CN109088000B - Organic thin film transistor and preparation method thereof - Google Patents
Organic thin film transistor and preparation method thereof Download PDFInfo
- Publication number
- CN109088000B CN109088000B CN201810964069.4A CN201810964069A CN109088000B CN 109088000 B CN109088000 B CN 109088000B CN 201810964069 A CN201810964069 A CN 201810964069A CN 109088000 B CN109088000 B CN 109088000B
- Authority
- CN
- China
- Prior art keywords
- organic
- layer
- insulating layer
- sputtering
- semiconductor layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010409 thin film Substances 0.000 title claims description 42
- 238000002360 preparation method Methods 0.000 title claims description 20
- 238000004544 sputter deposition Methods 0.000 claims description 72
- 239000004065 semiconductor Substances 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 239000002861 polymer material Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 17
- 238000009832 plasma treatment Methods 0.000 claims description 12
- 238000001723 curing Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 8
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 6
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 claims description 5
- 238000004381 surface treatment Methods 0.000 claims description 5
- 238000001029 thermal curing Methods 0.000 claims description 4
- 239000010408 film Substances 0.000 description 18
- -1 polysiloxane Polymers 0.000 description 14
- 238000001755 magnetron sputter deposition Methods 0.000 description 13
- 238000007738 vacuum evaporation Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004811 fluoropolymer Substances 0.000 description 5
- 229920002313 fluoropolymer Polymers 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920005596 polymer binder Polymers 0.000 description 5
- 239000002491 polymer binding agent Substances 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920002396 Polyurea Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- AMOYMEBHYUTMKJ-UHFFFAOYSA-N 2-(2-phenylethoxy)ethylbenzene Chemical compound C=1C=CC=CC=1CCOCCC1=CC=CC=C1 AMOYMEBHYUTMKJ-UHFFFAOYSA-N 0.000 description 1
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N 2-methylanisole Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000813 microcontact printing Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical class S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
- H10K10/474—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
技术领域technical field
本发明涉及有机电子和光电子技术领域,具体而言,涉及一种有机薄膜晶体管及其制备方法。The present invention relates to the technical field of organic electronics and optoelectronics, in particular to an organic thin film transistor and a preparation method thereof.
背景技术Background technique
近年来,有机薄膜晶体管(Organic Thin Film Transistor,OTFT)由于在柔性化、大面积和低成本有源矩阵显示、射频标签等方面的潜在应用前景而备受学术界和工业界关注,并取得了长足的发展。在各种OTFT器件架构中,顶栅-底接触型结构因其具有高栅极效率、低寄生电容等优点更有利于OTFT大规模制造。In recent years, Organic Thin Film Transistor (OTFT) has attracted much attention from academia and industry due to its potential applications in flexibility, large-area and low-cost active matrix display, radio frequency tags, etc. great development. Among various OTFT device architectures, the top-gate-bottom contact structure is more conducive to large-scale OTFT fabrication due to its high gate efficiency and low parasitic capacitance.
现有技术在制备有机薄膜晶体管的过程中,通过真空蒸镀方式在有机半导体层和有机绝缘层上沉积金属层,然后利用磁控溅射技术沉积第二层金属层和第三层氧化阻隔层形成栅极。In the process of preparing an organic thin film transistor, a metal layer is deposited on the organic semiconductor layer and the organic insulating layer by vacuum evaporation, and then the second metal layer and the third oxidation barrier layer are deposited by magnetron sputtering technology. form the gate.
在有机半导体层和有机绝缘层上直接真空蒸镀金属电极会在热传递过程中损伤有机半导体层和有机绝缘层,影响晶体管的性能。The direct vacuum evaporation of metal electrodes on the organic semiconductor layer and the organic insulating layer will damage the organic semiconductor layer and the organic insulating layer during the heat transfer process, and affect the performance of the transistor.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种有机薄膜晶体管,电学性能更佳。The purpose of the present invention is to provide an organic thin film transistor with better electrical performance.
本发明的另一目的在于提供一种有机薄膜晶体管的制备方法,制备过程中通过有机抗溅射层的形成,对有机半导体层和有机绝缘层进行保护,使得到的晶体管的电学性能更佳。Another object of the present invention is to provide a method for preparing an organic thin film transistor. During the preparation process, the organic semiconductor layer and the organic insulating layer are protected by forming an organic anti-sputtering layer, so that the obtained transistor has better electrical properties.
本发明是采用以下技术方案实现的:The present invention adopts the following technical solutions to realize:
一种有机薄膜晶体管,包括基板、栅极、源漏极、有机半导体层、有机绝缘层和由可交联高分子材料制成的有机抗溅射层;An organic thin film transistor, comprising a substrate, a gate electrode, a source and drain electrode, an organic semiconductor layer, an organic insulating layer and an organic anti-sputtering layer made of a crosslinkable polymer material;
源漏极形成于基板的表面,源漏极之间形成有机半导体层,有机半导体层的远离基板的一侧形成有机绝缘层,有机绝缘层的远离有机半导体层的一侧形成有机抗溅射层,有机抗溅射层的远离有机绝缘层的一侧形成栅极。The source and drain are formed on the surface of the substrate, an organic semiconductor layer is formed between the source and the drain, an organic insulating layer is formed on the side of the organic semiconductor layer away from the substrate, and an organic anti-sputtering layer is formed on the side of the organic insulating layer away from the organic semiconductor layer , a gate electrode is formed on the side of the organic anti-sputtering layer far away from the organic insulating layer.
进一步地,本发明较佳的实施例中,上述可交联高分子材料包括聚丙烯酸酯、聚硅氧烷、聚氨酯、聚乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯和聚脲中的至少一种。Further, in a preferred embodiment of the present invention, the above-mentioned crosslinkable polymer material includes polyacrylate, polysiloxane, polyurethane, polyethylene, polyethylene terephthalate, polybutylene terephthalate At least one of esters and polyureas.
进一步地,本发明较佳的实施例中,上述有机抗溅射层的厚度为50-5000nm;优选地,有机抗溅射层的厚度为100-3000nm;优选地,有机抗溅射层的厚度为200-2000nm。Further, in a preferred embodiment of the present invention, the thickness of the organic anti-sputtering layer is 50-5000 nm; preferably, the thickness of the organic anti-sputtering layer is 100-3000 nm; preferably, the thickness of the organic anti-sputtering layer is 100-3000 nm For 200-2000nm.
一种有机薄膜晶体管的制备方法,包括如下步骤:(1)、在形成有源漏极的基板上形成有机半导体层;(2)、在有机半导体层的远离基板的一侧形成有机绝缘层;(3)、在有机绝缘层的远离有机半导体层的一侧形成由可交联高分子材料制成的有机抗溅射层;(4)、在有机抗溅射层的远离有机绝缘层的一侧形成栅极。A method for preparing an organic thin film transistor, comprising the steps of: (1) forming an organic semiconductor layer on a substrate on which source and drain electrodes are formed; (2) forming an organic insulating layer on a side of the organic semiconductor layer away from the substrate; (3), forming an organic anti-sputtering layer made of a cross-linkable polymer material on the side of the organic insulating layer far away from the organic semiconductor layer; (4), on a side of the organic anti-sputtering layer far from the organic insulating layer The gate is formed on the side.
进一步地,本发明较佳的实施例中,上述有机抗溅射层的制备方法包括:先将可交联高分子材料涂布于有机绝缘层的远离有机半导体层的一侧,再将可交联高分子材料固化。Further, in a preferred embodiment of the present invention, the preparation method of the organic anti-sputtering layer includes: firstly coating the crosslinkable polymer material on the side of the organic insulating layer away from the organic semiconductor layer, and then applying the crosslinkable polymer material to the side of the organic insulating layer away from the organic semiconductor layer. curing of polymer materials.
进一步地,本发明较佳的实施例中,上述固化的方式可以是紫外固化或热固化。Further, in a preferred embodiment of the present invention, the above-mentioned curing method may be ultraviolet curing or thermal curing.
进一步地,本发明较佳的实施例中,上述将可交联高分子材料涂布于有机绝缘层的远离有机半导体层的一侧之前,还包括将有机绝缘层进行表面等离子处理的步骤。Further, in a preferred embodiment of the present invention, before the above-mentioned coating of the crosslinkable polymer material on the side of the organic insulating layer away from the organic semiconductor layer, the step of performing surface plasma treatment on the organic insulating layer is further included.
进一步地,本发明较佳的实施例中,上述固化以后,还包括将有机抗溅射层进行表面处理的步骤。Further, in a preferred embodiment of the present invention, after the above-mentioned curing, the step of surface-treating the organic anti-sputtering layer is further included.
进一步地,本发明较佳的实施例中,上述表面处理的方式为:将碳酸乙烯酯或丙二醇甲醚醋酸酯在有机抗溅射层的表面静置0.5-5min后再进行热处理。Further, in a preferred embodiment of the present invention, the above-mentioned surface treatment method is as follows: ethylene carbonate or propylene glycol methyl ether acetate is placed on the surface of the organic anti-sputtering layer for 0.5-5 minutes before heat treatment.
进一步地,本发明较佳的实施例中,上述栅极的制备方法包括:在有机抗溅射层的远离有机绝缘层的一侧形成金属层,对金属层进行曝光、蚀刻处理。Further, in a preferred embodiment of the present invention, the method for preparing the gate electrode includes: forming a metal layer on a side of the organic anti-sputtering layer away from the organic insulating layer, and exposing and etching the metal layer.
与现有技术相比,本发明的较佳实施例提供的有机薄膜晶体管及其制备方法的有益效果包括:Compared with the prior art, the beneficial effects of the organic thin film transistor and the preparation method thereof provided by the preferred embodiment of the present invention include:
在有机绝缘层和栅极之间形成由可交联高分子材料制成的有机抗溅射层,在形成栅极的过程中,不会损坏有机绝缘层和有机半导体层,使得到的有机薄膜晶体管的迁移率升高,阈值电压降低,电流比增大,提高了有机薄膜晶体管的电学性能。An organic anti-sputtering layer made of cross-linkable polymer material is formed between the organic insulating layer and the gate electrode. During the process of forming the gate electrode, the organic insulating layer and the organic semiconductor layer will not be damaged, so that the resulting organic thin film will not be damaged. The mobility of the transistor increases, the threshold voltage decreases, and the current ratio increases, which improves the electrical performance of the organic thin film transistor.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图也属于本发明的保护范围。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the embodiments. It should be understood that the following drawings only show some embodiments of the present invention, and therefore do not It should be regarded as a limitation of the scope. For those of ordinary skill in the art, other related drawings can also be obtained from these drawings without creative efforts, which also belong to the protection scope of the present invention.
图1为本发明提供的有机薄膜晶体管的结构示意图。FIG. 1 is a schematic structural diagram of an organic thin film transistor provided by the present invention.
图标:100-基板;200-栅极;300-源漏极;310-源极;320-漏极;400-有机半导体层;500-有机绝缘层;600-有机抗溅射层。Icons: 100-substrate; 200-gate; 300-source and drain; 310-source; 320-drain; 400-organic semiconductor layer; 500-organic insulating layer; 600-organic anti-sputtering layer.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。In order to make the objectives, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be described clearly and completely below. If the specific conditions are not indicated in the examples, it is carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be purchased from the market.
下面对本发明实施例的有机薄膜晶体管及其制备方法进行具体说明。The organic thin film transistor and the preparation method thereof according to the embodiments of the present invention will be specifically described below.
有机薄膜晶体管的制备方法,包括如下步骤:The preparation method of organic thin film transistor comprises the following steps:
(1)、选择基板,例如:玻璃基板、硅基板;或聚萘二甲酸乙二醇(PEN)基板、聚醚砜(PES)基板、聚对苯二甲酸乙二酯(PET)基板、聚酰亚胺(PI)基板、聚乙烯醇(PVA)基板等柔性塑料基板。本实施例中,基板的形状与厚度均不受限制,只要能够进行有机薄膜晶体管的制备即可。(1) Select a substrate, such as: glass substrate, silicon substrate; or polyethylene naphthalate (PEN) substrate, polyethersulfone (PES) substrate, polyethylene terephthalate (PET) substrate, polyethylene terephthalate (PET) substrate, polyethylene naphthalate (PEN) substrate Flexible plastic substrates such as imide (PI) substrates and polyvinyl alcohol (PVA) substrates. In this embodiment, the shape and thickness of the substrate are not limited, as long as the organic thin film transistor can be prepared.
(2)、在基板的表面形成源漏极,可选地,漏极位于基板的中部,源极包括两个,两个源极间隔形成于漏极的两侧,且漏极和两个源极均形成在基板的表面。(2) Forming a source and drain on the surface of the substrate, optionally, the drain is located in the middle of the substrate, the source includes two, and the two source intervals are formed on both sides of the drain, and the drain and the two sources The poles are formed on the surface of the substrate.
本实施例中,源极和漏极的材料相同,可为金属包括金(Au)、钛(Ti)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)、钨(W)、钼(Mo)、铬(Cr)、钕(Nd)、金浆、银浆、铜浆一种或几种;导电聚合物;金属氧化物;碳材料包括石墨烯、碳纳米管及掺杂或复合材料;纳米银线或纳米铜线。源漏极薄膜形成的方法包括磁控溅射、真空蒸镀、喷墨印刷、丝网印刷、凹版印刷、化学气相沉积、卷对卷印刷、微接触印刷、纳米压印中的一种。电极膜厚为0.1-500nm,可选地,电极膜厚为10-300nm,可选地,电极膜厚为20-100nm。In this embodiment, the source electrode and the drain electrode are made of the same material, which can be metals including gold (Au), titanium (Ti), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), tungsten ( W), molybdenum (Mo), chromium (Cr), neodymium (Nd), one or more of gold paste, silver paste, copper paste; conductive polymers; metal oxides; carbon materials including graphene, carbon nanotubes and Doped or composite; nanosilver or nanocopper. The method for forming the source and drain films includes one of magnetron sputtering, vacuum evaporation, ink jet printing, screen printing, gravure printing, chemical vapor deposition, roll-to-roll printing, micro-contact printing, and nano-imprinting. The electrode film thickness is 0.1-500 nm, optionally, the electrode film thickness is 10-300 nm, and optionally, the electrode film thickness is 20-100 nm.
可选地,在基板的表面形成第一金属层,对第一金属层进行图案化处理,以形成源极和漏极。本实施例中,在基板的表面形成源漏极的方法为现有的方法,此处不再详述。Optionally, a first metal layer is formed on the surface of the substrate, and the first metal layer is patterned to form the source electrode and the drain electrode. In this embodiment, the method for forming the source and drain on the surface of the substrate is an existing method, which will not be described in detail here.
(3)、在形成有源漏电极层的基板上形成有机半导体层。在源极上、漏极上以及基板未被漏极和源极覆盖的部分上形成有机半导体层。(3) An organic semiconductor layer is formed on the substrate on which the source and drain electrode layers are formed. An organic semiconductor layer is formed on the source electrode, the drain electrode, and the portion of the substrate not covered by the drain electrode and the source electrode.
具体地,先制备混合溶液,再将混合溶液通过旋涂、喷涂、浸涂、刮刀涂布、接触式涂布或狭缝式涂布的方式涂布于源极、漏极上以及基板未被源极和漏极覆盖的区域,得到的有机半导体层的膜厚为5-200nm,可选地,膜厚为10-100nm,可选地,膜厚为15-50nm,此处的膜厚指的是源极和漏极上以及基板未被源极和漏极覆盖的区域形成的有机半导体层的厚度。Specifically, a mixed solution is prepared first, and then the mixed solution is coated on the source and drain electrodes by spin coating, spray coating, dip coating, blade coating, contact coating or slot coating, and the substrate is not In the region covered by the source electrode and the drain electrode, the obtained organic semiconductor layer has a film thickness of 5-200 nm, optionally, a film thickness of 10-100 nm, optionally, a film thickness of 15-50 nm, where the film thickness refers to is the thickness of the organic semiconductor layer formed on the source and drain electrodes and the regions of the substrate not covered by the source and drain electrodes.
本实施例中,混合溶液包括有机小分子、聚合物粘合剂和有机溶剂,其中,有机小分子为并苯类化合物、噻吩类化合物或四硫富瓦烯类化合物等半导体分子,聚合物粘合剂为二苯并五环类高分子化合物和芳胺类高分子化合物,有机溶剂为四氢化萘、均三甲苯、邻甲基苯甲醚、二甲苯、苯乙醚或溴苯的一种或几种共混物。In this embodiment, the mixed solution includes small organic molecules, a polymer binder and an organic solvent, wherein the small organic molecules are semiconductor molecules such as acene compounds, thiophene compounds or tetrathiafulvalene compounds, and the polymer binder The mixture is a dibenzo pentacyclic polymer compound and an aromatic amine polymer compound, and the organic solvent is one or more of tetralin, mesitylene, o-methylanisole, xylene, phenethyl ether or bromobenzene. Several blends.
(4)、在有机半导体层的远离基板的一侧形成有机绝缘层。通过旋涂、喷涂、浸涂、刮刀涂布、接触式涂布或狭缝式涂布的方式将氟聚合物类绝缘材料涂布于有机半导体层的远离基板的表面。(4), forming an organic insulating layer on the side of the organic semiconductor layer away from the substrate. The fluoropolymer-based insulating material is coated on the surface of the organic semiconductor layer away from the substrate by means of spin coating, spray coating, dip coating, blade coating, contact coating or slot coating.
可选地,有机绝缘层的膜厚为10-1000nm,可选地,膜厚为50-800nm,可选地,膜厚为100-500nm。Optionally, the film thickness of the organic insulating layer is 10-1000 nm, optionally, the film thickness is 50-800 nm, and optionally, the film thickness is 100-500 nm.
(5)、在有机绝缘层的远离有机半导体层的一侧形成由可交联高分子材料制成的有机抗溅射层。(5), forming an organic anti-sputtering layer made of a crosslinkable polymer material on the side of the organic insulating layer away from the organic semiconductor layer.
现有技术中未设置有机抗溅射层,直接通过真空蒸镀方式在有机半导体层和有机绝缘层上沉积金属层,然后利用磁控溅射技术沉积第二层金属层和第三层氧化阻隔层形成栅极。在有机半导体层和有机绝缘层上直接真空蒸镀金属电极会在热传递过程中损伤有机半导体层和有机绝缘层,影响晶体管的性能。同时,真空蒸镀工艺不能有效地控制膜厚度,通常形成的金属层中心点厚,四周薄,均一性和表面覆盖度差。真空蒸镀工艺需要达到较高的真空度,抽真空过程会耗时,降低了器件基板的制造效率。真空蒸镀工艺难以按比例放大,生产量低,不易于大规模产业化。There is no organic anti-sputtering layer in the prior art, and the metal layer is directly deposited on the organic semiconductor layer and the organic insulating layer by vacuum evaporation, and then the second layer of metal layer and the third layer of oxidation barrier are deposited by magnetron sputtering technology. layer forms the gate. The direct vacuum evaporation of metal electrodes on the organic semiconductor layer and the organic insulating layer will damage the organic semiconductor layer and the organic insulating layer during the heat transfer process, and affect the performance of the transistor. At the same time, the vacuum evaporation process cannot effectively control the film thickness, and the metal layer usually formed is thick at the center point and thin at the periphery, with poor uniformity and surface coverage. The vacuum evaporation process needs to achieve a high degree of vacuum, and the vacuuming process takes time and reduces the manufacturing efficiency of the device substrate. The vacuum evaporation process is difficult to scale up, the production volume is low, and it is not easy to large-scale industrialization.
本实施例中,先在有机绝缘层的远离有机半导体层的表面涂布有机抗溅射层,再直接在有机抗溅射层的远离有机绝缘层的表面通过磁控溅射技术沉积金属层,省略了现有技术中真空蒸镀方式沉积金属层的步骤,可以有效解决使用真空蒸镀方式沉积金属层导致的上述问题。In this embodiment, an organic anti-sputtering layer is firstly coated on the surface of the organic insulating layer far away from the organic semiconductor layer, and then a metal layer is deposited directly on the surface of the organic anti-sputtering layer far from the organic insulating layer by magnetron sputtering technology, The step of depositing the metal layer by vacuum evaporation in the prior art is omitted, which can effectively solve the above problems caused by depositing the metal layer by vacuum evaporation.
同时,在有机绝缘层的远离有机半导体层的表面涂布有机抗溅射层,再在有机抗溅射层的远离有机绝缘层的表面磁控溅射金属层。由于有机抗溅射层的设置,可以对有机绝缘层和有机半导体层进行保护,避免在磁控溅射过程中对有机绝缘层造成损伤,提高有机薄膜晶体管的电学性能。At the same time, an organic anti-sputtering layer is coated on the surface of the organic insulating layer far away from the organic semiconductor layer, and then a metal layer is magnetron sputtered on the surface of the organic anti-sputtering layer far away from the organic insulating layer. Due to the arrangement of the organic anti-sputtering layer, the organic insulating layer and the organic semiconductor layer can be protected, so as to avoid damage to the organic insulating layer during the magnetron sputtering process, and improve the electrical performance of the organic thin film transistor.
本实施例中,可交联高分子材料包括聚丙烯酸酯、聚硅氧烷、聚氨酯、聚乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯和聚脲中的至少一种。有机抗溅射层的高分子材料可以是其中一种原料交联反应得到,也可以是两种或者多种原料之间交联反应得到。In this embodiment, the crosslinkable polymer material includes at least one of polyacrylate, polysiloxane, polyurethane, polyethylene, polyethylene terephthalate, polybutylene terephthalate and polyurea kind. The polymer material of the organic anti-sputtering layer can be obtained by a cross-linking reaction of one of the raw materials, or can be obtained by a cross-linking reaction between two or more raw materials.
其中,有机抗溅射层的制备方法包括:先将可交联高分子材料涂布于有机绝缘层的远离有机半导体层的一侧,再将可交联高分子材料固化。可交联高分子材料能够与氟聚合物正交,可以加快可交联高分子材料的固化速度。Wherein, the preparation method of the organic anti-sputtering layer includes: firstly coating the crosslinkable polymer material on the side of the organic insulating layer away from the organic semiconductor layer, and then curing the crosslinkable polymer material. The cross-linkable polymer material can be orthogonal to the fluoropolymer, which can speed up the curing speed of the cross-linkable polymer material.
详细地,将可交联高分子材料以10-100rpm/s的速度在有机绝缘层的远离有机半导体层的表面旋涂,旋涂以后再进行紫外固化或热固化处理。热固化处理的方式具体为:在100-150℃的条件下热处理2-10min。也可以先在紫外灯辐照能量为200-1000mJ/cm2的条件下紫外照射10-60s以后,再在100-150℃的条件下热处理2-10min使可交联高分子材料交联固化,形成有机抗溅射层,其为可交联的网络结构,膜的致密性好,硬度高,能够保护有机绝缘层和有机半导体层。Specifically, the crosslinkable polymer material is spin-coated on the surface of the organic insulating layer away from the organic semiconductor layer at a speed of 10-100 rpm/s, and then subjected to ultraviolet curing or thermal curing treatment after spin-coating. The specific method of thermal curing treatment is: heat treatment under the condition of 100-150° C. for 2-10 minutes. It is also possible to first irradiate ultraviolet light for 10-60s under the condition of ultraviolet lamp irradiation energy of 200-1000mJ/ cm2 , and then heat treatment at 100-150℃ for 2-10min to cross-link and cure the cross-linkable polymer material. The organic anti-sputtering layer is formed, which is a cross-linkable network structure, the film has good compactness and high hardness, and can protect the organic insulating layer and the organic semiconductor layer.
有机抗溅射层的厚度为50-5000nm;优选地,有机抗溅射层的厚度为100-3000nm;优选地,有机抗溅射层的厚度为200-2000nm。有机抗溅射层过薄,在磁控溅射设置栅极的时候,可能会将有机抗溅射层击穿;有机抗溅射层过厚,会增加栅极的疏导电压和疏导电流。有机抗溅射层的厚度在上述范围内,得到的有机薄膜晶体管的电学性能更佳。The thickness of the organic anti-sputtering layer is 50-5000 nm; preferably, the thickness of the organic anti-sputtering layer is 100-3000 nm; preferably, the thickness of the organic anti-sputtering layer is 200-2000 nm. If the organic anti-sputtering layer is too thin, the organic anti-sputtering layer may be broken down when the gate is set by magnetron sputtering; if the organic anti-sputtering layer is too thick, the draining voltage and draining current of the gate will be increased. When the thickness of the organic anti-sputtering layer is within the above range, the obtained organic thin film transistor has better electrical properties.
在其他实施例中,将可交联高分子材料涂布于有机绝缘层的远离有机半导体层的一侧之前,还包括将有机绝缘层进行表面等离子处理的步骤。先对有机绝缘层的表面进行等离子处理,再在经过了等离子处理以后的有机绝缘层的表面涂布有机抗溅射层。In other embodiments, before coating the crosslinkable polymer material on the side of the organic insulating layer away from the organic semiconductor layer, the step of performing surface plasma treatment on the organic insulating layer is further included. First, the surface of the organic insulating layer is subjected to plasma treatment, and then an organic anti-sputtering layer is coated on the surface of the organic insulating layer after the plasma treatment.
使有机绝缘层的润湿性和粘附性更好,防止有机绝缘层膜与有机抗溅射层膜之间脱离,在有机抗溅射层相对较薄的情况下也能够得到电学性能更佳的有机薄膜晶体管。Improve the wettability and adhesion of the organic insulating layer, prevent the separation between the organic insulating layer film and the organic anti-sputtering layer film, and obtain better electrical properties even when the organic anti-sputtering layer is relatively thin organic thin-film transistors.
可选地,本实施例中,等离子气体为氮气N2、氦气He、氩气Ar中的一种或混合。本实施例中,等离子处理的具体方式为:将设置了有机绝缘层的基板置于等离子体装置中进行等离子处理。Optionally, in this embodiment, the plasma gas is one or a mixture of nitrogen gas N 2 , helium gas He, and argon gas Ar. In this embodiment, the specific manner of the plasma treatment is as follows: the substrate provided with the organic insulating layer is placed in a plasma device to perform the plasma treatment.
在其他实施例中,固化以后,还包括将有机抗溅射层进行表面处理的步骤。可以使有机抗溅射层的粗糙度下降,使有机抗溅射层与栅极之间的连接更加牢固。In other embodiments, after curing, the step of surface treatment of the organic anti-sputtering layer is further included. The roughness of the organic anti-sputtering layer can be reduced, and the connection between the organic anti-sputtering layer and the gate electrode can be made stronger.
具体地,将碳酸乙烯酯或丙二醇甲醚醋酸酯在有机抗溅射层的表面静置0.5-5min后旋干,碳酸乙烯酯或丙二醇甲醚醋酸酯能够溶解有机抗溅射层的表面,使有机抗溅射层的表面更加光滑,且有机抗溅射层的厚度减小,反而会提高有机薄膜晶体管的电学性能。Specifically, ethylene carbonate or propylene glycol methyl ether acetate is left standing on the surface of the organic anti-sputtering layer for 0.5-5 minutes and then spin-dried. The ethylene carbonate or propylene glycol methyl ether acetate can dissolve the surface of the organic anti-sputtering layer, so that the The surface of the organic anti-sputtering layer is smoother, and the thickness of the organic anti-sputtering layer is reduced, which on the contrary will improve the electrical performance of the organic thin film transistor.
静置0.5-5min后进行热处理,可以去掉碳酸乙烯酯或丙二醇甲醚醋酸酯有机溶剂。The organic solvent of ethylene carbonate or propylene glycol methyl ether acetate can be removed by heat treatment after standing for 0.5-5 min.
(6)、在有机抗溅射层的远离有机绝缘层的一侧形成栅极。通过磁控溅射技术在有机抗溅射层表面形成栅极。由于有机抗溅射层的设置,磁控溅射的过程中,不会损伤有机绝缘层和有机半导体层,对有机绝缘层和有机半导体层具有很好的保护,能够提高有机薄膜晶体管的电学性能。(6), forming a gate on the side of the organic anti-sputtering layer that is far from the organic insulating layer. A gate is formed on the surface of the organic anti-sputtering layer by magnetron sputtering technology. Due to the arrangement of the organic anti-sputtering layer, the organic insulating layer and the organic semiconductor layer will not be damaged during the magnetron sputtering process, and the organic insulating layer and the organic semiconductor layer are well protected, which can improve the electrical performance of the organic thin film transistor. .
本实施例中,栅极的材料为金属,包括金(Au)、钛(Ti)、银(Ag)、铝(Al)、铜(Cu)、镍(Ni)、钼(Mo)、铬(Cr)、钕(Nd)、氧化铟锡(ITO)一种或几种。通过磁控溅射方式沉积于上述有机抗溅射层表面。电极膜厚为5-1000nm,可选地,电极膜厚为10-500nm,可选地,电极膜厚为20-200nm。In this embodiment, the material of the gate is metal, including gold (Au), titanium (Ti), silver (Ag), aluminum (Al), copper (Cu), nickel (Ni), molybdenum (Mo), chromium ( Cr), neodymium (Nd), indium tin oxide (ITO) one or more. It is deposited on the surface of the organic anti-sputtering layer by magnetron sputtering. The electrode film thickness is 5-1000 nm, optionally, the electrode film thickness is 10-500 nm, and optionally, the electrode film thickness is 20-200 nm.
具体地,栅极的制备方法包括:在有机抗溅射层的远离有机绝缘层的一侧形成金属层,对金属层进行曝光、蚀刻处理。通过磁控溅射技术在有机抗溅射层的表面沉积金属层,在金属层表面涂布光阻层,进行曝光、显影工艺之后进行蚀刻处理得到栅极。Specifically, the preparation method of the gate electrode includes: forming a metal layer on a side of the organic anti-sputtering layer away from the organic insulating layer, and exposing and etching the metal layer. A metal layer is deposited on the surface of the organic anti-sputtering layer by magnetron sputtering technology, a photoresist layer is coated on the surface of the metal layer, and after exposure and development processes, etching is performed to obtain a gate electrode.
可选地,通过蚀刻对金属层进行图案化处理,然后用干刻对有机抗溅射层、有机绝缘层和有机半导体层进行可控反应离子刻蚀,形成OTFT器件。Optionally, the metal layer is patterned by etching, and then the organic anti-sputtering layer, the organic insulating layer and the organic semiconductor layer are subjected to controllable reactive ion etching by dry etching to form the OTFT device.
在其他实施例中,通过干刻对栅极、有机抗溅射层、有机绝缘层和有机半导体层进行图案化处理,形成OTFT器件。干刻和蚀刻的方法为现有的方法,此处不再详述。In other embodiments, the gate electrode, the organic anti-sputtering layer, the organic insulating layer and the organic semiconductor layer are patterned by dry etching to form the OTFT device. The methods of dry etching and etching are existing methods and will not be described in detail here.
通过上述制备方法得到的有机薄膜晶体管,如图1,有机薄膜晶体管包括基板100、栅极200、源漏极300、有机半导体层400、有机绝缘层500和由可交联高分子材料制成的有机抗溅射层600。源漏极300形成于基板100的表面,源漏极300之间形成有机半导体层400,有机半导体层400的远离基板100的一侧形成有机绝缘层,有机绝缘层500的远离有机半导体层400的一侧形成有机抗溅射层600,有机抗溅射层600的远离有机绝缘层500的一侧形成栅极200。The organic thin film transistor obtained by the above preparation method, as shown in FIG. 1 , the organic thin film transistor includes a
可选地,源漏极300包括源极310和漏极320,漏极320位于基板100的中部,源极310包括两个,两个源极310间隔形成于漏极320的两侧,且漏极320和两个源极310均形成在基板100的表面。Optionally, the source and drain
可选地,可交联高分子材料包括聚丙烯酸酯、聚硅氧烷、聚氨酯、聚乙烯、聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯和聚脲中的至少一种。可选地,有机抗溅射层600的厚度为50-5000nm;优选地,有机抗溅射层600的厚度为100-3000nm;优选地,有机抗溅射层600的厚度为200-2000nm。Optionally, the crosslinkable polymer material includes at least one of polyacrylate, polysiloxane, polyurethane, polyethylene, polyethylene terephthalate, polybutylene terephthalate and polyurea . Optionally, the thickness of the
最后得到的有机薄膜晶体管的迁移率升高,阈值电压降低,电流比增大,大大提高了有机薄膜晶体管的电学性能。The mobility of the finally obtained organic thin film transistor increases, the threshold voltage decreases, and the current ratio increases, which greatly improves the electrical performance of the organic thin film transistor.
实施例1Example 1
有机薄膜晶体管的制备方法,包括如下步骤:The preparation method of organic thin film transistor comprises the following steps:
(1)、选择玻璃基板,在玻璃基板的表面形成厚度为50nm的源漏极。(1) Select a glass substrate, and form source and drain electrodes with a thickness of 50 nm on the surface of the glass substrate.
(2)、在源极、漏极以及基板未被源极和漏极覆盖的区域的表面涂布由有机小分子、聚合物粘合剂和有机溶剂组成的混合溶液形成厚度为30nm的有机半导体层。(2) Coat the surface of the source electrode, the drain electrode and the area of the substrate not covered by the source electrode and the drain electrode with a mixed solution composed of organic small molecules, polymer binders and organic solvents to form an organic semiconductor with a thickness of 30 nm Floor.
(3)、在有机半导体层的远离基板的表面涂布氟聚合物类材料形成厚度为300nm的有机绝缘层。(3) Coating a fluoropolymer material on the surface of the organic semiconductor layer away from the substrate to form an organic insulating layer with a thickness of 300 nm.
(4)、在有机绝缘层的远离半导体层的表面以25rpm/s的速度涂布可交联高分子材料,在紫外灯辐照能量为400mJ/cm2的条件下紫外照射22s后在温度为120℃的条件下热处理5min,形成厚度为650nm的有机抗溅射层。(4) Coat the cross-linkable polymer material on the surface of the organic insulating layer away from the semiconductor layer at a speed of 25rpm/s, under the condition that the irradiation energy of the ultraviolet lamp is 400mJ/ cm2 , after the ultraviolet irradiation for 22s, the temperature is Heat treatment at 120° C. for 5 min to form an organic anti-sputtering layer with a thickness of 650 nm.
(5)、在有机抗溅射层的远离有机绝缘层的表面磁控溅射金属层,在金属层的表面涂布光阻层,再进行曝光、显影、蚀刻处理得到栅极,得到有机薄膜晶体管。(5), magnetron sputtering metal layer on the surface of the organic anti-sputtering layer away from the organic insulating layer, coating a photoresist layer on the surface of the metal layer, and then exposing, developing and etching to obtain a gate, and obtain an organic thin film transistor.
实施例2Example 2
有机薄膜晶体管的制备方法,包括如下步骤:The preparation method of organic thin film transistor comprises the following steps:
(1)、选择玻璃基板,在玻璃基板的表面形成厚度为50nm的源漏极。(1) Select a glass substrate, and form source and drain electrodes with a thickness of 50 nm on the surface of the glass substrate.
(2)、在源极、漏极以及基板未被源极和漏极覆盖的区域的表面涂布由有机小分子、聚合物粘合剂和有机溶剂组成的混合溶液形成厚度为30nm的有机半导体层。(2) Coat the surface of the source electrode, the drain electrode and the area of the substrate not covered by the source electrode and the drain electrode with a mixed solution composed of organic small molecules, polymer binders and organic solvents to form an organic semiconductor with a thickness of 30 nm Floor.
(3)、在有机半导体层的远离基板的表面涂布氟聚合物类材料形成厚度为300nm的有机绝缘层。(3) Coating a fluoropolymer material on the surface of the organic semiconductor layer away from the substrate to form an organic insulating layer with a thickness of 300 nm.
(4)、将有机绝缘层在等离子气体为氮气的条件下进行表面等离子处理。(4), performing surface plasma treatment on the organic insulating layer under the condition that the plasma gas is nitrogen.
(5)、在经过了表面等离子处理的有机绝缘层的远离半导体层的表面以25rpm/s的速度涂布可交联高分子材料,在紫外灯辐照能量为400mJ/cm2的条件下紫外照射22s后在温度为120℃的条件下热处理5min,形成厚度为600nm的有机抗溅射层。(5) Coat the cross-linkable polymer material on the surface of the organic insulating layer that has undergone surface plasma treatment away from the semiconductor layer at a speed of 25 rpm/s, and the ultraviolet lamp irradiation energy is 400 mJ/cm 2 under the condition of ultraviolet light After irradiating for 22s, heat treatment for 5min at a temperature of 120°C to form an organic anti-sputtering layer with a thickness of 600nm.
(6)、在有机抗溅射层的远离有机绝缘层的表面磁控溅射金属层,在金属层的表面涂布光阻层,再进行曝光、显影、蚀刻处理得到栅极,得到有机薄膜晶体管。(6), magnetron sputtering metal layer on the surface of the organic anti-sputtering layer away from the organic insulating layer, coating the photoresist layer on the surface of the metal layer, and then exposing, developing and etching to obtain the gate, and obtain the organic thin film transistor.
实施例3Example 3
有机薄膜晶体管的制备方法,包括如下步骤:The preparation method of organic thin film transistor comprises the following steps:
(1)、选择玻璃基板,在玻璃基板的表面形成厚度为50nm的源漏极。(1) Select a glass substrate, and form source and drain electrodes with a thickness of 50 nm on the surface of the glass substrate.
(2)、在源极、漏极以及基板未被源极和漏极覆盖的区域的表面涂布由有机小分子、聚合物粘合剂和有机溶剂组成的混合溶液形成厚度为30nm的有机半导体层。(2) Coat the surface of the source electrode, the drain electrode and the area of the substrate not covered by the source electrode and the drain electrode with a mixed solution composed of organic small molecules, polymer binders and organic solvents to form an organic semiconductor with a thickness of 30 nm Floor.
(3)、在有机半导体层的远离基板的表面涂布氟聚合物类材料形成厚度为300nm的有机绝缘层。(3) Coating a fluoropolymer material on the surface of the organic semiconductor layer away from the substrate to form an organic insulating layer with a thickness of 300 nm.
(4)、将有机绝缘层在等离子气体为氮气的条件下进行表面等离子处理。(4), performing surface plasma treatment on the organic insulating layer under the condition that the plasma gas is nitrogen.
(5)、在经过了表面等离子处理的有机绝缘层的远离半导体层的表面以25rpm/s的速度涂布可交联高分子材料,在紫外灯辐照能量为400mJ/cm2的条件下紫外照射22s后在温度为120℃的条件下热处理5min。再用碳酸乙烯酯在热处理后的基板表面静置1min,然后在温度为120℃的条件下热处理5min,形成厚度为400nm的有机抗溅射层。(5) Coat the cross-linkable polymer material on the surface of the organic insulating layer that has undergone surface plasma treatment away from the semiconductor layer at a speed of 25 rpm/s, and the ultraviolet lamp irradiation energy is 400 mJ/cm 2 under the condition of ultraviolet light After irradiating for 22 s, heat treatment for 5 min at a temperature of 120 °C. Then, the surface of the heat-treated substrate was allowed to stand for 1 min with ethylene carbonate, and then heat-treated for 5 min at a temperature of 120° C. to form an organic anti-sputtering layer with a thickness of 400 nm.
(6)、在有机抗溅射层的远离有机绝缘层的表面磁控溅射金属层,在金属层的表面涂布光阻层,再进行曝光、显影、蚀刻处理得到栅极,得到有机薄膜晶体管。(6), magnetron sputtering metal layer on the surface of the organic anti-sputtering layer away from the organic insulating layer, coating the photoresist layer on the surface of the metal layer, and then exposing, developing and etching to obtain the gate, and obtain the organic thin film transistor.
实验例1Experimental example 1
检测实施例1-3提供的有机薄膜晶体管的制备方法得到的有机薄膜晶体管的迁移率、阈值电压和电流开关比,并检测有机抗溅射层的表面粗糙度。对比例1与实施例1相比,其他条件相同,仅未进行有机抗溅射层的形成得到有机薄膜晶体管,并检测对比例1得到的有机薄膜晶体管的迁移率、阈值电压和电流开关比。得到表1:The mobility, threshold voltage and current switching ratio of the organic thin film transistor obtained by the preparation method of the organic thin film transistor provided in Examples 1-3 were detected, and the surface roughness of the organic anti-sputtering layer was detected. Compared with Example 1, Comparative Example 1 has the same other conditions, except that the organic thin film transistor is obtained without the formation of the organic anti-sputtering layer, and the mobility, threshold voltage and current switching ratio of the organic thin film transistor obtained in Comparative Example 1 are tested. get table 1:
表1有机薄膜晶体管的电学性能Table 1 Electrical properties of organic thin film transistors
从表1可以看出,实施例1与对比例1相比,有机薄膜晶体管的迁移率和电流开关比具有明显的提高,阈值电压明显下降,有机薄膜晶体管的电学性能更优。实施例1与实施例2相比,对有机绝缘层进行表面等离子处理以后,再进行有机抗溅射层的形成,得到的有机薄膜晶体管的迁移率和电流开关比提高,阈值电压下降,有机薄膜晶体管的电学性能更优。实施例2与实施例3相比,对有机抗溅射层进行表面处理以后,得到的有机薄膜晶体管的迁移率和电流开关比提高,阈值电压下降,有机薄膜晶体管的电学性能更优。It can be seen from Table 1 that, compared with Comparative Example 1, the mobility and current switching ratio of the organic thin film transistor in Example 1 are significantly improved, the threshold voltage is significantly reduced, and the electrical performance of the organic thin film transistor is better. Compared with Example 2, the organic insulating layer is subjected to surface plasma treatment, and then the organic anti-sputtering layer is formed. The mobility and current switching ratio of the obtained organic thin film transistor are improved, the threshold voltage is decreased, and the organic thin film The electrical performance of the transistor is better. Compared with Example 3, after the surface treatment of the organic anti-sputtering layer is carried out, the mobility and current switching ratio of the obtained organic thin film transistor are improved, the threshold voltage is decreased, and the electrical performance of the organic thin film transistor is better.
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The above-described embodiments are some, but not all, embodiments of the present invention. The detailed descriptions of the embodiments of the invention are not intended to limit the scope of the invention as claimed, but are merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810964069.4A CN109088000B (en) | 2018-08-22 | 2018-08-22 | Organic thin film transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810964069.4A CN109088000B (en) | 2018-08-22 | 2018-08-22 | Organic thin film transistor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109088000A CN109088000A (en) | 2018-12-25 |
CN109088000B true CN109088000B (en) | 2022-04-12 |
Family
ID=64794186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810964069.4A Active CN109088000B (en) | 2018-08-22 | 2018-08-22 | Organic thin film transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109088000B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002343058A1 (en) * | 2001-12-19 | 2003-06-30 | Merck Patent Gmbh | Organic field effect transistor with an organic dielectric |
CN101669225A (en) * | 2007-04-25 | 2010-03-10 | 默克专利股份有限公司 | Process for preparing an electronic device |
CN105336860A (en) * | 2015-11-09 | 2016-02-17 | 南京邮电大学 | Flexible low-voltage organic field effect transistor and manufacturing method thereof |
CN107644936A (en) * | 2017-09-27 | 2018-01-30 | 信利半导体有限公司 | A kind of OTFT and preparation method thereof |
-
2018
- 2018-08-22 CN CN201810964069.4A patent/CN109088000B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002343058A1 (en) * | 2001-12-19 | 2003-06-30 | Merck Patent Gmbh | Organic field effect transistor with an organic dielectric |
CN101669225A (en) * | 2007-04-25 | 2010-03-10 | 默克专利股份有限公司 | Process for preparing an electronic device |
CN105336860A (en) * | 2015-11-09 | 2016-02-17 | 南京邮电大学 | Flexible low-voltage organic field effect transistor and manufacturing method thereof |
CN107644936A (en) * | 2017-09-27 | 2018-01-30 | 信利半导体有限公司 | A kind of OTFT and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109088000A (en) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598410B2 (en) | Organic semiconductor device manufacturing method and organic semiconductor device | |
CN103985764B (en) | Oxide TFT and preparation method thereof, array substrate, display device | |
CN113161486B (en) | P-type organic thin film transistor based on molybdenum trioxide contact doping and preparation method | |
JP5565038B2 (en) | FIELD EFFECT TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE | |
TWI677104B (en) | Thin film transistor, method for manufacturing thin film transistor, and image display device using thin film transistor | |
TW200843118A (en) | Ambipolar transistor design | |
CN101257092B (en) | A kind of organic thin film transistor and its preparation method | |
CN101308904A (en) | A kind of organic thin film transistor and its preparation method | |
Youn et al. | Multi-film roll transferring (MRT) process using highly conductive and solution-processed silver solution for fully solution-processed polymer solar cells | |
CN103283026B (en) | Electronic device | |
CN102723439A (en) | Storage unit based on organic field effect transistor, storage and preparation method thereof | |
CN109088000B (en) | Organic thin film transistor and preparation method thereof | |
WO2010034815A1 (en) | Method for forming self-aligned electrodes | |
CN100573959C (en) | A method for preparing an organic thin film transistor with patterned active layer | |
CN106784313A (en) | OTFT and preparation method thereof | |
CN109088001B (en) | Organic thin film transistor and preparation method thereof | |
US11658232B2 (en) | Field effect transistor based on graphene nanoribbon and method for making the same | |
JP2007073856A (en) | Formation method of conductive pattern, manufacturing method of semiconductor device, and manufacturing method of organic electroluminescent element | |
CN115440888A (en) | Flexible vertical channel field effect transistor based on metal and dielectric mixed thin film source electrode | |
JP2007027525A (en) | Method of manufacturing semiconductor device, semiconductor device, and method of forming insulation film | |
CN103325837B (en) | Carbon-based field effect transistor and preparation method thereof | |
JP2013021190A (en) | Manufacturing method of organic semiconductor element and organic semiconductor element | |
KR20100096847A (en) | Organic thin film transistor and method for manufacturing the same | |
CN1670598A (en) | A method for preparing an active matrix liquid crystal display device with a patterned active layer | |
US20220181476A1 (en) | Field effect transistor and method for making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181225 Assignee: NINGBO FULI BATTERY MATERIAL TECHNOLOGY Co.,Ltd. Assignor: NINGBO GRAPHENE INNOVATION CENTER Co.,Ltd. Contract record no.: X2024980041453 Denomination of invention: An organic thin film transistor and its preparation method Granted publication date: 20220412 License type: Common License Record date: 20241223 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181225 Assignee: Ningbo Shenleng New Energy Technology Co.,Ltd. Assignor: NINGBO GRAPHENE INNOVATION CENTER Co.,Ltd. Contract record no.: X2024330001493 Denomination of invention: An organic thin film transistor and its preparation method Granted publication date: 20220412 License type: Common License Record date: 20241224 Application publication date: 20181225 Assignee: Ningbo Zhaoene Technology Co.,Ltd. Assignor: NINGBO GRAPHENE INNOVATION CENTER Co.,Ltd. Contract record no.: X2024330001492 Denomination of invention: An organic thin film transistor and its preparation method Granted publication date: 20220412 License type: Common License Record date: 20241224 |
|
EE01 | Entry into force of recordation of patent licensing contract |