CN109072432B - 抗等离子蚀刻膜及其制造方法 - Google Patents
抗等离子蚀刻膜及其制造方法 Download PDFInfo
- Publication number
- CN109072432B CN109072432B CN201780026757.XA CN201780026757A CN109072432B CN 109072432 B CN109072432 B CN 109072432B CN 201780026757 A CN201780026757 A CN 201780026757A CN 109072432 B CN109072432 B CN 109072432B
- Authority
- CN
- China
- Prior art keywords
- layer
- precursor
- depositing
- intermediate layer
- rare earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32477—Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4401—Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
- C23C16/4404—Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45529—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45531—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32458—Vessel
- H01J37/32477—Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
- H01J37/32495—Means for protecting the vessel against plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Claims (34)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FI20165181 | 2016-03-04 | ||
FI20165181 | 2016-03-04 | ||
PCT/FI2017/050141 WO2017149205A1 (en) | 2016-03-04 | 2017-03-03 | A plasma etch-resistant film and a method for its fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109072432A CN109072432A (zh) | 2018-12-21 |
CN109072432B true CN109072432B (zh) | 2020-12-08 |
Family
ID=59743428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780026757.XA Active CN109072432B (zh) | 2016-03-04 | 2017-03-03 | 抗等离子蚀刻膜及其制造方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US10961620B2 (zh) |
EP (1) | EP3423610B1 (zh) |
CN (1) | CN109072432B (zh) |
WO (1) | WO2017149205A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10443126B1 (en) * | 2018-04-06 | 2019-10-15 | Applied Materials, Inc. | Zone-controlled rare-earth oxide ALD and CVD coatings |
US11667575B2 (en) * | 2018-07-18 | 2023-06-06 | Applied Materials, Inc. | Erosion resistant metal oxide coatings |
CN113227435A (zh) * | 2018-10-25 | 2021-08-06 | 格林特威德科技有限公司 | 耐等离子体多层涂层及其制备方法 |
US11976357B2 (en) | 2019-09-09 | 2024-05-07 | Applied Materials, Inc. | Methods for forming a protective coating on processing chamber surfaces or components |
CN113539771B (zh) * | 2020-04-16 | 2024-04-12 | 中微半导体设备(上海)股份有限公司 | 零部件、其表面形成涂层的方法和等离子体反应装置 |
CN114068276B (zh) * | 2020-08-05 | 2025-03-28 | 中微半导体设备(上海)股份有限公司 | 半导体零部件、等离子体反应装置和涂层形成方法 |
CN115852315B (zh) * | 2022-12-20 | 2024-07-19 | 安徽纯源镀膜科技有限公司 | 一种用于提高退膜效率的设备及工艺 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1655310A (zh) * | 2004-01-26 | 2005-08-17 | 三星Sdi株式会社 | 用于等离子体显示面板的绿色磷光体和包括它的等离子体显示面板 |
CN1714434A (zh) * | 2003-01-17 | 2005-12-28 | 富士通株式会社 | 电介质膜的形成方法 |
WO2013046050A3 (en) * | 2011-09-30 | 2013-05-30 | Tokyo Electron Limited | Dry cleaning method for recovering etch process condition |
US20130202866A1 (en) * | 2010-09-30 | 2013-08-08 | The Trustees Of The University Of Pennsylvania | Mechanically stable nanoparticle thin film coatings and methods of producing the same |
CN103254495A (zh) * | 2013-05-06 | 2013-08-21 | 浙江大学 | 一种纳米银荧光增强的稀土氧化物纳米晶复合eva胶膜及其制备方法 |
CN105074889A (zh) * | 2013-06-05 | 2015-11-18 | 应用材料公司 | 用于半导体应用的稀土氧化物基抗腐蚀涂层 |
CN105247662A (zh) * | 2013-06-20 | 2016-01-13 | 应用材料公司 | 抗等离子体腐蚀的稀土氧化物基薄膜涂层 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6660660B2 (en) * | 2000-10-10 | 2003-12-09 | Asm International, Nv. | Methods for making a dielectric stack in an integrated circuit |
JP4921652B2 (ja) * | 2001-08-03 | 2012-04-25 | エイエスエム インターナショナル エヌ.ヴェー. | イットリウム酸化物およびランタン酸化物薄膜を堆積する方法 |
US7371467B2 (en) * | 2002-01-08 | 2008-05-13 | Applied Materials, Inc. | Process chamber component having electroplated yttrium containing coating |
JP3613472B2 (ja) * | 2002-03-29 | 2005-01-26 | 信越石英株式会社 | プラズマエッチング装置用部材及びその製造方法 |
US7205218B2 (en) | 2002-06-05 | 2007-04-17 | Micron Technology, Inc. | Method including forming gate dielectrics having multiple lanthanide oxide layers |
KR100546324B1 (ko) * | 2003-04-22 | 2006-01-26 | 삼성전자주식회사 | Ald에 의한 금속 산화물 박막 형성 방법, 란탄 산화막 형성 방법 및 반도체 소자의 고유전막 형성 방법 |
FR2857672B1 (fr) * | 2003-07-15 | 2005-09-16 | Dacral | Utilisation de l'yttrium, du zirconium, du lanthane, de cerium, du praseodyme ou du neodyme comme element renforcateur des proprietes anticorrosion d'une composition de revetement anticorrosion. |
TWI282597B (en) | 2004-12-28 | 2007-06-11 | Toshiba Ceramics Co | Yttrium-containing ceramic coated material and method of manufacturing the same |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US20070224451A1 (en) * | 2006-03-24 | 2007-09-27 | General Electric Company | Composition, coating, coated article, and method |
US20080141938A1 (en) * | 2006-12-13 | 2008-06-19 | General Electric Company | Processing apparatus, coated article and method |
US8802201B2 (en) * | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US8420534B2 (en) * | 2010-10-12 | 2013-04-16 | Micron Technology, Inc. | Atomic layer deposition of crystalline PrCaMnO (PCMO) and related methods |
US8377718B2 (en) * | 2010-11-10 | 2013-02-19 | Micron Technology, Inc. | Methods of forming a crystalline Pr1-xCaxMnO3 (PCMO) material and methods of forming semiconductor device structures comprising crystalline PCMO |
KR101830780B1 (ko) * | 2011-08-05 | 2018-04-05 | 삼성전자주식회사 | 박막의 제조방법, 박막, 박막의 제조장치 및 전자소자 |
US20180044800A1 (en) * | 2015-02-13 | 2018-02-15 | Entegris, Inc. | Coatings for enhancement of properties and performance of substrate articles and apparatus |
US10186400B2 (en) * | 2017-01-20 | 2019-01-22 | Applied Materials, Inc. | Multi-layer plasma resistant coating by atomic layer deposition |
US10443126B1 (en) * | 2018-04-06 | 2019-10-15 | Applied Materials, Inc. | Zone-controlled rare-earth oxide ALD and CVD coatings |
US11639547B2 (en) * | 2018-05-03 | 2023-05-02 | Applied Materials, Inc. | Halogen resistant coatings and methods of making and using thereof |
CN113227435A (zh) * | 2018-10-25 | 2021-08-06 | 格林特威德科技有限公司 | 耐等离子体多层涂层及其制备方法 |
-
2017
- 2017-03-03 US US16/082,008 patent/US10961620B2/en active Active
- 2017-03-03 CN CN201780026757.XA patent/CN109072432B/zh active Active
- 2017-03-03 EP EP17759328.2A patent/EP3423610B1/en active Active
- 2017-03-03 WO PCT/FI2017/050141 patent/WO2017149205A1/en active Application Filing
-
2020
- 2020-12-29 US US17/137,205 patent/US11421319B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1714434A (zh) * | 2003-01-17 | 2005-12-28 | 富士通株式会社 | 电介质膜的形成方法 |
CN1655310A (zh) * | 2004-01-26 | 2005-08-17 | 三星Sdi株式会社 | 用于等离子体显示面板的绿色磷光体和包括它的等离子体显示面板 |
US20130202866A1 (en) * | 2010-09-30 | 2013-08-08 | The Trustees Of The University Of Pennsylvania | Mechanically stable nanoparticle thin film coatings and methods of producing the same |
WO2013046050A3 (en) * | 2011-09-30 | 2013-05-30 | Tokyo Electron Limited | Dry cleaning method for recovering etch process condition |
CN103254495A (zh) * | 2013-05-06 | 2013-08-21 | 浙江大学 | 一种纳米银荧光增强的稀土氧化物纳米晶复合eva胶膜及其制备方法 |
CN105074889A (zh) * | 2013-06-05 | 2015-11-18 | 应用材料公司 | 用于半导体应用的稀土氧化物基抗腐蚀涂层 |
CN105247662A (zh) * | 2013-06-20 | 2016-01-13 | 应用材料公司 | 抗等离子体腐蚀的稀土氧化物基薄膜涂层 |
Also Published As
Publication number | Publication date |
---|---|
WO2017149205A1 (en) | 2017-09-08 |
US10961620B2 (en) | 2021-03-30 |
EP3423610A1 (en) | 2019-01-09 |
EP3423610A4 (en) | 2019-12-04 |
US20200080197A1 (en) | 2020-03-12 |
CN109072432A (zh) | 2018-12-21 |
US20210115555A1 (en) | 2021-04-22 |
EP3423610B1 (en) | 2022-05-04 |
US11421319B2 (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109072432B (zh) | 抗等离子蚀刻膜及其制造方法 | |
CN108179401B (zh) | 对腔室部件进行涂层的方法和用于处理腔室的腔室部件 | |
US11639547B2 (en) | Halogen resistant coatings and methods of making and using thereof | |
US10563303B2 (en) | Metal oxy-flouride films based on oxidation of metal flourides | |
KR102526653B1 (ko) | 구역-제어식 희토류 산화물 ald 및 cvd 코팅들 | |
JP2020127004A (ja) | シリコン酸化物の形態選択的な膜形成の方法 | |
JP7366234B2 (ja) | 処理チャンバ部品のための保護用多層コーティング | |
TWI846713B (zh) | 原子層沉積所沉積的抗侵蝕金屬氟化物塗層 | |
US20230286867A1 (en) | Erosion resistant metal oxide coatings deposited by atomic layer deposition | |
US20240401197A1 (en) | Erosion resistant metal fluoride coatings deposited by atomic layer deposition | |
TW202212615A (zh) | 藉由ald沉積的混合、實質均勻塗層 | |
TW202307253A (zh) | 抗電漿塗層、相關的製備方法和用途 | |
WO2024227971A1 (en) | A plasma etch-resistant film and a method for its fabrication | |
KR102793223B1 (ko) | 원자 층 증착에 의해 증착되는 내부식성 금속 플루오르화물 코팅들 | |
TWI557256B (zh) | 來自金屬pcai前驅物與鋁前驅物的金屬鋁合金膜 | |
WO2024256745A1 (en) | A film of rare earth metal oxide on a surface of a substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230427 Address after: Room 205-5-7, 2nd Floor, East Office Building, No. 45 Beijing Road, Qianwan Bonded Port Area, Qingdao, Shandong Province, China (Shandong) Pilot Free Trade Zone (A) Patentee after: QINGDAO SIFANG SRI INTELLIGENT TECHNOLOGY Co.,Ltd. Address before: Espoo Finland Patentee before: BENEQ OY |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Building 3, No.11 Mumashan Road, Qingdao Area, China (Shandong) Pilot Free Trade Zone, Qingdao City, Shandong Province, China 266000 Patentee after: Qingdao Sirui Intelligent Technology Co.,Ltd. Country or region after: China Address before: Room 205-5-7, 2nd Floor, East Office Building, No. 45 Beijing Road, Qianwan Bonded Port Area, Qingdao Pilot Free Trade Zone, Shandong Province (A) Patentee before: QINGDAO SIFANG SRI INTELLIGENT TECHNOLOGY Co.,Ltd. Country or region before: China |