的结构示意图;FIG. 5( a ) is a schematic structural diagram of a metal-dielectric-metal waveguide coupling cavity structure according to an embodiment of the present invention;

图5(b)为本发明一实施例的样本电磁响应数据的透射谱示意图;FIG. 5(b) is a schematic diagram of the transmission spectrum of the electromagnetic response data of the sample according to an embodiment of the present invention;

图6(a)为本发明一实施例的结构参数的真实值与预测值示意图;FIG. 6(a) is a schematic diagram of the actual value and the predicted value of the structural parameter according to an embodiment of the present invention;

图6(b)为本发明一实施例的真实透射谱与预测透射谱示意图;FIG. 6(b) is a schematic diagram of the actual transmission spectrum and the predicted transmission spectrum according to an embodiment of the present invention;

图7为本发明另一实施例的反向计算模型的训练过程的流程示意图;7 is a schematic flowchart of a training process of a reverse computing model according to another embodiment of the present invention;

图8为本发明一实施例的正向预测模型的结构示意图;8 is a schematic structural diagram of a forward prediction model according to an embodiment of the present invention;

图9为本发明一实施例的反向计算模型与正向预测模型串联的结构示意图;9 is a schematic structural diagram of a reverse calculation model and a forward prediction model connected in series according to an embodiment of the present invention;

图10(a)为本发明一实施例的训练数据的真实透射谱与预测透射谱示意图;10(a) is a schematic diagram of the actual transmission spectrum and the predicted transmission spectrum of the training data according to an embodiment of the present invention;

图10(b)为本发明一实施例的测试数据的真实透射谱与预测透射谱示意图;10(b) is a schematic diagram of the actual transmission spectrum and the predicted transmission spectrum of the test data according to an embodiment of the present invention;

图11为本发明另一实施例的表面等离激元波导系统的参数确定方法的流程示意图;11 is a schematic flowchart of a method for determining parameters of a surface plasmon waveguide system according to another embodiment of the present invention;

图12为本发明一实施例的优化透射谱示意图;12 is a schematic diagram of an optimized transmission spectrum according to an embodiment of the present invention;

图13为本发明一实施例的表面等离激元波导系统的参数确定装置的结构示意图;13 is a schematic structural diagram of an apparatus for determining parameters of a surface plasmon waveguide system according to an embodiment of the present invention;

图14为本发明一实施例的电子设备的结构示意图。FIG. 14 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.

具体实施方式Detailed ways

为了使本领域技术人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make those skilled in the art better understand the technical solutions of the present invention, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described implementation Examples are only some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

下面首先对本发明一实施例的表面等离激元波导系统的结构参数确定方法进行介绍。The following first introduces a method for determining the structural parameters of the surface plasmon waveguide system according to an embodiment of the present invention.

本发明实施例提供的表面等离激元波导系统的结构参数确定方法,可以应用于具有数据处理能力的电子设备,该电子设备可以包括台式计算机、便携式计算机、互联网电视,智能移动终端、可穿戴式智能终端、服务器等,在此不作限定,任何可以实现本发明实施例的电子设备,均属于本发明实施例的保护范围。The method for determining the structural parameters of the surface plasmon waveguide system provided by the embodiments of the present invention can be applied to electronic devices with data processing capabilities, and the electronic devices may include desktop computers, portable computers, Internet TVs, smart mobile terminals, wearable It is not limited here, and any electronic device that can implement the embodiments of the present invention belongs to the protection scope of the embodiments of the present invention.

如图2所示,本发明一实施例的表面等离激元波导系统的结构参数确定方法的流程,该方法可以包括:As shown in FIG. 2 , the flow of a method for determining the structural parameters of a surface plasmon waveguide system according to an embodiment of the present invention may include:

S201,获得表面等离激元波导系统的结构类型。S201, obtaining the structure type of the surface plasmon waveguide system.

不同的表面等离激元波导系统具有不同的结构类型,相应的,针对具有不同结构类型的表面等离激元波导系统,需要确定的结构参数也不同。例如,针对图1(a)所示的结构类型,与图1(b)所示结构类型相比,还需要确定图1(b)所示结构类型不包含的谐振腔0的尺寸。因此,在确定表面等离激元波导系统的结构参数时,需要先获得该器件的结构类型,以便后续针对该结构类型,确定适用于该结构类型的目标结构参数。Different surface plasmon waveguide systems have different structure types, and accordingly, for surface plasmon waveguide systems with different structure types, the structural parameters that need to be determined are also different. For example, for the structure type shown in Fig. 1(a), compared with the structure type shown in Fig. 1(b), the size of the resonant cavity 0 not included in the structure type shown in Fig. 1(b) also needs to be determined. Therefore, when determining the structural parameters of the surface plasmon waveguide system, it is necessary to obtain the structural type of the device first, so as to determine the target structural parameters suitable for the structural type subsequently.

S202,基于结构类型,获得针对该结构类型的目标电磁响应数据;其中,目标电磁响应数据用于表明表面等离激元波导系统的目标器件性能。S202 , based on the structure type, obtain target electromagnetic response data for the structure type; wherein, the target electromagnetic response data is used to indicate the performance of the target device of the surface plasmon waveguide system.

S203,将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数。S203, input the target electromagnetic response data into the pre-trained reverse calculation model corresponding to the structure type, to obtain target structure parameters corresponding to the structure type.

电磁响应数据具体可以包括透射谱、场分布等,用于衡量表面等离激元波导系统的器件性能,确定表面等离激元波导系统激发和传输SPPs的能力。目标电磁响应数据,具体可以是在制作该结构类型的表面等离激元波导系统前,根据对该表面等离激元波导系统的器件性能的需求所确定的。The electromagnetic response data can specifically include transmission spectrum, field distribution, etc., which are used to measure the device performance of the surface plasmon waveguide system and determine the ability of the surface plasmon waveguide system to excite and transmit SPPs. The target electromagnetic response data may be specifically determined according to the requirements of the device performance of the surface plasmon waveguide system before fabricating the surface plasmon waveguide system of the structure type.

针对任一结构的表面等离激元波导系统,该器件的结构参数具体可以包括构成该结构的各部位的尺寸,例如:图1(a)所示结构中部位谐振腔0的长和宽。For the surface plasmon waveguide system of any structure, the structural parameters of the device may specifically include the dimensions of each part constituting the structure, such as the length and width of the resonant cavity 0 in the structure shown in FIG. 1(a).

其中,与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。Wherein, the reverse calculation model corresponding to the structure type is: pre-determined multiple sample structure parameters corresponding to the structure type and multiple sample electromagnetic response data corresponding to each sample structure parameter in advance. The trained neural network model.

具体的,如图3所示,本发明一实施例的反向计算模型的结构,可以包括:输入层,隐藏层以及输出层。将所获取的结构类型对应的透射谱中的数据作为目标电磁响应数据t1,t2,…,tm,通过输入层输入至该反向计算模型中,经过隐藏层计算,由输出层输出目标结构参数p1,p2,……,pk,其中k为与目标电磁响应数据对应的目标结构参数的总数量。m为目标电磁响应数据的总数量,透射谱中横轴代表进入该表面等离激元波导系统的入射光的波长,纵轴代表不同入射光波长对应的该表面等离激元波导系统的透过率。示例性的,针对具有图1(a)所示结构的表面等离激元波导系统,目标结构参数p1,p2,……,pk,具体可以为该结构中各谐振腔的长、宽以及各谐振腔之间的波导耦合距离。Specifically, as shown in FIG. 3 , the structure of the reverse calculation model according to an embodiment of the present invention may include: an input layer, a hidden layer, and an output layer. The acquired data in the transmission spectrum corresponding to the structure type is taken as the target electromagnetic response data t 1 , t 2 ,..., t m , which is input to the reverse calculation model through the input layer, and is calculated by the hidden layer and output by the output layer. Target structure parameters p 1 , p 2 , . . . , p k , where k is the total number of target structure parameters corresponding to the target electromagnetic response data. m is the total number of target electromagnetic response data, the horizontal axis in the transmission spectrum represents the wavelength of the incident light entering the surface plasmon waveguide system, and the vertical axis represents the transmission spectrum of the surface plasmon waveguide system corresponding to different incident light wavelengths over rate. Exemplarily, for the surface plasmon waveguide system with the structure shown in FIG. 1( a ), the target structure parameters p 1 , p 2 , . . . , p k may specifically be the length, width and waveguide coupling distance between resonators.

本发明实施例提供的一种表面等离激元波导系统的结构参数确定方法,与传统的需要多次人工参与的目标结构参数确定方式相比,由于利用预先训练得到的反向计算模型,建立了结构参数与电磁响应数据之间的映射关系,因此,在确定目标结构参数时,将目标电磁响应数据输入预先训练好的反向计算模型,就可以得到能够达到目标电磁响应数据的目标结构参数,目标结构参数的确定无需经过多次人工调整结构参数和多次仿真,从而提高了目标结构参数的确定效率。The method for determining the structural parameters of the surface plasmon waveguide system provided by the embodiment of the present invention is compared with the traditional method for determining the target structural parameters that requires multiple manual participation. Therefore, when determining the target structure parameters, the target electromagnetic response data is input into the pre-trained reverse calculation model, and the target structure parameters that can achieve the target electromagnetic response data can be obtained. , the determination of the target structure parameters does not require manual adjustment of the structure parameters and multiple simulations, thereby improving the efficiency of the determination of the target structure parameters.

如图4所示,本发明一实施例的反向计算模型的训练过程的流程,可以包括:As shown in FIG. 4, the flow of the training process of the reverse computing model according to an embodiment of the present invention may include:

S401,将每个样本结构参数一一对应的样本电磁响应数据分别输入当前神经网络模型,得到每个样本电磁响应数据对应的预测结构参数。当前神经网络模型初次使用时为预设初始神经网络模型。S401: Input the sample electromagnetic response data corresponding to each sample structure parameter one-to-one into the current neural network model respectively, and obtain the predicted structure parameter corresponding to each sample electromagnetic response data. When the current neural network model is used for the first time, it is the default initial neural network model.

参考图1(a)和图1(b)所示表面等离激元波导系统的结构,通常情况下,某一结构类型的表面等离激元波导系统会包含多个不同的部位,需要针对每个部位确定目标结构参数。相应的,需要针对每个部位设定样本结构参数以及获取分别与每个样本结构参数一一对应的电磁响应数据。Referring to the structure of the surface plasmon waveguide system shown in Fig. 1(a) and Fig. 1(b), in general, a surface plasmon waveguide system of a certain structure type will contain a number of different parts, which need to be targeted for Each site determines the target structural parameters. Correspondingly, it is necessary to set the sample structure parameters for each part and obtain the electromagnetic response data corresponding to each sample structure parameter one-to-one.

由此,针对具有多个结构参数的表面等离激元波导系统,可选的,与该结构对应的多个样本结构参数,可以采用如下步骤进行设定:Therefore, for a surface plasmon waveguide system with multiple structural parameters, optionally, multiple sample structural parameters corresponding to the structure can be set by using the following steps:

获取多个预设初始结构参数,预设参数调整精度以及预设参数变化范围。Obtain multiple preset initial structure parameters, preset parameter adjustment accuracy and preset parameter variation range.

针对每个预设初始结构参数,按照预设参数调整精度,在预设参数变化范围内,确定与该预设初始结构参数对应的至少一个参数变化值。For each preset initial structure parameter, the precision is adjusted according to the preset parameter, and within the preset parameter variation range, at least one parameter change value corresponding to the preset initial structure parameter is determined.

基于该预设初始结构参数和对应的至少一个参数变化值,确定与该预设初始结构参数对应的至少一个样本结构参数。Based on the preset initial structure parameter and the corresponding at least one parameter change value, at least one sample structure parameter corresponding to the preset initial structure parameter is determined.

分别与每个样本结构参数一一对应的多个样本电磁响应数据,可以采用如下步骤进行获取:The electromagnetic response data of multiple samples corresponding to each sample structure parameter one-to-one can be obtained by using the following steps:

利用确定的与每个预设初始结构参数对应的至少一个样本结构参数,采样得到分别与每个样本结构参数一一对应的多个样本电磁响应数据。Using the determined at least one sample structure parameter corresponding to each preset initial structure parameter, a plurality of sample electromagnetic response data corresponding to each sample structure parameter one-to-one is obtained by sampling.

例如,参考图5(a),设定与MDMWCC结构(metal-dielectric-metal waveguidecoupled with cavities,金属-介质-金属波导耦合腔结构)对应的样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据的步骤包括:获取与该结构对应的预设初始结构参数:MDMWCC结构中,谐振腔1的长度I1=480nm,宽度W1=100nm,谐振腔1与谐振腔2之间的波导耦合距离g1=255nm;谐振腔2的长度I2=520nm,宽度W2=100nm,谐振腔2与谐振腔3之间的波导耦合距离g2=330nm;谐振腔3的长度I3=520nm,宽度W3=100nm。预设参数调整精度可以为1nm,预设参数变化范围可以为闭区间[预设初始结构参数-20nm,预设初始结构参数+20nm]。For example, referring to FIG. 5( a ), set the sample structure parameters corresponding to the MDMWCC structure (metal-dielectric-metal waveguide coupled with cavities, metal-dielectric-metal waveguide coupled cavity structure) and the parameters of each sample structure one by one. The step of corresponding electromagnetic response data of multiple samples includes: acquiring preset initial structure parameters corresponding to the structure: in the MDMWCC structure, the length I 1 =480nm, the width W 1 =100nm of the resonant cavity 1, the resonant cavity 1 and the resonant cavity are The waveguide coupling distance g 1 =255nm between 2; the length I 2 =520nm, the width W 2 =100nm of the resonator 2, the waveguide coupling distance g 2 =330nm between the resonator 2 and the resonator 3; Length I 3 =520 nm, width W 3 =100 nm. The preset parameter adjustment precision can be 1nm, and the preset parameter variation range can be a closed interval [preset initial structure parameter -20nm, preset initial structure parameter +20nm].

为了便于理解,针对预设初始结构参数中谐振腔1的长度I1=480nm进行描述。按照预设参数调整精度1nm,在预设参数变化范围闭区间内,确定与谐振腔1的长度I1=480nm对应的参数变化值-20nm,-19nm,……,19nm,20nm。基于谐振腔1的长度I1=480nm以及上述对应的参数变化值,确定与谐振腔1的长度I1=480nm对应的样本结构参数460nm,461nm,……,499nm,500nm。类似的,可以确定谐振腔1的宽度W1,谐振腔1与谐振腔2之间的波导耦合距离g1,谐振腔2的长度I2,宽度W2,谐振腔2与谐振腔3之间的波导耦合距离g2,谐振腔3的长度I3,宽度W3分别对应的至少一个样本结构参数。当然,所确定的与该预设初始结构参数对应的至少一个参数变化值,具体可以是按照样本数据数量需求,以针对每个预设初始结构参数,按照预设参数调整精度,在预设参数变化范围内,确定与该预设初始结构参数对应的至少一个参数变化值为随机数生成规则,所生成的随机数。For ease of understanding, the description is made with respect to the length I 1 =480 nm of the resonant cavity 1 in the preset initial structural parameters. According to the preset parameter adjustment accuracy of 1 nm, within the closed interval of the preset parameter variation range, determine the parameter variation values -20 nm, -19 nm, . . . , 19 nm, 20 nm corresponding to the length I 1 =480 nm of the resonant cavity 1 . Based on the length I 1 =480 nm of the resonant cavity 1 and the corresponding parameter change values above, the sample structure parameters 460 nm, 461 nm, ..., 499 nm, 500 nm corresponding to the length I 1 =480 nm of the resonant cavity 1 are determined. Similarly, the width W 1 of the resonant cavity 1 , the waveguide coupling distance g 1 between the resonant cavity 1 and the resonant cavity 2 , the length I 2 of the resonant cavity 2 , the width W 2 , and the distance between the resonant cavity 2 and the resonant cavity 3 can be determined. The waveguide coupling distance g 2 , the length I 3 and the width W 3 of the resonant cavity 3 correspond to at least one sample structure parameter respectively. Of course, the determined change value of at least one parameter corresponding to the preset initial structure parameter may specifically be based on the quantity requirement of the sample data to adjust the precision according to the preset parameter for each preset initial structure parameter. Within the variation range, it is determined that at least one parameter variation value corresponding to the preset initial structure parameter is the random number generated by the random number generation rule.

利用上述确定的至少一个样本结构参数,通过用于进行光子学产品仿真设计的软件Lumerical FDTD Solutions进行仿真模拟,得到与该样本结构参数对应的电磁响应,例如图5(b)中所示的透射谱。然后基于MC采样(Monte Carlo,用于生成指定分布的随机数的抽样)获取与该电磁响应对应的一组样本电磁响应数据,样本结构参数与对应的样本电磁响应数据组合在一起称为一组样本数据。样本数据的数量可以根据具体需求确定,如可以是15000组。Using the at least one sample structure parameter determined above, a simulation is performed by Lumerical FDTD Solutions, a software used for simulation design of photonics products, to obtain the electromagnetic response corresponding to the sample structure parameter, such as the transmission shown in Figure 5(b). spectrum. Then, a set of sample electromagnetic response data corresponding to the electromagnetic response is obtained based on MC sampling (Monte Carlo, sampling for generating random numbers of a specified distribution). The combination of the sample structure parameters and the corresponding sample electromagnetic response data is called a set sample. The number of sample data can be determined according to specific needs, such as 15,000 groups.

此外,预设初始结构参数,预设参数调整精度以及预设参数变化范围,具体可以为表面等离激元波导系统设计人员输入后接收到的,也可以为从预先存储有预设初始结构参数,预设参数调整精度以及预设参数变化范围的存储模块中,获取到的。In addition, the preset initial structural parameters, the preset parameter adjustment accuracy, and the preset parameter variation range may specifically be received after input by the designer of the surface plasmon waveguide system, or may be obtained from pre-stored preset initial structural parameters. , obtained from the storage module of the preset parameter adjustment accuracy and the preset parameter variation range.

由上述步骤得到的样本结构参数和对应的样本电磁响应数据,所输入的预设初始神经网络模型,具体可以根据历史经验设定层数以及每一层的神经元个数,也可以是根据训练神经网络模型的历史经验确定的具有指定层数和神经元个数的神经网络模型。The sample structure parameters and corresponding sample electromagnetic response data obtained from the above steps, and the input preset initial neural network model can specifically set the number of layers and the number of neurons in each layer according to historical experience, or can be based on training A neural network model with a specified number of layers and neurons determined by the historical experience of the neural network model.

例如,预设初始神经网络模型可以是6层神经网络模型,且每一层的神经元个数为200-100-200-500-100-8,其中数字代表每一层的神经元个数,第一层和最后一层神经元的数目分别对应输入的样本电磁响应数据的个数以及对应的样本结构参数的的个数。预设初始神经网络模型的结构可以与本发明图3所示的反向设计模型相同。可以理解的是,反向计算模型的训练过程中,初次使用的神经网络模型为预设初始神经网络模型。For example, the preset initial neural network model may be a 6-layer neural network model, and the number of neurons in each layer is 200-100-200-500-100-8, wherein the number represents the number of neurons in each layer, The number of neurons in the first layer and the last layer respectively corresponds to the number of input sample electromagnetic response data and the number of corresponding sample structure parameters. The structure of the preset initial neural network model can be the same as the reverse design model shown in FIG. 3 of the present invention. It can be understood that, in the training process of the reverse calculation model, the neural network model used for the first time is a preset initial neural network model.

将上述图5(b)实施例中的样本电磁响应数据,分别输入当前神经网络模型,得到每个样本电磁响应数据对应的预测结构参数。当然,得到的预测结构参数包括:谐振腔1的预测长度,预测宽度,预测谐振腔1与谐振腔2之间的波导耦合距离,谐振腔2的预测长度,预测宽度,预测谐振腔2与谐振腔3之间的波导耦合距离,谐振腔3的预测长度,预测宽度。The sample electromagnetic response data in the above embodiment of FIG. 5(b) are respectively input into the current neural network model, and the predicted structural parameters corresponding to each sample electromagnetic response data are obtained. Of course, the obtained predicted structural parameters include: predicted length of resonator 1, predicted width, predicted waveguide coupling distance between resonator 1 and resonator 2, predicted length of resonator 2, predicted width, predicted resonator 2 and resonator The waveguide coupling distance between the cavities 3, the predicted length of the resonant cavity 3, and the predicted width.

S402,根据得到的多个预测结构参数以及第一预设代价函数,判断当前神经网络模型是否收敛,如果收敛,则执行S403,如果不收敛,则执行S404至S405。其中,第一预设代价函数为基于样本结构参数设定的函数。S402 , according to the obtained multiple predicted structural parameters and the first preset cost function, determine whether the current neural network model has converged, if so, go to S403 , if not, go to S404 to S405 . The first preset cost function is a function set based on a sample structure parameter.

判断当前神经网络模型是否收敛具体可以是,以最小化代价函数为目标,计算第一预设代价函数的最小值,当得到最小值时,则代表当前神经网络模型收敛,当还未得到最小值时,则代表当前神经网络模型不收敛。具体的,第一预设代价函数可以为公式一:Specifically, judging whether the current neural network model is converging may be, aiming at minimizing the cost function, and calculating the minimum value of the first preset cost function. When the minimum value is obtained, it means that the current neural network model has converged, and when the minimum value has not been obtained. , it means that the current neural network model does not converge. Specifically, the first preset cost function may be Formula 1:

J2=u/v,J 2 =u/v,

其中,J为样本电磁响应数据对应的样本结构参数与样本电磁响应数据对应的预测结构参数的误差,u为样本结构参数和预测结构参数的残差平方和,v为样本结构参数和总样本结构参数均值的平方和。Among them, J is the error between the sample structure parameter corresponding to the sample electromagnetic response data and the predicted structure parameter corresponding to the sample electromagnetic response data, u is the residual sum of squares of the sample structure parameter and the predicted structure parameter, v is the sample structure parameter and the total sample structure Sum of squares of parameter means.

S403,将当前神经网络模型确定为反向计算模型。S403, determining the current neural network model as a reverse calculation model.

在得到反向计算模型以后,可以采用与上述图5实施例相同的方法,设定多个测试结构参数和获取对应的测试电磁响应数据作为测试集,用于验证反向计算模型的训练效果。例如,可以设定500组测试数据,将500组测试数据中的测试电磁响应数据输入反向计算模型,得到与测试电磁响应数据对应的预测结构参数。将对应的测试结构参数和与测试电磁响应数据对应的预测结构参数输入第一预设代价函数中,得到测试数据对应的代价函数的评分为0.9029。将图5实施例中的样本结构参数和与样本电磁响应数据对应的预测结构参数输入第一预设代价函数中,得到样本数据对应的代价函数的评分为0.9169。测试数据与样本数据各自对应的代价函数的评分差异在预期范围内,由此,可以确定该反向计算模型的训练效果达到期望水平,建立了预期的反向计算模型。After the inverse calculation model is obtained, the same method as the above-mentioned embodiment of FIG. 5 can be used to set multiple test structure parameters and obtain the corresponding test electromagnetic response data as a test set to verify the training effect of the inverse calculation model. For example, 500 sets of test data can be set, and the test electromagnetic response data in the 500 sets of test data can be input into the reverse calculation model to obtain predicted structural parameters corresponding to the test electromagnetic response data. The corresponding test structure parameters and the predicted structure parameters corresponding to the test electromagnetic response data are input into the first preset cost function, and the score of the cost function corresponding to the test data is obtained as 0.9029. The sample structure parameters in the embodiment of FIG. 5 and the predicted structure parameters corresponding to the sample electromagnetic response data are input into the first preset cost function, and the score of the cost function corresponding to the sample data is obtained as 0.9169. The difference in the score of the cost function corresponding to the test data and the sample data is within the expected range, so it can be determined that the training effect of the inverse calculation model reaches the expected level, and the expected inverse calculation model is established.

S404,利用预设的梯度函数,采用随机梯度下降法调整当前神经网络模型的模型参数,得到新的神经网络模型。S404 , using a preset gradient function, and adopting a stochastic gradient descent method to adjust the model parameters of the current neural network model to obtain a new neural network model.

例如,当前神经网络模型可以为

Figure BDA0001781788680000091
则所调整的模型参数为权重w。其中,b为偏置,x为目标电磁响应数据,n为神经网络的神经元个数。For example, the current neural network model can be
Figure BDA0001781788680000091
Then the adjusted model parameter is the weight w. Among them, b is the bias, x is the target electromagnetic response data, and n is the number of neurons in the neural network.

预设的梯度函数具体可以是公式二:The preset gradient function can be specifically formula 2:

Figure BDA0001781788680000092
Figure BDA0001781788680000092

其中,vt为当前模型参数的梯度,gt为当前模型参数的初始梯度,η为学习率,θt+1为要获取的新模型参数,θt为当前模型参数。Among them, v t is the gradient of the current model parameter, gt is the initial gradient of the current model parameter, η is the learning rate, θ t+1 is the new model parameter to be acquired, and θ t is the current model parameter.

S405,将当前神经网络模型更新为所得到的新的神经网络模型,并返回执行S401。S405, update the current neural network model to the obtained new neural network model, and return to executing S401.

将当前神经网络模型更新为所得到的新的神经网络模型,以在每一次调整了模型参数的最新的神经网络模型的基础上,进行迭代,直到获取了收敛的当前神经网络模型。The current neural network model is updated to the obtained new neural network model, so as to iterate on the basis of the latest neural network model whose model parameters are adjusted each time until a converged current neural network model is obtained.

一般情况下,当前神经网络模型收敛时,该神经网络模型的模型参数已达到可准确得到结构参数的目标值。此时,由当前神经网络模型得到的预测结构参数的准确度符合神经网络模型的训练目标。此时,样本结构参数所代表的真实结构参数与当前神经网络模型输出的预测结构参数接近,测试结构参数所代表的真实结构参数与当前神经网络模型输出的测试电磁响应数据对应的预测结构参数接近,具体如图6(a)所示。同时,样本结构参数对应的透射谱与样本电磁响应数据对应的预测结构参数对应的透射谱接近,如图6(b)所示,一组样本结构参数对应的真实透射谱与预测结构参数对应的预测透射谱接近。In general, when the current neural network model converges, the model parameters of the neural network model have reached the target value that the structural parameters can be accurately obtained. At this time, the accuracy of the predicted structural parameters obtained by the current neural network model conforms to the training objective of the neural network model. At this time, the real structure parameters represented by the sample structure parameters are close to the predicted structure parameters output by the current neural network model, and the real structure parameters represented by the test structure parameters are close to the predicted structure parameters corresponding to the test electromagnetic response data output by the current neural network model. , as shown in Figure 6(a). At the same time, the transmission spectrum corresponding to the sample structure parameters is close to the transmission spectrum corresponding to the predicted structure parameters corresponding to the sample electromagnetic response data. The predicted transmission spectrum is close.

但是,当神经网络模型收敛时,还可能存在模型的预测结果的准确度没有达到目标水平的情况。为此,如图7所示,本发明另一实施例的反向计算模型的训练过程的流程,可以包括:However, when the neural network model converges, the accuracy of the prediction result of the model may not reach the target level. To this end, as shown in FIG. 7 , the flow of the training process of the reverse computing model according to another embodiment of the present invention may include:

S701,将每个样本结构参数一一对应的样本电磁响应数据分别输入当前神经网络模型,得到每个样本电磁响应数据对应的预测结构参数。当前神经网络模型初次使用时为预设初始神经网络模型。S701: Input the sample electromagnetic response data corresponding to each sample structure parameter one-to-one into the current neural network model, respectively, to obtain the predicted structure parameter corresponding to each sample electromagnetic response data. When the current neural network model is used for the first time, it is the default initial neural network model.

S702,根据得到的多个预测结构参数以及第一预设代价函数,判断当前神经网络模型是否收敛,如果收敛,则执行S703至S704,如果不收敛,则执行S707至S708。其中,第一预设代价函数为基于样本结构参数设定的函数。S702, according to the obtained multiple predicted structural parameters and the first preset cost function, determine whether the current neural network model has converged, if so, execute S703 to S704, and if not, execute S707 to S708. The first preset cost function is a function set based on a sample structure parameter.

S701至S702为与图4实施例中的S401至S402相同的步骤,在此不再赘述,详见图4实施例的描述。S701 to S702 are the same steps as S401 to S402 in the embodiment of FIG. 4 , and details are not repeated here. For details, please refer to the description of the embodiment of FIG. 4 .

S703,保存所得到的多个预测结构参数。S703, save the obtained multiple predicted structure parameters.

S704,判断得到的多个预测结构参数与对应的多个样本结构参数的拟合度是否小于预设拟合度阈值。如果是,则执行步骤S705,如果否,则执行步骤S706。S704: Determine whether the degree of fit of the obtained plurality of predicted structural parameters and the corresponding plurality of sample structural parameters is less than a preset degree of fit threshold. If yes, go to step S705, if not, go to step S706.

样本结构参数代表了表面等离激元波导系统的真实结构参数,得到的多个预测结构参数与对应的多个样本结构参数的拟合度用于表明预测结构参数与真实结构参数之间的接近程度。拟合度越高,预测结构参数越接近真实结构参数,当前神经网络模型预测结果的准确度越高。The sample structure parameters represent the real structure parameters of the surface plasmon waveguide system, and the fitting degree of the obtained multiple predicted structure parameters and the corresponding multiple sample structure parameters is used to indicate the closeness between the predicted structure parameters and the real structure parameters degree. The higher the degree of fit, the closer the predicted structural parameters are to the real structural parameters, and the higher the accuracy of the prediction results of the current neural network model.

S705,调整当前神经网络模型的物理结构,得到新的神经网络模型,并执行步骤S708。S705, adjust the physical structure of the current neural network model to obtain a new neural network model, and perform step S708.

当多个预测结构参数与对应的多个样本结构参数的拟合度小于预设拟合度阈值,表明当前神经网络模型预测结果的准确度没有达到目标水平,因此,可以调整当前神经网络模型物理结构,同时,将调整了物理结构的新的神经网络模型作为当前神经网络模型,继续训练,以得到预测准确度提高至达到目标水平的反向计算模型。其中,调整当前神经网络模型物理结构,具体可以包括:增加或者减少当前神经网络模型的层数,增加或者减少当前神经网络模型每一层的神经元个数。具体采用增加还是减少,可以根据历史经验确定。When the fitting degree of multiple predicted structural parameters and the corresponding multiple sample structural parameters is less than the preset fitting degree threshold, it indicates that the accuracy of the prediction results of the current neural network model has not reached the target level. Therefore, the physical properties of the current neural network model can be adjusted At the same time, the new neural network model with the adjusted physical structure is used as the current neural network model, and the training is continued to obtain a reverse calculation model whose prediction accuracy is improved to reach the target level. Wherein, adjusting the physical structure of the current neural network model may specifically include: increasing or decreasing the number of layers of the current neural network model, and increasing or decreasing the number of neurons in each layer of the current neural network model. The specific increase or decrease can be determined according to historical experience.

S706,将当前神经网络模型确定为反向计算模型。S706, determining the current neural network model as a reverse calculation model.

当多个预测结构参数与对应的多个样本结构参数的拟合度不小于预设拟合度阈值,表明当前神经网络模型预测结果的准确度达到目标水平,不存在上述模型预测结果不准确的问题,因此,可以将当前神经网络模型确定为反向计算模型When the fitting degree of multiple predicted structural parameters and the corresponding multiple sample structural parameters is not less than the preset fitting degree threshold, it indicates that the accuracy of the prediction results of the current neural network model has reached the target level, and there is no inaccurate prediction result of the above model. problem, therefore, the current neural network model can be determined as a reverse computational model

S707,利用预设的梯度函数,采用随机梯度下降法调整当前神经网络模型的模型参数,得到新的神经网络模型。S707, using a preset gradient function, and adopting a stochastic gradient descent method to adjust the model parameters of the current neural network model to obtain a new neural network model.

S708,将当前神经网络模型更新为所得到的新的神经网络模型,并返回执行S701。S708, the current neural network model is updated to the obtained new neural network model, and the process returns to S701.

S707至S708为与图4实施例中的S404至S405相同的步骤,在此不再赘述,详见图4实施例的描述。S707 to S708 are the same steps as S404 to S405 in the embodiment of FIG. 4 , which are not repeated here, and refer to the description of the embodiment of FIG. 4 for details.

此外,由于表面等离激元波导系统的电磁响应数据与结构参数的对应关系的特点,不同的结构参数可能会对应相同的电磁响应数据。在训练得到反向计算模型的过程中,多个结构参数对应相同的电磁响应数据,可能会导致利用代价函数得到了多个对应于相同的样本数据与预测数据误差的模型参数,从而无法计算得到最小值,进而造成当前神经网络模型无法收敛的问题。In addition, due to the characteristic of the correspondence between the electromagnetic response data of the surface plasmon waveguide system and the structural parameters, different structural parameters may correspond to the same electromagnetic response data. In the process of training the reverse calculation model, multiple structural parameters correspond to the same electromagnetic response data, which may lead to the use of the cost function to obtain multiple model parameters corresponding to the same error between the sample data and the predicted data, which cannot be calculated. The minimum value, which in turn causes the problem that the current neural network model cannot converge.

为此,可选的,在图4实施例的S404之前,本发明实施例的表面等离激元波导系统的参数确定方法,还可以包括:To this end, optionally, before S404 in the embodiment of FIG. 4 , the method for determining parameters of the surface plasmon waveguide system in the embodiment of the present invention may further include:

保存所得到的多个预测结构参数。The resulting multiple predicted structure parameters are saved.

将保存的多个预测结构参数分别输入预先训练好的正向预测模型,得到分别与每个预测结构参数一一对应的多个第一预测电磁响应数据。正向预测模型为预先利用设定的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据训练得到的神经网络模型。The stored multiple predicted structural parameters are respectively input into the pre-trained forward prediction model to obtain multiple first predicted electromagnetic response data corresponding to each predicted structural parameter one-to-one. The forward prediction model is a neural network model trained by using multiple preset sample structure parameters and multiple sample electromagnetic response data corresponding to each sample structure parameter one-to-one.

其中,正向预测模型是与反向计算模型具有相反的输入、输出的模型,用于基于输入的结构参数,得到电磁响应数据。具体的,如图8所示,本发明一实施例的正向预测模型的结构,可以包括:输入层,隐藏层以及输出层。例如,正向预测模型具体可以是6层神经网络8-50-200-500–100–200,其中输入层为8个神经元,用于输入8个结构参数。隐藏层为4层,每一层的神经元个数分别为50,200,500,100。输出层为200个神经元,用于输出透射谱的200个离散电磁响应数据。将结构参数p1,p2,……,pk,通过输入层输入至该正向预测模型中,经过隐藏层计算,由输出层输出预测电磁响应数据t1,t2,……,tm,其中预测电磁响应数据为预测透射谱中的数据。Among them, the forward prediction model is a model with opposite input and output to the reverse calculation model, and is used to obtain electromagnetic response data based on the input structural parameters. Specifically, as shown in FIG. 8 , the structure of the forward prediction model according to an embodiment of the present invention may include: an input layer, a hidden layer, and an output layer. For example, the forward prediction model may specifically be a 6-layer neural network 8-50-200-500-100-200, wherein the input layer is 8 neurons for inputting 8 structural parameters. The hidden layer is 4 layers, and the number of neurons in each layer is 50, 200, 500, 100 respectively. The output layer is 200 neurons, which are used to output 200 discrete electromagnetic response data of the transmission spectrum. The structural parameters p 1 , p 2 ,..., p k are input into the forward prediction model through the input layer, and are calculated by the hidden layer, and the predicted electromagnetic response data t 1 , t 2 ,..., t are output from the output layer. m , where the predicted electromagnetic response data is the data in the predicted transmission spectrum.

在本实施例中,如图9所示,正向预测模型串联在反向计算模型后,输入的结构参数为保存的由反向计算模型得到的多个预测结构参数。当正向预测模型单独使用时,输入的结构参数可以为真实结构参数。In this embodiment, as shown in FIG. 9 , after the forward prediction model is connected in series with the reverse calculation model, the input structural parameters are a plurality of stored predicted structural parameters obtained from the reverse calculation model. When the forward prediction model is used alone, the input structural parameters can be the real structural parameters.

当然,预先利用设定的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据训练得到正向预测模型的过程,与本发明图4所示实施例的训练得到反向设计模型的过程类似,区别在于训练时,输入的样本数据,判断是否收敛时依据的样本数据以及使用的代价函数不同。Of course, the process of obtaining a forward prediction model by training a plurality of preset sample structure parameters and a plurality of sample electromagnetic response data corresponding to each sample structure parameter one-to-one in advance is the same as that of the embodiment shown in FIG. 4 of the present invention. The process of training to obtain a reverse design model is similar. The difference is that during training, the input sample data, the sample data based on which to judge whether to converge, and the cost function used are different.

相应的,同样可以在训练得到正向预测模型以后,采用与本发明图5实施例相同的方法,设定多个(例如500组)测试结构参数和对应的测试电磁响应数据,用于验证正向预测模型的训练效果。具体与上述验证反向计算模型的训练效果的验证方式相同,区别在于验证的神经网络模型、采用的输入数据以及得到的输出数据不同。例如,将测试数据输入正向预测模型后,得到的代价函数的评分为0.9269,将训练数据输入正向预测模型后,得到的代价函数的评分为0.9356。两个代价函数的评分在预期评分范围内,因此,确定正向预测模型的训练效果达到期望水平,建立了预期的正向预测模型。Correspondingly, after the positive prediction model is obtained by training, the same method as the embodiment of FIG. 5 of the present invention can be used to set multiple (for example, 500 groups) test structure parameters and corresponding test electromagnetic response data, which are used to verify the positive prediction model. To predict the training effect of the model. Specifically, the verification method is the same as the above-mentioned verification method for verifying the training effect of the reverse calculation model, and the difference lies in the verification of the neural network model, the input data used, and the output data obtained. For example, after feeding the test data into the forward prediction model, the resulting cost function has a score of 0.9269, and after feeding the training data into the forward prediction model, the resulting cost function has a score of 0.9356. The scores of the two cost functions are within the expected score range. Therefore, it is determined that the training effect of the forward prediction model reaches the expected level, and the expected forward prediction model is established.

同时,此时正向预测模型预测准确度也达到目标水平,将测试电磁响应数据作为真实数据时,经正向预测模型得到的对应预测电磁响应数据与真实数据接近。例如,参见图10(a),训练数据中任一组结构参数I1=486nm,I2=555nm,I3=585nm,w1=93nm,w2=91nm,w3=115nm,g1=294nm,g2=320nm对应的真实透射谱与预测透射谱接近。将训练电磁响应数据作为真实数据时,经正向预测模型得到的对应的真实透射谱与预测透射谱接近。例如,参见图10(b),测试数据中任一组结构参数I1=466nm,I2=524nm,I3=589nm,w1=115nm,w2=93nm,w3=90nm,g1=280nm,g2=335nm对应的真实透射谱与预测透射谱接近。At the same time, the prediction accuracy of the forward prediction model also reaches the target level. When the test electromagnetic response data is used as the real data, the corresponding predicted electromagnetic response data obtained by the forward prediction model is close to the real data. For example, referring to Fig. 10(a), in the training data, any set of structural parameters I 1 =486 nm, I 2 =555 nm, I 3 =585 nm, w 1 =93 nm, w 2 =91 nm, w 3 =115 nm, g 1 = The actual transmission spectrum corresponding to 294 nm, g 2 =320 nm is close to the predicted transmission spectrum. When the training electromagnetic response data is used as the real data, the corresponding real transmission spectrum obtained by the forward prediction model is close to the predicted transmission spectrum. For example, referring to Fig. 10(b), in the test data, any set of structural parameters I 1 =466 nm, I 2 =524 nm, I 3 =589 nm, w 1 =115 nm, w 2 =93 nm, w 3 =90 nm, g 1 = The actual transmission spectrum corresponding to 280 nm, g 2 =335 nm is close to the predicted transmission spectrum.

由于表面等离激元波导系统的一个结构参数对应一个电磁响应数据,因此,将预测结构参数输入至正向预测模型后,可以将反向计算模型中对应于相同电磁响应数据的多个预测结构参数,映射为正向预测模型中的一个第一预测电磁响应数据,从而避免代价函数存在多个解而无法确定最小值的情况。具体的,如图9所示,本发明一实施例的反向计算模型与正向预测模型串联的结构。Since one structural parameter of the surface plasmon waveguide system corresponds to one electromagnetic response data, after inputting the predicted structural parameters into the forward prediction model, multiple predicted structures corresponding to the same electromagnetic response data in the reverse calculation model can be calculated The parameter is mapped to a first predicted electromagnetic response data in the forward prediction model, so as to avoid the situation where the cost function has multiple solutions and the minimum value cannot be determined. Specifically, as shown in FIG. 9 , a reverse calculation model and a forward prediction model are connected in series according to an embodiment of the present invention.

根据得到的多个第一预测电磁响应数据以及第二预设代价函数,判断当前神经网络模型是否收敛,第二预设代价函数为基于样本电磁响应数据设定的函数。Whether the current neural network model is converged is determined according to the obtained plurality of first predicted electromagnetic response data and a second preset cost function, where the second preset cost function is a function set based on the sample electromagnetic response data.

由于上述步骤利用正向预测模型对当前神经网络的输出实现了唯一解的映射,因此,可以基于上述得到的第一预测电磁响应数据,判断用于训练得到反向计算模型的当前神经网络模型是否收敛。具体的,可以根据得到的多个第一预测电磁响应数据以及第二预设代价函数,判断当前神经网络模型是否收敛。其中,第二预设代价函数可以为与公式一类似的代价函数,区别在于样本数据调整为样本电磁响应数据,预测数据调整为第一预测电磁响应数据。Since the above steps use the forward prediction model to realize the mapping of the unique solution to the output of the current neural network, therefore, based on the first predicted electromagnetic response data obtained above, it can be judged whether the current neural network model used for training to obtain the reverse calculation model is not convergence. Specifically, it can be determined whether the current neural network model has converged according to the obtained plurality of first predicted electromagnetic response data and the second preset cost function. The second preset cost function may be a cost function similar to formula 1, except that the sample data is adjusted to the sample electromagnetic response data, and the predicted data is adjusted to the first predicted electromagnetic response data.

如果是,则将当前神经网络模型确定为反向计算模型。If it is, the current neural network model is determined as the inverse computation model.

如果否,则执行利用预设的梯度函数,调整当前神经网络模型的模型参数,得到新的神经网络模型的步骤。If not, perform the steps of using the preset gradient function to adjust the model parameters of the current neural network model to obtain a new neural network model.

实际应用中,还可能存在由表面等离激元波导系统的器件性能升级、器件性能需求变更导致的需要确定新的电磁响应数据的情况。对此,传统技术是根据升级后的器件性能或者更改后的器件性能需求,经过复杂公式运算确定新的电磁响应数据,进而确定新的目标结构参数,过程较复杂。In practical applications, there may also be situations in which new electromagnetic response data needs to be determined due to device performance upgrades in the surface plasmon waveguide system and changes in device performance requirements. In this regard, the traditional technology determines new electromagnetic response data through complex formula operations according to the upgraded device performance or changed device performance requirements, and then determines new target structural parameters, which is a complicated process.

为了简化在历史电磁响应数据的基础上,确定新的目标结构参数的过程,可选的,如图11所示,本发明另一实施例的表面等离激元波导系统的参数确定方法的流程,该方法可以包括:In order to simplify the process of determining new target structure parameters on the basis of historical electromagnetic response data, optionally, as shown in FIG. 11 , the process of a method for determining parameters of a surface plasmon waveguide system according to another embodiment of the present invention , the method can include:

S1101,获得表面等离激元波导系统的结构类型。S1101, obtaining the structure type of the surface plasmon waveguide system.

S1102,基于结构类型,获得针对该结构类型的目标电磁响应数据;其中,目标电磁响应数据用于表明表面等离激元波导系统的目标器件性能。S1102 , based on the structure type, obtain target electromagnetic response data for the structure type; wherein, the target electromagnetic response data is used to indicate the performance of the target device of the surface plasmon waveguide system.

S1103,将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数。S1103: Input the target electromagnetic response data into the pre-trained reverse calculation model corresponding to the structure type, to obtain target structure parameters corresponding to the structure type.

S1101至S1103与本发明图2所示实施例的S201至S203为相同的步骤,在此不再赘述,详见本发明图1所示实施例的描述。S1101 to S1103 are the same steps as S201 to S203 in the embodiment shown in FIG. 2 of the present invention, and are not repeated here. For details, refer to the description of the embodiment shown in FIG. 1 of the present invention.

S1104,获取与目标结构参数对应的第二预测电磁响应数据。S1104: Acquire second predicted electromagnetic response data corresponding to the target structure parameter.

与目标结构参数对应的第二预测电磁响应数据的获取方式,具体可以包括:将目标结构参数输入预先训练好的正向预测模型,得到与目标结构参数对应的第二预测电磁响应数据两种描述。其中,正向预测模型具有与图8实施例中的正向预测模型相同的结构。在此不再赘述,详见本发明图8实施例的描述。或者,可以利用确定目标结构参数,通过用于进行光子学产品仿真设计的软件Lumerical FDTD Solutions进行仿真模拟,得到与该目标结构参数对应的电磁响应。然后基于MC采样(Monte Carlo,用于生成指定分布的随机数的抽样)获取与该电磁响应对应的一组第二预测电磁响应数据。The acquisition method of the second predicted electromagnetic response data corresponding to the target structural parameters may specifically include: inputting the target structural parameters into a pre-trained forward prediction model, and obtaining two descriptions of the second predicted electromagnetic response data corresponding to the target structural parameters . The forward prediction model has the same structure as the forward prediction model in the embodiment of FIG. 8 . The details are not repeated here. For details, refer to the description of the embodiment of FIG. 8 of the present invention. Alternatively, the determined target structure parameters can be used to perform simulation simulation through Lumerical FDTD Solutions, a software used for simulation design of photonics products, to obtain electromagnetic responses corresponding to the target structure parameters. Then, a set of second predicted electromagnetic response data corresponding to the electromagnetic response is acquired based on MC sampling (Monte Carlo, sampling for generating random numbers of a specified distribution).

S1105,基于第二预测电磁响应数据,得到目标结构参数对应的第一透射谱。S1105 , based on the second predicted electromagnetic response data, obtain a first transmission spectrum corresponding to the target structure parameter.

S1106,调整第一透射谱得到优化透射谱,将优化透射谱中的电磁响应数据作为优化电磁响应数据。S1106: Adjust the first transmission spectrum to obtain an optimized transmission spectrum, and use the electromagnetic response data in the optimized transmission spectrum as the optimized electromagnetic response data.

S1107,将优化电磁响应数据输入预先训练好的反向计算模型,得到优化后的结构参数,并将优化后的结构参数确定为目标结构参数。S1107: Input the optimized electromagnetic response data into the pre-trained reverse calculation model to obtain optimized structural parameters, and determine the optimized structural parameters as target structural parameters.

例如,在得到目标结构参数后,需要对纳米器件的性能进行升级:优化900nm波长处的透过率。参见图12:可以将基于由目标结构参数得到的第二预测电磁响应数据,得到目标结构参数对应的第一透射谱。将第一透射谱900nm波长处的透过率从0.05平移到0.75,得到优化透射谱。将平移后的透射谱中的电磁输入到预先训练好的反向计算模型中,即可得到优化后的结构参数,例如,l1=486nm,l2=550nm,l3=608nm,w1=89.7nm,w2=96nm,w3=94nm,g1=290nm,g2=341nm。将优化后的结构参数确定为目标结构参数后,基于这个新的目标结构参数制作的表面等离激元波导系统,就是实现了性能升级的器件。For example, after obtaining the target structural parameters, it is necessary to upgrade the performance of the nanodevice: optimize the transmittance at the wavelength of 900nm. Referring to FIG. 12 , the first transmission spectrum corresponding to the target structure parameter can be obtained based on the second predicted electromagnetic response data obtained from the target structure parameter. The optimized transmission spectrum was obtained by shifting the transmittance at the wavelength of 900 nm of the first transmission spectrum from 0.05 to 0.75. By inputting the electromagnetic in the translated transmission spectrum into the pre-trained inverse calculation model, the optimized structural parameters can be obtained, for example, l 1 =486nm, l 2 =550nm, l 3 =608nm, w 1 = 89.7 nm, w 2 =96 nm, w 3 =94 nm, g 1 =290 nm, g 2 =341 nm. After the optimized structural parameters are determined as the target structural parameters, the surface plasmon waveguide system fabricated based on the new target structural parameters is a device with improved performance.

实际应用中,可以基于上述任一实施例得到的表面等离激元波导系统的目标结构参数制作表面等离激元波导系统,但是器件制作中温度、设备精度以及材料等因素造成的器件结构误差不可避免。在使用表面等离激元波导系统时,需要参考结构误差,确定表面等离激元波导系统的实际参数、实际性能等,因此,在制作得到表面等离激元波导系统后,还需要确定出该器件的结构误差。In practical applications, a surface plasmon waveguide system can be fabricated based on the target structural parameters of the surface plasmon waveguide system obtained in any of the above embodiments, but the device structure error caused by factors such as temperature, equipment accuracy, and material in device fabrication unavoidable. When using the surface plasmon waveguide system, it is necessary to refer to the structural error to determine the actual parameters and performance of the surface plasmon waveguide system. Therefore, after the surface plasmon waveguide system is fabricated, it is necessary to determine the structural errors of the device.

为此,可选的,在本发明图2所示实施例的S203之后,本发明的表面等离激元波导系统的结构参数确定方法,还可以包括:To this end, optionally, after S203 in the embodiment shown in FIG. 2 of the present invention, the method for determining the structural parameters of the surface plasmon waveguide system of the present invention may further include:

基于目标结构参数,制作表面等离激元波导系统。Based on the target structural parameters, a surface plasmon waveguide system is fabricated.

采集制作得到的表面等离激元波导系统的实测电磁响应数据。Collect the measured electromagnetic response data of the fabricated surface plasmon waveguide system.

将实测电磁响应数据输入预先训练好的反向计算模型,得到实测结构参数。Input the measured electromagnetic response data into the pre-trained reverse calculation model to obtain the measured structural parameters.

由于预先训练好的反向计算模型建立了电磁响应数据与结构参数的映射关系,因此将实测电磁响应数据输入预先训练好的反向计算模型,就可以得到制作得到的表面等离激元波导系统的实测结构参数。Since the pre-trained inverse calculation model establishes the mapping relationship between the electromagnetic response data and the structural parameters, the fabricated surface plasmon waveguide system can be obtained by inputting the measured electromagnetic response data into the pre-trained inverse calculation model. the measured structural parameters.

基于实测结构参数和目标结构参数,确定制作得到的表面等离激元波导系统的结构误差。Based on the measured structural parameters and target structural parameters, the structural errors of the fabricated surface plasmon waveguide system are determined.

具体的,可以基于实测结构参数和目标结构参数,利用到平方根误差公式或者均方根误差公式,计算得到所制作的表面等离激元波导系统的结构误差。Specifically, based on the measured structural parameters and the target structural parameters, the square root error formula or the root mean square error formula can be used to calculate the structural error of the fabricated surface plasmon waveguide system.

相应于上述方法实施例,本发明一实施例还提供了表面等离激元波导系统的结构参数确定装置。Corresponding to the above method embodiments, an embodiment of the present invention further provides an apparatus for determining structural parameters of a surface plasmon waveguide system.

如图13所示,本发明一实施例的表面等离激元波导系统的结构参数确定装置的结构,该装置可以包括:As shown in FIG. 13 , the structure of the apparatus for determining the structural parameters of the surface plasmon waveguide system according to an embodiment of the present invention may include:

获取模块1301,用于获得表面等离激元波导系统的结构类型;基于该结构类型,获得针对该结构类型的表面等离激元波导系统的目标电磁响应数据;其中,目标电磁响应数据用于表明表面等离激元波导系统的目标器件性能;An obtaining module 1301 is used to obtain the structure type of the surface plasmon waveguide system; based on the structure type, obtain target electromagnetic response data for the surface plasmon waveguide system of the structure type; wherein, the target electromagnetic response data is used for Indicate the target device performance of the surface plasmon waveguide system;

目标结构参数确定模块1302,用于将目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数;The target structure parameter determination module 1302 is used to input the target electromagnetic response data into the pre-trained inverse calculation model corresponding to the structure type to obtain the target structure parameter corresponding to the structure type;

其中,与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。Wherein, the reverse calculation model corresponding to the structure type is: pre-determined multiple sample structure parameters corresponding to the structure type and multiple sample electromagnetic response data corresponding to each sample structure parameter in advance. The trained neural network model.

本发明实施例提供的一种表面等离激元波导系统的结构参数确定装置,与传统的需要多次人工参与的目标结构参数确定方式相比,由于利用预先训练得到的反向计算模型,建立了结构参数与电磁响应数据之间的映射关系,因此,在确定目标结构参数时,将目标电磁响应数据输入预先训练好的反向计算模型,就可以得到能够达到目标电磁响应数据的目标结构参数,目标结构参数的确定无需经过多次人工调整结构参数和多次仿真,从而简化了目标结构参数的确定流程。The device for determining the structure parameters of the surface plasmon waveguide system provided by the embodiment of the present invention is compared with the traditional method for determining the target structure parameters that requires multiple manual participation. Therefore, when determining the target structure parameters, the target electromagnetic response data is input into the pre-trained reverse calculation model, and the target structure parameters that can achieve the target electromagnetic response data can be obtained. , the determination of the target structure parameters does not require manual adjustment of the structure parameters and multiple simulations, thereby simplifying the process of determining the target structure parameters.

相应于上述实施例,本发明实施例还提供了一种电子设备,如图12所示,该设备可以包括:Corresponding to the above embodiments, an embodiment of the present invention further provides an electronic device, as shown in FIG. 12 , the device may include:

处理器1201、通信接口1202、存储器1203和通信总线1204,其中,处理器1201,通信接口1202,存储器通1203过通信总线1204完成相互间的通信;A processor 1201, a communication interface 1202, a memory 1203 and a communication bus 1204, wherein the processor 1201, the communication interface 1202, and the memory communicate with each other through the communication bus 1204 through 1203;

存储器1203,用于存放计算机程序;The memory 1203 is used to store computer programs;

处理器1201,用于执行上述存储器1203上所存放的计算机程序时,实现上述实施例中任一实施例中表面等离激元波导系统的结构参数确定方法的步骤。The processor 1201 is configured to implement the steps of the method for determining the structural parameters of the surface plasmon waveguide system in any of the foregoing embodiments when executing the computer program stored in the memory 1203.

本发明实施例提供的一种电子设备,与传统的需要多次人工参与的目标结构参数确定方式相比,由于利用预先训练得到的反向计算模型,建立了结构参数与电磁响应数据之间的映射关系,因此,在确定目标结构参数时,将目标电磁响应数据输入预先训练好的反向计算模型,就可以得到能够达到目标电磁响应数据的目标结构参数,目标结构参数的确定无需经过多次人工调整结构参数和多次仿真,从而提高了目标结构参数的确定效率。The electronic device provided by the embodiment of the present invention, compared with the traditional method of determining target structure parameters that requires multiple manual participation, establishes the relationship between the structure parameters and the electromagnetic response data by using the reverse calculation model obtained by pre-training. Therefore, when determining the target structure parameters, the target electromagnetic response data is input into the pre-trained reverse calculation model, and the target structure parameters that can achieve the target electromagnetic response data can be obtained. The determination of the target structure parameters does not need to go through many times Manual adjustment of structural parameters and multiple simulations improve the efficiency of determining target structural parameters.

上述存储器可以包括RAM(Random Access Memory,随机存取存储器),也可以包括NVM(Non-Volatile Memory,非易失性存储器),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离于上述处理器的存储装置。The above-mentioned memory may include RAM (Random Access Memory, random access memory), and may also include NVM (Non-Volatile Memory, non-volatile memory), for example, at least one disk memory. Optionally, the memory may also be at least one storage device located away from the above-mentioned processor.

上述处理器可以是通用处理器,包括CPU(Central Processing Unit,中央处理器)、NP(Network Processor,网络处理器)等;还可以是DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor may be a general-purpose processor, including a CPU (Central Processing Unit, central processing unit), NP (Network Processor, network processor), etc.; it may also be a DSP (Digital Signal Processor, digital signal processor), an ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.

本发明一实施例提供的计算机可读存储介质,包含于电子设备,该计算机可读存储介质内存储有计算机程序,该计算机程序被处理器执行时,实现上述施例中任一表面等离激元波导系统的结构参数确定方法的步骤。A computer-readable storage medium provided by an embodiment of the present invention is included in an electronic device, and a computer program is stored in the computer-readable storage medium. When the computer program is executed by a processor, any one of the above-mentioned embodiments can be implemented. Steps of a method for determining structural parameters of a meta-waveguide system.

本发明实施例提供的一种计算机可读存储介质,包含于电子设备,该计算机可读存储介质内存储有计算机程序,该计算机程序被处理器执行时,与传统的需要多次人工参与的目标结构参数确定方式相比,由于利用预先训练得到的反向计算模型,建立了结构参数与电磁响应数据之间的映射关系,因此,在确定目标结构参数时,将目标电磁响应数据输入预先训练好的反向计算模型,就可以得到能够达到目标电磁响应数据的目标结构参数,目标结构参数的确定无需经过多次人工调整结构参数和多次仿真,从而提高了目标结构参数的确定效率。A computer-readable storage medium provided by an embodiment of the present invention is included in an electronic device, and a computer program is stored in the computer-readable storage medium. When the computer program is executed by a processor, it is different from a traditional target that requires multiple manual participation. Compared with the method of determining the structural parameters, the mapping relationship between the structural parameters and the electromagnetic response data is established by using the reverse calculation model obtained by pre-training. Therefore, when determining the target structural parameters, the target electromagnetic response data is input into the pre-trained The target structure parameters that can achieve the target electromagnetic response data can be obtained by using the reverse calculation model of the model, and the determination of the target structure parameters does not require manual adjustment of the structure parameters and multiple simulations, thereby improving the determination efficiency of the target structure parameters.

在本发明提供的又一实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一实施例中的表面等离激元波导系统的结构参数确定方法。In yet another embodiment provided by the present invention, there is also provided a computer program product including instructions, which, when run on a computer, enables the computer to execute the structure of the surface plasmon waveguide system in any of the above embodiments Parameter determination method.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、DSL(Digital Subscriber Line,数字用户线)或无线(例如:红外线、无线电、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如:DVD(Digital Versatile Disc,数字通用光盘))、或者半导体介质(例如:SSD(Solid StateDisk,固态硬盘))等。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by means of wired (such as coaxial cable, optical fiber, DSL (Digital Subscriber Line, digital subscriber line) or wireless (such as: infrared, radio, microwave, etc.). A computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains an integration of one or more available media. The available media can be magnetic media, (eg, floppy disk, hard disk, etc. , magnetic tape), optical media (eg: DVD (Digital Versatile Disc, digital versatile disc)), or semiconductor media (eg: SSD (Solid StateDisk, solid-state hard disk)) and the like.

在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。In this document, relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such existence between these entities or operations. The actual relationship or sequence. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.

本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置和电子设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a related manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the apparatus and electronic device embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and for related parts, refer to the partial descriptions of the method embodiments.

以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.

Claims (9)

1.一种表面等离激元波导系统的结构参数确定方法,其特征在于,所述方法包括:1. A method for determining structural parameters of a surface plasmon waveguide system, wherein the method comprises: 获得表面等离激元波导系统的结构类型;Obtain the structure type of the surface plasmon waveguide system; 基于所述结构类型,获得针对所述结构类型的表面等离激元波导系统的目标电磁响应数据;其中,所述目标电磁响应数据用于表明所述表面等离激元波导系统的目标器件性能;Based on the structure type, obtain target electromagnetic response data for the surface plasmon waveguide system of the structure type; wherein, the target electromagnetic response data is used to indicate the target device performance of the surface plasmon waveguide system ; 将所述目标电磁响应数据输入预先训练好的与该结构类型对应的反向计算模型,得到与该结构类型对应的目标结构参数;其中,所述与该结构类型对应的反向计算模型为:预先使用设定的与该结构类型对应的多个样本结构参数以及获取的分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型;Inputting the target electromagnetic response data into the pre-trained inverse calculation model corresponding to the structure type, to obtain the target structure parameter corresponding to the structure type; wherein, the inverse calculation model corresponding to the structure type is: A neural network model obtained by training in advance using the preset multiple sample structure parameters corresponding to the structure type and the obtained multiple sample electromagnetic response data corresponding to each sample structure parameter one-to-one; 获取与所述目标结构参数对应的第二预测电磁响应数据;acquiring second predicted electromagnetic response data corresponding to the target structure parameter; 基于所述第二预测电磁响应数据,得到所述目标结构参数对应的第一透射谱;obtaining a first transmission spectrum corresponding to the target structure parameter based on the second predicted electromagnetic response data; 调整所述第一透射谱得到优化透射谱,将所述优化透射谱中的电磁响应数据作为优化电磁响应数据;Adjusting the first transmission spectrum to obtain an optimized transmission spectrum, and using the electromagnetic response data in the optimized transmission spectrum as the optimized electromagnetic response data; 将所述优化电磁响应数据输入所述预先训练好的反向计算模型,得到优化后的结构参数,并将所述优化后的结构参数确定为目标结构参数。The optimized electromagnetic response data is input into the pre-trained reverse calculation model to obtain optimized structural parameters, and the optimized structural parameters are determined as target structural parameters. 2.根据权利要求1所述的方法,其特征在于,所述表面等离激元波导系统具有多个结构参数;2. The method of claim 1, wherein the surface plasmon waveguide system has a plurality of structural parameters; 所述多个样本结构参数,采用如下步骤进行设定:The multiple sample structure parameters are set using the following steps: 获取与所述多个结构参数对应的多个预设初始结构参数,预设参数调整精度以及预设参数变化范围;Acquiring multiple preset initial structural parameters corresponding to the multiple structural parameters, the preset parameter adjustment accuracy and the preset parameter variation range; 针对每个预设初始结构参数,按照所述预设参数调整精度,在所述预设参数变化范围内,确定与该预设初始结构参数对应的至少一个参数变化值;For each preset initial structure parameter, adjust the precision according to the preset parameter, and within the preset parameter variation range, determine at least one parameter change value corresponding to the preset initial structure parameter; 基于该预设初始结构参数和对应的至少一个参数变化值,确定与该预设初始结构参数对应的至少一个样本结构参数;determining at least one sample structure parameter corresponding to the preset initial structure parameter based on the preset initial structure parameter and the corresponding at least one parameter change value; 所述分别与每个样本结构参数一一对应的多个样本电磁响应数据,采用如下步骤进行获取:The multiple sample electromagnetic response data corresponding to each sample structure parameter one-to-one is obtained by adopting the following steps: 利用确定的与每个预设初始结构参数对应的至少一个样本结构参数,采样得到分别与每个样本结构参数一一对应的多个样本电磁响应数据。Using the determined at least one sample structure parameter corresponding to each preset initial structure parameter, a plurality of sample electromagnetic response data corresponding to each sample structure parameter one-to-one is obtained by sampling. 3.根据权利要求1所述的方法,其特征在于,所述预先使用设定的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练的过程,包括:3 . The method according to claim 1 , wherein the process of performing training using a plurality of preset sample structure parameters and a plurality of sample electromagnetic response data corresponding to each sample structure parameter one-to-one in advance. 4 . ,include: 将每个样本结构参数一一对应的样本电磁响应数据分别输入当前神经网络模型,得到每个样本电磁响应数据对应的预测结构参数;所述当前神经网络模型初次使用时为预设初始神经网络模型;Input the sample electromagnetic response data corresponding to each sample structure parameter into the current neural network model respectively, and obtain the predicted structure parameter corresponding to each sample electromagnetic response data; the current neural network model is a preset initial neural network when it is used for the first time Model; 根据得到的多个预测结构参数以及第一预设代价函数,判断所述当前神经网络模型是否收敛,所述第一预设代价函数为基于样本结构参数设定的函数;Judging whether the current neural network model converges according to the obtained plurality of predicted structural parameters and a first preset cost function, where the first preset cost function is a function set based on sample structural parameters; 如果收敛,则将所述当前神经网络模型确定为反向计算模型;If it converges, the current neural network model is determined as a reverse calculation model; 如果不收敛,则利用预设的梯度函数,采用随机梯度下降法调整所述当前神经网络模型的模型参数,得到新的神经网络模型;If it does not converge, the preset gradient function is used, and the stochastic gradient descent method is used to adjust the model parameters of the current neural network model to obtain a new neural network model; 将所述当前神经网络模型更新为所得到的新的神经网络模型;updating the current neural network model to the new neural network model obtained; 返回将每个样本结构参数一一对应的样本电磁响应数据分别输入当前神经网络模型的步骤。Returns the step of inputting the sample electromagnetic response data corresponding to each sample structure parameter into the current neural network model respectively. 4.根据权利要求3所述的方法,其特征在于,在当前神经网络模型收敛后,将当前神经网络模型确定为反向计算模型之前,所述方法还包括:4. The method according to claim 3, characterized in that, after the current neural network model converges, before the current neural network model is determined as a reverse calculation model, the method further comprises: 保存所得到的多个预测结构参数;save the obtained multiple predicted structure parameters; 判断得到的多个预测结构参数与对应的所述多个样本结构参数的拟合度是否小于预设拟合度阈值;judging whether the degree of fit of the obtained plurality of predicted structural parameters and the corresponding plurality of sample structural parameters is less than a preset fitting degree threshold; 如果是,则调整所述当前神经网络模型的物理结构,得到新的神经网络模型,并返回所述将所述当前神经网络模型更新为所得到的新的神经网络模型的步骤;If so, adjust the physical structure of the current neural network model to obtain a new neural network model, and return to the step of updating the current neural network model to the obtained new neural network model; 如果否,则将所述当前神经网络模型确定为反向计算模型。If not, the current neural network model is determined to be a reverse calculation model. 5.根据权利要求3所述的方法,其特征在于,在当前神经网络模型不收敛时,利用预设的梯度函数,调整所述当前神经网络模型的模型参数,得到新的神经网络模型之前,所述方法还包括:5. method according to claim 3, is characterized in that, when current neural network model does not converge, utilize preset gradient function, adjust the model parameter of described current neural network model, before obtaining new neural network model, The method also includes: 保存所得到的多个预测结构参数;save the obtained multiple predicted structure parameters; 将保存的多个预测结构参数分别输入预先训练好的正向预测模型,得到分别与每个预测结构参数一一对应的多个第一预测电磁响应数据;所述正向预测模型为预先利用设定的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据训练得到的神经网络模型;Inputting the stored multiple predicted structural parameters into the pre-trained forward prediction model, respectively, to obtain a plurality of first predicted electromagnetic response data corresponding to each predicted structural parameter one-to-one; the forward prediction model is pre-used The set multiple sample structure parameters and the neural network model obtained by training the multiple sample electromagnetic response data corresponding to each sample structure parameter one-to-one; 根据得到的多个第一预测电磁响应数据以及第二预设代价函数,判断所述当前神经网络模型是否收敛,所述第二预设代价函数为基于样本电磁响应数据设定的函数;determining whether the current neural network model converges according to the obtained plurality of first predicted electromagnetic response data and a second preset cost function, where the second preset cost function is a function set based on the sample electromagnetic response data; 如果是,则将所述当前神经网络模型确定为反向计算模型;If so, determining the current neural network model as a reverse calculation model; 如果否,则执行所述利用预设的梯度函数,调整所述当前神经网络模型的模型参数,得到新的神经网络模型的步骤。If not, the step of using the preset gradient function to adjust the model parameters of the current neural network model to obtain a new neural network model is performed. 6.根据权利要求1所述的方法,其特征在于,在所述将目标电磁响应数据输入预先训练好的反向计算模型,得到目标结构参数之后,所述方法还包括:6. The method according to claim 1, characterized in that, after inputting the target electromagnetic response data into a pre-trained reverse calculation model to obtain target structural parameters, the method further comprises: 基于所述目标结构参数,制作表面等离激元波导系统;Based on the target structural parameters, a surface plasmon waveguide system is fabricated; 采集制作得到的表面等离激元波导系统的实测电磁响应数据;Collect the measured electromagnetic response data of the fabricated surface plasmon waveguide system; 将所述实测电磁响应数据输入所述预先训练好的反向计算模型,得到实测结构参数;Inputting the measured electromagnetic response data into the pre-trained reverse calculation model to obtain measured structural parameters; 基于所述实测结构参数和所述目标结构参数,确定制作得到的表面等离激元波导系统的结构误差。Based on the measured structural parameters and the target structural parameters, the structural error of the fabricated surface plasmon waveguide system is determined. 7.一种表面等离激元波导系统的结构参数确定装置,其特征在于,所述装置包括:7. A device for determining structural parameters of a surface plasmon waveguide system, wherein the device comprises: 获取模块,用于获得表面等离激元波导系统的结构类型;基于所述结构类型,获得针对所述结构类型的表面等离激元波导系统的目标电磁响应数据;其中,所述目标电磁响应数据用于表明所述表面等离激元波导系统的目标器件性能;an obtaining module, configured to obtain the structure type of the surface plasmon waveguide system; based on the structure type, obtain target electromagnetic response data of the surface plasmon waveguide system for the structure type; wherein, the target electromagnetic response The data is used to indicate the target device performance of the surface plasmon waveguide system; 目标结构参数确定模块,用于将目标电磁响应数据输入预先训练好的与所述结构类型对应的反向计算模型,得到与所述结构类型对应的目标结构参数;获取与所述目标结构参数对应的第二预测电磁响应数据;基于所述第二预测电磁响应数据,得到所述目标结构参数对应的第一透射谱;调整所述第一透射谱得到优化透射谱,将所述优化透射谱中的电磁响应数据作为优化电磁响应数据;将所述优化电磁响应数据输入所述预先训练好的反向计算模型,得到优化后的结构参数,并将所述优化后的结构参数确定为目标结构参数;The target structure parameter determination module is used to input the target electromagnetic response data into the pre-trained reverse calculation model corresponding to the structure type to obtain the target structure parameter corresponding to the structure type; obtain the target structure parameter corresponding to the target structure based on the second predicted electromagnetic response data; obtain the first transmission spectrum corresponding to the target structure parameter based on the second predicted electromagnetic response data; adjust the first transmission spectrum to obtain an optimized transmission spectrum, and put the optimized transmission spectrum in the The optimized electromagnetic response data is used as the optimized electromagnetic response data; the optimized electromagnetic response data is input into the pre-trained reverse calculation model to obtain the optimized structural parameters, and the optimized structural parameters are determined as the target structural parameters ; 其中,所述与所述结构类型对应的反向计算模型为:预先使用设定的与所述结构类型对应的多个样本结构参数以及分别与每个样本结构参数一一对应的多个样本电磁响应数据进行训练得到的神经网络模型。Wherein, the reverse calculation model corresponding to the structure type is: a plurality of sample structure parameters corresponding to the structure type and a plurality of samples corresponding to each sample structure parameter one-to-one are used in advance. The neural network model obtained by training the electromagnetic response data. 8.一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信;存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序,实现如权利要求1-6任一所述的方法步骤。8. An electronic device, characterized in that it comprises a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface, and the memory complete mutual communication through the bus; the memory is used to store a computer program; the processor , which is used to execute the program stored in the memory to realize the method steps according to any one of claims 1-6. 9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-6任一所述的方法步骤。9 . A computer-readable storage medium, wherein a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method steps of any one of claims 1-6 are implemented. 10 .
CN201810995700.7A 2018-08-29 2018-08-29 Method and device for determining structural parameters of surface plasmon waveguide system Active CN109117575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810995700.7A CN109117575B (en) 2018-08-29 2018-08-29 Method and device for determining structural parameters of surface plasmon waveguide system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810995700.7A CN109117575B (en) 2018-08-29 2018-08-29 Method and device for determining structural parameters of surface plasmon waveguide system

Publications (2)

Publication Number Publication Date
CN109117575A CN109117575A (en) 2019-01-01
CN109117575B true CN109117575B (en) 2020-10-02

Family

ID=64861512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810995700.7A Active CN109117575B (en) 2018-08-29 2018-08-29 Method and device for determining structural parameters of surface plasmon waveguide system

Country Status (1)

Country Link
CN (1) CN109117575B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205022B2 (en) * 2019-01-10 2021-12-21 X Development Llc System and method for optimizing physical characteristics of a physical device
CN110187499B (en) * 2019-05-29 2021-10-19 哈尔滨工业大学(深圳) A Design Method of On-Chip Optical Power Attenuator Based on Neural Network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736172A (en) * 2012-06-14 2012-10-17 华中科技大学 Surface plasmon polariton waveguide
CN105022004A (en) * 2015-07-07 2015-11-04 华南师范大学 Waveguide magnetic field/current sensor based on surface plasmons and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583882B2 (en) * 2006-11-10 2009-09-01 University Of Alabama In Huntsville Waveguides for ultra-long range surface plasmon-polariton propagation
JP2014032148A (en) * 2012-08-06 2014-02-20 Arkray Inc Surface plasmon excitation enhanced fluorescence acquisition structure and surface plasmon excitation enhanced fluorescence measurement system
CN104931459A (en) * 2015-06-29 2015-09-23 上海师范大学 Sensor based on surface plasma double-band zero-reflection
CN105759326B (en) * 2016-05-17 2018-07-06 中北大学 A kind of structure design based on surface plasmon-polarition waveguide all-optical diode
CN106784121B (en) * 2016-11-30 2018-09-14 天津大学 Surface plasmons photodetector and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736172A (en) * 2012-06-14 2012-10-17 华中科技大学 Surface plasmon polariton waveguide
CN105022004A (en) * 2015-07-07 2015-11-04 华南师范大学 Waveguide magnetic field/current sensor based on surface plasmons and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Artificial neural network modeling of plasmonic transmission lines";ROBERT R.ANDRAWIS等;《applied optics》;20160224;第55卷(第10期);第2780-2790页 *
"Tunable Plasmon Induced Transparency in a Metallodielectric Grating Coupled With Graphene Metamaterials";Tian Zhang等;《JOURNAL OF LIGHTWAVE TECHNOLOGY》;20171201;第35卷(第23期);第5142-5149页 *

Also Published As

Publication number Publication date
CN109117575A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2023040934A1 (en) Circuit simulation and optimization method and apparatus, computer device, and storage medium
CN109117575B (en) Method and device for determining structural parameters of surface plasmon waveguide system
CN109900309B (en) A Blind Correction Method of Sensor Data Based on Mixed State Space Model
CN113357138B (en) Method, device and terminal equipment for predicting remaining service life of hydraulic pump
CN115878963B (en) Method, system, terminal and medium for predicting metering error of capacitive voltage transformer
CN105678015B (en) A kind of Multidisciplinary systems pneumatic structure coupling optimum design method of hypersonic three-dimensional wing
CN110941896A (en) PGP-based ultra-wideband antenna design method
CN110098875A (en) Adaptive equilibrium method, device, electronic equipment and medium in optical fiber telecommunications system
CN113721463A (en) Linear system data driving model prediction control method based on reinforcement learning
Liu et al. Networked filtering with Markov transmission delays and packet disordering
US8589852B1 (en) Statistical corner extraction using worst-case distance
CN107607105A (en) Optical fibre gyro nonlinear temperature error compensating method based on fractional order differential
CN114839769B (en) An automatic design method of optical filter film system
CN113158563A (en) One-dimensional photonic crystal reverse design method based on neural network and Monte Carlo
CN116611309A (en) Physical field simulation method, system, medium and electronic equipment
CN113590476A (en) Method and device for testing on-chip transmission line characteristics, electronic equipment and storage medium
CN111401569B (en) Hyperparameter optimization method, device and electronic device
CN109783769A (en) A kind of matrix disassembling method and device based on user items scoring
CN115545210A (en) Method and related apparatus for quantum computing
CN116644646B (en) Mesoscopic reconstruction methods, devices, equipment and storage media of rocks
Seifi Laleh et al. Modeling optical filters based on serially coupled microring resonators using radial basis function neural network
CN117371320A (en) Photonic crystal fiber prediction method and system based on reinforced gray wolf optimization algorithm
Huang et al. End‐to‐end inverse modeling and optimization for filters based on artificial neural network
CN116611284B (en) Inversion method and device for dam material parameters, electronic equipment and storage medium
CN114756805A (en) Method and device for sea surface emissivity correction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant