CN109060733B - Iron ion molecular fluorescence sensor and preparation method thereof - Google Patents
Iron ion molecular fluorescence sensor and preparation method thereof Download PDFInfo
- Publication number
- CN109060733B CN109060733B CN201810379715.0A CN201810379715A CN109060733B CN 109060733 B CN109060733 B CN 109060733B CN 201810379715 A CN201810379715 A CN 201810379715A CN 109060733 B CN109060733 B CN 109060733B
- Authority
- CN
- China
- Prior art keywords
- compound
- tert
- preparation
- butyl
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 226
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 89
- 238000002360 preparation method Methods 0.000 title claims abstract description 32
- -1 iron ion Chemical class 0.000 claims abstract description 97
- 238000012360 testing method Methods 0.000 claims abstract description 53
- 229920000642 polymer Polymers 0.000 claims abstract description 44
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 42
- 239000011347 resin Substances 0.000 claims abstract description 32
- 229920005989 resin Polymers 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 30
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910001447 ferric ion Inorganic materials 0.000 claims abstract description 25
- 239000007800 oxidant agent Substances 0.000 claims abstract description 21
- 239000000945 filler Substances 0.000 claims abstract description 17
- 230000001590 oxidative effect Effects 0.000 claims abstract description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 84
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 82
- 150000001875 compounds Chemical class 0.000 claims description 68
- 239000002904 solvent Substances 0.000 claims description 56
- 239000000499 gel Substances 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 39
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 36
- 239000003054 catalyst Substances 0.000 claims description 33
- 239000000047 product Substances 0.000 claims description 33
- 229940126062 Compound A Drugs 0.000 claims description 29
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 claims description 29
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000003153 chemical reaction reagent Substances 0.000 claims description 26
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 claims description 25
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 24
- YCEJUWBZSJVVNE-UHFFFAOYSA-N tert-butyl 4-(aminomethyl)benzoate Chemical compound CC(C)(C)OC(=O)C1=CC=C(CN)C=C1 YCEJUWBZSJVVNE-UHFFFAOYSA-N 0.000 claims description 24
- PBGZJUKYAHDTND-UHFFFAOYSA-N tert-butyl 4-cyanobenzoate Chemical compound CC(C)(C)OC(=O)C1=CC=C(C#N)C=C1 PBGZJUKYAHDTND-UHFFFAOYSA-N 0.000 claims description 24
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical group OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 22
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 21
- 239000000017 hydrogel Substances 0.000 claims description 20
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 claims description 20
- ADCUEPOHPCPMCE-UHFFFAOYSA-N 4-cyanobenzoic acid Chemical compound OC(=O)C1=CC=C(C#N)C=C1 ADCUEPOHPCPMCE-UHFFFAOYSA-N 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 19
- 239000002244 precipitate Substances 0.000 claims description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical group ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 18
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 18
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 17
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 16
- 239000002253 acid Substances 0.000 claims description 15
- 238000005886 esterification reaction Methods 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000001913 cellulose Substances 0.000 claims description 11
- 229920002678 cellulose Polymers 0.000 claims description 11
- 238000005406 washing Methods 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 10
- 230000032050 esterification Effects 0.000 claims description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 9
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 9
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 8
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 7
- 239000012190 activator Substances 0.000 claims description 7
- 239000006229 carbon black Substances 0.000 claims description 7
- 239000012024 dehydrating agents Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical group ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 claims description 6
- 239000012074 organic phase Substances 0.000 claims description 6
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 6
- 238000009833 condensation Methods 0.000 claims description 5
- 230000005494 condensation Effects 0.000 claims description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 5
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 238000006482 condensation reaction Methods 0.000 claims description 4
- 239000012046 mixed solvent Substances 0.000 claims description 4
- 239000012286 potassium permanganate Substances 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 238000007112 amidation reaction Methods 0.000 claims description 3
- 239000008346 aqueous phase Substances 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 3
- VZDYWEUILIUIDF-UHFFFAOYSA-J cerium(4+);disulfate Chemical compound [Ce+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O VZDYWEUILIUIDF-UHFFFAOYSA-J 0.000 claims description 3
- 229910000355 cerium(IV) sulfate Inorganic materials 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 238000005984 hydrogenation reaction Methods 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 claims description 3
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- PNYYBUOBTVHFDN-UHFFFAOYSA-N sodium bismuthate Chemical compound [Na+].[O-][Bi](=O)=O PNYYBUOBTVHFDN-UHFFFAOYSA-N 0.000 claims description 3
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 claims description 2
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 claims description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical group CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 claims 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims 1
- 150000001718 carbodiimides Chemical class 0.000 claims 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims 1
- 239000011159 matrix material Substances 0.000 claims 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 16
- 229910001448 ferrous ion Inorganic materials 0.000 abstract description 16
- 239000007788 liquid Substances 0.000 abstract description 16
- 230000035945 sensitivity Effects 0.000 abstract description 13
- 230000008901 benefit Effects 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 90
- 230000008569 process Effects 0.000 description 24
- 238000001514 detection method Methods 0.000 description 19
- 239000000243 solution Substances 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 230000005284 excitation Effects 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000012086 standard solution Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- LDUCTLWCKOLAPM-UHFFFAOYSA-N 2-methyl-1h-pyridin-2-amine Chemical compound CC1(N)NC=CC=C1 LDUCTLWCKOLAPM-UHFFFAOYSA-N 0.000 description 7
- 229940125904 compound 1 Drugs 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229940125782 compound 2 Drugs 0.000 description 6
- 229940125898 compound 5 Drugs 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007832 Na2SO4 Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 229940095102 methyl benzoate Drugs 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 238000004809 thin layer chromatography Methods 0.000 description 4
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007853 buffer solution Substances 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000006862 quantum yield reaction Methods 0.000 description 3
- 230000027756 respiratory electron transport chain Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- UJEUBSWHCGDJQU-UHFFFAOYSA-N 4-chloro-1,8-naphthalic anhydride Chemical compound O=C1OC(=O)C2=CC=CC3=C2C1=CC=C3Cl UJEUBSWHCGDJQU-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000012921 fluorescence analysis Methods 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OSNIIMCBVLBNGS-UHFFFAOYSA-N 1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Chemical compound CN(C)C(C)C(=O)C1=CC=C2OCOC2=C1 OSNIIMCBVLBNGS-UHFFFAOYSA-N 0.000 description 1
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 102100030497 Cytochrome c Human genes 0.000 description 1
- 108010075031 Cytochromes c Proteins 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 206010022971 Iron Deficiencies Diseases 0.000 description 1
- 206010022979 Iron excess Diseases 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 102100030856 Myoglobin Human genes 0.000 description 1
- 108010062374 Myoglobin Proteins 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 1
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 1
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 1
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- XJHABGPPCLHLLV-UHFFFAOYSA-N benzo[de]isoquinoline-1,3-dione Chemical compound C1=CC(C(=O)NC2=O)=C3C2=CC=CC3=C1 XJHABGPPCLHLLV-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 238000012632 fluorescent imaging Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000010150 least significant difference test Methods 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004768 organ dysfunction Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000008557 oxygen metabolism Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 description 1
- 238000000918 plasma mass spectrometry Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- RPENMORRBUTCPR-UHFFFAOYSA-M sodium;1-hydroxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].ON1C(=O)CC(S([O-])(=O)=O)C1=O RPENMORRBUTCPR-UHFFFAOYSA-M 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- LDDFOBAKMGVHTC-UHFFFAOYSA-N tert-butyl 2-(aminomethyl)benzoate Chemical compound CC(C)(C)OC(=O)C1=CC=CC=C1CN LDDFOBAKMGVHTC-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1408—Carbocyclic compounds
- C09K2211/1425—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
- C09K2211/1466—Heterocyclic containing nitrogen as the only heteroatom
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供了铁离子分子荧光传感器及其制备方法。该铁离子分子荧光传感器其包括透明树脂基底层;测试层,设置在透明树脂基底层的一侧表面上,测试层包括第一凝胶基材和分散于第一凝胶基材中的Fe3+分子荧光化合物;遮光层,设置在测试层的远离透明树脂基底层一侧的表面上,遮光层包括第二凝胶基材、分散在第二凝胶基材中的遮光填料和氧化剂;其中,Fe3+分子荧光化合物的结构见式I,Polym为氨基化的亲水性大分子聚合物基团。本发明提供的铁离子分子荧光传感器能够快速检测待测液体中二价铁离子和三价铁离子的总浓度,且兼具了测量效率高、灵敏度高、准确性好等优点。
The invention provides an iron ion molecular fluorescence sensor and a preparation method thereof. The iron ion molecular fluorescence sensor comprises a transparent resin base layer; a test layer is arranged on one side surface of the transparent resin base layer, and the test layer includes a first gel base material and Fe dispersed in the first gel base material 3 + Molecular fluorescent compound; light-shielding layer, arranged on the surface of the test layer away from the transparent resin base layer, the light-shielding layer includes a second gel base material, a light-shielding filler and an oxidant dispersed in the second gel base material; wherein , the structure of the Fe 3+ molecular fluorescent compound is shown in formula I, and Polym is an aminated hydrophilic macromolecular polymer group. The iron ion molecular fluorescence sensor provided by the invention can quickly detect the total concentration of ferrous ions and ferric ions in the liquid to be tested, and has the advantages of high measurement efficiency, high sensitivity, good accuracy, and the like.
Description
技术领域technical field
本发明涉及有机合成与元素分析技术领域,具体而言,涉及一种铁离子分子荧光传感器及其制备方法。The invention relates to the technical field of organic synthesis and elemental analysis, in particular to an iron ion molecular fluorescence sensor and a preparation method thereof.
背景技术Background technique
铁是体内最丰富的微量元素之一,它是构成血红蛋白、肌红蛋白及多种酶的重要成分,参与了氧摄取、氧代谢、电子转移等过程。如果体内缺少铁,可影响血红蛋白的合成,可使细胞色素c、核糖核苷酸还原酶、琥珀酸脱氢酶等酶的活性降低,从而导致严重的机体功能紊乱。人体内Fe3+含量的改变与许多疾病相关,如缺铁会导致贫血、癌症、糖尿病和器官功能障碍等,而铁过量则会通过芬顿反应产生活性氧诱发阿尔茨海默氏病、亨廷顿氏病和帕金森氏病等。因此,快速准确检测环境和人体内铁离子的含量对于环境安全和人类的健康具有十分重要的意义。Iron is one of the most abundant trace elements in the body. It is an important component of hemoglobin, myoglobin and various enzymes, and participates in processes such as oxygen uptake, oxygen metabolism, and electron transfer. If the body lacks iron, it can affect the synthesis of hemoglobin, and reduce the activity of enzymes such as cytochrome c, ribonucleotide reductase, and succinate dehydrogenase, resulting in serious body dysfunction. The change of Fe 3+ content in the human body is related to many diseases, such as iron deficiency can lead to anemia, cancer, diabetes and organ dysfunction, etc., while iron excess can induce Alzheimer's disease, Huntington's disease and Huntington's disease through the generation of reactive oxygen species through the Fenton reaction. disease and Parkinson's disease. Therefore, rapid and accurate detection of iron ion content in the environment and in the human body is of great significance for environmental safety and human health.
目前,检测微量Fe3+的分析技术有很多种,包括原子吸收光谱法、等离子体发射光谱、等离子体质谱、电化学法、滴定法等。这些方法大多需要使用昂贵的大型仪器,操作复杂,便携性差且不适合在线实时监控。由于荧光分析法所需设备简单,并具有响应速度快、灵敏度高、操作简便等优点,因此利用荧光探针来定性与定量检测Fe3+已成为研究热点。At present, there are many analytical techniques for detecting trace amounts of Fe 3+ , including atomic absorption spectrometry, plasma emission spectrometry, plasma mass spectrometry, electrochemical methods, and titration methods. Most of these methods require the use of expensive large-scale instruments, which are complicated to operate, poor in portability, and not suitable for online real-time monitoring. Due to the simple equipment required by the fluorescence analysis method, and the advantages of fast response, high sensitivity, and easy operation, the use of fluorescent probes to qualitatively and quantitatively detect Fe 3+ has become a research hotspot.
近年来,关于Fe3+荧光探针的研究已有少量报道。其中大部分是以罗丹明为荧光基团的铁离子荧光探针,例如中国专利CN107011351A、CN 105884788A、Synthesis andevaluation of a novel rhodamine B-based'off-on'fluorescent chemosensor forthe selective determination of Fe3+ions,Sensors and Actuators B:Chemicals,2017,242,921-931。罗丹明类荧光探针的检测原理为:通过与金属离子作用引起自身内酰胺螺环状结构发生开环,从而可以引起紫外可见吸收和荧光光谱变化,最终达到检测不同金属离子浓度的目的。In recent years, there have been few reports on the study of Fe 3+ fluorescent probes. Most of them are iron ion fluorescent probes with rhodamine as the fluorescent group, such as Chinese patents CN107011351A, CN 105884788A, Synthesis and evaluation of a novel rhodamine B-based'off-on'fluorescent chemosensor for the selective determination of Fe 3+ ions , Sensors and Actuators B: Chemicals, 2017, 242, 921-931. The detection principle of rhodamine-based fluorescent probes is: through the interaction with metal ions, the ring-opening of the self-lactam spiro ring structure can be caused, which can cause changes in ultraviolet-visible absorption and fluorescence spectra, and finally achieve the purpose of detecting the concentration of different metal ions.
然而,由于罗丹明会参与离子耦合反应,因此其激发波长和发射波长会因检测离子的变化而变化,导致多种不同离子的罗丹明基荧光传感器不能用同一个激发和发射波长进行检测。而且上述报道的Fe3+荧光传感器激发波长约560nm,发射波长约580nm,其斯托克斯(Stockes)位移只有20nm左右,普通光学分光镜片难以把激发光和荧光区分开来,从而影响检测结果,一般采用光谱分辨率高的光谱检测设备进行荧光信号采集,检测难度和成本会大大增加。However, since rhodamine will participate in the ion coupling reaction, its excitation wavelength and emission wavelength will change due to changes in the detected ions, resulting in the rhodamine-based fluorescence sensor for a variety of different ions cannot be detected with the same excitation and emission wavelength. Moreover, the excitation wavelength of the Fe 3+ fluorescence sensor reported above is about 560nm, the emission wavelength is about 580nm, and its Stokes shift is only about 20nm. It is difficult for ordinary optical spectroscopic lenses to distinguish the excitation light from the fluorescence, thus affecting the detection results. Generally, a spectral detection device with high spectral resolution is used for fluorescence signal collection, and the difficulty and cost of detection will be greatly increased.
除了以上问题,现有一些液体环境中同时含有二价铁离子和三价铁离子,在检测的时候往往需要检测二价铁离子和三价铁离子的总浓度。然而目前的Fe3+分子荧光传感器无法检测其中的二价铁离子,而且一些分光光度法对于溶液中总铁含量的检测大都是基于先将Fe3+用还原剂盐酸羟胺还原成Fe2+,10min稳定后,再对Fe2+进行测定,耗时长,灵敏度低。In addition to the above problems, some existing liquid environments contain both ferrous ions and ferric ions, and it is often necessary to detect the total concentration of ferric ions and ferric ions during detection. However, the current Fe 3+ molecular fluorescence sensor cannot detect the ferrous ions in it, and some spectrophotometric methods for the detection of the total iron content in the solution are mostly based on first reducing Fe 3+ to Fe 2+ with the reducing agent hydroxylamine hydrochloride. After 10 minutes of stabilization, Fe 2+ is measured again, which takes a long time and has low sensitivity.
基于以上原因,提供一种能够检测二价铁离子和三价铁离子总浓度的,且能够快速检测、测量更灵敏的铁离子荧光传感器是十分有必要的。Based on the above reasons, it is very necessary to provide a fluorescent sensor that can detect the total concentration of ferrous ions and ferric ions, and can quickly detect and measure more sensitive iron ions.
发明内容Contents of the invention
本发明的主要目的在于提供一种铁离子分子荧光传感器及其制备方法,以解决现有技术中的Fe3+分子荧光传感器无法快速测定、灵敏度不够、且无法同时检测二价铁离子和三价铁离子总浓度的问题。The main purpose of the present invention is to provide a kind of iron ion molecular fluorescence sensor and preparation method thereof, to solve the problem that the Fe3 + molecular fluorescence sensor in the prior art cannot be quickly measured, the sensitivity is not enough, and it cannot detect ferrous ion and trivalent iron ion simultaneously. The problem of the total concentration of iron ions.
为了实现上述目的,根据本发明的一个方面,提供了一种铁离子分子荧光传感器,其包括透明树脂基底层;测试层,设置在透明树脂基底层的一侧表面上,测试层包括第一凝胶基材和分散于第一凝胶基材中的Fe3+分子荧光化合物;遮光层,设置在测试层的远离透明树脂基底层一侧的表面上,遮光层包括第二凝胶基材、分散在第二凝胶基材中的遮光填料和氧化剂;其中,Fe3+分子荧光化合物具有式I所示结构:In order to achieve the above object, according to one aspect of the present invention, a kind of iron ion molecular fluorescence sensor is provided, which includes a transparent resin base layer; the test layer is arranged on one side surface of the transparent resin base layer, and the test layer includes a first gel Adhesive substrate and dispersed in the first gel substrate Fe Molecular fluorescent compound; Light-shielding layer, arranged on the surface of the test layer away from the transparent resin base layer side, the light-shielding layer includes the second gel substrate, A light-shielding filler and an oxidizing agent dispersed in the second gel substrate; wherein, the Fe 3+ molecular fluorescent compound has a structure shown in formula I:
式I中,Polym为氨基化的亲水性大分子聚合物基团。In formula I, Polym is an aminated hydrophilic macromolecular polymer group.
进一步地,Polym为氨基纤维素脱氢形成的残基、氨基麦芽糖糊精脱氢形成的残基或氨基聚乙烯吡咯烷酮脱氢形成的残基;优选氨基纤维素为氨基乙基纤维素、氨基羟乙基纤维素、氨基羟丙基纤维素及氨基羧甲基纤维素中的一种或多种。Further, Polym is the residue formed by the dehydrogenation of aminocellulose, the residue formed by the dehydrogenation of aminomaltodextrin or the residue formed by the dehydrogenation of aminovinylpyrrolidone; preferably aminocellulose is aminoethylcellulose, aminohydroxyl One or more of ethyl cellulose, aminohydroxypropyl cellulose and aminocarboxymethyl cellulose.
进一步地,氧化剂为高锰酸钾、硫酸高铈及铋酸钠中的一种或多种。Further, the oxidant is one or more of potassium permanganate, ceric sulfate and sodium bismuthate.
进一步地,遮光填料为炭黑。Further, the light-shielding filler is carbon black.
进一步地,第一凝胶基材和第二凝胶基材分别选自D4水凝胶、D6水凝胶、丙烯酰胺-丙烯腈共聚物及聚乙烯醇中的一种或多种。Further, the first gel substrate and the second gel substrate are respectively selected from one or more of D4 hydrogel, D6 hydrogel, acrylamide-acrylonitrile copolymer and polyvinyl alcohol.
进一步地,透明树脂基底层的材料为PET、PMMA、PC、PVC、PS、PP和ABS中的一种或多种。Further, the material of the transparent resin base layer is one or more of PET, PMMA, PC, PVC, PS, PP and ABS.
根据本发明的另一方面,还提供了一种铁离子分子荧光传感器的制备方法,其包括以下步骤:步骤L1,提供透明树脂基底层;步骤L2,将Fe3+分子荧光化合物、第一凝胶基材的凝胶材料及第一凝胶溶剂混合,将得到的混合物涂布在透明树脂基底层的一侧表面上,干燥后形成测试层;步骤L3,将遮光填料、氧化剂、第二凝胶基材的凝胶材料及第二凝胶溶剂混合,将得到的混合物涂布在测试层的远离透明树脂基底层的一侧表面,干燥后形成遮光层,进而得到铁离子分子荧光传感器;其中,Fe3+分子荧光化合物具有式I所示结构:According to another aspect of the present invention, there is also provided a method for preparing an iron ion molecular fluorescence sensor, which includes the following steps: step L1, providing a transparent resin base layer; step L2, adding Fe3 + molecular fluorescent compound, the first condensation The gel material of the adhesive substrate and the first gel solvent are mixed, the obtained mixture is coated on one side surface of the transparent resin base layer, and the test layer is formed after drying; step L3, the light-shielding filler, the oxidizing agent, the second gel The gel material of the adhesive base material is mixed with the second gel solvent, and the obtained mixture is coated on the surface of the test layer on the side away from the transparent resin base layer, and dried to form a light-shielding layer, thereby obtaining an iron ion molecular fluorescence sensor; wherein , the Fe 3+ molecular fluorescent compound has a structure shown in formula I:
式I中,Polym为氨基化的亲水性大分子聚合物基团。In formula I, Polym is an aminated hydrophilic macromolecular polymer group.
进一步地,Fe3+分子荧光化合物由以下方法制备而成:Further, the Fe 3+ molecular fluorescent compound is prepared by the following method:
步骤S1,将化合物A和化合物B进行缩合反应,形成化合物C;化合物A、化合物B及化合物C的结构如下,其中化合物A中的X为卤素:In step S1, compound A and compound B are condensed to form compound C; the structures of compound A, compound B and compound C are as follows, wherein X in compound A is a halogen:
步骤S2,将化合物C进行水解反应得到化合物D;化合物D的结构如下:In step S2, compound C is hydrolyzed to obtain compound D; the structure of compound D is as follows:
步骤S3,将化合物D与氨基化的亲水性大分子聚合物进行缩合酰胺化反应,得到Fe3+分子荧光化合物。Step S3, performing a condensation amidation reaction between the compound D and the aminated hydrophilic macromolecular polymer to obtain a fluorescent compound of Fe 3+ molecules.
进一步地,氨基化的亲水性大分子聚合物为氨基纤维素、氨基麦芽糖糊精或氨基聚乙烯吡咯烷酮;优选地,在步骤S1之前,制备方法还包括制备化合物A的步骤,其包括:将4-氰基苯甲酸与叔丁醇进行酯化反应,得到4-氰基苯甲酸叔丁酯;将4-氰基苯甲酸叔丁酯、催化剂及甲醇混合形成混合体系,向混合体系中通入氢气进行氢化反应,得到4-氨基甲基苯甲酸叔丁酯E;其中催化剂为镍催化剂、钯碳催化剂及钴催化剂中的一种或多种;将4-氨基甲基苯甲酸叔丁酯E与化合物F进行反应,得到化合物A;其中4-氨基甲基苯甲酸叔丁酯E、化合物F具有如下结构:Further, the aminated hydrophilic macromolecular polymer is aminocellulose, aminomaltodextrin or aminopolyvinylpyrrolidone; preferably, before step S1, the preparation method also includes the step of preparing compound A, which includes: 4-cyanobenzoic acid and tert-butanol carry out esterification reaction to obtain tert-butyl 4-cyanobenzoate; mix tert-butyl 4-cyanobenzoate, catalyst and methanol to form a mixed system, and pass through the mixed system Go into hydrogen and carry out hydrogenation reaction, obtain 4-aminomethylbenzoic acid tert-butyl ester E; Wherein catalyzer is one or more in nickel catalyst, palladium carbon catalyst and cobalt catalyst; 4-aminomethylbenzoic acid tert-butyl ester E reacts with compound F to obtain compound A; wherein tert-butyl 4-aminomethylbenzoate E and compound F have the following structures:
其中化合物F中的X为卤素。Wherein X in compound F is halogen.
进一步地,步骤S1包括:将化合物A、化合物B及缚酸剂与第一溶剂混合,得到第一混合物;将第一混合物在80~100℃温度下进行缩合反应,得到第一产物体系;将第一产物体系冷却并倒入水中,过滤得到沉淀,即为化合物C;优选地,第一溶剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺、二甲基亚砜、二甲基乙酰胺及四氢呋喃中的一种或多种;优选地,缚酸剂为N,N-二异丙基乙胺、N,N-二甲基甲酰胺、4-二甲氨基吡啶及三乙胺中的一种或多种;优选地,化合物A、化合物B及缚酸剂之间的摩尔比为1~6:1~5:1~15;优选地,在过滤步骤之后,步骤S1还包括对沉淀进行洗涤的步骤,洗涤步骤包括:将沉淀溶解在三氯甲烷中,向其中加入水进行洗涤,分液,得到有机相和水相;采用无水硫酸钠干燥有机相,过滤并蒸发,得到化合物C。Further, step S1 includes: mixing compound A, compound B and an acid-binding agent with a first solvent to obtain a first mixture; performing a condensation reaction on the first mixture at a temperature of 80-100° C. to obtain a first product system; The first product system is cooled and poured into water, filtered to obtain a precipitate, which is compound C; preferably, the first solvent is N-methylpyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide, dimethyl One or more of acetamide and tetrahydrofuran; preferably, the acid-binding agent is N,N-diisopropylethylamine, N,N-dimethylformamide, 4-dimethylaminopyridine and triethyl One or more of the amines; preferably, the molar ratio between compound A, compound B and the acid-binding agent is 1 to 6:1 to 5:1 to 15; preferably, after the filtering step, step S1 also Including the step of washing the precipitate, the washing step includes: dissolving the precipitate in chloroform, adding water to it for washing, separating the liquids to obtain an organic phase and an aqueous phase; drying the organic phase with anhydrous sodium sulfate, filtering and evaporating , to obtain compound C.
进一步地,步骤S2包括:将化合物C、羰基脱除试剂及第二溶剂混合并反应,得到第二产物体系;采用体积比为1:1的三氯甲烷/甲醇混合溶液稀释第二产物体系,然后蒸发溶剂,得到化合物D;优选地,羰基脱除试剂为三氟乙酸、体积比为1:2的盐酸和乙酸乙酯混合试剂、或硅胶;优选地,第二溶剂为二氯甲烷和/或氯仿;优选地,化合物C的摩尔数为羰基脱除试剂摩尔数的1.8~2.0%,优选为1.9%。Further, step S2 includes: mixing and reacting compound C, a carbonyl removing reagent and a second solvent to obtain a second product system; diluting the second product system with a chloroform/methanol mixed solution with a volume ratio of 1:1, Then the solvent is evaporated to obtain compound D; preferably, the carbonyl removal reagent is trifluoroacetic acid, a mixed reagent of hydrochloric acid and ethyl acetate with a volume ratio of 1:2, or silica gel; preferably, the second solvent is dichloromethane and/or or chloroform; preferably, the molar amount of compound C is 1.8-2.0%, preferably 1.9%, of the molar amount of the carbonyl-removing reagent.
进一步地,步骤S3包括:将化合物D、氨基化的亲水性大分子聚合物、脱水剂、羰基活化剂与第三溶剂混合并进行反应,得到第三产物体系;过滤第三产物体系,并对过滤所得沉淀进行洗涤、干燥,得到Fe3+分子荧光化合物;优选地,脱水剂为N,N-二环己基-1,3-碳化二亚胺、1-(3-二甲胺基丙基)-3-乙基碳二亚胺盐酸盐及二异丙基碳二亚胺中的一种或多种;优选地,羰基活化剂为N-羟基琥珀酰亚胺和/或N-羟基硫代琥珀酰亚胺;优选地,第三溶剂为N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、N,N-二甲基乙酰胺及六甲基磷酰三胺中的一种或多种;优选地,化合物D的用量为氨基化的亲水性大分子聚合物的重量的2~3%;优选地,在将氨基化的亲水性大分子聚合物混合之前,步骤S3还包括:将氨基化的亲水性大分子聚合物悬浮于碳酸钠水溶液中,过滤,再悬浮于DMF中,过滤,再用DMF洗涤,得到预处理的氨基化的亲水性大分子聚合物。Further, step S3 includes: mixing and reacting compound D, aminated hydrophilic macromolecular polymer, dehydrating agent, carbonyl activator and a third solvent to obtain a third product system; filtering the third product system, and Wash and dry the filtered precipitate to obtain Fe 3+ molecule fluorescent compound; preferably, the dehydrating agent is N,N-dicyclohexyl-1,3-carbodiimide, 1-(3-dimethylaminopropane one or more of -3-ethylcarbodiimide hydrochloride and diisopropylcarbodiimide; preferably, the carbonyl activator is N-hydroxysuccinimide and/or N- Hydroxysulfosuccinimide; preferably, the third solvent is N,N-dimethylformamide, N,N-diethylformamide, N,N-dimethylacetamide and hexamethylphosphoryl One or more of triamines; preferably, the amount of compound D is 2 to 3% of the weight of the aminated hydrophilic macromolecular polymer; preferably, when the aminated hydrophilic macromolecular polymer is polymerized Before the mixture, step S3 also includes: suspending the aminated hydrophilic macromolecular polymer in aqueous sodium carbonate solution, filtering, resuspending in DMF, filtering, and washing with DMF to obtain the pretreated aminated hydrophilic macromolecular polymer. Water-based macromolecular polymer.
进一步地,将4-氰基苯甲酸与叔丁醇进行酯化反应的步骤包括:将4-氰基苯甲酸、酰化试剂第四溶剂混合并反应,得到中间物;除去中间物中的溶剂后,将其与酯化催化剂、叔丁醇混合并反应,得到第四产物体系;提纯第四产物体系,得到4-氰基苯甲酸叔丁酯;优选地,酰化试剂为草酰氯、氯化亚砜、三氯化磷及五氯化磷中的一种或多种;优选地,酯化催化剂为吡啶、N,N-二甲基甲酰胺、4-二甲氨基吡啶及三乙胺中的一种或多种;优选地,4-氰基苯甲酸和酰化试剂之间的摩尔比为2~3:3~5;酯化催化剂和叔丁醇之间的体积比为1~1.1:1。Further, the step of carrying out the esterification reaction of 4-cyanobenzoic acid and tert-butanol comprises: mixing and reacting 4-cyanobenzoic acid and the fourth solvent of an acylating agent to obtain an intermediate; removing the solvent in the intermediate Afterwards, it is mixed and reacted with an esterification catalyst and tert-butanol to obtain the fourth product system; the fourth product system is purified to obtain tert-butyl 4-cyanobenzoate; preferably, the acylating agent is oxalyl chloride, chlorine One or more of sulfoxide, phosphorus trichloride and phosphorus pentachloride; preferably, the esterification catalyst is pyridine, N,N-dimethylformamide, 4-dimethylaminopyridine and triethylamine One or more in; Preferably, the molar ratio between 4-cyanobenzoic acid and acylating reagent is 2~3:3~5; The volume ratio between esterification catalyst and tert-butanol is 1~ 1.1:1.
进一步地,制备4-氨基甲基苯甲酸叔丁酯E的步骤中,4-氰基苯甲酸叔丁酯与催化剂之间的重量比为10~20:1~3;4-氰基苯甲酸叔丁酯与甲醇之间的重量比为1~3:8~20;优选地,通入氢气后,反应体系的压力为0.8~1.2MPa。Further, in the step of preparing tert-butyl 4-aminomethylbenzoate E, the weight ratio between tert-butyl 4-cyanobenzoate and the catalyst is 10~20:1~3; 4-cyanobenzoic acid The weight ratio between tert-butyl ester and methanol is 1-3:8-20; preferably, after the hydrogen gas is introduced, the pressure of the reaction system is 0.8-1.2 MPa.
进一步地,将4-氨基甲基苯甲酸叔丁酯E与化合物F进行反应的步骤包括:将4-氨基甲基苯甲酸叔丁酯E、化合物F与第五溶剂混合并反应,得到第五产物体系;过滤第五产物体系,将得到的沉淀进行干燥,得到化合物A;优选地,第五溶剂为乙醇、甲醇、丙醇及异丙醇中的一种或多种;优选地,4-氨基甲基苯甲酸叔丁酯E与化合物F之间的摩尔比为1:1。Further, the step of reacting tert-butyl 4-aminomethylbenzoate E with compound F comprises: mixing and reacting tert-butyl 4-aminomethylbenzoate E, compound F and a fifth solvent to obtain the fifth Product system; filter the fifth product system, and dry the obtained precipitate to obtain compound A; preferably, the fifth solvent is one or more of ethanol, methanol, propanol and isopropanol; preferably, 4- The molar ratio between tert-butyl aminomethylbenzoate E and compound F is 1:1.
进一步地,第一凝胶溶剂和第二凝胶溶剂均为水和乙醇的混合溶剂。Further, both the first gel solvent and the second gel solvent are mixed solvents of water and ethanol.
本发明提供了一种铁离子分子荧光传感器,其包括透明树脂基底层、测试层和遮光层,测试层设置在透明树脂基底层的一侧表面上,测试层包括第一凝胶基材和分散于第一凝胶基材中的Fe3+分子荧光化合物;遮光层设置在测试层的远离透明树脂基底层一侧的表面上,遮光层包括第二凝胶基材、分散在第二凝胶基材中的遮光填料和氧化剂。The invention provides an iron ion molecular fluorescence sensor, which includes a transparent resin base layer, a test layer and a light-shielding layer, the test layer is arranged on one side surface of the transparent resin base layer, and the test layer includes a first gel base material and a dispersed Fe in the first gel substrate Molecular fluorescent compound; The light-shielding layer is arranged on the surface of the test layer away from the transparent resin base layer side, and the light-shielding layer includes the second gel base material, dispersed in the second gel Opacifying fillers and oxidizing agents in substrates.
首先,本发明提供的上述传感器的遮光层中含有氧化剂,在实际检测过程中,待检测液体先通过遮光层在进入测试层,其中的二价铁离子能够被氧化剂氧化为三价铁离子,测试层中检测出的三价铁离子浓度实则是待测液体中二价铁离子和三价铁离子的总浓度。同时,遮光层中的遮光填料还能够起到屏蔽外界光线干扰的目的,从而可以提高传感器的测量准确性。First of all, the shading layer of the sensor provided by the present invention contains an oxidizing agent. In the actual detection process, the liquid to be detected first passes through the shading layer and enters the test layer, and the ferrous ions in it can be oxidized to ferric ions by the oxidizing agent. The concentration of ferric ions detected in the layer is actually the total concentration of ferrous ions and ferric ions in the liquid to be tested. At the same time, the light-shielding filler in the light-shielding layer can also serve the purpose of shielding the interference of external light, thereby improving the measurement accuracy of the sensor.
其次,上述测试层中的Fe3+分子荧光化合物以1,8-萘亚酰胺为荧光基团,使其具有良好的光稳定性,激发(449nm)和发射光(521nm)均为长波长可见光,斯托克斯位移大(72nm),量子产率高。同时,该Fe3+分子荧光化合物中的基团(测试基团)对于Fe3+的灵敏度较高,其吡啶环中的氮和4-位氨基氮能够与Fe3+发生络合形成离子络合体,从而能够引发电子转移或能量转移,使该测试剂在不同的Fe3+浓度下具有不同的荧光响应。除此以外,该Fe3+分子荧光化合物中的氨基化的亲水性大分子聚合物基团可以起到对荧光基团和测试基团的固定作用和良好的分散作用,使荧光基团和测试基团能够更好地分散开来,且氨基化的亲水性大分子聚合物基团本身提供了微孔隙,使待测样品中的Fe3+能够更充分地进入并与测试基团更充分更快速的接触,以使得本发明提供的Fe3+分子荧光化合物兼具了更好的测试准确性和灵敏度。Secondly, the Fe 3+ molecular fluorescent compound in the above test layer uses 1,8-naphthalimide as the fluorescent group, which makes it have good photostability, and the excitation (449nm) and emission light (521nm) are both long-wavelength visible light , large Stokes shift (72nm), high quantum yield. At the same time, the Fe 3+ molecule in the fluorescent compound The group (test group) has high sensitivity to Fe 3+ , and the nitrogen in the pyridine ring and the 4-amino nitrogen can complex with Fe 3+ to form an ion complex, which can cause electron transfer or energy transfer , so that the test reagent has different fluorescence responses under different Fe 3+ concentrations. In addition, the aminated hydrophilic macromolecular polymer group in the Fe3 + molecular fluorescent compound can play a role in fixing and dispersing the fluorescent group and the test group, so that the fluorescent group and the test group The test group can be better dispersed, and the aminated hydrophilic macromolecular polymer group itself provides micropores, so that the Fe 3+ in the sample to be tested can enter more fully and be more closely related to the test group. Sufficient and faster contact, so that the Fe 3+ molecular fluorescent compound provided by the present invention has better test accuracy and sensitivity.
总之,以上各方面的因素使得本发明提供的铁离子分子荧光传感器能够快速检测待测液体中二价铁离子和三价铁离子的总浓度,且兼具了测量效率高、灵敏度高、准确性好等优点。In a word, the above factors make the iron ion molecular fluorescence sensor provided by the present invention capable of quickly detecting the total concentration of ferrous ions and ferric ions in the liquid to be tested, and has the advantages of high measurement efficiency, high sensitivity, and accuracy. Good and other advantages.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide a further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1示出了根据本发明的铁离子分子荧光传感器的结构示意图;Fig. 1 shows the structural representation of the iron ion molecular fluorescence sensor according to the present invention;
图2示出了本发明实施例1制备得到的叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯的核磁共振氢谱图;Fig. 2 shows the H NMR spectrum of tert-butyl-4-aminomethylpyridine-1,8-naphthalimide methylbenzoate prepared in Example 1 of the present invention;
图3示出了本发明实施例1制备得到的4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸的核磁共振氢谱图;Fig. 3 shows the H NMR spectrum of 4-aminomethylpyridine-1,8-naphthalimidomethylbenzoic acid prepared in Example 1 of the present invention;
图4示出了本发明实施例1中制得的铁离子荧光传感器随着铁离子(Fe3+:Fe2+=1:1)浓度增加荧光光谱的变化图;Fig. 4 shows the change diagram of the fluorescence spectrum of the iron ion fluorescent sensor made in Example 1 of the present invention as the concentration of iron ions (Fe 3+ :Fe 2+ =1:1) increases;
图5示出了本发明实施例1中制得的铁离子荧光传感器随着铁离子(Fe3+:Fe2+=1:1)浓度增加荧光强度的变化图;Fig. 5 shows the change diagram of the fluorescence intensity of the iron ion fluorescent sensor prepared in Example 1 of the present invention as the concentration of iron ions (Fe 3+ :Fe 2+ =1:1) increases;
图6示出了本发明实施例1制得的铁离子(Fe3+:Fe2+=1:1)荧光传感器对铁离子的荧光选择性识别示意图;6 shows a schematic diagram of the fluorescence selective recognition of iron ions by the iron ion (Fe 3+ :Fe 2+ =1:1) fluorescence sensor prepared in Example 1 of the present invention;
图7示出了本发明实施例1制得的铁离子(Fe3+:Fe2+=1:1)荧光传感器检测铁离子的抗干扰性识别示意图;Fig. 7 shows the iron ion (Fe 3+ :Fe 2+ =1:1) fluorescence sensor prepared in the embodiment 1 of the present invention to detect the anti-interference identification schematic diagram of iron ion;
图8示出了本发明实施例1中制得的铁离子荧光传感器对含有不同浓度比例Fe3+和Fe2+的铁离子混合液的荧光强度识别示意图[不同行中相同的字母a表示在最小显著性差异法(LSD)检验下没有显著差异(P<0.05)]。Fig. 8 shows the fluorescence intensity recognition schematic diagram of the ferric ion fluorescent sensor that makes in the embodiment 1 of the present invention to the ferric ion mixture that contains different concentration ratios Fe3 + and Fe2 + There was no significant difference under the least significant difference (LSD) test (P<0.05)].
其中,上述附图包括以下附图标记:Wherein, the above-mentioned accompanying drawings include the following reference signs:
10、透明树脂基底层;20、测试层;30、遮光层。10. Transparent resin base layer; 20. Test layer; 30. Shading layer.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。It should be noted that, in the case of no conflict, the embodiments in the present application and the features in the embodiments can be combined with each other. The present invention will be described in detail below with reference to the accompanying drawings and examples.
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。The present application will be described in further detail below in conjunction with specific examples, and these examples should not be construed as limiting the scope of protection claimed in the present application.
正如背景技术部分所描述的,现有技术中的Fe3+分子荧光传感器无法可逆测定、准确度不够、且无法同时检测二价铁离子和三价铁离子的总浓度。As described in the background technology section, the Fe 3+ molecular fluorescence sensor in the prior art cannot be reversibly measured, has insufficient accuracy, and cannot simultaneously detect the total concentration of ferrous ions and ferric ions.
为了解决上述问题,本发明提供了一种铁离子分子荧光传感器,如图1所示,其包括透明树脂基底层10、测试层20及遮光层30;测试层20设置在透明树脂基底层10的一侧表面上,测试层20包括第一凝胶基材和分散于第一凝胶基材中的Fe3+分子荧光化合物;遮光层30设置在测试层20的远离透明树脂基底层10一侧的表面上,遮光层30包括第二凝胶基材、分散在第二凝胶基材中的遮光填料和氧化剂;其中,Fe3+分子荧光化合物具有式I所示结构:In order to solve the above problems, the present invention provides a kind of iron ion molecular fluorescence sensor, as shown in Figure 1, it comprises transparent resin base layer 10, test layer 20 and light-shielding layer 30; Test layer 20 is arranged on transparent resin base layer 10 On one side surface, test layer 20 comprises the first gel base material and Fe3 + molecule fluorescent compound dispersed in the first gel base material; Light-shielding layer 30 is arranged on the side of test layer 20 away from transparent resin base layer 10 On the surface, the light-shielding layer 30 includes a second gel base material, a light-shielding filler and an oxidant dispersed in the second gel base material; wherein, the Fe 3+ molecular fluorescent compound has a structure shown in formula I:
式I中,Polym为氨基化的亲水性大分子聚合物基团。In formula I, Polym is an aminated hydrophilic macromolecular polymer group.
首先,本发明提供的上述传感器的遮光层中含有氧化剂,在实际检测过程中,待检测液体先通过遮光层在进入测试层,其中的二价铁离子能够被氧化剂氧化为三价铁离子,测试层中检测出的三价铁离子浓度实则是待测液体中二价铁离子和三价铁离子的总浓度。同时,遮光层中的遮光填料还能够起到屏蔽外界光线干扰的目的,从而可以提高传感器的测量准确性。First of all, the shading layer of the sensor provided by the present invention contains an oxidizing agent. In the actual detection process, the liquid to be detected first passes through the shading layer and enters the test layer, and the ferrous ions in it can be oxidized to ferric ions by the oxidizing agent. The concentration of ferric ions detected in the layer is actually the total concentration of ferrous ions and ferric ions in the liquid to be tested. At the same time, the light-shielding filler in the light-shielding layer can also serve the purpose of shielding the interference of external light, thereby improving the measurement accuracy of the sensor.
其次,上述测试层中的Fe3+分子荧光化合物以1,8-萘亚酰胺为荧光基团,使其具有良好的光稳定性,激发(449nm)和发射光(521nm)均为长波长可见光,斯托克斯位移大(72nm),量子产率高。同时,该Fe3+分子荧光化合物中的基团(测试基团)对于Fe3+的灵敏度较高,其吡啶环中的氮和4-位氨基氮能够与Fe3+发生络合形成离子络合体,从而能够引发电子转移或能量转移,使该测试剂在不同的Fe3+浓度下具有不同的荧光响应。除此以外,该Fe3+分子荧光化合物中的氨基化的亲水性大分子聚合物基团可以起到对荧光基团和测试基团的固定作用和良好的分散作用,使荧光基团和测试基团能够更好地分散开来,且氨基化的亲水性大分子聚合物基团本身提供了微孔隙,使待测样品中的Fe3+能够更充分地进入并与测试基团更充分更快速的接触,以使得本发明提供的Fe3+分子荧光化合物兼具了更好的测试准确性和灵敏度。Secondly, the Fe 3+ molecular fluorescent compound in the above test layer uses 1,8-naphthylimide as the fluorescent group, which makes it have good photostability, and the excitation (449nm) and emission light (521nm) are both long-wavelength visible light , large Stokes shift (72nm), high quantum yield. At the same time, the Fe 3+ molecule in the fluorescent compound The group (test group) has high sensitivity to Fe 3+ , and the nitrogen in the pyridine ring and the 4-amino nitrogen can complex with Fe 3+ to form an ion complex, which can cause electron transfer or energy transfer , so that the test reagent has different fluorescence responses under different Fe 3+ concentrations. In addition, the aminated hydrophilic macromolecular polymer group in the Fe3 + molecular fluorescent compound can play a role in fixing and dispersing the fluorescent group and the test group, so that the fluorescent group and the test group The test group can be better dispersed, and the aminated hydrophilic macromolecular polymer group itself provides micropores, so that Fe 3+ in the sample to be tested can enter more fully and be more closely related to the test group. Sufficient and faster contact, so that the Fe 3+ molecular fluorescent compound provided by the present invention has better test accuracy and sensitivity.
总之,以上各方面的因素使得本发明提供的铁离子分子荧光传感器能够检测待测液体中二价铁离子和三价铁离子的总浓度,且兼具了测量效率高、灵敏度高、准确性好等优点。该传感器对Fe3+的浓度线性响应范围为4~1000μmol/L,检测下限为1.36μmol/L。In short, the above factors make the iron ion molecular fluorescence sensor provided by the present invention capable of detecting the total concentration of ferrous ions and ferric ions in the liquid to be tested, and has the advantages of high measurement efficiency, high sensitivity, and good accuracy. Etc. The linear response range of the sensor to the concentration of Fe 3+ is 4-1000 μmol/L, and the detection limit is 1.36 μmol/L.
除了以上优势外,本发明中测试层20和遮光层30中采用的分散介质均未凝胶基材,相比于其他分散介质,使用凝胶基材可以大大简化制备工序,涂布后只需干燥即可成型,无需光固化或热固化程序,也有利于防止光热固化条件影响测试机的稳定性。In addition to the above advantages, none of the dispersion media used in the test layer 20 and the light-shielding layer 30 in the present invention has a gel base material. Compared with other dispersion media, the use of a gel base material can greatly simplify the preparation process. After coating, only It can be molded after drying, without light curing or heat curing procedures, and it is also beneficial to prevent light and heat curing conditions from affecting the stability of the testing machine.
需要说明的是,本发明上述式I中的(此处称作功能基团)和Polym亲水性大分子聚合物基团之间的摩尔比并非被限定为1:1,亲水性大分子聚合物基团上功能基团的负载量是可以根据相应的亲水性大分子聚合物中的氨基官能团数量进行调整的,此处仅表示功能基团和亲水性大分子聚合物基团之间是通过化学键的形式相连。It should be noted that, in the present invention above-mentioned formula I (referred to as functional groups here) and the molar ratio between the Polym hydrophilic macromolecular polymer group is not limited to 1:1, and the loading capacity of the functional group on the hydrophilic macromolecular polymer group is It can be adjusted according to the number of amino functional groups in the corresponding hydrophilic macromolecular polymer, which only means that the functional group and the hydrophilic macromolecular polymer group are connected by chemical bonds.
在一种优选的实施方式中,上述Polym包括但不限于氨基纤维素脱氢形成的残基、氨基麦芽糖糊精脱氢形成的残基或氨基聚乙烯吡咯烷酮脱氢形成的残基。这些残基实则是经氨基化的亲水性大分子聚合物脱除氨基氢原子后形成的基团。优选氨基纤维素为氨基乙基纤维素、氨基羟乙基纤维素、氨基羟丙基纤维素及氨基羧甲基纤维素中的一种或多种。这些大分子基团均具有良好的亲水性,且能够与上述功能基团之间形成稳定的化学连接,且对于上述功能基团的分散性能更佳,作为功能基团的载体能够进一步提高Fe3+分子荧光化合物的稳定性、灵敏度和测量准确性。而且,这些大分子基团与最终铁离子分子荧光传感器中的基底层之间具有良好的粘结性能,也有利于进一步提高产品的稳定性。In a preferred embodiment, the aforementioned Polym includes, but is not limited to, residues formed by dehydrogenation of aminocellulose, residues formed by dehydrogenation of aminomaltodextrin or residues formed by dehydrogenation of aminovinylpyrrolidone. These residues are actually the groups formed after the amino hydrogen atoms are removed from the aminated hydrophilic macromolecular polymer. Preferably, the aminocellulose is one or more of aminoethylcellulose, aminohydroxyethylcellulose, aminohydroxypropylcellulose and aminocarboxymethylcellulose. These macromolecular groups all have good hydrophilicity, and can form a stable chemical connection with the above-mentioned functional groups, and have better dispersion performance for the above-mentioned functional groups, as the carrier of the functional groups can further improve Fe Stability, sensitivity and measurement accuracy of 3+ molecular fluorescent compounds. Moreover, these macromolecular groups have good bonding properties with the base layer in the final iron ion molecular fluorescence sensor, which is also conducive to further improving the stability of the product.
在一种优选的实施方式中,氧化剂为高锰酸钾、硫酸高铈及铋酸钠中的一种或多种。这几种氧化剂具有较强的氧化能力,能够更快速地氧化二价铁离子。本发明的传感器用于测试液体中微量铁离子的含量,氧化剂的作用是将待测液体中的微量Fe2+氧化为Fe3+,因此,具体的氧化剂的加入量可以根据待测液中Fe2+的大致含量进行调整,这是本领域技术人员都应理解的。In a preferred embodiment, the oxidant is one or more of potassium permanganate, ceric sulfate and sodium bismuthate. These oxidants have strong oxidizing ability and can oxidize ferrous ions more rapidly. The sensor of the present invention is used to test the content of trace iron ions in the liquid. The effect of the oxidizing agent is to oxidize the trace Fe in the liquid to be measured to Fe 3+. The approximate content of 2+ should be adjusted, which should be understood by those skilled in the art.
在一种优选的实施方式中,遮光填料为炭黑。利用上述遮光填料能够提高遮光层30的遮光性能,从而有利于减少进一步减少光线对于荧光检测的干扰。在实际检测中,第二凝胶基材和遮光填料之间的重量比可以根据检测环境进行调整,这是本领域技术人员都应理解的。为了能进一步减少光线干扰,另一方面式遮光层具有相对较高的粘结力建议本发明第二凝胶基材和遮光填料之间的重量比为3.2:1。In a preferred embodiment, the opacifying filler is carbon black. Using the above-mentioned light-shielding filler can improve the light-shielding performance of the light-shielding layer 30 , thereby helping to reduce and further reduce the interference of light on fluorescence detection. In actual detection, the weight ratio between the second gel substrate and the light-shielding filler can be adjusted according to the detection environment, which should be understood by those skilled in the art. In order to further reduce the interference of light, on the other hand, the light-shielding layer has a relatively high cohesive force. It is recommended that the weight ratio between the second gel base material and the light-shielding filler of the present invention be 3.2:1.
在一种优选的实施方式中,第一凝胶基材和第二凝胶基材分别选自D4水凝胶、D6水凝胶、丙烯酰胺-丙烯腈共聚物及聚乙烯醇中的一种或多种。本发明提供的上述Fe3+分子荧光化合物与这几种水凝胶之间具有更好的相容性,测试剂在其中的分散性更好。除此以外,这几种水凝胶和基底层之间具有更好的粘结性能,有利于进一步提高铁离子分子荧光传感器的稳定性。另外,本发明的传感器用于测试液体中微量铁离子的含量,测试层20中Fe3+分子荧光化合物与第一凝胶基材之间的重量比可以根据待测液中Fe3+和Fe2+的大致含量进行调整,这也是本领域技术人员都应理解的。In a preferred embodiment, the first gel substrate and the second gel substrate are respectively selected from one of D4 hydrogel, D6 hydrogel, acrylamide-acrylonitrile copolymer and polyvinyl alcohol or more. The above-mentioned Fe 3+ molecular fluorescent compound provided by the present invention has better compatibility with these several kinds of hydrogels, and the dispersibility of test reagents in them is better. In addition, these hydrogels have better bonding properties with the substrate layer, which is conducive to further improving the stability of the iron ion molecular fluorescence sensor. In addition, the sensor of the present invention is used to test the content of trace iron ions in the liquid, and the weight ratio between the Fe 3+ molecule fluorescent compound and the first gel substrate in the test layer 20 can be determined according to the Fe 3+ and Fe in the liquid to be tested. The approximate content of 2+ should be adjusted, which should be understood by those skilled in the art.
在一种优选的实施方式中,透明树脂基底层10的材料包括但不限于PET、PMMA、PC、PVC、PS、PP和ABS中的一种或多种。这几种树脂材料具有的透明性更佳,有利于进一步提高荧光检测的准确性和稳定性。In a preferred embodiment, the material of the transparent resin base layer 10 includes but not limited to one or more of PET, PMMA, PC, PVC, PS, PP and ABS. These resin materials have better transparency, which is beneficial to further improving the accuracy and stability of fluorescence detection.
优选地,透明树脂基底层10的厚度为75~125μm,测试层20的厚度为100~200μm,遮光层30的厚度为100~200μm。Preferably, the thickness of the transparent resin base layer 10 is 75-125 μm, the thickness of the test layer 20 is 100-200 μm, and the thickness of the light-shielding layer 30 is 100-200 μm.
根据本发明的另一方面,还提供了一种铁离子分子荧光传感器的制备方法,其包括以下步骤:步骤L1,提供透明树脂基底层;步骤L2,将Fe3+分子荧光化合物、第一凝胶基材的凝胶材料及第一凝胶溶剂混合,将得到的混合物涂布在透明树脂基底层的一侧表面上,干燥后形成测试层;步骤L3,将遮光填料、氧化剂、第二凝胶基材的凝胶材料及第二凝胶溶剂混合,将得到的混合物涂布在测试层的远离透明树脂基底层的一侧表面,干燥后形成遮光层,进而得到铁离子分子荧光传感器;其中,Fe3+分子荧光化合物具有式I所示结构:According to another aspect of the present invention, there is also provided a method for preparing an iron ion molecular fluorescence sensor, which includes the following steps: step L1, providing a transparent resin base layer; step L2, adding Fe3 + molecular fluorescent compound, the first condensation The gel material of the adhesive substrate and the first gel solvent are mixed, the obtained mixture is coated on one side surface of the transparent resin base layer, and the test layer is formed after drying; step L3, the light-shielding filler, the oxidizing agent, the second gel The gel material of the adhesive base material is mixed with the second gel solvent, and the obtained mixture is coated on the surface of the test layer on the side away from the transparent resin base layer, and dried to form a light-shielding layer, thereby obtaining an iron ion molecular fluorescence sensor; wherein , the Fe 3+ molecular fluorescent compound has a structure shown in formula I:
式I中,Polym为氨基化的亲水性大分子聚合物基团。In formula I, Polym is an aminated hydrophilic macromolecular polymer group.
如前文所述,不管是在水溶液中还是人体体液中,利用该制备方法制得的铁离子分子荧光传感器在测量样品中Fe3+浓度时具有测量效率高、灵敏度高、准确性好等优点,展示出了良好的分析特性,其对Fe3+的浓度线性响应范围为4~1000μM,检测下限为1.36μM。同时,该铁离子分子荧光传感器还能够检测待测液体中二价铁离子和三价铁离子的总浓度。As mentioned above, whether it is in aqueous solution or human body fluid, the iron ion molecular fluorescence sensor prepared by this preparation method has the advantages of high measurement efficiency, high sensitivity and good accuracy when measuring the concentration of Fe 3+ in the sample. It exhibits good analytical characteristics, and its linear response to Fe 3+ concentration ranges from 4 to 1000 μM, with a lower detection limit of 1.36 μM. At the same time, the iron ion molecular fluorescence sensor can also detect the total concentration of ferrous ions and ferric ions in the liquid to be tested.
在一种优选的实施方式中,上述Fe3+分子荧光化合物由以下方法制备而成:In a preferred embodiment, the above-mentioned Fe3 + molecular fluorescent compound is prepared by the following method:
步骤S1,将化合物A和化合物B进行缩合反应,形成化合物C;化合物A、化合物B及化合物C的结构如下,其中化合物A中的X为卤素:In step S1, compound A and compound B are condensed to form compound C; the structures of compound A, compound B and compound C are as follows, wherein X in compound A is a halogen:
步骤S2,将化合物C进行水解反应得到化合物D;化合物D的结构如下:In step S2, compound C is hydrolyzed to obtain compound D; the structure of compound D is as follows:
步骤S3,将化合物D与氨基化的亲水性大分子聚合物进行缩合酰胺化反应,得到Fe3+分子荧光化合物。Step S3, performing a condensation amidation reaction between the compound D and the aminated hydrophilic macromolecular polymer to obtain a fluorescent compound of Fe 3+ molecules.
本发明利用化合物A和化合物B的缩合反应、化合物C的水解反应、化合物D与氨基化的亲水性大分子聚合物的反应,以较短的路线合成了上述Fe3+分子荧光化合物,且该制备方法工艺操作简单,条件温和,非常适于工业化大规模应用。The present invention utilizes the condensation reaction of compound A and compound B, the hydrolysis reaction of compound C, the reaction of compound D and aminated hydrophilic macromolecular polymers to synthesize the above-mentioned Fe3 + molecular fluorescent compound with a shorter route, and The preparation method has simple process operation and mild conditions, and is very suitable for large-scale industrial application.
优选地,上述氨基化的亲水性大分子聚合物为氨基纤维素、氨基麦芽糖糊精或氨基聚乙烯吡咯烷酮;更优选氨基纤维素为氨基乙基纤维素、氨基羟乙基纤维素、氨基羟丙基纤维素及氨基羧甲基纤维素中的一种或多种。Preferably, the aminated hydrophilic macromolecular polymer is aminocellulose, aminomaltodextrin or aminopolyvinylpyrrolidone; more preferably aminocellulose is aminoethylcellulose, aminohydroxyethylcellulose, aminohydroxyl One or more of propyl cellulose and amino carboxymethyl cellulose.
上述化合物A可以选用市售产品,在一种优选的实施方式中,在步骤S1之前,该制备方法还包括制备化合物A的步骤,其包括:将4-氰基苯甲酸与叔丁醇进行酯化反应,得到4-氰基苯甲酸叔丁酯;将4-氰基苯甲酸叔丁酯、催化剂(镍催化剂、钯碳催化剂及钴催化剂中的一种或多种)及甲醇混合形成混合体系,向混合体系中通入氢气进行氢化反应,得到4-氨基甲基苯甲酸叔丁酯E;将4-氨基甲基苯甲酸叔丁酯E与化合物F进行反应,得到化合物A;其中4-氨基甲基苯甲酸叔丁酯E、化合物F具有如下结构:The above-mentioned compound A can be selected from commercially available products. In a preferred embodiment, before step S1, the preparation method also includes the step of preparing compound A, which includes: esterifying 4-cyanobenzoic acid and tert-butanol reaction to obtain tert-butyl 4-cyanobenzoate; tert-butyl 4-cyanobenzoate, catalyst (one or more of nickel catalyst, palladium carbon catalyst and cobalt catalyst) and methanol are mixed to form a mixed system , feed hydrogen into the mixed system for hydrogenation reaction to obtain tert-butyl 4-aminomethylbenzoate E; react tert-butyl 4-aminomethylbenzoate E with compound F to obtain compound A; wherein 4- Aminomethylbenzoic acid tert-butyl ester E, compound F have the following structures:
其中化合物F中的X为卤素。Wherein X in compound F is halogen.
利用上述方法制备化合物A,路线简短、工艺简单、成本更低、产率相对较高。Compound A is prepared by the above method, the route is short, the process is simple, the cost is lower, and the yield is relatively high.
以上各合成步骤中的具体工艺条件可以进行调整,具体如下:Concrete process conditions in each of the above synthetic steps can be adjusted, specifically as follows:
在一种优选的实施方式中,上述步骤S1包括:将化合物A、化合物B及缚酸剂与第一溶剂混合,得到第一混合物;将第一混合物在80~100℃,更优选在90℃温度下进行缩合反应,得到第一产物体系;将第一产物体系冷却并倒入水中,过滤得到沉淀,即为化合物C。In a preferred embodiment, the above step S1 includes: mixing compound A, compound B and an acid-binding agent with a first solvent to obtain a first mixture; heating the first mixture at 80-100°C, more preferably at 90°C The condensation reaction is carried out at high temperature to obtain the first product system; the first product system is cooled and poured into water, and filtered to obtain a precipitate, which is compound C.
优选地,第一溶剂包括但不限于N-甲基吡咯烷酮、N,N-二甲基乙酰胺、二甲基亚砜、二甲基乙酰胺及四氢呋喃中的一种或多种。Preferably, the first solvent includes but not limited to one or more of N-methylpyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide, dimethylacetamide and tetrahydrofuran.
优选地,上述缚酸剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺、二甲基亚砜、二甲基乙酰胺及四氢呋喃中的一种或多种。采用这几种缚酸剂,有利于进一步提高化合物A和化合物B之间的反应效率,提高反应转化率。Preferably, the acid-binding agent is one or more of N-methylpyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide, dimethylacetamide and tetrahydrofuran. The use of these several acid-binding agents is conducive to further improving the reaction efficiency between compound A and compound B, and improving the reaction conversion rate.
优选地,化合物A、化合物B及缚酸剂之间的摩尔比为1~6:1~5:1~15;优选地,在过滤步骤之后,步骤S1还包括对沉淀进行洗涤的步骤,洗涤步骤包括:将沉淀溶解在三氯甲烷中,向其中加入水进行洗涤,分液,得到有机相和水相;采用无水硫酸钠干燥有机相,过滤并蒸发,得到化合物C。Preferably, the molar ratio between compound A, compound B and the acid-binding agent is 1-6:1-5:1-15; preferably, after the filtering step, step S1 also includes the step of washing the precipitate, washing The steps include: dissolving the precipitate in chloroform, adding water to it for washing, and separating the liquids to obtain an organic phase and an aqueous phase; drying the organic phase with anhydrous sodium sulfate, filtering and evaporating to obtain compound C.
举例如下:将叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯(化合物A)、2-胺甲基吡啶(化合物B)和N,N-二异丙基乙胺悬浮于N-甲基吡咯烷酮(NMP)并在90℃加热18小时。将混合物冷却并倒入水中。过滤得到沉淀,然后溶于CHCl3中并用水洗涤,分液。有机层用Na2SO4干燥,过滤并蒸发,得到粗产物,将粗产物用55~60℃的热甲醇热打浆,过滤并用0~10℃的冷甲醇洗涤。所得固体(冷甲醇洗涤后的固体)用50~55℃的热CHCl3重结晶,得到黄色结晶叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯(化合物C)。An example is as follows: tert-butyl-4-chloro-1,8-naphthalimide methyl benzoate (compound A), 2-aminopicoline (compound B) and N, N-di Isopropylethylamine was suspended in N-methylpyrrolidone (NMP) and heated at 90°C for 18 hours. The mixture is cooled and poured into water. The precipitate was obtained by filtration, then dissolved in CHCl 3 and washed with water, and the layers were separated. The organic layer was dried over Na2SO4 , filtered and evaporated to give the crude product, which was hot slurried with hot methanol at 55-60 °C, filtered and washed with cold methanol at 0-10 °C. The obtained solid (solid after washing with cold methanol) was recrystallized from hot CHCl3 at 50-55 °C to give yellow crystals of tert-butyl-4-aminomethylpyridine-1,8-naphthalimidomethylbenzene Formate (compound C).
在一种优选的实施方式中,上述步骤S2包括:将化合物C、羰基脱除试剂及第二溶剂混合并反应,得到第二产物体系;采用体积比为1:1的三氯甲烷/甲醇混合溶液稀释第二产物体系,然后蒸发溶剂,得到化合物D。采用羰基脱除试剂脱除反应物C的叔丁氧羰基(BOC)基团。采用体积比为1:1的三氯甲烷/甲醇混合溶液可以作为溶剂稀释产物,从而去除过量的羰基脱除试剂。In a preferred embodiment, the above step S2 includes: mixing and reacting compound C, a carbonyl removing reagent and a second solvent to obtain a second product system; using a mixture of chloroform/methanol with a volume ratio of 1:1 The solution dilutes the second product system, and the solvent is evaporated to give compound D. The tert-butoxycarbonyl (BOC) group of reactant C was removed using a carbonyl removing reagent. The mixed solution of chloroform/methanol with a volume ratio of 1:1 can be used as a solvent to dilute the product, thereby removing excess carbonyl-removing reagent.
优选地,上述羰基脱除试剂为三氟乙酸、体积比为1:2的盐酸和乙酸乙酯混合试剂、或硅胶。出于减少副反应和简化后处理工艺的目的,更优选采用三氟乙酸作为羰基脱除试剂。Preferably, the above-mentioned carbonyl removal reagent is trifluoroacetic acid, a mixed reagent of hydrochloric acid and ethyl acetate with a volume ratio of 1:2, or silica gel. For the purposes of reducing side reactions and simplifying the post-treatment process, trifluoroacetic acid is more preferably used as the carbonyl removal reagent.
优选地,第二溶剂为二氯甲烷和/或氯仿,其中采用二氯甲烷毒性更小、更环保。优选地,化合物C的摩尔数为羰基脱除试剂摩尔数的的1.8~2.0%,更优选为1.9%。Preferably, the second solvent is dichloromethane and/or chloroform, wherein dichloromethane is less toxic and more environmentally friendly. Preferably, the molar amount of compound C is 1.8-2.0%, more preferably 1.9%, of the molar amount of the carbonyl-removing reagent.
举例如下:将三氟乙酸(TFA)加入到叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯(化合物C)所在的CH2Cl2溶液中。将所得溶液在室温搅拌约1小时,直至薄层色谱检测(TLC)显示大部分叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸酯消失。然后将混合物用体积比1:1的CHCl3:MeOH稀释并将溶剂蒸发。重复4至8次以除去TFA,然后置于泵上30分钟使其完全干燥,得到黄色结晶4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸(化合物D)。An example is as follows: adding trifluoroacetic acid (TFA) to CH2Cl2 where tert-butyl- 4 -aminomethylpyridine-1,8-naphthalimidomethylbenzoate (Compound C) in solution. The resulting solution was stirred at room temperature for about 1 hour until thin layer chromatography (TLC) showed that most of tert-butyl-4-aminomethylpyridine-1,8-naphthalimidomethylbenzoate disappeared. The mixture was then diluted with CHCl3 :MeOH in a volume ratio of 1:1 and the solvent was evaporated. Repeat 4 to 8 times to remove TFA, then place on pump for 30 minutes to dry completely to give yellow crystalline 4-aminomethylpyridine-1,8-naphthalimidomethylbenzoic acid (compound D) .
在一种优选的实施方式中,上述步骤S3包括:将化合物D、氨基化的亲水性大分子聚合物、脱水剂、羰基活化剂与第三溶剂混合并进行反应,得到第三产物体系;过滤第三产物体系,并对过滤所得沉淀进行洗涤、干燥,得到Fe3+分子荧光化合物。利用羰基活化剂能够提高活化化合物D中的羰基,配合脱水剂有利于提高反应的转化率。优选地,脱水剂为N,N-二环己基-1,3-碳化二亚胺(DCC)、1-(3-二甲胺基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)及二异丙基碳二亚胺(DIC)中的一种或多种;优选地,羰基活化剂为N-羟基琥珀酰亚胺(NHS)和/或N-羟基硫代琥珀酰亚胺(Sulfo-NHS)。In a preferred embodiment, the above step S3 includes: mixing and reacting compound D, an aminated hydrophilic macromolecular polymer, a dehydrating agent, a carbonyl activator and a third solvent to obtain a third product system; The third product system is filtered, and the filtered precipitate is washed and dried to obtain Fe 3+ molecular fluorescent compound. The use of a carbonyl activator can increase the activation of the carbonyl in compound D, and the addition of a dehydrating agent is beneficial to increase the conversion rate of the reaction. Preferably, the dehydrating agent is N,N-dicyclohexyl-1,3-carbodiimide (DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride One or more of (EDCI) and diisopropylcarbodiimide (DIC); preferably, the carbonyl activator is N-hydroxysuccinimide (NHS) and/or N-hydroxysulfosuccinyl Imine (Sulfo-NHS).
优选地,第三溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二乙基甲酰胺(DEF)、N,N-二甲基乙酰胺(DMAC)及六甲基磷酰三胺(HMPT)中的一种或多种;优选地,化合物D的用量为氨基化的亲水性大分子聚合物的重量的2~3%(更优选二者的重量比为13:500);优选地,在将氨基化的亲水性大分子聚合物混合之前,步骤S3还包括:将氨基化的亲水性大分子聚合物悬浮于碳酸钠水溶液中,过滤,再悬浮于DMF中,过滤,再用DMF洗涤,得到预处理的氨基化的亲水性大分子聚合物。利用该步骤可以洗涤氨基化的亲水性大分子聚合物,并除去其中的水分。Preferably, the third solvent is N,N-dimethylformamide (DMF), N,N-diethylformamide (DEF), N,N-dimethylacetamide (DMAC) and hexamethylphosphorus One or more in amide triamide (HMPT); Preferably, the consumption of compound D is 2~3% of the weight of the hydrophilic macromolecular polymer of amination (more preferably the weight ratio of the two is 13: 500); Preferably, before the aminated hydrophilic macromolecular polymer is mixed, step S3 also includes: suspending the aminated hydrophilic macromolecular polymer in aqueous sodium carbonate solution, filtering, and resuspending in DMF , filtered, and then washed with DMF to obtain a pretreated aminated hydrophilic macromolecular polymer. Utilize this step to wash the aminated hydrophilic macromolecular polymer and remove the water therein.
举例如下:将亲水性大分子聚合物(比如氨基乙基纤维素)悬浮于碳酸钠水溶液中30min,过滤,重新悬浮于DMF中30分钟,过滤,用DMF洗涤两次,以取代截留的水。然后将洗涤后的亲水性大分子聚合物转移到含有4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸(化合物D),N,N-二环己基-1,3-碳化二亚胺(DCC)和N-羟基琥珀酰亚胺(NHS)的无水DMF中混合,并将混合后的悬浮液在室温下搅拌20小时。然后过滤得到粗产物,用DMF,水,HCl,水,NaOH,水,丙酮,乙醚洗涤,最后真空干燥16h,得到黄色粉末,即为该Fe3+分子荧光化合物。An example is as follows: Suspend a hydrophilic macromolecular polymer (such as aminoethyl cellulose) in an aqueous solution of sodium carbonate for 30 minutes, filter, resuspend in DMF for 30 minutes, filter, and wash twice with DMF to replace the retained water . Then, the washed hydrophilic macromolecular polymer is transferred to a compound containing 4-aminomethylpyridine-1,8-naphthalimidomethylbenzoic acid (compound D), N,N-dicyclohexyl-1 , 3-carbodiimide (DCC) and N-hydroxysuccinimide (NHS) were mixed in anhydrous DMF, and the mixed suspension was stirred at room temperature for 20 hours. Then the crude product was obtained by filtration, washed with DMF, water, HCl, water, NaOH, water, acetone, ether, and finally vacuum-dried for 16 hours to obtain a yellow powder, which was the Fe 3+ molecular fluorescent compound.
在一种优选的实施方式中,将4-氰基苯甲酸与叔丁醇进行酯化反应的步骤包括:将4-氰基苯甲酸、酰化试剂和第四溶剂混合并反应,得到中间物;除去中间物中的溶剂后,将其与酯化催化剂、叔丁醇混合物混合并反应,得到第四产物体系;提纯第四产物体系,得到4-氰基苯甲酸叔丁酯。利用酰化试剂先与4-氰基苯甲酸进行酰化反应形成中间产物,然后在酯化催化剂的作用下能够与叔丁醇反应形成4-氰基苯甲酸叔丁酯。相较于酸与纯的直接反应,利用本发明提供的该路线制备4-氰基苯甲酸叔丁酯,原料转化率更高。优选地,酰化试剂为草酰氯、氯化亚砜、三氯化磷及五氯化磷中的一种或多种;优选地,酯化催化剂为吡啶、N,N-二甲基甲酰胺(DMF)、4-二甲氨基吡啶(DMAP)及三乙胺中的一种或多种。In a preferred embodiment, the step of esterifying 4-cyanobenzoic acid and tert-butanol comprises: mixing and reacting 4-cyanobenzoic acid, an acylating agent and a fourth solvent to obtain an intermediate ; After removing the solvent in the intermediate, mix and react it with the esterification catalyst and tert-butanol mixture to obtain the fourth product system; purify the fourth product system to obtain tert-butyl 4-cyanobenzoate. Utilize an acylating agent to first carry out acylation reaction with 4-cyanobenzoic acid to form an intermediate product, and then react with tert-butyl alcohol under the action of an esterification catalyst to form tert-butyl 4-cyanobenzoate. Compared with the direct reaction between acid and pure, the route provided by the invention is used to prepare tert-butyl 4-cyanobenzoate, and the conversion rate of raw materials is higher. Preferably, the acylating agent is one or more of oxalyl chloride, thionyl chloride, phosphorus trichloride and phosphorus pentachloride; preferably, the esterification catalyst is pyridine, N,N-dimethylformamide One or more of (DMF), 4-dimethylaminopyridine (DMAP) and triethylamine.
优选地,4-氰基苯甲酸和酰化试剂之间的摩尔比为2~3:3~5,更优选2:3;将酯化催化剂和叔丁醇的总重量记为n,将除去溶剂的中间物的重量记为m,m:n为1~3:10~20,更优选为3:20;酯化催化剂和叔丁醇之间的体积比为1~1.1:1,优选为1:1。Preferably, the molar ratio between 4-cyanobenzoic acid and acylating reagent is 2~3:3~5, more preferably 2:3; The weight of the intermediate of the solvent is denoted as m, m:n is 1~3:10~20, more preferably 3:20; the volume ratio between the esterification catalyst and tert-butanol is 1~1.1:1, preferably 1:1.
举例如下:将4-氰基苯甲酸溶于无水CH2Cl2中,加入草酰氯和二甲基甲酰胺(DMF)。将所得混合物在室温下搅拌1小时,直至停止产生气体。除去溶剂,所得残余物用吡啶/叔丁醇混合物处理并在室温下搅拌6小时。减压蒸发溶剂,并将绿色残余物悬浮在水中,然后用乙酸乙酯萃取。将合并的有机层洗涤后用Na2SO4干燥并蒸发。粗产物经过乙酸乙酯/石油醚柱纯化后,得到白色固体4-氰基苯甲酸叔丁酯。An example is as follows: 4-cyanobenzoic acid was dissolved in anhydrous CH2Cl2 , oxalyl chloride and dimethylformamide (DMF) were added. The resulting mixture was stirred at room temperature for 1 hour until gas evolution ceased. The solvent was removed and the resulting residue was treated with a pyridine/tert-butanol mixture and stirred at room temperature for 6 hours. The solvent was evaporated under reduced pressure, and the green residue was suspended in water, followed by extraction with ethyl acetate. The combined organic layers were washed, dried over Na2SO4 and evaporated. The crude product was purified by an ethyl acetate/petroleum ether column to obtain tert-butyl 4-cyanobenzoate as a white solid.
在一种优选的实施方式中,制备4-氨基甲基苯甲酸叔丁酯E的步骤中,4-氰基苯甲酸叔丁酯与催化剂之间的重量比为10~20:1~3,更优选为10:1;4-氰基苯甲酸叔丁酯与甲醇之间的重量比为1~3:8~20,更优选为3:20;优选地,通入氢气后,反应体系的压力为0.8~1.2MPa,更优选1MPa。利用上述工艺制备4-氨基甲基苯甲酸叔丁酯E,反应的效率更高,上述催化剂具体可以采用镍催化剂、钯碳催化剂及钴催化剂中的一种或多种。In a preferred embodiment, in the step of preparing tert-butyl 4-aminomethylbenzoate E, the weight ratio between tert-butyl 4-cyanobenzoate and the catalyst is 10~20:1~3, More preferably 10:1; The weight ratio between tert-butyl 4-cyanobenzoate and methanol is 1~3:8~20, more preferably 3:20; Preferably, after feeding hydrogen, the reaction system The pressure is 0.8-1.2 MPa, more preferably 1 MPa. Utilize above-mentioned technique to prepare tert-butyl 4-aminomethylbenzoate E, the efficiency of reaction is higher, and above-mentioned catalyst can specifically adopt one or more in nickel catalyst, palladium-carbon catalyst and cobalt catalyst.
举例如下:将4-氰基苯甲酸叔丁酯和镍催化剂在甲醇中混合,于1MPa的压力下氢化16小时。过滤除去催化剂,然后减压除去溶剂,得到白色固体4-氨基甲基苯甲酸叔丁酯。An example is as follows: tert-butyl 4-cyanobenzoate and nickel catalyst are mixed in methanol and hydrogenated under a pressure of 1 MPa for 16 hours. The catalyst was removed by filtration, and the solvent was removed under reduced pressure to give tert-butyl 4-aminomethylbenzoate as a white solid.
在一种优选的实施方式中,将4-氨基甲基苯甲酸叔丁酯E与化合物F进行反应的步骤包括:将4-氨基甲基苯甲酸叔丁酯E、化合物F与第五溶剂混合并反应,得到第五产物体系;过滤第五产物体系,将得到的沉淀进行干燥,得到化合物A。In a preferred embodiment, the step of reacting tert-butyl 4-aminomethylbenzoate E with compound F comprises: mixing tert-butyl 4-aminomethylbenzoate E, compound F and a fifth solvent and react to obtain the fifth product system; filter the fifth product system, and dry the obtained precipitate to obtain compound A.
优选地,第五溶剂为乙醇、甲醇、丙醇及异丙醇中的一种或多种;优选地,4-氨基甲基苯甲酸叔丁酯E与化合物F之间的摩尔比为1:1。Preferably, the fifth solvent is one or more of ethanol, methanol, propanol and isopropanol; preferably, the mol ratio between tert-butyl 4-aminomethylbenzoate E and compound F is 1: 1.
举例如下:将4-氯-1,8-萘二甲酸酐和4-氨基甲基苯甲酸叔丁酯放入乙醇中形成悬浮液。在室温下搅拌16小时。过滤得到的沉淀,在50℃干燥8小时,得到白色粉末叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯。An example is as follows: put 4-chloro-1,8-naphthalene dicarboxylic anhydride and tert-butyl 4-aminomethylbenzoate into ethanol to form a suspension. Stir at room temperature for 16 hours. The obtained precipitate was filtered and dried at 50° C. for 8 hours to obtain white powder tert-butyl-4-chloro-1,8-naphthalimidomethylbenzoate.
优选地,第一凝胶溶剂和第二凝胶溶剂均为水和乙醇的混合溶剂。比如体积比为8~10的乙醇/水混合溶剂。Preferably, both the first gelling solvent and the second gelling solvent are mixed solvents of water and ethanol. For example, ethanol/water mixed solvent with a volume ratio of 8-10.
总之,本发明提供的铁离子荧光传感器具有以下优点:In a word, the iron ion fluorescence sensor provided by the present invention has the following advantages:
(1)传感器中的Fe3+分子荧光化合物具有良好的光稳定性,激发(449nm)和发射光(521nm)均为长波长可见光,斯托克斯位移大(72nm),量子产率高等优点;(1) The Fe 3+ molecular fluorescent compound in the sensor has good photostability, the excitation (449nm) and emission light (521nm) are long-wavelength visible light, the Stokes shift is large (72nm), and the quantum yield is high. ;
(2)本发明所设计的传感器能选择性检测Fe3+的变化,抗干扰能力强,而且合成方法简单,检测成本低,可重复利用;(2) The sensor designed by the present invention can selectively detect the change of Fe 3+ , has strong anti-interference ability, and the synthesis method is simple, the detection cost is low, and can be reused;
(3)本发明中传感器的遮光层可以用来较好地去除环境中的杂光或样品的颜色对样品检测的干扰,同时还能对样品中的大分子不溶物进行过滤隔离,仅让样品中的可溶性物质与测试层接触,提高检测精度;(3) The shading layer of the sensor in the present invention can be used to better remove the interference of stray light in the environment or the color of the sample on the sample detection, and can also filter and isolate the macromolecular insolubles in the sample, so that only the sample The soluble substances in the test layer are in contact with the test layer to improve the detection accuracy;
(4)本发明中的第一水凝胶和第二水凝胶可以让Fe3+分子荧光化合物和遮光填料均匀地分散在基底层表面,使传感器的均一性和稳定性进一步提高。并且,该水凝胶能增加粘附性,使测试层和遮光层能很便捷地与基底层固定在一起,无需UV固化、热固化等工序,简化了固定流程;(4) The first hydrogel and the second hydrogel in the present invention can allow Fe 3+ molecular fluorescent compounds and light-shielding fillers to be evenly dispersed on the surface of the base layer, further improving the uniformity and stability of the sensor. Moreover, the hydrogel can increase the adhesion, so that the test layer and the light-shielding layer can be easily fixed with the base layer, without UV curing, heat curing and other processes, which simplifies the fixing process;
(5)亲水性大分子聚合物基团与遮光层优良的隔离性也扩宽了其应用范围,如该传感器可以应用在生物电解质荧光分析、药物高通量筛选和环境监测等领域,其中未固化的前体物质(如化合物D)也可以用于荧光探针、细胞染色及荧光成像等领域。(5) The excellent isolation between the hydrophilic macromolecular polymer group and the light-shielding layer also broadens its application range. For example, the sensor can be applied in the fields of bioelectrolyte fluorescence analysis, high-throughput drug screening and environmental monitoring, among which Uncured precursor substances (such as compound D) can also be used in the fields of fluorescent probes, cell staining, and fluorescent imaging.
(6)本发明的铁离子荧光传感器能够检测出待测液体中二价铁离子和三价铁离子的总浓度。(6) The iron ion fluorescence sensor of the present invention can detect the total concentration of ferrous ions and ferric ions in the liquid to be tested.
上述铁离子分子荧光传感器的制备方法较为简单,只需要在透明树脂基底层10的表面上一次涂布测试层20和遮光层30即可。比如:The preparation method of the above-mentioned iron ion molecular fluorescence sensor is relatively simple, and only needs to coat the test layer 20 and the light shielding layer 30 on the surface of the transparent resin base layer 10 once. for example:
将Fe3+分子荧光化合物与D4水凝胶溶液(D4水凝胶溶解于乙醇和水中)混合,并在室温下搅拌至少18h,使其在水凝胶中均匀分散。然后将该悬浮液用刮刀均匀涂布在透明树脂基底层10上,至少干燥30min。随即将与D6水凝胶溶液混合并搅拌至少18h的炭黑、氧化剂悬浮液用刮刀在Fe3+荧光纤维素薄膜上方继续均匀涂布,即可得两层厚度均一的铁离子荧光传感器(上层为炭黑加氧化剂层,下层为Fe3+荧光纤维素层)The Fe 3+ molecular fluorescent compound was mixed with the D4 hydrogel solution (the D4 hydrogel was dissolved in ethanol and water), and stirred at room temperature for at least 18 h to make it uniformly dispersed in the hydrogel. Then the suspension is uniformly coated on the transparent resin base layer 10 with a doctor blade, and dried for at least 30 minutes. Then, the carbon black and the oxidant suspension mixed with the D6 hydrogel solution and stirred for at least 18 hours are continuously and uniformly coated on the Fe3 + fluorescent cellulose film with a scraper to obtain two layers of iron ion fluorescent sensors (upper layer) with uniform thickness. Add oxidant layer to carbon black, the lower layer is Fe 3+ fluorescent cellulose layer)
以下通过实施例进一步说明本发明的有益效果:Further illustrate the beneficial effect of the present invention below by embodiment:
实施例1Example 1
化合物1的合成Synthesis of compound 1
将4-氰基苯甲酸(80g,544mmol)溶于无水CH2Cl2(1000mL)中。加入草酰氯(104mL,816mmol)和二甲基甲酰胺(DMF)10mL。将所得的反应混合物在室温下搅拌1小时,直至停止产生气体。除去溶剂。所得残余物用600mL吡啶/叔丁醇混合物(1:1)处理并在室温下搅拌6小时。减压蒸发溶剂,并将绿色残余物悬浮在H2O中。含水悬浮液用乙酸乙酯(3×500mL)萃取。将合并的有机层用10%KHSO4(2×500mL),H2O(500mL)NaHCO3(500mL),H2O(500mL)和盐水(500mL)洗涤。将溶剂用Na2SO4干燥并蒸发。粗产物通过使用乙酸乙酯/石油醚(1:4)的柱色谱法纯化,得到白色固体58g(产率52%)。4-cyanobenzoic acid (80 g, 544 mmol) was dissolved in anhydrous CH2Cl2 ( 1000 mL). Add oxalyl chloride (104 mL, 816 mmol) and 10 mL of dimethylformamide (DMF). The resulting reaction mixture was stirred at room temperature for 1 hour until gas evolution ceased. Solvent was removed. The resulting residue was treated with 600 mL of a pyridine/tert-butanol mixture (1:1) and stirred at room temperature for 6 hours. The solvent was evaporated under reduced pressure, and the green residue was suspended in H2O . The aqueous suspension was extracted with ethyl acetate (3 x 500 mL). The combined organic layers were washed with 10% KHSO 4 (2×500 mL), H 2 O (500 mL) NaHCO 3 (500 mL), H 2 O (500 mL) and brine (500 mL). The solvent was dried over Na2SO4 and evaporated. The crude product was purified by column chromatography using ethyl acetate/petroleum ether (1:4) to give white solid 58g (yield 52%).
化合物2的合成Synthesis of Compound 2
将4-氰基苯甲酸叔丁酯(58g,37mol)和镍催化剂(5.8g)在甲醇(500mL)中混合,于10kg的压力下氢化16小时。过滤除去催化剂,然后减压除去溶剂,得到白色固体47g(产率80%)。tert-Butyl 4-cyanobenzoate (58 g, 37 mol) and nickel catalyst (5.8 g) were mixed in methanol (500 mL) and hydrogenated under a pressure of 10 kg for 16 hours. The catalyst was removed by filtration, and then the solvent was removed under reduced pressure to obtain 47 g of a white solid (yield 80%).
化合物3的合成Synthesis of Compound 3
将46.4g(200mmol)4-氯-1,8-萘二甲酸酐和41.4g(200mmol)4-氨基甲基苯甲酸叔丁酯放入250mLEtOH中形成悬浮液。在RT下搅拌16小时。过滤得到的沉淀,在50℃干燥8小时,得到白色粉末48g(产率57%)。Put 46.4g (200mmol) of 4-chloro-1,8-naphthalic anhydride and 41.4g (200mmol) of tert-butyl 4-aminomethylbenzoate into 250mL EtOH to form a suspension. Stir at RT for 16 hours. The obtained precipitate was filtered and dried at 50° C. for 8 hours to obtain 48 g of white powder (yield 57%).
化合物4的合成Synthesis of Compound 4
将24.33g(225mmol)2-胺甲基吡啶和31.3g(74.3mmol)叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯和13mL(74.6mmol)N,N-二异丙基乙胺悬浮于110mLN-甲基吡咯烷酮(NMP)并在90℃加热18小时。将混合物冷却并倒入水(2L)中。过滤得到沉淀,然后溶于CHCl3(800mL)中并用水(5×800mL)洗涤。有机层用Na2SO4干燥,过滤并蒸发,得到63.55g粗产物。将残余物用热甲醇(600mL)研磨,过滤并用冷甲醇(600mL)洗涤。所得固体用热CHCl3重结晶,得到黄色结晶32.0g(产率87%),叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯,其核磁共振氢谱图如图2所示。24.33g (225mmol) 2-aminopicoline and 31.3g (74.3mmol) tert-butyl-4-chloro-1,8-naphthalimide methylbenzoate and 13mL (74.6mmol) N,N-Diisopropylethylamine was suspended in 110 mL of N-methylpyrrolidone (NMP) and heated at 90°C for 18 hours. The mixture was cooled and poured into water (2L). The precipitate was filtered, then dissolved in CHCl3 (800 mL) and washed with water (5 x 800 mL). The organic layer was dried over Na2SO4 , filtered and evaporated to give 63.55 g of crude product. The residue was triturated with hot methanol (600 mL), filtered and washed with cold methanol (600 mL). The resulting solid was recrystallized from hot CHCl 3 to obtain 32.0 g (yield 87%) of yellow crystals, tert-butyl-4-aminomethylpyridinium-1,8-naphthalimidomethylbenzoate, Its H NMR spectrum is shown in Figure 2.
化合物5的合成Synthesis of compound 5
将87.5mL(1.14mol)三氟乙酸(TFA)加入到10.68g(21.64mmol)叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯在CH2Cl2(160mL)的溶液中。将所得溶液在室温搅拌约1小时,直至薄层色谱检测(TLC)显示大部分叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸酯消失。然后将混合物用1:1的CHCl3:MeOH(1.2L)稀释并将溶剂蒸发。重复6次以除去TFA,然后置于泵上30分钟使其完全干燥,得到黄色结晶9.35g(产率99%),4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸,其核磁共振氢谱图如图3所示。Add 87.5 mL (1.14 mol) of trifluoroacetic acid (TFA) to 10.68 g (21.64 mmol) of tert-butyl-4-aminomethylpyridine-1,8-naphthalimidomethylbenzoate in CH 2 Cl 2 (160 mL). The resulting solution was stirred at room temperature for about 1 hour until thin layer chromatography (TLC) showed that most of tert-butyl-4-aminomethylpyridine-1,8-naphthalimidomethylbenzoate disappeared. The mixture was then diluted with 1:1 CHCl3 :MeOH (1.2 L) and the solvent was evaporated. Repeat 6 times to remove TFA, and then put it on the pump for 30 minutes to dry it completely to obtain 9.35 g of yellow crystals (yield 99%), 4-aminomethylpyridine-1,8-naphthalimidomethyl Benzoic acid, its hydrogen nuclear magnetic resonance spectrogram is as shown in Figure 3.
化合物6的合成Synthesis of compound 6
将氨基乙基纤维素(5g)悬浮于50mL2.5%碳酸钠水溶液中30min,过滤,重新悬浮于50mLDMF中30分钟,过滤,用DMF洗涤两次,以取代截留的水。然后将洗涤的纤维素转移到含有4-胺甲基吡啶-1,8-萘二甲酰亚氨基甲基苯甲酸(0.13g,0.3mmol),N,N-二环己基-1,3-碳化二亚胺(DCC,0.62g,3mmol)和N-羟基琥珀酰亚胺(NHS,0.35g,3mmol)于无水DMF(20mL)的溶液中混合,并将混合后的悬浮液在室温下搅拌20小时。然后过滤得到黄色纤维素纤维,用DMF(5×50mL),水(50mL),0.2NHCl(2×50mL),水(50mL),1.0NNaOH(2×50mL,60℃,30min),水(10×50mL),丙酮(2×50mL),乙醚(2×50mL)洗涤,最后真空干燥16h,得到黄色粉末0.54g。Aminoethylcellulose (5 g) was suspended in 50 mL of 2.5% aqueous sodium carbonate for 30 min, filtered, resuspended in 50 mL of DMF for 30 min, filtered, and washed twice with DMF to replace the entrapped water. The washed cellulose was then transferred to a solution containing 4-aminomethylpyridine-1,8-naphthalimidomethylbenzoic acid (0.13 g, 0.3 mmol), N,N-dicyclohexyl-1,3- Carbodiimide (DCC, 0.62g, 3mmol) and N-hydroxysuccinimide (NHS, 0.35g, 3mmol) were mixed in a solution of anhydrous DMF (20mL), and the mixed suspension was Stir for 20 hours. Then filter to obtain yellow cellulose fibers, wash with DMF (5×50mL), water (50mL), 0.2NHCl (2×50mL), water (50mL), 1.0NNaOH (2×50mL, 60°C, 30min), water (10 ×50mL), acetone (2×50mL), diethyl ether (2×50mL), and finally vacuum-dried for 16h to obtain 0.54g of yellow powder.
铁离子荧光传感器的制作Fabrication of Iron Ion Fluorescence Sensor
取过25μm筛的4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酰胺纤维素0.3g,与D4水凝胶溶液4.7mL(D4水凝胶0.47g溶解于3.807mL乙醇和0.309mL水中)混合,并在室温下搅拌至少18h,使其在水凝胶中均匀分散。然后将该悬浮液用刮刀均匀涂布在100μm厚的聚酯(PET)薄膜片(透光率大于等于88%)上,至少干燥30min。随即将与D6水凝胶溶液4.85mL(D6水凝胶0.475g溶解于3.852mL乙醇和0.428mL水中)混合并搅拌至少18h的炭黑(0.15g)和氧化剂高锰酸钾(0.1g)的悬浮液用刮刀在Fe3+荧光纤维素薄膜上方继续均匀涂布,即可得两层厚度均一的铁离子荧光传感器(上层为炭黑加氧化剂层,厚度150μm,下层为Fe3+荧光纤维素层,厚度150μm)。Take 0.3 g of 4-aminomethylpyridine-1,8-naphthalimidomethylbenzamide cellulose passed through a 25 μm sieve, and dissolve it with 4.7 mL of D4 hydrogel solution (0.47 g of D4 hydrogel is dissolved in 3.807mL ethanol and 0.309mL water) were mixed, and stirred at room temperature for at least 18h, so that it was uniformly dispersed in the hydrogel. Then the suspension was uniformly coated on a 100 μm thick polyester (PET) film sheet (light transmittance greater than or equal to 88%) with a doctor blade, and dried for at least 30 minutes. A mixture of carbon black (0.15 g) and oxidant potassium permanganate (0.1 g) was then mixed with D6 hydrogel solution 4.85 mL (D6 hydrogel 0.475 g dissolved in 3.852 mL ethanol and 0.428 mL water) and stirred for at least 18 h. The suspension is evenly coated on the Fe 3+ fluorescent cellulose film with a scraper to obtain two layers of iron ion fluorescent sensors with uniform thickness (the upper layer is carbon black plus oxidant layer, the thickness is 150 μm, and the lower layer is Fe 3+ fluorescent cellulose layer, thickness 150 μm).
铁离子荧光传感器的荧光性能测试Fluorescence Performance Test of Iron Ion Fluorescence Sensor
(1)铁离子荧光传感器对不同浓度铁离子(Fe3+:Fe2+=1:1)的光谱特征(1) Spectral characteristics of iron ion fluorescent sensor for different concentrations of iron ions (Fe 3+ :Fe 2+ =1:1)
将0.1622g氯化铁和0.1268g氯化亚铁分别溶于0.05mol/LpH6.0的Tris-HCl缓冲液中,用100mL容量瓶定容制得1.0×10-2mol/L的Fe3+标准溶液和1.0×10-2mol/L的Fe2+标准溶液。继续用该缓冲液对制得的Fe3+和Fe2+标准液按1:1的比例进行多次逐级稀释,从而得到了以下一系列不同铁离子浓度的标准液:4μmol/L、8μmol/L、10μmol/L、40μmol/L、80μmol/L、100μmol/L、400μmol/L、800μmol/L、1000μmol/L和10000μmol/L。将铁离子荧光传感器沿着对角线位置固定在荧光比色皿中,在光电倍增管的电压为650V,激发波长和发射波长分别是449nm和521nm的条件下用荧光分光光度计测量其在上述一系列不同铁离子浓度标准液中的发射光荧光强度的变化。图4是本发明制得的铁离子荧光传感器随着铁离子(Fe3+:Fe2+=1:1)浓度增加荧光光谱的变化图,可以看到铁离子荧光传感器在Fe3+和Fe2+等比例共存的情况下表现出强烈的荧光淬灭。随着铁离子浓度的增加,该传感器在521nm处的荧光强度逐渐降低。图5是本发明制得的铁离子荧光传感器随着铁离子(Fe3+:Fe2+=1:1)浓度增加荧光强度的变化图,从该图可以看到当铁离子(Fe3+:Fe2+=1:1)浓度在4μmol/L-1000μmol/L的范围之内时,荧光强度与铁离子(Fe3+:Fe2+=1:1)浓度呈良好的线性关系,其拟合的线性方程可以对铁离子(Fe3+:Fe2+=1:1)进行定量检测。根据3倍10次空白溶液的标准偏差与拟合方程斜率的比计算出铁离子(Fe3+:Fe2+=1:1)浓度的检测限为1.36μmol/L。Dissolve 0.1622g of ferric chloride and 0.1268g of ferrous chloride in 0.05mol/L Tris-HCl buffer solution of pH 6.0, and use a 100mL volumetric flask to obtain 1.0×10 -2 mol/L of Fe 3+ standard solution and 1.0×10 -2 mol/L Fe 2+ standard solution. Continue to use this buffer solution to carry out multiple stepwise dilutions of the prepared Fe 3+ and Fe 2+ standard solutions in a ratio of 1:1, thereby obtaining the following series of standard solutions with different iron ion concentrations: 4 μmol/L, 8 μmol /L, 10μmol/L, 40μmol/L, 80μmol/L, 100μmol/L, 400μmol/L, 800μmol/L, 1000μmol/L and 10000μmol/L. The iron ion fluorescence sensor is fixed in the fluorescence cuvette along the diagonal position, and the voltage of the photomultiplier tube is 650V, and the excitation wavelength and emission wavelength are respectively 449nm and 521nm. Changes in fluorescence intensity of emitted light in a series of standard solutions with different iron ion concentrations. Fig. 4 is the change diagram of the fluorescent spectrum of the ferric ion fluorescent sensor made by the present invention along with the concentration of iron ion (Fe 3+ :Fe 2+ =1:1), it can be seen that the ferric ion fluorescent sensor is in the presence of Fe 3+ and Fe In the case of 2+ equal proportion coexistence, it shows strong fluorescence quenching. With the increase of iron ion concentration, the fluorescence intensity of the sensor at 521nm decreased gradually. Fig. 5 is the changing diagram of the fluorescent intensity of the ferric ion fluorescent sensor prepared by the present invention as the concentration of ferric ions (Fe 3+ :Fe 2+ =1:1) increases, from this figure it can be seen that when the ferric ions (Fe 3+ :Fe 2+ =1:1) concentration in the range of 4μmol/L-1000μmol/L, the fluorescence intensity has a good linear relationship with the iron ion (Fe 3+ :Fe 2+ =1:1) concentration, its The fitted linear equation can quantitatively detect iron ions (Fe 3+ :Fe 2+ =1:1). The detection limit of iron ion (Fe 3+ :Fe 2+ =1:1) concentration was calculated as 1.36μmol/L according to the ratio of the standard deviation of 3 times 10 blank solutions and the slope of the fitting equation.
(2)铁离子荧光传感器对16种其他重金属离子的光谱特征(2) Spectral characteristics of 16 other heavy metal ions by the iron ion fluorescent sensor
将16种金属离子盐[NaCl、KCl、CH3COOLi·2H2O、Al(NO3)3、CaCl2、MgCl2·6H2O、ZnCl2、CoCl2·6H2O、MnCl2·4H2O、CrCl3·6H2O、BaCl2·2H2O、NiCl2·6H2O、CuCl2·2H2O、CdCl2·2.5H2O、Pb(NO3)2、HgCl2]用0.05mol/LpH6.0的Tris-HCl缓冲液精确配置成各自浓度为10mmol/L的储备液,然后稀释成浓度均为1000μmol/L的16种离子标准液备用。同时还配置各金属离子分别与铁离子(Fe3+:Fe2+=1:1)共存的标准液,使得每种标准液中单个金属离子与铁离子(Fe3+:Fe2+=1:1)的浓度均为1000μmol/L。荧光选择性实验如图6所示,将浓度均为1000μmol/L的Na+、K+、Li+、Al3+、Ca2+、Mg2+、Zn2+、Fe2+、Co2+、Mn2+、Cr3+、Ba2+、Ni2+、Cu2 +、Cd2+、Pb2+、Hg2+、Fe3+、Fe2+和铁离子(Fe3+:Fe2+=1:1)标准液分别取2ml加入斜插有铁离子荧光传感器的比色皿中,在荧光稳定后,在650V电压下用波长为449nm的激发光检测其在521nm处的荧光强度的变化。观察图6可知,铁离子荧光传感器对Fe3+、Fe2+和铁离子(Fe3+:Fe2+=1:1)有明显的响应效果,并且在521nm处荧光强度降低到最低值,且三者的荧光强度相似,这说明该传感器对Fe3+、Fe2+和铁离子(Fe3+:Fe2+=1:1)均有很好的选择性。加入Cu2+后,传感器的荧光强度也略有降低,但其他等量金属离子对光极膜荧光发射强度基本没有影响。为了进一步研究其他常见的金属阳离子对铁离子(Fe3+:Fe2+=1:1)测定的干扰影响,我们进行了竞争实验,即将含有其他离子(浓度均为1000μmol/L)的1000μmol/L铁离子(Fe3 +:Fe2+=1:1)溶液加入到含有铁离子荧光传感器的比色皿中进行测定(结果如图7白色柱状图所示)。通过竞争实验可知,除了Cu2+、Fe3+和Fe2+,其他离子和Fe3+共存时在521nm下的荧光发射强度均没有显著变化。从Fe3+和Fe2+的数据可知,该传感器对Fe3+和Fe2+均有很好的识别性,且对两者的识别能力没有差异。因此,除了Cu2+,其他常见金属阳离子和阴离子(不同金属阳离子是以氯化物、硝酸盐或醋酸盐的形式加入)不会干扰的铁离子(Fe3+:Fe2+=1:1)的测定。而当Cu2+的浓度降为100μmol/L时,对1000μmol/L铁离子(Fe3+:Fe2+=1:1)的检测不再造成干扰。因此,此传感器用于铁离子检测是可行的。16 metal ion salts [NaCl, KCl, CH 3 COOLi·2H 2 O, Al(NO 3 ) 3 , CaCl 2 , MgCl 2 ·6H 2 O, ZnCl 2 , CoCl 2 ·6H 2 O, MnCl 2 ·4H 2 O, CrCl 3 6H 2 O, BaCl 2 2H 2 O, NiCl 2 6H 2 O, CuCl 2 2H 2 O, CdCl 2 2.5H 2 O, Pb(NO 3 ) 2 , HgCl 2 ] The 0.05mol/L Tris-HCl buffer solution with pH6.0 is accurately configured into a stock solution with a concentration of 10mmol/L, and then diluted into 16 kinds of ion standard solutions with a concentration of 1000μmol/L for use. At the same time, a standard solution in which each metal ion coexists with iron ions (Fe 3+ :Fe 2+ =1:1) is also configured, so that a single metal ion in each standard solution and iron ion (Fe 3+ :Fe 2+ =1 : 1) the concentration is 1000 μmol/L. The fluorescence selectivity experiment is shown in Figure 6. Na + , K + , Li + , Al 3+ , Ca 2+ , Mg 2+ , Zn 2+ , Fe 2+ , Co 2+ , Mn 2+ , Cr 3+ , Ba 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Pb 2+ , Hg 2+ , Fe 3+ , Fe 2+ and iron ion (Fe 3+ :Fe 2+ = 1 :1) standard Take 2ml of the solution and add them to the cuvettes with the iron ion fluorescence sensor obliquely inserted. After the fluorescence is stable, use the excitation light with a wavelength of 449nm under the voltage of 650V to detect the change of the fluorescence intensity at 521nm. Observing Figure 6, it can be seen that the iron ion fluorescent sensor has an obvious response effect to Fe 3+ , Fe 2+ and iron ions (Fe 3+ :Fe 2+ =1:1), and the fluorescence intensity at 521nm is reduced to the lowest value, And the fluorescence intensities of the three are similar, which shows that the sensor has good selectivity to Fe 3+ , Fe 2+ and iron ions (Fe 3+ :Fe 2+ =1:1). After adding Cu 2+ , the fluorescence intensity of the sensor is also slightly reduced, but other equivalent metal ions have basically no effect on the fluorescence emission intensity of the optode film. In order to further study the interference effect of other common metal cations on the determination of iron ions (Fe 3+ :Fe 2+ = 1:1), we conducted a competition experiment, that is, 1000 μmol/L containing other ions (both concentrations were 1000 μmol/L) The solution of L iron ions (Fe 3 + :Fe 2+ =1:1) was added to the cuvette containing the iron ion fluorescence sensor for measurement (the results are shown in the white bar graph in FIG. 7 ). According to the competition experiment, except for Cu 2+ , Fe 3+ and Fe 2+ , the fluorescence emission intensity at 521nm did not change significantly when other ions coexisted with Fe 3+ . From the data of Fe 3+ and Fe 2+ , it can be seen that the sensor has good recognition for both Fe 3+ and Fe 2+ , and there is no difference in the recognition ability of the two. Therefore, in addition to Cu 2+ , other common metal cations and anions (different metal cations are added in the form of chloride, nitrate or acetate) will not interfere with the iron ion (Fe 3+ :Fe 2+ =1:1 ) determination. When the concentration of Cu 2+ is reduced to 100 μmol/L, the detection of 1000 μmol/L iron ion (Fe 3+ :Fe 2+ =1:1) no longer interferes. Therefore, it is feasible to use this sensor for iron ion detection.
(3)铁离子荧光传感器对含有不同比例Fe3+和Fe2+的铁离子混合液的识别能力(3) The ability of the iron ion fluorescence sensor to identify the iron ion mixture containing different proportions of Fe 3+ and Fe 2+
为了进一步了解该铁离子荧光传感器对Fe3+和Fe2+的识别能力是否有差异,配置了一系列含有不同比例Fe3+和Fe2+的铁离子混合液,使其最终的铁离子总浓度均为1000μM。这些处理包括全部是Fe3+,Fe3+和Fe2+的浓度比为5:1、4:1、3:1、2:1、1:1、1:2、1:3、1:4、1:5,以及全部是Fe2+。分别取各种处理的铁离子溶液2ml加入斜插有铁离子荧光传感器的比色皿中,在荧光稳定后,在650V电压下用波长为449nm的激发光检测其在521nm处的荧光强度变化,结果如图8所示。根据图8可知,铁离子总浓度相同时,各处理发射光荧光值的相对偏差均在4%以下,而且单因素方差分析表明,在P<0.05的情况下各处理发射光荧光强度的差异不显著,这说明该铁离子传感器对于Fe3+和Fe2+的识别能力一样,可以用来精确检测含有不同Fe3+和Fe2+浓度比的全铁离子浓度。In order to further understand whether there is a difference in the recognition ability of the iron ion fluorescent sensor for Fe 3+ and Fe 2+ , a series of iron ion mixtures containing different proportions of Fe 3+ and Fe 2+ were configured so that the final total iron ion The concentrations were all 1000 μM. These treatments include all Fe 3+ , the concentration ratio of Fe 3+ and Fe 2+ is 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:1 4, 1:5, and all Fe 2+ . Take 2ml of iron ion solutions of various treatments and add them into cuvettes obliquely inserted with iron ion fluorescence sensors. After the fluorescence is stable, use excitation light with a wavelength of 449nm to detect the change of fluorescence intensity at 521nm at a voltage of 650V. The result is shown in Figure 8. According to Figure 8, when the total concentration of iron ions is the same, the relative deviations of the emitted light fluorescence values of each treatment are all below 4%, and the one-way analysis of variance shows that in the case of P<0.05, the differences in the emitted light fluorescence intensity of each treatment are not significant. Significantly, this shows that the iron ion sensor has the same recognition ability for Fe 3+ and Fe 2+ , and can be used to accurately detect the concentration of total iron ions with different concentration ratios of Fe 3+ and Fe 2+ .
实施例2Example 2
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物1的合成过程中,调整草酰氯的用量,使4-氰基苯甲酸和草酰氯的摩尔比为2:3,吡啶和叔丁醇之间的体积比为1.1:1。最终化合物1的产率为49%。The technique of each step in this embodiment is the same as Example 1, and the only difference is: in the synthetic process of compound 1, adjust the consumption of oxalyl chloride, make the mol ratio of 4-cyanobenzoic acid and oxalyl chloride be 2:3, The volume ratio between pyridine and tert-butanol is 1.1:1. The yield of the final compound 1 was 49%.
实施例3Example 3
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物1的合成过程中,调整草酰氯的用量,使4-氰基苯甲酸和草酰氯的摩尔比为3:5。最终化合物1的产率为53%。The process of each step in this example is the same as that of Example 1, the only difference being that during the synthesis of compound 1, the amount of oxalyl chloride was adjusted so that the molar ratio of 4-cyanobenzoic acid and oxalyl chloride was 3:5. The yield of the final compound 1 was 53%.
实施例4Example 4
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物1的合成过程中,将草酰氯替换为氯化亚砜,且调整其用量使4-氰基苯甲酸和氯化亚砜的摩尔比为3:2,。将吡啶替换为4-二甲氨基吡啶,并调整其用量使4-二甲氨基吡啶和叔丁醇之间的体积比为1.2:1,最终化合物1的产率为45%。The process of each step in this embodiment is the same as that of Example 1, the only difference being that in the synthesis process of compound 1, oxalyl chloride is replaced by thionyl chloride, and its amount is adjusted to make 4-cyanobenzoic acid and chlorinated The molar ratio of sulfoxide is 3:2. Pyridine was replaced by 4-dimethylaminopyridine, and the amount was adjusted so that the volume ratio between 4-dimethylaminopyridine and tert-butanol was 1.2:1, and the final yield of compound 1 was 45%.
实施例5Example 5
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物2的合成过程中,调整催化剂的用量,使4-氰基苯甲酸叔丁酯与镍催化剂之间的重量比为20:3,调整甲醇的用量,使4-氰基苯甲酸叔丁酯与甲醇之间的重量比为1:8。化合物2的产率为82%。The technique of each step in this embodiment is with embodiment 1, and difference is only: in the synthetic process of compound 2, adjust the consumption of catalyst, make the weight ratio between 4-cyanobenzoic acid tert-butyl ester and nickel catalyst be 20:3, adjust the amount of methanol, so that the weight ratio between tert-butyl 4-cyanobenzoate and methanol is 1:8. The yield of compound 2 was 82%.
实施例6Example 6
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物2的合成过程中,调整催化剂的用量,使4-氰基苯甲酸叔丁酯与镍催化剂之间的重量比为20:3,调整甲醇的用量,使4-氰基苯甲酸叔丁酯与甲醇之间的重量比为3:20。化合物2的产率为84%。The technique of each step in this embodiment is with embodiment 1, and difference is only: in the synthetic process of compound 2, adjust the consumption of catalyst, make the weight ratio between 4-cyanobenzoic acid tert-butyl ester and nickel catalyst be 20:3, adjust the amount of methanol so that the weight ratio between tert-butyl 4-cyanobenzoate and methanol is 3:20. The yield of compound 2 was 84%.
实施例7Example 7
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物2的合成过程中,将镍催化剂替换为钯碳催化剂,并调整催化剂的用量,使4-氰基苯甲酸叔丁酯与钯碳催化剂之间的重量比为15:1,调整甲醇的用量,使4-氰基苯甲酸叔丁酯与甲醇之间的重量比为1:6。化合物2的产率为74%。The technique of each step in this embodiment is the same as that of Example 1, and the only difference is that in the synthesis process of compound 2, the nickel catalyst is replaced by a palladium carbon catalyst, and the consumption of the catalyst is adjusted to make 4-cyanobenzoic acid tert-butyl The weight ratio between the ester and the palladium carbon catalyst is 15:1, and the consumption of methyl alcohol is adjusted so that the weight ratio between tert-butyl 4-cyanobenzoate and methyl alcohol is 1:6. The yield of compound 2 was 74%.
实施例8Example 8
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物4的合成过程中,调整2-胺甲基吡啶和N,N-二异丙基乙胺的用量,使叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯、2-胺甲基吡啶和N,N-二异丙基乙胺之间的摩尔比为1:1:1。化合物4的产率为85%。The process of each step in this embodiment is the same as that of Example 1, the only difference is that during the synthesis of compound 4, the amount of 2-aminopicoline and N,N-diisopropylethylamine is adjusted to make tert-butyl The molar ratio between methyl-4-chloro-1,8-naphthalimidomethylbenzoate, 2-aminopicoline and N,N-diisopropylethylamine is 1:1 :1. The yield of compound 4 was 85%.
实施例9Example 9
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物4的合成过程中,调整2-胺甲基吡啶和N,N-二异丙基乙胺的用量,使叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯、2-胺甲基吡啶和N,N-二异丙基乙胺之间的摩尔比为6:5:15。化合物4的产率为82%。The process of each step in this embodiment is the same as that of Example 1, the only difference is that during the synthesis of compound 4, the amount of 2-aminopicoline and N,N-diisopropylethylamine is adjusted to make tert-butyl The molar ratio between 4-chloro-1,8-naphthalimidomethylbenzoate, 2-aminopicoline and N,N-diisopropylethylamine is 6:5 :15. The yield of compound 4 was 82%.
实施例10Example 10
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物4的合成过程中,将N,N-二异丙基乙胺替换为三乙胺,并调整2-胺甲基吡啶和三乙胺的用量,使叔丁基-4-氯-1,8-萘二甲酰亚胺基甲基苯甲酸酯、2-胺甲基吡啶和三乙胺之间的摩尔比为8:5:5。化合物4的产率为73%。The process of each step in this example is the same as that of Example 1, the only difference is that during the synthesis of compound 4, N,N-diisopropylethylamine is replaced by triethylamine, and the 2-aminomethyl The amount of pyridine and triethylamine such that the molar ratio between tert-butyl-4-chloro-1,8-naphthalimidomethylbenzoate, 2-aminopicoline and triethylamine It is 8:5:5. The yield of compound 4 was 73%.
实施例11Example 11
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物5的合成过程中,调整三氟乙酸的用量,使叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯的摩尔数为三氟乙酸摩尔数的1.8%。化合物5的产率为97%。The process of each step in this example is the same as in Example 1, the only difference is that in the synthesis process of compound 5, the amount of trifluoroacetic acid was adjusted to make tert-butyl-4-aminomethylpyridine-1,8-naphthalene The mole amount of dicarboximidomethylbenzoate is 1.8% of the mole amount of trifluoroacetic acid. The yield of compound 5 was 97%.
实施例12Example 12
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物5的合成过程中,调整三氟乙酸的用量,使叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯的摩尔数为三氟乙酸摩尔数的2.0%。化合物5的产率为98%。The process of each step in this example is the same as that of Example 1, the only difference is that in the synthesis process of compound 5, the amount of trifluoroacetic acid was adjusted to make tert-butyl-4-aminomethylpyridine-1,8-naphthalene The molar amount of dicarboximidomethylbenzoate is 2.0% of the molar amount of trifluoroacetic acid. The yield of compound 5 was 98%.
实施例13Example 13
该实施例中各步骤的工艺同实施例1,不同之处仅在于:化合物5的合成过程中,将三氟乙酸替换为体积比为1:2的盐酸和乙酸乙酯混合试剂,并调整其用量,叔丁基-4-胺甲基吡啶-1,8-萘二甲酰亚胺基甲基苯甲酸酯的摩尔数为该混合试剂摩尔数的3.0%。化合物5的产率为75%。The process of each step in this embodiment is the same as in Example 1, the only difference being that in the synthesis process of compound 5, trifluoroacetic acid is replaced by a mixed reagent of hydrochloric acid and ethyl acetate with a volume ratio of 1:2, and its The dosage, the mole number of tert-butyl-4-aminomethylpyridine-1,8-naphthalimide methylbenzoate is 3.0% of the mole number of the mixed reagent. The yield of compound 5 was 75%.
由上述实施例可知,本发明提供的铁离子分子荧光传感器在测量样品中铁离子浓度时具有测量效率高、灵敏度高、准确性好高等优点,且能够检测液体中含有任意比例的二价铁离子和三价铁离子的总浓度。It can be seen from the above examples that the iron ion molecular fluorescence sensor provided by the present invention has the advantages of high measurement efficiency, high sensitivity, and high accuracy when measuring the concentration of iron ions in a sample, and can detect any proportion of ferrous ions and The total concentration of ferric ions.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810379715.0A CN109060733B (en) | 2018-04-25 | 2018-04-25 | Iron ion molecular fluorescence sensor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810379715.0A CN109060733B (en) | 2018-04-25 | 2018-04-25 | Iron ion molecular fluorescence sensor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109060733A CN109060733A (en) | 2018-12-21 |
CN109060733B true CN109060733B (en) | 2019-11-05 |
Family
ID=64820083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810379715.0A Active CN109060733B (en) | 2018-04-25 | 2018-04-25 | Iron ion molecular fluorescence sensor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109060733B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111548788A (en) * | 2020-06-11 | 2020-08-18 | 苏州海发智能技术有限公司 | Composite sensing membrane for detecting oxygen based on fluorescence method and use method thereof |
CN113698499B (en) * | 2021-08-24 | 2022-05-24 | 华南理工大学 | Iron ion response nanocellulose-based fluorescent material and preparation method and application thereof |
CN114507214B (en) * | 2022-03-03 | 2023-04-28 | 河北师范大学 | Fluorescent compound, fluorescent probe and fluorescent sensing film, preparation method and application thereof |
CN114921241A (en) * | 2022-04-14 | 2022-08-19 | 新疆农业大学 | A kind of preparation method and application of manganese complex cellulose-based fluorescent functional material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4634689A (en) * | 1985-10-31 | 1987-01-06 | Schering Corporation | Phosphinylalkanoyl imino acids |
US8097725B2 (en) * | 2004-12-03 | 2012-01-17 | Roche Diagnostics Operations, Inc. | Luminescent indicator dye and optical sensor |
US9360474B2 (en) * | 2012-11-29 | 2016-06-07 | Opti Medical Systems, Inc. | Multi-layer device for selectively determining magnesium ion |
CN103408440B (en) * | 2013-08-20 | 2014-12-10 | 天津希恩思生化科技有限公司 | Organic compound for detecting content of metal ions in water environment |
CN104292204B (en) * | 2014-09-05 | 2016-03-16 | 苏州福来兹检测科技有限公司 | A kind of compound for measuring metal ion content in water surrounding and application thereof |
CN104341347B (en) * | 2014-10-21 | 2018-02-23 | 苏州福来兹检测科技有限公司 | A kind of organic compound and its application for being used to prepare wide pH value fluorescence probe |
DE102016103750B4 (en) * | 2015-12-23 | 2018-04-05 | Endress+Hauser Conducta Gmbh+Co. Kg | Sensor cap for an optochemical sensor and corresponding optochemical sensor |
-
2018
- 2018-04-25 CN CN201810379715.0A patent/CN109060733B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109060733A (en) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109060733B (en) | Iron ion molecular fluorescence sensor and preparation method thereof | |
Lin et al. | Anion induced supramolecular polymerization: a novel approach for the ultrasensitive detection and separation of F− | |
Ma et al. | A novel AIE chemosensor based on quinoline functionalized Pillar [5] arene for highly selective and sensitive sequential detection of toxic Hg2+ and CN− | |
Li et al. | New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application | |
Wang et al. | Preparation of fluorescent nanofibrous film as a sensing material and adsorbent for Cu2+ in aqueous solution via copolymerization and electrospinning | |
Gogoi et al. | A new quinoline based luminescent Zr (IV) metal–organic framework for the ultrasensitive recognition of 4-nitrophenol and Fe (III) ions | |
CN101735277B (en) | Fluorescent probe compounds, preparation method and use thereof | |
Hong et al. | An anthracene based conjugated triazine framework as a luminescent probe for selective sensing of p-nitroaniline and Fe (III) ions | |
Ghosh et al. | A functionalized UiO-66 MOF acting as a luminescent chemosensor for selective and sensitive turn-on detection of superoxide and acetylacetone | |
Li et al. | UiO-68-PT MOF-based sensor and its mixed matrix membrane for detection of HClO in water | |
CN108587605B (en) | Fe3+Molecular fluorescence compound and preparation method thereof | |
CN112209871A (en) | Zinc ion fluorescent probe based on tetraphenylethylene and preparation method and application thereof | |
Peng et al. | Two cyanoethylene-based fluorescence probes for highly efficient cyanide detection and practical applications in drinking water and living cells | |
CN104478855A (en) | 3-amino-4-((E)-pyridine-2(1-hydro)-alkenyl acetonitrile)-1,8-naphthalimide derivative | |
KR101665046B1 (en) | Ratiometric fluorescent chemosensor including boronic acid binding to mercury ion selectively, preparation method thereof and detection method of mercury ion using the same | |
CN108864046B (en) | Fe2+Molecular fluorescence test fluid, preparation method and its application | |
Pourfallah et al. | A novel recyclable magnetic nanostructure for highly sensitive, selective and reversible detection of zinc ions in aqueous solutions | |
Feng et al. | An ultrasound triggered gelation approach to selectively solvatochromic sensors | |
Yao et al. | Metal-ion-mediated synergistic coordination: construction of AIE-metallogel sensor arrays for anions and amino acids | |
CN114276356B (en) | A mitochondria-targeted fluorescent probe and its synthesis method and application | |
CN108675989B (en) | Fe3+ molecular fluorescence test agent and preparation method thereof | |
CN113666966A (en) | Synthesis and application of fluorescent probe for detecting trace water in dimethyl sulfoxide | |
CN108801992B (en) | Fe3+Molecular fluorescence sensor and preparation method thereof | |
CN115261015B (en) | A dual-channel fluorescent probe for detecting N2H4 and Cu2+ based on ICT principle and its preparation method and application | |
CN106047340A (en) | Preparation and application of graphene quantum dots modified by terpyridine groups |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |