[go: up one dir, main page]

CN109067003B - SOC balance control system for cascade energy storage system - Google Patents

SOC balance control system for cascade energy storage system Download PDF

Info

Publication number
CN109067003B
CN109067003B CN201810923122.6A CN201810923122A CN109067003B CN 109067003 B CN109067003 B CN 109067003B CN 201810923122 A CN201810923122 A CN 201810923122A CN 109067003 B CN109067003 B CN 109067003B
Authority
CN
China
Prior art keywords
energy storage
storage module
reference value
module
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810923122.6A
Other languages
Chinese (zh)
Other versions
CN109067003A (en
Inventor
韩华
施光泽
孙尧
粟梅
柳张杰
侯小超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201810923122.6A priority Critical patent/CN109067003B/en
Priority to NL2021568A priority patent/NL2021568B1/en
Publication of CN109067003A publication Critical patent/CN109067003A/en
Application granted granted Critical
Publication of CN109067003B publication Critical patent/CN109067003B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

The SOC balance control system for the cascade energy storage system comprises a plurality of control devices with the same structure, wherein each control device is connected with each energy storage module in the cascade energy storage system in a one-to-one correspondence mode and can independently perform SOC balance control on the corresponding energy storage modules. The system is a distributed control system, the SOC balance control device corresponding to each energy storage module can realize SOC balance control on the energy storage module only through local information, and other external communication is not required. Therefore, compared with the conventional SOC balance control system, the system has the advantage that the cost is greatly reduced.

Description

一种针对级联储能系统的SOC平衡控制系统A SOC balance control system for cascaded energy storage systems

技术领域technical field

本发明涉及电力电子技术领域,具体地说,涉及一种针对级联储能系统的SOC平衡控制系统以及集中大容量储能系统。The present invention relates to the technical field of power electronics, in particular to an SOC balance control system for cascaded energy storage systems and a centralized large-capacity energy storage system.

背景技术Background technique

在储能工程运用中,为了使储能系统能够同充同放从而增加其使用寿命,各个储能模块的荷电状态(State of Charge,简称SOC)需要达到平衡。而系统初始SOC不同以及运行时输出功率不同等原因会造成系统各个储能模块之间SOC不均衡,从而导致个别储能模块过充或过放,进而降低储能模块的使用寿命和系统效率。In the application of energy storage projects, in order to enable the energy storage system to be charged and discharged at the same time to increase its service life, the State of Charge (SOC) of each energy storage module needs to be balanced. Different initial SOC of the system and different output power during operation will cause SOC imbalance among various energy storage modules in the system, resulting in overcharge or overdischarge of individual energy storage modules, thereby reducing the service life of energy storage modules and system efficiency.

随着人们对能源可持续发展与环境保护意识的不断提高,可再生能源与电动汽车得到了大力发展,传统小容量储能系统已经无法满足当前需求。伴随储能规模不断扩大,在中、高压应用场合中,级联储能系统的价值得到市场认可。单个储能单元电压低,而通过级联逆变器的形式则可以直接获取一个较高的电压等级,而无需昂贵又庞大的变压器。同时,每个储能模块都能被单独地控制,使得管理各个储能单元更为便捷。With the continuous improvement of people's awareness of sustainable energy development and environmental protection, renewable energy and electric vehicles have been vigorously developed, and traditional small-capacity energy storage systems have been unable to meet current needs. With the continuous expansion of the scale of energy storage, the value of cascaded energy storage systems has been recognized by the market in medium and high voltage applications. The voltage of a single energy storage unit is low, and a higher voltage level can be directly obtained by cascading inverters without the need for expensive and bulky transformers. At the same time, each energy storage module can be controlled individually, making it more convenient to manage each energy storage unit.

目前针对级联能系统的SOC平衡控制方法都依赖于高带宽集中式通讯,而随着储能模块数目的增多,一方面通讯带宽成本也会不断增加,另一方面通讯丢包、失败等情况将会大大降低系统鲁棒性。At present, the SOC balance control methods for cascaded energy systems all rely on high-bandwidth centralized communication. With the increase in the number of energy storage modules, on the one hand, the cost of communication bandwidth will continue to increase, and on the other hand, communication packet loss, failure, etc. It will greatly reduce the system robustness.

发明内容SUMMARY OF THE INVENTION

为解决上述问题,本发明提供了针对级联储能系统的SOC平衡控制系统,其特征在于,所述系统包括多个结构相同的控制装置,各个控制装置分别与级联储能系统中的各个储能模块一一对应连接并能够独立地对对应的储能模块进行SOC平衡控制,针对一待控制储能模块,其所对应的控制装置包括:In order to solve the above problems, the present invention provides an SOC balance control system for a cascaded energy storage system, characterized in that the system includes a plurality of control devices with the same structure, and each control device is respectively connected with each energy storage device in the cascaded energy storage system. The modules are connected in one-to-one correspondence and can independently perform SOC balance control on the corresponding energy storage modules. For an energy storage module to be controlled, the corresponding control device includes:

输出电压参考值生成模块,其用于根据获取到的待控制储能模块的荷电状态和输出功率,生成针对所述待控制储能模块的输出电压参考值;an output voltage reference value generation module, configured to generate an output voltage reference value for the energy storage module to be controlled according to the obtained state of charge and output power of the energy storage module to be controlled;

闭环控制模块,其用于基于闭环控制策略根据所述输出电压参考值生成相应的调制参考信号;a closed-loop control module, configured to generate a corresponding modulation reference signal according to the output voltage reference value based on a closed-loop control strategy;

脉冲调制模块,其用于根据所述调制参考信号生成相应的开关脉冲信号,以通过所述开关脉冲信号调整所述待控制储能模块的荷电状态。The pulse modulation module is configured to generate a corresponding switching pulse signal according to the modulation reference signal, so as to adjust the state of charge of the energy storage module to be controlled by the switching pulse signal.

根据本发明的一个实施例,当级联储能系统中的储能模块共用滤波电路时,所述输出电压参考值生成模块配置为根据获取到的流经滤波电路的电流和对应于所述待控制储能模块的预设参考电压确定所述待控制储能模块的输出功率。According to an embodiment of the present invention, when the energy storage modules in the cascaded energy storage system share a filter circuit, the output voltage reference value generation module is configured to The preset reference voltage of the energy storage module determines the output power of the energy storage module to be controlled.

根据本发明的一个实施例,所述输出电压参考值生成模块包括:According to an embodiment of the present invention, the output voltage reference value generating module includes:

相角参考值生成单元,其用于根据所述待控制储能模块的荷电状态和输出功率确定输出电压的角频率参考值,并根据所述角频率参考值生成输出电压的相角参考值;A phase angle reference value generating unit, which is used for determining an angular frequency reference value of the output voltage according to the state of charge and output power of the energy storage module to be controlled, and generating a phase angle reference value of the output voltage according to the angular frequency reference value ;

幅值参考值生成单元,其用于根据级联储能系统的公共点处电压幅值参考值确定输出电压的幅值参考值;an amplitude reference value generating unit, which is used for determining the amplitude reference value of the output voltage according to the voltage amplitude reference value at the common point of the cascaded energy storage system;

参考电压生成单元,其用于根据所述输出电压的相角参考值和幅值参考值生成所述待控制储能模块的输出电压参考值。A reference voltage generating unit, configured to generate a reference value of the output voltage of the energy storage module to be controlled according to the reference value of the phase angle and the reference value of the amplitude of the output voltage.

根据本发明的一个实施例,所述幅值参考值生成单元配置为:According to an embodiment of the present invention, the amplitude reference value generating unit is configured to:

根据所述级联储能系统的最大电能容量以及待控制储能模块的最大电能容量确定所述待控制能模块的电压幅值参考权重;Determine the voltage amplitude reference weight of the energy module to be controlled according to the maximum electric energy capacity of the cascaded energy storage system and the maximum electric energy capacity of the energy storage module to be controlled;

根据所述电压幅值参考权重和级联储能系统的公共点处电压幅值参考值确定所述待控制储能模块的输出电压的幅值参考值。The amplitude reference value of the output voltage of the energy storage module to be controlled is determined according to the voltage amplitude reference weight and the voltage amplitude reference value at the common point of the cascaded energy storage system.

根据本发明的一个实施例,所述幅值参考值生成单元配置为根据如下表达式确定所述待控制储能模块的输出电压的幅值参考值:According to an embodiment of the present invention, the amplitude reference value generating unit is configured to determine the amplitude reference value of the output voltage of the energy storage module to be controlled according to the following expression:

Figure BDA0001764736910000021
Figure BDA0001764736910000021

Figure BDA0001764736910000022
Figure BDA0001764736910000022

其中,Vi表示第i个储能模块的输出电压的幅值参考值,第i个储能模块作为待控制储能模块,

Figure BDA0001764736910000023
表示第i个储能模块的电压幅值参考权重,V*表示表示级联储能系统的公共点处电压幅值参考值,Emax_i和∑Emax_i分别表示第i个储能模块和级联储能系统的最大电能容量。Among them, V i represents the amplitude reference value of the output voltage of the ith energy storage module, and the ith energy storage module is used as the energy storage module to be controlled,
Figure BDA0001764736910000023
Represents the voltage amplitude reference weight of the i-th energy storage module, V * represents the voltage amplitude reference value at the common point of the cascaded energy storage system, E max_i and ∑E max_i represent the i-th energy storage module and the cascaded energy storage, respectively The maximum power capacity of the system.

根据本发明的一个实施例,所述相角参考值生成单元配置为根据所述待控制储能模块的荷电状态生成所述待控制储能模块的角频率修正项,并根据所述角频率修正项和输出功率生成所述待控制储能模块的角频率参考值,通过对所述角频率参考值进行积分得到所述相角参考值。According to an embodiment of the present invention, the phase angle reference value generating unit is configured to generate an angular frequency correction term of the energy storage module to be controlled according to the state of charge of the energy storage module to be controlled, and The correction term and the output power generate the angular frequency reference value of the energy storage module to be controlled, and the phase angle reference value is obtained by integrating the angular frequency reference value.

根据本发明的一个实施例,所述相角参考值生成单元配置为根据如下表达式生成所述待控制储能模块的角频率修正项:According to an embodiment of the present invention, the phase angle reference value generating unit is configured to generate the angular frequency correction term of the energy storage module to be controlled according to the following expression:

Δωi=ki·SOCi Δω i = ki ·SOC i

其中,Δωi表示第i个储能模块的角频率修正项,ki表示第i个储能模块的角频率修正项的修正系数,SOCi表示第i个储能模块的荷电状态。Among them, Δω i represents the angular frequency correction term of the ith energy storage module, ki represents the correction coefficient of the angular frequency correction term of the ith energy storage module, and SOC i represents the state of charge of the ith energy storage module.

根据本发明的一个实施例,所述级联储能系统中各个储能模块的角频率修正项的修正系数均相等。According to an embodiment of the present invention, the correction coefficients of the angular frequency correction terms of each energy storage module in the cascaded energy storage system are all equal.

根据本发明的一个实施例,所述相角参考值生成单元配置为根据如下表达式生成所述角频率参考值:According to an embodiment of the present invention, the phase angle reference value generating unit is configured to generate the angular frequency reference value according to the following expression:

ωi=ω*+sgn(Qi)(miPi-Δωi)ω i* +sgn(Q i )(m i P i -Δω i )

其中,ωi表示第i个储能模块的角频率参考值,ω*表示空载时第i个储能模块的角频率,Qi和mi分别表示第i个储能模块的无功功率和下垂控制系数,Pi表示第i个储能模块的输出功率,Δωi表示第i个储能模块的角频率修正项。Among them, ω i represents the angular frequency reference value of the ith energy storage module, ω * represents the angular frequency of the ith energy storage module at no load, and Qi and mi represent the reactive power of the ith energy storage module, respectively and droop control coefficient, Pi represents the output power of the ith energy storage module, and Δω i represents the angular frequency correction term of the ith energy storage module.

本发明还提供了一种集中大容量储能系统,其特征在于,包括级联储能系统和如上任一项所述的SOC平衡控制系统。The present invention also provides a centralized large-capacity energy storage system, which is characterized by comprising a cascaded energy storage system and the SOC balance control system described in any one of the above.

本发明所提供的针对级联储能系统的SOC平衡控制系统为分散式控制系统,对应于各个储能模块的SOC平衡控制装置仅通过本地信息便能够实现对储能模块的SOC平衡控制,其无需依赖其他外接通讯。因此相较于现有的SOC平衡控制系统,本系统的成本大大降低。The SOC balance control system for cascaded energy storage systems provided by the present invention is a distributed control system, and the SOC balance control device corresponding to each energy storage module can realize the SOC balance control of the energy storage modules only through local information, without the need for Depends on other external communication. Therefore, compared with the existing SOC balance control system, the cost of the present system is greatly reduced.

本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the description, claims and drawings.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the description of the embodiments or the prior art will be briefly introduced below:

图1是级联储能系统的结构示意图;Figure 1 is a schematic structural diagram of a cascaded energy storage system;

图2是根据本发明一个实施例的针对第i个储能某开的控制装置的结构示意图;2 is a schematic structural diagram of a control device for an i-th energy storage device according to an embodiment of the present invention;

图3是根据本发明一个实施例的输出电压参考值生成模块的结构示意图;3 is a schematic structural diagram of an output voltage reference value generation module according to an embodiment of the present invention;

图4和图5是根据本发明一个实施例的两个相同最大电能容量的储能模块在不同模式下的P-ω曲线示意图;4 and 5 are schematic diagrams of P-ω curves of two energy storage modules with the same maximum electrical energy capacity in different modes according to an embodiment of the present invention;

图6是根据本发明一个实施例的级联储能系统的仿真模型示意图;6 is a schematic diagram of a simulation model of a cascaded energy storage system according to an embodiment of the present invention;

图7至图10是根据本发明一个实施例的各个储能模块工作在四种不同模式下SOC值以及有功功率变化曲线示意图;7 to 10 are schematic diagrams of SOC values and active power change curves when each energy storage module operates in four different modes according to an embodiment of the present invention;

图11至图12是根据本发明一个实施例的各个储能模块在充电、放电切换下SOC值变化曲线以及功率变化曲线示意图;11 to 12 are schematic diagrams of SOC value change curves and power change curves of each energy storage module under charging and discharging switching according to an embodiment of the present invention;

图13是根据本发明一个实施例的储能模块负载特性切换时SOC变换曲线和功率变化曲线示意图。13 is a schematic diagram of an SOC conversion curve and a power change curve when the load characteristics of the energy storage module are switched according to an embodiment of the present invention.

具体实施方式Detailed ways

以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples, so as to fully understand and implement the implementation process of how the present invention applies technical means to solve technical problems and achieve technical effects. It should be noted that, as long as there is no conflict, each embodiment of the present invention and each feature of each embodiment can be combined with each other, and the formed technical solutions all fall within the protection scope of the present invention.

同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。Meanwhile, in the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present invention. It will be apparent, however, to those skilled in the art that the present invention may be practiced without the specific details or in the specific manner described herein.

针对现有技术中所存在的上述问题,本发明提供了一种新的针对级联储能系统的分散式SOC平衡控制系统以及应用了该分散式SOC平衡控制系统的集中大容量储能系统,该分散式SOC平衡控制系统能够在无通讯条件下实现级联储能系统的SOC均衡。In view of the above problems existing in the prior art, the present invention provides a new distributed SOC balance control system for cascaded energy storage systems and a centralized large-capacity energy storage system using the distributed SOC balance control system. The distributed SOC balance control system can realize the SOC balance of the cascaded energy storage system without communication.

图1示出了级联储能系统的结构示意图。如图1所示,级联储能系统可以包括N(N大于或等于2)个结构相同的级联的储能模块(即第一储能模块101_1至第N储能模块101_N)。每个储能模块由储能单元、变换电路以及滤波电路连接组成,N个储能模块串联后经馈线接入公共母线,通过公共母线向负载102提供电能。其中公共母线还与其他类型的微源103(例如光伏发电设备或是风力发电设备)连接,以获取这些微源所提供的电能。Figure 1 shows a schematic structural diagram of a cascaded energy storage system. As shown in FIG. 1 , the cascaded energy storage system may include N (N greater than or equal to 2) cascaded energy storage modules (ie, the first energy storage module 101_1 to the Nth energy storage module 101_N) with the same structure. Each energy storage module is composed of an energy storage unit, a conversion circuit and a filter circuit. The N energy storage modules are connected in series to a common bus through a feeder, and provide electrical energy to the load 102 through the common bus. The common bus is also connected with other types of micro-sources 103 (eg photovoltaic power generation equipment or wind power generation equipment) to obtain the electric energy provided by these micro-sources.

根据负载特性与储能工作模式的不同,可以将级联储能系统的工作运行模式分为四类:I象限(放电模式并且负载为感性负载)、II象限(充电模式并且负载为感性负载)、III象限(充电模式并且负载为容性负载)、IV象限(放电模式并且负载为容性负载),本发明所提供的控制系统能够在四种不同的模式下实现级联储能系统中各个储能模块之间的SOC平衡,且对于四种不同的运行模式能够实现统一控制。According to the different load characteristics and energy storage operating modes, the operating modes of the cascaded energy storage system can be divided into four categories: I quadrant (discharge mode and the load is an inductive load), II quadrant (charge mode and the load is an inductive load), In quadrant III (charging mode and the load is capacitive load), quadrant IV (discharging mode and the load is capacitive load), the control system provided by the present invention can realize each energy storage in the cascaded energy storage system in four different modes SOC balance between modules and unified control for four different operating modes.

本发明所提供的针对级联储能系统的SOC平衡控制系统为分散式控制系统,该控制系统包括多个结构相同的控制装置,各个控制装置分别与级联储能系统中各个储能模块一一对应连接。其中,这些控制装置能够独立地对对应的储能模块进行SOC平衡控制。The SOC balance control system for the cascaded energy storage system provided by the present invention is a distributed control system. The control system includes a plurality of control devices with the same structure, and each control device is in a one-to-one correspondence with each energy storage module in the cascaded energy storage system. connect. Wherein, these control devices can independently perform SOC balance control on the corresponding energy storage modules.

由于SOC平衡控制系统中各个控制装置的结构以及工作原理相同,因此为了更加清楚地说明本发明所提供的SOC平衡控制系统的实现原理以及优点,以下以其中一个控制装置为例来作进一步地阐述。Since the structure and working principle of each control device in the SOC balance control system are the same, in order to more clearly illustrate the realization principle and advantages of the SOC balance control system provided by the present invention, one of the control devices is taken as an example for further explanation below. .

将级联储能系统中第i个储能模块作为待控制储能模块,那么该储能模块所对应的控制装置则为SOC平衡控制系统中的第i个控制装置,图2示出了本实施例中该控制装置的结构示意图。Taking the i-th energy storage module in the cascaded energy storage system as the energy storage module to be controlled, the control device corresponding to the energy storage module is the i-th control device in the SOC balance control system. Figure 2 shows this implementation. The structure diagram of the control device in the example.

如图2所示,本实施例中,控制装置200包括:输出电压参考值生成模块201、闭环控制模块202以及脉冲调制模块203。其中,输出电压参考值生成模块201能够根据所获取到的待控制储能模块101_i的荷电状态以及输出功率,生成针对待控制储能模块101_i的输出电压参考值。As shown in FIG. 2 , in this embodiment, the control device 200 includes: an output voltage reference value generation module 201 , a closed-loop control module 202 and a pulse modulation module 203 . The output voltage reference value generating module 201 can generate an output voltage reference value for the energy storage module 101_i to be controlled according to the obtained state of charge and output power of the energy storage module 101_i to be controlled.

本实施例中,待控制储能模块101_i优选地包括:储能单元、桥式转换电路以及滤波电路。其中,输出电压参考值生成模块201优选地根据流过滤波电路的电压以及电流来确定待控制储能模块101_i的输出功率。In this embodiment, the energy storage module 101_i to be controlled preferably includes: an energy storage unit, a bridge conversion circuit and a filter circuit. The output voltage reference value generation module 201 preferably determines the output power of the energy storage module 101_i to be controlled according to the voltage and current flowing through the filter circuit.

需要指出的是,在本发明的其他实施例中,输出电压参考值生成模块201还根据实际情况采用其他合理方式来确定待控制储能模块101_i的输出功率,本发明不限于此。例如,在本发明的一个实施例中,当级联储能系统中的储能模块共用滤波电路时,输出电压参考值生成模块201则可以根据获取到的流经滤波电路的电流和对应于待控制储能模块101_i的预设参考电压(例如额定电压)来确定待控制储能模块101_i的输出功率。It should be noted that, in other embodiments of the present invention, the output voltage reference value generating module 201 also adopts other reasonable methods to determine the output power of the energy storage module 101_i to be controlled according to the actual situation, and the present invention is not limited thereto. For example, in an embodiment of the present invention, when the energy storage modules in the cascaded energy storage system share a filter circuit, the output voltage reference value generation module 201 can be based on the obtained current flowing through the filter circuit and corresponding to the to-be-controlled The output power of the energy storage module 101_i to be controlled is determined by the preset reference voltage (eg, rated voltage) of the energy storage module 101_i.

闭环控制模块202与输出电压参考值生成模块201连接,其能够基于闭环控制策略来根据上述输出电压参考值生成相应的调制参考信号,并将该调制参考信号传输至与之连接的脉冲调制模块203。The closed-loop control module 202 is connected to the output voltage reference value generation module 201, which can generate a corresponding modulation reference signal according to the above-mentioned output voltage reference value based on the closed-loop control strategy, and transmit the modulation reference signal to the pulse modulation module 203 connected to it. .

脉冲调制模块203与闭环控制模块以及待控制储能模块101_i连接,用于根据上述调制参考信号生成相应的开关脉冲信号,以通过该开关脉冲信号调整待控制储能模块101_i的荷电状态。The pulse modulation module 203 is connected to the closed-loop control module and the energy storage module 101_i to be controlled, and is used for generating a corresponding switching pulse signal according to the modulation reference signal, so as to adjust the state of charge of the energy storage module 101_i to be controlled through the switching pulse signal.

具体地,本实施例中,脉冲调制模块203优选地与通过自身生成并输出的开关脉冲信号来控制桥式转换电路中可控开关管的通断状态,进而实现对该储能模块的荷电状态的调节。Specifically, in this embodiment, the pulse modulation module 203 preferably controls the on-off state of the controllable switch tube in the bridge conversion circuit with the switch pulse signal generated and output by itself, thereby realizing the charging of the energy storage module. Status adjustment.

图3示出了本实施例中输出电压参考值生成模块201的结构示意图。FIG. 3 shows a schematic structural diagram of the output voltage reference value generating module 201 in this embodiment.

如图3所示,本实施例中,输出电压参考值生成模块201优选地包括:相角参考值生成单元301、幅值参考值生成单元302以及参考电压生成单元303。其中,相角参考值生成单元301与待控制储能模块101_i中的储能单元以及滤波电路连接,其能够通过对储能单元进行检测来获取待控制储能模块101_i的荷电状态SOCi,同时还能够通过对滤波电路的输出电压以及输出电流进行检测来获取待控制储能模块101_i的输出功率PiAs shown in FIG. 3 , in this embodiment, the output voltage reference value generation module 201 preferably includes: a phase angle reference value generation unit 301 , an amplitude reference value generation unit 302 and a reference voltage generation unit 303 . The phase angle reference value generating unit 301 is connected to the energy storage unit and the filter circuit in the energy storage module 101_i to be controlled, and can acquire the state of charge SOC i of the energy storage module 101_i to be controlled by detecting the energy storage unit, At the same time, the output power P i of the energy storage module 101_i to be controlled can also be obtained by detecting the output voltage and output current of the filter circuit.

根据待控制储能模块101_i的荷电状态SOCi以及输出功率Pi,相角参考值生成单元301能够确定待控制储能模块101_i的输出电压的角频率参考值,并根据该角频率参考值来生成输出电压的相角参考值。According to the state of charge SOC i and the output power P i of the energy storage module 101_i to be controlled, the phase angle reference value generating unit 301 can determine the angular frequency reference value of the output voltage of the energy storage module 101_i to be controlled, and according to the angular frequency reference value to generate a phase angle reference for the output voltage.

具体地,本实施例中,相角参考值生成单元301能够根据待控制储能模块101_i的荷电状态SOCi生成待控制储能模块101_i的角频率修正项,进而根据该角频率修正项和待控制储能模块101_i的输出功率Pi生成待控制储能模块101_i的角频率参考值。Specifically, in this embodiment, the phase angle reference value generating unit 301 can generate the angular frequency correction term of the energy storage module 101_i to be controlled according to the state of charge SOC i of the energy storage module 101_i to be controlled, and then according to the angular frequency correction term and The output power P i of the energy storage module 101_i to be controlled generates an angular frequency reference value of the energy storage module 101_i to be controlled.

例如,相角参考值生成单元301优选地配置为根据如下表达式生成待控制储能模块101_i的角频率修正项:For example, the phase angle reference value generating unit 301 is preferably configured to generate the angular frequency correction term of the energy storage module 101_i to be controlled according to the following expression:

Δωi=ki·SOCi (1)Δω i = ki ·SOC i (1)

其中,Δωi表示第i个储能模块(即待控制储能模块)的角频率修正项,ki表示第i个储能模块的角频率修正项的修正系数。Among them, Δω i represents the angular frequency correction term of the ith energy storage module (ie, the energy storage module to be controlled), and ki represents the correction coefficient of the angular frequency correction term of the ith energy storage module.

本实施例中,为了控制SOC平衡,级联储能系统中各个储能模块的角频率修正项的修正系数优选地均相等。即存在:In this embodiment, in order to control the SOC balance, the correction coefficients of the angular frequency correction terms of each energy storage module in the cascaded energy storage system are preferably equal. i.e. exists:

k1=k2=...=kN=K (2)k 1 =k 2 =...=k N =K (2)

其中,N表示级联储能系统所包含的储能模块的总数,K表示一正常数。Among them, N represents the total number of energy storage modules included in the cascaded energy storage system, and K represents a positive number.

本实施例中,相角参考值生成单元301优选地根据如下表达式生成角频率参考值:In this embodiment, the phase angle reference value generating unit 301 preferably generates the angular frequency reference value according to the following expression:

ωi=ω*+sgn(Qi)(miPi-Δωi) (3)ω i* +sgn(Q i )(m i P i -Δω i ) (3)

其中,ωi表示第i个储能模块的角频率参考值,ω*表示空载时第i个储能模块的角频率,Qi表示第i个储能模块的无功功率,mi表示第i个储能模块的下垂控制系数。Among them, ω i represents the reference value of the angular frequency of the ith energy storage module, ω * represents the angular frequency of the ith energy storage module at no-load, Qi represents the reactive power of the ith energy storage module, and m i represents the angular frequency of the ith energy storage module. Droop control coefficient of the i-th energy storage module.

需要指出的是,为了保证系统能够稳定运行,下垂控制系数mi优选地需要满足如下条件:It should be pointed out that, in order to ensure the stable operation of the system, the droop control coefficient m i preferably needs to meet the following conditions:

Figure BDA0001764736910000071
Figure BDA0001764736910000071

其中,θi、θj和θk分别为第i、j、k个储能模块的相角参考值,θload表示负载的阻抗角,Zload表示负载阻抗模值。由此可知,一个较小K/mi值更加容易使得系统稳定,因此本实施例中,在选取下垂控制系数mi的取值的过程中,需要参考K的取值。Among them, θ i , θ j and θ k are the phase angle reference values of the i, j, and kth energy storage modules, respectively, θ load represents the impedance angle of the load, and Z load represents the load impedance modulus value. It can be seen from this that a smaller K/m i value is easier to stabilize the system. Therefore, in this embodiment, in the process of selecting the value of the droop control coefficient m i , the value of K needs to be referred to.

当然,在本发明的其他实施例中,相角参考值生成单元301还可以根据其他合理方式来确定角频率参考值ωi,本发明不限于此。Of course, in other embodiments of the present invention, the phase angle reference value generating unit 301 may also determine the angular frequency reference value ω i according to other reasonable methods, and the present invention is not limited thereto.

在得到角频率参考值ωi后,相角参考值生成单元301则可以通过对角频率参考值进行积分得到相角参考值δiAfter obtaining the angular frequency reference value ω i , the phase angle reference value generating unit 301 can obtain the phase angle reference value δ i by integrating the angular frequency reference value.

再次如图3所示,本实施例中,幅值参考值生成单元302能够根据级联储能系统的公共点处电压幅值参考值V*来确定待控制储能模块的输出电压的幅值参考值ViAs shown in FIG. 3 again, in this embodiment, the amplitude reference value generating unit 302 can determine the amplitude reference value of the output voltage of the energy storage module to be controlled according to the voltage amplitude reference value V * at the common point of the cascaded energy storage system value V i .

具体地,本实施例中,幅值参考值生成单元302优选地首先会根据级联储能系统的最大电能容量以及待控制储能模块的最大电能容量来确定出待控制储能模块的电压幅值参考权重,随后再根据电压幅值参考权重和级联储能系统的公共点处电压幅值参考值V*来确定出待控制储能模块的输出电压的幅值参考值。Specifically, in this embodiment, the amplitude reference value generating unit 302 preferably first determines the voltage amplitude of the energy storage module to be controlled according to the maximum electrical energy capacity of the cascaded energy storage system and the maximum electrical energy capacity of the energy storage module to be controlled Reference weight, and then determine the amplitude reference value of the output voltage of the energy storage module to be controlled according to the voltage amplitude reference weight and the voltage amplitude reference value V * at the common point of the cascaded energy storage system.

优选地,幅值参考值生成单元302可以根据如下表达式确定待控制储能模块的输出电压的幅值参考值:Preferably, the amplitude reference value generating unit 302 can determine the amplitude reference value of the output voltage of the energy storage module to be controlled according to the following expression:

Figure BDA0001764736910000081
Figure BDA0001764736910000081

Figure BDA0001764736910000082
Figure BDA0001764736910000082

其中,Vi表示第i个储能模块的输出电压的幅值参考值,

Figure BDA0001764736910000083
表示第i个储能模块的电压幅值参考权重,Emax_i和∑Emax_i分别表示第i个储能模块的最大电能容量和级联储能系统的最大电能容量。Among them, V i represents the amplitude reference value of the output voltage of the ith energy storage module,
Figure BDA0001764736910000083
Represents the voltage amplitude reference weight of the ith energy storage module, E max_i and ∑E max_i represent the maximum electrical energy capacity of the ith energy storage module and the maximum electrical energy capacity of the cascaded energy storage system, respectively.

当然,在本发明的其他实施例中,幅值参考值生成单元302还可以采用其他会合理方式来确定待控制储能模块的输出电压的幅值参考值Vi,本发明不限于此。Of course, in other embodiments of the present invention, the amplitude reference value generating unit 302 may also use other reasonable methods to determine the amplitude reference value V i of the output voltage of the energy storage module to be controlled, but the present invention is not limited thereto.

如图3所示,本实施例中,参考电压生成单元303与相角参考值生成单元301和幅值参考值生成单元302连接,其能够根据上述相角参考值δi和幅值参考值Vi来生成针对待控制储能模块101_i的输出电压参考值。具体地,输出电压参考值可以表示为Vi sinδiAs shown in FIG. 3 , in this embodiment, the reference voltage generation unit 303 is connected to the phase angle reference value generation unit 301 and the amplitude reference value generation unit 302 , which can be based on the above-mentioned phase angle reference value δ i and amplitude reference value V i to generate the output voltage reference value for the energy storage module 101_i to be controlled. Specifically, the output voltage reference value can be expressed as V i sinδ i .

图4和图5示出了两个相同最大电能容量的储能模块在不同模式下的P-ω曲线。其中,曲线1表示未经修正的P-ω曲线,曲线2表示SOC较大的储能模块的P-ω曲线,曲线3代表SOC较小的储能模块的P-ω曲线。根据图3和图4可以看出,在放电模式下,SOC较大的储能模块的单位容量输出功率大于SOC较小的储能模块。而在充电模式下SOC较大的储能模块单位容量吸收功率小于SOC较小的储能模块。Figures 4 and 5 show the P-ω curves of two energy storage modules with the same maximum energy capacity in different modes. Among them, curve 1 represents the uncorrected P-ω curve, curve 2 represents the P-ω curve of the energy storage module with a large SOC, and curve 3 represents the P-ω curve of the energy storage module with a small SOC. It can be seen from Figure 3 and Figure 4 that in the discharge mode, the output power per unit capacity of the energy storage module with a larger SOC is greater than that of the energy storage module with a smaller SOC. In the charging mode, an energy storage module with a larger SOC absorbs less power per unit capacity than an energy storage module with a smaller SOC.

图6示出了本实施例中级联储能系统的仿真模型。如图6所示,该级联储能系统的仿真模型中包含了3个储能模块(这3个储能模块的最大电能容量相同)、公共负载以及线路阻抗。在该仿真模型中,第一储能模块、第二储能模块以及第三储能模块在放电模式下的初始SOC值分别为90%、80%、70%,在充电模式下的初始SOC值分别为10%、20%、30%。FIG. 6 shows the simulation model of the cascaded energy storage system in this embodiment. As shown in Fig. 6, the simulation model of the cascaded energy storage system includes three energy storage modules (the maximum electric energy capacity of these three energy storage modules is the same), common load and line impedance. In this simulation model, the initial SOC values of the first energy storage module, the second energy storage module and the third energy storage module in the discharge mode are 90%, 80%, and 70% respectively, and the initial SOC values in the charging mode are 10%, 20%, and 30%, respectively.

图7~图10分别示出了级联储能系统中各个储能模块工作在I象限(放电模式并且负载为感性负载)、II象限(充电模式并且负载为感性负载)、III象限(充电模式并且负载为容性负载)和IV象限(放电模式并且负载为容性负载)四种运行模式下SOC值以及有功功率变化曲线。Figures 7 to 10 respectively show that each energy storage module in the cascaded energy storage system works in quadrant I (discharge mode and the load is an inductive load), quadrant II (charging mode and the load is an inductive load), and quadrant III (charging mode and an inductive load). The load is capacitive load) and the IV quadrant (discharge mode and the load is capacitive load) SOC value and active power change curve in four operating modes.

从图7~图10中可以看出,当本实施例所提供的SOC平衡控制系统运行时,四个象限模式下储能模块的输出有功功率以及SOC值逐渐收敛,在40s时刻SOC误差ΔSOC以及功率误差均约等于0。此时级联储能系统达到稳态,并且储能模块的SOC值与输出功率均达到平衡。由此可见,本实施例所提出的SOC平衡控制系统能够在四种不同模式下使得级联储能系统稳定运行,其在实现级联储能系统中各个储能模块之间SOC平衡的同时又实现了有功功率均分。It can be seen from FIG. 7 to FIG. 10 that when the SOC balance control system provided in this embodiment operates, the output active power and SOC value of the energy storage module in the four quadrant modes gradually converge, and the SOC error ΔSOC and The power errors are all approximately equal to zero. At this time, the cascaded energy storage system reaches a steady state, and the SOC value and output power of the energy storage module reach a balance. It can be seen that the SOC balance control system proposed in this embodiment can make the cascaded energy storage system operate stably in four different modes. Active power sharing.

图11和图12分别表示级联储能系统中各个储能模块在充电、放电切换下SOC值变化曲线以及功率变化曲线。其中,图11表示由放电向充电切换,图12表示由充电向放电切换。11 and 12 respectively show the SOC value change curve and the power change curve of each energy storage module in the cascaded energy storage system under the switching of charging and discharging. 11 shows switching from discharge to charging, and FIG. 12 shows switching from charging to discharge.

从图11和图12中可以看出,无论是由放电向充电切换还是由充电向放电切换,各个储能模块的输出有功功率以及SOC值均逐渐收敛,并且切换前后SOC误差与功率误差均几乎保持不变。同时,从图中还可以看出储能模块在切换过程中动态响应快、超调小,由此可见该SOC平衡控制系统具有很好的响应性能。It can be seen from Figure 11 and Figure 12 that whether switching from discharge to charge or from charge to discharge, the output active power and SOC value of each energy storage module gradually converge, and the SOC error and power error before and after switching are almost the same. constant. At the same time, it can also be seen from the figure that the dynamic response of the energy storage module is fast and the overshoot is small during the switching process, which shows that the SOC balance control system has a good response performance.

图13示出了储能模块负载特性切换时SOC变换曲线和功率变化曲线。从图13中可以看出,在负载切换过程中,级联储能系统初始工作在感性负载工况下在20s时刻级联储能系统的负载特性发生变换(即由感性负载切换为容性负载)。在负载特性切换前后,储能模块的SOC误差几乎保持不变,并且继续保持收敛最终能够到达各个储能模块之间的SOC平衡。FIG. 13 shows the SOC conversion curve and the power change curve when the load characteristics of the energy storage module are switched. It can be seen from Figure 13 that during the load switching process, the cascaded energy storage system initially works under the inductive load condition, and the load characteristics of the cascaded energy storage system change at the time of 20s (that is, the inductive load is switched to the capacitive load). Before and after the load characteristic switching, the SOC error of the energy storage module remains almost unchanged, and the convergence can eventually reach the SOC balance among the energy storage modules.

当然,在本发明的其他实施例中,根据实际需要,SOC平衡控制系统还包括包含其他合理模块或是或设备,本发明不限于此。例如,在本发明的一个实施例中,SOC平衡控制系统还可以包括辅助服务模块,辅助服务模块能够实现系统同步启动、电池安全保护等辅助服务,这样一方面可以保障系统能够同步、安全启动,另一方面能够在某一储能模块无法安全运行时控制相应的旁路开关来旁路该储能模块。Of course, in other embodiments of the present invention, according to actual needs, the SOC balance control system further includes other reasonable modules or devices, but the present invention is not limited thereto. For example, in an embodiment of the present invention, the SOC balance control system may further include an auxiliary service module, and the auxiliary service module can realize auxiliary services such as system synchronous startup and battery safety protection. On the other hand, when a certain energy storage module cannot operate safely, the corresponding bypass switch can be controlled to bypass the energy storage module.

从上述描述中可以看出,本发明所提供的针对级联储能系统的SOC平衡控制系统为分散式控制系统,对应于各个储能模块的SOC平衡控制装置仅通过本地信息便能够实现对储能模块的SOC平衡控制,其无需依赖其他外接通讯。因此相较于现有的SOC平衡控制系统,本系统的成本大大降低。It can be seen from the above description that the SOC balance control system for the cascaded energy storage system provided by the present invention is a distributed control system, and the SOC balance control device corresponding to each energy storage module can realize the energy storage system only through local information. The SOC balance control of the module does not need to rely on other external communication. Therefore, compared with the existing SOC balance control system, the cost of the present system is greatly reduced.

同时,本发明所提供的SOC平衡控制系统能够保证级联储能系统在四种不同工作模式下均能够实现系统中各个储能模块的SOC平衡。并且,对于上述四种不同的运行模式,该控制系统能够实现统一控制。At the same time, the SOC balance control system provided by the present invention can ensure that the cascaded energy storage system can realize the SOC balance of each energy storage module in the system under four different working modes. And, for the above four different operation modes, the control system can realize unified control.

此外,该SOC平衡控制系统在实现级联储能系统中各个储能模块的SOC平衡控制外,还能够实现各个储能模块的有功功率均分。In addition, the SOC balance control system not only realizes the SOC balance control of each energy storage module in the cascaded energy storage system, but also can realize the active power sharing of each energy storage module.

说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。Reference in the specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases "one embodiment" or "an embodiment" in various places throughout the specification are not necessarily all referring to the same embodiment.

虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。While the above examples serve to illustrate the principles of the invention in one or more applications, it will be apparent to those skilled in the art that the invention can be made in form, usage, and implementation without departing from the principles and spirit of the invention. Various modifications can be made to the details without creative labor. Accordingly, the invention is defined by the appended claims.

Claims (8)

1.一种针对级联储能系统的SOC平衡控制系统,其特征在于,所述系统包括多个结构相同的控制装置,各个控制装置分别与级联储能系统中的各个储能模块一一对应连接并能够独立地对对应的储能模块进行SOC平衡控制,针对一待控制储能模块,其所对应的控制装置包括:1. A SOC balance control system for a cascaded energy storage system, characterized in that the system comprises a plurality of control devices with the same structure, and each control device is respectively connected with each energy storage module in the cascaded energy storage system in a one-to-one correspondence And can independently perform SOC balance control on the corresponding energy storage module, for an energy storage module to be controlled, the corresponding control device includes: 输出电压参考值生成模块,其用于根据获取到的待控制储能模块的荷电状态和输出功率,生成针对所述待控制储能模块的输出电压参考值;an output voltage reference value generation module, configured to generate an output voltage reference value for the energy storage module to be controlled according to the obtained state of charge and output power of the energy storage module to be controlled; 闭环控制模块,其用于基于闭环控制策略根据所述输出电压参考值生成相应的调制参考信号;a closed-loop control module, configured to generate a corresponding modulation reference signal according to the output voltage reference value based on a closed-loop control strategy; 脉冲调制模块,其用于根据所述调制参考信号生成相应的开关脉冲信号,以通过所述开关脉冲信号调整所述待控制储能模块的荷电状态;a pulse modulation module, which is configured to generate a corresponding switching pulse signal according to the modulation reference signal, so as to adjust the state of charge of the energy storage module to be controlled through the switching pulse signal; 仿真模型验证模块,其用于通过级联储能系统的仿真模型验证级联储能系统在多种运行模式下的荷电状态和功率变化;其中,所述运行模式包含级联储能系统负载特性切换工况;The simulation model verification module is used to verify the state of charge and power changes of the cascaded energy storage system in various operation modes through the simulation model of the cascaded energy storage system; wherein, the operation mode includes the load characteristic switching function of the cascaded energy storage system. condition; 所述输出电压参考值生成模块进一步包括:The output voltage reference value generating module further includes: 相角参考值生成单元,其用于根据所述待控制储能模块的荷电状态和输出功率结合待控制储能模块的下垂控制系数确定输出电压的角频率参考值,并根据所述角频率参考值生成输出电压的相角参考值;其中,下垂控制系数mi满足如下条件:A phase angle reference value generation unit, which is used for determining the angular frequency reference value of the output voltage according to the state of charge and output power of the energy storage module to be controlled and the droop control coefficient of the energy storage module to be controlled, and according to the angular frequency The reference value generates the phase angle reference value of the output voltage; where the droop control coefficient m i satisfies the following conditions:
Figure FDA0002542731370000011
Figure FDA0002542731370000011
式中,θi、θj和θk分别为第i、j、k个储能模块的相角参考值,θload表示负载的阻抗角,Zload表示负载阻抗模值;SOCi和SOCk 分别表示第i个和第k个储能模块的荷电状态,N表示级联储能系统中储能模块的总数量,K表示储能模块角频率修正项的修正系数,mi表示第i个储能模块的下垂控制系数,根据需求设定K/mi值取预设值,以使系统稳定;In the formula, θ i , θ j and θ k are the phase angle reference values of the i, j, and kth energy storage modules, respectively, θ load represents the impedance angle of the load, and Z load represents the load impedance modulo value; SOC i and SOC k respectively represent the state of charge of the ith and kth energy storage modules, N represents the total number of energy storage modules in the cascaded energy storage system, K represents the correction coefficient of the angular frequency correction term of the energy storage module, and m i represents the ith energy storage module. For the droop control coefficient of the energy storage module, the K/m i value is set to a preset value according to the demand, so as to make the system stable; 幅值参考值生成单元,其用于根据待控制储能模块的电压幅值参考权重以及级联储能系统的公共点处电压幅值参考值确定输出电压的幅值参考值;an amplitude reference value generating unit, which is used for determining the amplitude reference value of the output voltage according to the voltage amplitude reference weight of the energy storage module to be controlled and the voltage amplitude reference value at the common point of the cascaded energy storage system; 其中,所述幅值参考值生成单元配置为根据如下表达式确定所述待控制储能模块的输出电压的幅值参考值:Wherein, the amplitude reference value generating unit is configured to determine the amplitude reference value of the output voltage of the energy storage module to be controlled according to the following expression:
Figure FDA0002542731370000021
Figure FDA0002542731370000021
Figure FDA0002542731370000022
Figure FDA0002542731370000022
其中,Vi表示第i个储能模块的输出电压的幅值参考值,第i个储能模块作为待控制储能模块,
Figure FDA0002542731370000023
表示第i个储能模块的电压幅值参考权重,V*表示表示级联储能系统的公共点处电压幅值参考值,Emax_i和∑Emax_i分别表示第i个储能模块和级联储能系统的最大电能容量;
Among them, V i represents the amplitude reference value of the output voltage of the ith energy storage module, and the ith energy storage module is used as the energy storage module to be controlled,
Figure FDA0002542731370000023
Represents the voltage amplitude reference weight of the i-th energy storage module, V * represents the voltage amplitude reference value at the common point of the cascaded energy storage system, E max_i and ∑E max_i represent the i-th energy storage module and the cascaded energy storage, respectively The maximum power capacity of the system;
参考电压生成单元,其用于根据所述输出电压的相角参考值和幅值参考值生成所述待控制储能模块的输出电压参考值。A reference voltage generating unit, configured to generate a reference value of the output voltage of the energy storage module to be controlled according to the reference value of the phase angle and the reference value of the amplitude of the output voltage.
2.如权利要求1所述的系统,其特征在于,当级联储能系统中的储能模块共用滤波电路时,所述输出电压参考值生成模块配置为根据获取到的流经滤波电路的电流和对应于所述待控制储能模块的预设参考电压确定所述待控制储能模块的输出功率。2 . The system according to claim 1 , wherein when the energy storage modules in the cascaded energy storage system share a filter circuit, the output voltage reference value generation module is configured to be based on the obtained current flowing through the filter circuit. 3 . and a preset reference voltage corresponding to the energy storage module to be controlled to determine the output power of the energy storage module to be controlled. 3.如权利要求1所述的系统,其特征在于,所述幅值参考值生成单元配置为:3. The system of claim 1, wherein the amplitude reference value generating unit is configured to: 根据所述级联储能系统的最大电能容量以及待控制储能模块的最大电能容量确定所述待控制能模块的电压幅值参考权重;Determine the voltage amplitude reference weight of the energy module to be controlled according to the maximum electric energy capacity of the cascaded energy storage system and the maximum electric energy capacity of the energy storage module to be controlled; 根据所述电压幅值参考权重和级联储能系统的公共点处电压幅值参考值确定所述待控制储能模块的输出电压的幅值参考值。The amplitude reference value of the output voltage of the energy storage module to be controlled is determined according to the voltage amplitude reference weight and the voltage amplitude reference value at the common point of the cascaded energy storage system. 4.如权利要求1~3中任一项所述的系统,其特征在于,所述相角参考值生成单元配置为根据所述待控制储能模块的荷电状态生成所述待控制储能模块的角频率修正项,并根据所述角频率修正项和输出功率生成所述待控制储能模块的角频率参考值,通过对所述角频率参考值进行积分得到所述相角参考值。4 . The system according to claim 1 , wherein the phase angle reference value generating unit is configured to generate the energy storage to be controlled according to the state of charge of the energy storage module to be controlled. 5 . The angular frequency correction term of the module, and the angular frequency reference value of the energy storage module to be controlled is generated according to the angular frequency correction term and the output power, and the phase angle reference value is obtained by integrating the angular frequency reference value. 5.如权利要求4所述的系统,其特征在于,所述相角参考值生成单元配置为根据如下表达式生成所述待控制储能模块的角频率修正项:5. The system of claim 4, wherein the phase angle reference value generating unit is configured to generate the angular frequency correction term of the energy storage module to be controlled according to the following expression: Δωi=ki·SOCi Δω i = ki ·SOC i 其中,Δωi表示第i个储能模块的角频率修正项,ki表示第i个储能模块的角频率修正项的修正系数,SOCi表示第i个储能模块的荷电状态。Among them, Δω i represents the angular frequency correction term of the ith energy storage module, ki represents the correction coefficient of the angular frequency correction term of the ith energy storage module, and SOC i represents the state of charge of the ith energy storage module. 6.如权利要求5所述的系统,其特征在于,所述级联储能系统中各个储能模块的角频率修正项的修正系数均相等。6 . The system according to claim 5 , wherein the correction coefficients of the angular frequency correction terms of each energy storage module in the cascaded energy storage system are equal. 7 . 7.如权利要求5所述的系统,其特征在于,所述相角参考值生成单元配置为根据如下表达式生成所述角频率参考值:7. The system of claim 5, wherein the phase angle reference value generating unit is configured to generate the angular frequency reference value according to the following expression: ωi=ω*+sgn(Qi)(miPi-Δωi)ω i* +sgn(Q i )(m i P i -Δω i ) 其中,ωi表示第i个储能模块的角频率参考值,ω*表示空载时第i个储能模块的角频率,Qi和mi分别表示第i个储能模块的无功功率和下垂控制系数,Pi表示第i个储能模块的输出功率,Δωi表示第i个储能模块的角频率修正项。Among them, ω i represents the angular frequency reference value of the ith energy storage module, ω * represents the angular frequency of the ith energy storage module at no load, and Qi and mi represent the reactive power of the ith energy storage module, respectively and droop control coefficient, Pi represents the output power of the ith energy storage module, and Δω i represents the angular frequency correction term of the ith energy storage module. 8.一种集中大容量储能系统,其特征在于,包括级联储能系统和如权利要求1~7中任一项所述的SOC平衡控制系统。8 . A centralized large-capacity energy storage system, characterized by comprising a cascaded energy storage system and the SOC balance control system according to any one of claims 1 to 7 .
CN201810923122.6A 2018-08-14 2018-08-14 SOC balance control system for cascade energy storage system Active CN109067003B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810923122.6A CN109067003B (en) 2018-08-14 2018-08-14 SOC balance control system for cascade energy storage system
NL2021568A NL2021568B1 (en) 2018-08-14 2018-09-06 SYSTEM FOR CONTROLLING BALANCE OF SOC IN A CASCADED ENERGY STORAGE SYSTEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810923122.6A CN109067003B (en) 2018-08-14 2018-08-14 SOC balance control system for cascade energy storage system

Publications (2)

Publication Number Publication Date
CN109067003A CN109067003A (en) 2018-12-21
CN109067003B true CN109067003B (en) 2020-08-07

Family

ID=64184149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810923122.6A Active CN109067003B (en) 2018-08-14 2018-08-14 SOC balance control system for cascade energy storage system

Country Status (2)

Country Link
CN (1) CN109067003B (en)
NL (1) NL2021568B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390927A (en) * 2019-01-03 2019-02-26 燕山大学 It is a kind of based on SOC without interconnected communication distributed energy storage droop control method
CN111224416B (en) * 2020-02-19 2023-12-29 燕山大学 Cascaded energy storage converter parallel control method and system based on SOC balance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486780B2 (en) * 2008-07-01 2014-05-07 株式会社日立製作所 Battery system
JP5133926B2 (en) * 2009-03-26 2013-01-30 株式会社日立製作所 Battery system for vehicles
JP5811193B2 (en) * 2012-02-03 2015-11-11 トヨタ自動車株式会社 Power storage system
WO2015077534A1 (en) * 2013-11-22 2015-05-28 Massachusetts Institute Of Technology Photovoltaic power balancing and differential power processing
US20170155274A1 (en) * 2014-03-03 2017-06-01 Robert Bosch Gmbh Topology and control strategy for hybrid storage systems
CN106849164B (en) * 2017-02-17 2019-08-06 中南大学 A unified SOC balance control method for island microgrid
CN107516887B (en) * 2017-08-04 2019-10-29 华中科技大学 A kind of distributed DC micro-capacitance sensor composite energy storage control method

Also Published As

Publication number Publication date
CN109067003A (en) 2018-12-21
NL2021568B1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI774142B (en) Ac load power supply system and method
US20220200314A1 (en) Energy storage system
US8532833B2 (en) Grid connected power storage system and integration controller thereof
WO2014207994A1 (en) Electricity storage system, electricity storage module, and control method
CN107069693A (en) Control method for coordinating applied to direct-current grid distributed super-capacitor energy storage
CN104993538A (en) Balancing application device and method for chargeable battery pack
CN111817327B (en) SOC balance control method for H-bridge cascade grid-connected energy storage system
CN110808599B (en) A state-of-charge balance control method for islanded DC microgrids in parallel with multiple energy storages
CN112886666A (en) Distributed active equalization method suitable for cascaded lithium battery pack
US6541940B1 (en) Load follower using batteries exhibiting memory
CN109067003B (en) SOC balance control system for cascade energy storage system
WO2022213338A1 (en) Energy storage system, control method for energy storage system, and photovoltaic power generation system
CN105870993A (en) Fuzzy-PI control based active equalization control method for lithium battery
WO2023039888A1 (en) Charging method, charging device and charging system for power battery
CN111293759B (en) Satellite power supply system integrating energy generation, energy storage and energy management
CN106655257B (en) Energy management system and method for port shore power based on new energy hybrid power supply
CN109378813B (en) Charge state balance control method and device for energy storage unit of direct current power distribution system
CN114928115A (en) Automatic balance control method and system for power of parallel inverters in micro-grid
CN117977754A (en) Multi-energy-storage SOC balance control method considering system communication faults
CN108879651B (en) DAB-based high-power dual-modular hybrid energy storage system and grid connection method
CN114844174B (en) Interphase SOC balance control method and system for cascade H-bridge energy storage system
CN113629741A (en) Novel hybrid energy storage device and control method
WO2013056409A1 (en) Charging and discharging management device
TWI793489B (en) Control system and method of fuel cell stacks
CN114977405A (en) A state-of-charge balance control method and system for a series energy storage system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant