CN109085227B - 一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 - Google Patents
一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 Download PDFInfo
- Publication number
- CN109085227B CN109085227B CN201810693693.5A CN201810693693A CN109085227B CN 109085227 B CN109085227 B CN 109085227B CN 201810693693 A CN201810693693 A CN 201810693693A CN 109085227 B CN109085227 B CN 109085227B
- Authority
- CN
- China
- Prior art keywords
- thin film
- heavy metal
- deposition
- hydroxyapatite
- film electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 51
- 229910052588 hydroxylapatite Inorganic materials 0.000 title claims abstract description 48
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 title claims abstract description 48
- 150000002500 ions Chemical class 0.000 title claims abstract description 39
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 33
- 238000001514 detection method Methods 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 230000008021 deposition Effects 0.000 claims abstract description 95
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 44
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims abstract description 44
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 22
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims abstract description 22
- 235000019838 diammonium phosphate Nutrition 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 21
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 21
- 239000011521 glass Substances 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 3
- 238000000151 deposition Methods 0.000 claims description 90
- 238000004070 electrodeposition Methods 0.000 claims description 27
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims description 19
- 239000011574 phosphorus Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 14
- 229910052753 mercury Inorganic materials 0.000 claims description 11
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 abstract description 37
- 239000000463 material Substances 0.000 abstract description 4
- ZQBZAOZWBKABNC-UHFFFAOYSA-N [P].[Ca] Chemical compound [P].[Ca] ZQBZAOZWBKABNC-UHFFFAOYSA-N 0.000 abstract 1
- 239000011259 mixed solution Substances 0.000 abstract 1
- 230000004044 response Effects 0.000 description 26
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 18
- 229910052791 calcium Inorganic materials 0.000 description 18
- 239000011575 calcium Substances 0.000 description 18
- 239000004575 stone Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 14
- 230000035945 sensitivity Effects 0.000 description 10
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 7
- 229910001431 copper ion Inorganic materials 0.000 description 7
- -1 mercury ions Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001903 differential pulse voltammetry Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000006984 memory degeneration Effects 0.000 description 1
- 208000023060 memory loss Diseases 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/333—Ion-selective electrodes or membranes
- G01N27/3335—Ion-selective electrodes or membranes the membrane containing at least one organic component
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/36—Glass electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用,属于薄膜材料技术领域。是将ITO玻璃作为阴极,铂电极作为阳极,0.05~0.20M硝酸钙、0.015~0.60M磷酸氢二铵、0.015~0.60M磷酸的混合溶液作为电解质,电解质溶液的钙磷比为5:3,通过电沉积羟基磷灰石得到微纳尺度条带状结构的羟基磷灰石薄膜电极,薄膜厚度为5~35μm。沉积电位是通过直流稳压电源调控的,沉积电位为1.5~2.5V,沉积时间为30~180min,沉积时沉积池置于水浴锅中加热,温度控制在40~80℃。本发明制备的羟基磷灰石薄膜电极可作为重金属离子传感器在重金属检测中得到应用,重金属离子为二价的铅、铜或汞,浓度为0.1~10.0μM。
Description
技术领域
本发明属于薄膜材料技术领域,具体涉及一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用。
背景技术
因为重金属对人类健康和生态系统具有高毒性,所以重金属的污染引起了人们的高度重视。在各种重金属中,三种毒性比较强的二价重金属离子是铅、铜和汞。据报道,二价铅离子的积累会在人体内引起各种有害作用,如肾损伤、贫血、记忆丧失,甚至癌症。此外,尽管二价铜离子对人体是必不可少的,但其过量会导致健康问题,如肺癌和肝脏损伤。低浓度的二价汞离子也可损害中枢神经系统、脑、肾和肺。
目前,重金属离子的检测通常为原子吸收光谱法、原子荧光光谱法、电感耦合等离子体质谱法等一些需要昂贵的仪器、耗费大量时间、不方便安置的方法。由于电化学技术具有成本低、灵敏度高、便携性好等优点,被认为是一种有效的检测方法。
最近,各种材料修饰的电极已广泛用于重金属离子检测。电沉积法制备的羟基磷灰石修饰的电极可以提供均匀的表面形貌、大的面积与体积比和高电导率,对于提高重金属离子的检测性能非常重要。
发明内容
本发明是针对现有技术存在的问题,提供一种具有良好的稳定性、高灵敏度和低成本的用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用。用该电极对不同浓度的二价重金属离子铅、铜和汞进行检测,通过响应电流强度的变化可以监测到各重金属离子浓度的变化。
为了实现上述目的,本发明所述的一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:在沉积池中,以ITO玻璃为阴极,铂电极为阳极,硝酸钙、磷酸氢二铵、磷酸的混合水溶液为电解质,通过电沉积在ITO阴极上沉积得到羟基磷灰石薄膜电极;电解质溶液的钙磷比为5:3,所得羟基磷灰石薄膜电极的厚度为5~35μm;电沉积的电位是通过直流稳压电源调控的,沉积时沉积池置于水浴锅中加热。
上述方法中,硝酸钙浓度为0.05M~0.2M。
上述方法中,磷酸氢二铵浓度为0.015M~0.06M。
上述方法中,磷酸浓度为0.015M~0.06M。
上述方法中,羟基磷灰石薄膜为微纳尺度条带状结构,带宽为0.85~3μm,带长为1~30μm,带厚为50~200nm。
上述方法中,电沉积电位为1.5~2.5V。
上述方法中,电沉积时间为30~180min。
上述方法中,水浴温度为40~80℃。
本发明制备的羟基磷灰石薄膜电极可作为重金属离子传感器在重金属检测中得到应用。
所述的应用,其是将羟基磷灰石薄膜电极作为工作电极,铂电极作为对电极,饱和甘汞电极作为参比电极,应用电化学工作站在差分脉冲伏安测试方法下,监测电流响应强度随着重金属离子浓度发生变化,从而实现对重金属离子浓度的检测。
上述应用,差分脉冲伏的电位为-0.80~0.50V。
上述应用,重金属离子为二价的铅、铜或汞。
上述应用,重金属离子的浓度为0.1~10.0μM。
本发明制备的羟基磷灰石薄膜电极作为重金属离子传感器对重金属离子响应的原理:电极表面的带有负电荷的离子先将重金属离子吸附到电极表面,再使电位从负向正扫描,使其自电极溶出,并记录溶出过程的电流—电位曲线。在一定条件下其峰高与金属离子浓度呈线性关系,而且不同离子在一定的电解液中具有不同的峰电位。
本发明的有益效果是:本发明基于电沉积法制备的羟基磷灰石薄膜电极可以提供均匀的表面形貌,大的面积与体积比和高电导率,具有良好的稳定性,高灵敏度和低成本。其制备方法工艺简单、易于操作,制备成本低,易于推广。
附图说明
为了更清楚地说明本发明中的技术方案及其制备出来材料的性能,下面给出实施例1的相关图示。
图1为羟基磷灰石薄膜电极的X射线电子衍射图谱
图2为羟基磷灰石薄膜电极的扫描电子显微镜图谱。
图3为羟基磷灰石薄膜电极在二价铅离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
图4为羟基磷灰石薄膜电极在二价铅离子3.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
图5为羟基磷灰石薄膜电极在二价铜离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
图6为羟基磷灰石薄膜电极在二价铜离子1.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
图7为羟基磷灰石薄膜电极在二价汞离子0.1~1.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
图8为羟基磷灰石薄膜电极在二价汞离子1.0~10.0μM浓度范围内的电流—电位曲线及浓度与电流响应的线性关系图谱(插图)。
由图1的X射线电子衍射图谱可以看出,目标电极羟基磷灰石的衍射峰位与PDF卡09-0432的标准图谱的特征峰相对应。
由图2的扫描电子显微镜图谱可以看出,目标电极为微纳尺度条带状的羟基磷灰石膜电极。
由图3的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价铅离子有很高的灵敏度和响应电流强度,并且二价铅离子的浓度与电流响应强度有很好的线性关系。
由图4的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在3.0~10.0μM浓度范围内对二价铅离子有很高的灵敏度和响应电流强度,并且二价铅离子的浓度与电流响应强度有很好的线性关系。
由图5的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价铜离子有很高的灵敏度和响应电流强度,并且二价铜离子的浓度与电流响应强度有很好的线性关系。
由图6的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在1.0~10.0μM浓度范围内对二价铜离子有很高的灵敏度和响应电流强度,并且二价铜离子的浓度与电流响应强度有很好的线性关系。
由图7的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在0.1~1.0μM浓度范围内对二价汞离子有很高的灵敏度和响应电流强度,并且二价汞离子的浓度与电流响应强度有很好的线性关系。
由图8的电流—电位曲线及浓度与电流响应的线性关系图谱可以看出,目标电极在1.0~10.0μM浓度范围内对二价汞离子有很高的灵敏度和响应电流强度,并且二价汞离子的浓度与电流响应强度有很好的线性关系。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不局限于这些实施例。
实施例1:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例2:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.10M、磷酸氢二铵0.030M、磷酸0.030M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为9μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例3:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.15M、磷酸氢二铵0.045M、磷酸0.045M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为11μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例4:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.20M、磷酸氢二铵0.060M、磷酸0.060M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为13μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例5:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.15V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例6:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.17V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例7:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.19V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例8:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.21V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例9:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.23V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例10:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.25V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例11:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为13μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为60min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例12:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为24μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为120min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例13:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为35μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为180min,沉积时沉积池置于水浴锅中加热,温度控制在60℃。
实施例14:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为5μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在40℃。
实施例15:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为6μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在50℃。
实施例16:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在70℃。
实施例17:
将ITO玻璃作为阴极,铂电极作为阳极,硝酸钙0.05M、磷酸氢二铵0.015M、磷酸0.015M的混合水溶液作为电解质,钙磷比为5:3,在ITO阴极上电沉积得到羟基磷灰石薄膜电极,所得薄膜厚度为7μm。沉积电位是通过直流稳压电源调控的,沉积电位为0.20V,沉积时间为30min,沉积时沉积池置于水浴锅中加热,温度控制在80℃。
Claims (4)
1.一种用于重金属离子检测的羟基磷灰石薄膜电极的制备方法,其特征在于:在沉积池中,以ITO玻璃为阴极,铂电极为阳极,硝酸钙、磷酸氢二铵、磷酸的混合水溶液为电解质,通过电沉积在ITO阴极上沉积得到羟基磷灰石薄膜电极;电解质溶液的钙磷比为5:3,所得羟基磷灰石薄膜电极的厚度为5~35μm;电沉积的电位是通过直流稳压电源调控的,沉积时沉积池置于水浴锅中加热;硝酸钙浓度为0.05M~0.2M,磷酸氢二铵浓度为0.015M~0.06M,磷酸浓度为0.015M~0.06M;电沉积电位为1.5~2.5V,电沉积时间为30~180min;水浴温度为40~80℃。
2.一种用于重金属离子检测的羟基磷灰石薄膜电极,其特征在于:是由权利要求1所述的方法制备得到。
3.权利要求2所述的一种用于重金属离子检测的羟基磷灰石薄膜电极在重金属检测中的应用,其特征在于:重金属离子为二价的铅、铜或汞。
4.如权利要求3所述的一种用于重金属离子检测的羟基磷灰石薄膜电极在重金属检测中的应用,其特征在于:重金属离子的浓度为0.1~10.0μM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810693693.5A CN109085227B (zh) | 2018-06-29 | 2018-06-29 | 一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810693693.5A CN109085227B (zh) | 2018-06-29 | 2018-06-29 | 一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109085227A CN109085227A (zh) | 2018-12-25 |
CN109085227B true CN109085227B (zh) | 2020-10-23 |
Family
ID=64834738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810693693.5A Expired - Fee Related CN109085227B (zh) | 2018-06-29 | 2018-06-29 | 一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109085227B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111135801B (zh) * | 2020-01-19 | 2021-06-01 | 浙江大学 | 一种具有重金属吸附功能的羟基磷灰石平板丝复合材料制备方法 |
-
2018
- 2018-06-29 CN CN201810693693.5A patent/CN109085227B/zh not_active Expired - Fee Related
Non-Patent Citations (7)
Title |
---|
Evaluation of a platinum electrode modified with hydroxyapatite in the lead(II) determination in a square wave voltammetric procedure;El Mhammedi, Achak et al.;《Arabian Journal of Chemistry》;20101016;第6卷(第3期);全文 * |
Fabrication of nano-porous hydroxyapatite modified electrode and its application for determination of p-chlorophenol;Chu, Zhang;《Journal of nanoscience and nanotechnology》;20120101;第12卷(第1期);第300-306页 * |
Flower-like hydroxyapatite modified carbon paste electrodes applicable for highly sensitive detection of heavy metal ions;Ying Zhang et al.;《Journal of Materials Chemistry》;20110419(第21期);全文 * |
Rod-like hydroxyapatite and Nafion nanocomposite as an electrochemical matrix for simultaneous and sensitive detection of Hg2+, Cu2+, Pb2+ and Cd2+;Feng Gao et al.;《Journal of Electroanalytical Chemistry》;20160525;第775卷;全文 * |
Sea cucumber-like hydroxyapatite: cation exchange membrane-assisted synthesis and its application in ultra-sensitive heavy metal detection;Ying Zhang et al.;《Chemical Communications》;20110307;第47卷(第14期);全文 * |
Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry;Li, Liu et al.;《Sensors and Actuators B: Chemical》;20090331;第139卷(第2期);全文 * |
Square wave voltammetry for analytical determination of cadmium in natural water using Ca10(PO4)6(OH)2-modified platinum electrode;El Mhammedi et al.;《American Journal of Analytical Chemistry》;20111110;第1卷(第3期);第150-167页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109085227A (zh) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dominguez-Benetton et al. | The accurate use of impedance analysis for the study of microbial electrochemical systems | |
Wei et al. | Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries | |
Feng et al. | Anode modification with capacitive materials for a microbial fuel cell: an increase in transient power or stationary power | |
Lv et al. | Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications | |
Lin et al. | Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors | |
CN103401008B (zh) | 利用电容性阳极储存生物电能的方法和装置 | |
Duan et al. | Fabrication of dense spherical and rhombic Ti/Sb–SnO2 electrodes with enhanced electrochemical activity by colloidal electrodeposition | |
Huang et al. | Influence of Cr 3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries | |
CN108318568A (zh) | 一种用于灵敏检测重金属镉离子的电化学传感器及制备方法 | |
Gao et al. | Voltage charging enhances ionic conductivity in gold nanotube membranes | |
Gençten et al. | Electrochemical investigation of the effects of V (V) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery | |
Gencten et al. | Anti-precipitation effects of TiO2 and TiOSO4 on positive electrolyte of vanadium redox battery | |
Opu | Effect of operating parameters on performance of alkaline water electrolysis | |
CN103887522A (zh) | 一种二氧化锰修饰微生物燃料电池活性炭空气阴极的制备 | |
Fan et al. | Highly sensitive electrochemical determination of cadmium (II) in environmental water based on the electrodeposited bismuth nanoparticles | |
Guo et al. | Fabrication and characterization of titanium‐based lead dioxide electrode by electrochemical deposition with Ti4O7 particles | |
Liu et al. | Enhanced Cr reduction and bioelectricity production in microbial fuel cells using polypyrrole-coated MnO2 on carbon cloth | |
CN111675289A (zh) | 一种多孔钛基二氧化铅电极的制备方法 | |
Huang et al. | Enhanced mass transfer and service time of mesh Ti/Sb-SnO 2 electrode for electro-catalytic oxidation of phenol | |
Dong et al. | A study on Pb 2+/Pb electrodes for soluble lead redox flow cells prepared with methanesulfonic acid and recycled lead | |
Pathiraja et al. | Oxygen evolution reaction of Ti/IrO 2–SnO 2 electrode: a study by cyclic voltammetry, Tafel lines, EIS and SEM | |
CN105405663A (zh) | 一种MoS2/石墨烯复合对电极的电化学制备方法 | |
CN109085227B (zh) | 一种用于重金属离子检测的羟基磷灰石薄膜电极、制备方法及其应用 | |
Vlasov et al. | Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery | |
CN103741193B (zh) | 一种使聚苯胺在中性介质中具有稳定电化学活性的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201023 |
|
CF01 | Termination of patent right due to non-payment of annual fee |