CN109050876B - 一种使用仿生机翼的微型无人机 - Google Patents
一种使用仿生机翼的微型无人机 Download PDFInfo
- Publication number
- CN109050876B CN109050876B CN201810767234.7A CN201810767234A CN109050876B CN 109050876 B CN109050876 B CN 109050876B CN 201810767234 A CN201810767234 A CN 201810767234A CN 109050876 B CN109050876 B CN 109050876B
- Authority
- CN
- China
- Prior art keywords
- bionic
- wing
- leading edge
- micro
- front edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 61
- 238000012545 processing Methods 0.000 claims abstract description 5
- 230000003592 biomimetic effect Effects 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 abstract description 10
- 238000013461 design Methods 0.000 abstract description 6
- 230000010355 oscillation Effects 0.000 abstract description 4
- 241000283153 Cetacea Species 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/10—Shape of wings
- B64C3/14—Aerofoil profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/028—Micro-sized aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/10—All-wing aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/25—Fixed-wing aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/10—Wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/13—Propulsion using external fans or propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/10—Shape of wings
- B64C3/14—Aerofoil profile
- B64C2003/146—Aerofoil profile comprising leading edges of particular shape
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Remote Sensing (AREA)
- Toys (AREA)
Abstract
本发明提出一种使用仿生机翼的新型微型无人机,属于微型无人机领域。本发明包括:仿生前缘、主机翼、动力系统、电机架、气动舵面;其中,仿生前缘和主机翼构成仿生机翼,主机翼为固定矩形翼,仿生前缘是在固定矩形翼的平直前缘上进行加工得到波峰数为n的仿生正弦前缘,n≥3。本发明提出的一种新型微型无人机,通过采用一种仿生正弦前缘的新型机翼平面,改善微型无人机在大迎角下产生的自诱导滚转振荡现象,提高飞行器的飞行稳定性,且结构简单,设计加工方便。
Description
技术领域
本发明属于微型无人机领域,具体涉及一种使用仿生状正弦前缘机翼的微型无人机。
背景技术
微型飞行器是无人机的一种类别。微型飞行器的定义为飞行速度最大为5-20m/s,其机身最大设计长度在10-15cm[1],在军事、民用、科学研究等领域被越来越多的应用[2]。微型飞行器主要分为三大类,分别是固定翼微型飞行器、旋翼微型飞行器和扑翼微型飞行器,其中固定翼的研究是目前微型飞行器中研发种类最多、应用最广的类型。
固定翼微型飞行器在设计上需要考虑小展弦比机翼的气动特性,小展弦比机翼由于其较小的展弦比以及自身的机身翼展尺寸大小等特点,很容易受到不稳定气流的影响从而造成飞行器吸力面流场结构出现非对称效应,从而产生自诱导横向非稳定性现象[3]。这一横滚非稳定现象可以使飞行器出现大振幅的滚转振动。
传统的固定翼矩微型无人机普遍采用普通矩形翼、齐默曼形机翼等传统形状,在飞行时很容易受到自诱导横向非稳定性现象的影响,出现自诱导滚转振荡,严重时甚至会导致飞行器失控甚至坠毁。
仿生学是一门模仿生物的特殊本领,利用自然界中生物的结果和功能原理来设计研制机械和多种新技术的科学。在飞行器设计与制造中有许多灵感均来自自然界的生物。座头鲸鳍部的前缘有类似正弦形状的突起,研究表明,这种正弦状突起可以有效改善座头鲸的水动力学特性[4]。
参考文献:
[1]Gursul I.Vortex flows on UAVs:Issues and challenges[J].Aeronautical Journal,2004, 108(1090):597-610.
[2]袁昌盛,付金华.国际上微型飞行器的研究进展与关键问题[J].航空兵器,2005(6):50-53.
[3]Hu T,Wang Z,Gursul I.Control of Self-Excited Roll Oscillations ofLow-Aspect-Ratio Wings Using Acoustic Excitation[C]//Aiaa Aerospace SciencesMeeting Including the New Horizons Forum and Aerospace Exposition.2013.
[4]Fish F E,Battle J M.Hydrodynamic design of the humpback whaleflipper.[J].Journal of Morphology,1995,225(1):51-60.
发明内容
针对传统的固定翼矩微型无人机,在飞行时很容易受到自诱导横向非稳定性现象的影响,出现自诱导滚转振荡,严重时甚至会导致飞行器失控甚至坠毁的问题。受座头鲸鳍部前缘正弦状突起的启发,本发明提出一种新型微型无人机,通过采用一种仿生正弦前缘的新型机翼平面,改善微型无人机在大迎角下产生的自诱导滚转振荡现象,提高飞行器的飞行稳定性,且结构简单,设计加工方便。
本发明提供的一种使用仿生机翼的新型微型无人机,包括:仿生前缘、主机翼、动力系统、电机架、气动舵面;仿生前缘和主机翼构成仿生机翼,主机翼为固定矩形翼,仿生前缘是在固定矩形翼的平直前缘上进行加工得到波峰数为n的仿生正弦前缘,n≥3。
所述的动力系统为一对螺旋桨发动机,通过电机架安装在仿生机翼前缘上;气动舵面包括一对在主机翼尾缘处对称安装的副翼。
本发明与现有技术相比,具有以下明显优势:
(1)本发明的仿生机翼的新型微型无人机,可减少或抑制微小型无人机飞行时出现的大振幅自诱导滚转振荡现象;
(2)本发明的仿生机翼的新型微型无人机可有效提升飞机在大迎角下的气动特性;
(3)本发明使用的仿生机翼前缘具有周期性凸起,可为飞机提供额外的载荷安放位置,同时可使飞机重心前移,提高飞行稳定性。
附图说明
图1为本发明新型微型无人机整体结构示意图;
图2为本发明新型微型无人机三视面示意图,其中,a是俯视图,b是侧视图,c是正视图;
图3为本发明新型微型无人机仿生正弦前缘机翼三视面示意图;
图4为本发明新型微型无人机副翼三视面示意图;
图5为座头鲸鳍部前缘示意图;
图6为本发明新型微型无人机仿生正弦前缘局部示意图;
图7为本发明新型微型无人机仿生正弦前缘机翼升力系数-迎角曲线示意图;
图8为本发明新型微型无人机仿生正弦前缘四个不同机翼模型机翼滚转角-迎角变化曲线示意图;
图9为本发明新型微型无人机仿生正弦前缘机翼滚转角-时间历程曲线示意图;
图中:
1-仿生前缘;2-主机翼;3-动力系统;4-电机架;5-气动舵面。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图对本发明作进一步的详细描述。
本发明针对于现有技术存在的问题,提出一种使用仿生机翼的新型微型无人机,动力系统为一对螺旋桨发动机,通过电机架直接安装在仿生机翼前缘突起处,通过两侧螺旋桨差动进行航向控制;机翼后方安装一对气动舵面,构成整体的微型无人机。
如图1所示,为本发明的新型微型无人机整体示意图,包括:仿生前缘1、主机翼2、动力系统3、电机架4和气动舵面5。仿生前缘1和主机翼2构成仿生机翼,主机翼2为固定矩形翼,仿生前缘1是在固定矩形翼的平直前缘上进行加工得到的波峰数为n的仿生正弦前缘,n≥3。
动力系统3为一对螺旋桨发动机,包括两个对称安装的螺旋桨及电机驱动装置,通过电机架4安装在仿生机翼前缘上,电机架4为3D打印,电机架4连接仿生机翼与动力系统3。气动舵面5包括一对在主机翼2尾缘处对称安装的副翼。
如图2为本发明的新型微型无人机三视面示意图,其中,a是俯视图,b是侧视图,c是正视图。
如图3为本发明的新型微型无人机使用的仿生正弦前缘机翼三面示意视图。本发明实施例中,机翼翼展220mm,弦向最长处为140mm。
如图4为本发明新型微型无人机副翼三视面示意图。本发明实施例中,两侧副翼翼梢之间距离200mm,副翼弦长50mm。
如图5为座头鲸鳍部前缘示意图。本发明利用座头鲸鳍部前缘不规则的突起设计了本发明中带有仿生前缘1的仿生机翼。
如图6为新型微型无人机仿生正弦前缘部分局部示意图。在设计仿生正弦前缘时,主要包含两个主要参数:幅值A和波长λ。幅值A定义为前缘突起部分波峰与波谷之间的轴向距离,A值为机翼弦长c的12%,本发明使用的仿生机翼弦长c=140mm,即A=16.8mm。波长λ定义为前缘凸起部分两波峰横向距离,λ值与仿生前缘的波峰数有关,以本发明实施例的无人机为例,仿生前缘,在设计时,通过下面方式来设计正弦的幅值A和波长λ:设置幅值A 为机翼弦长的12%,设置波长b为机翼翼展,本发明实施例中b=220mm。根据实验结果,本发明选取波峰数n为6的仿生机翼,即
如图7为新型微型无人机仿生正弦前缘机翼升力系数-迎角曲线示意图,采用本发明设计的仿生机翼与普通矩形翼在风洞实验中进行升力系数-迎角曲线的对比。图7中横坐标α代表迎角,纵坐标CL代表升力系数,四条曲线表示四个不同的机翼模型对应的升力系数曲线, baseline模型为普通矩形翼,6l、8l、10l分别表示本发明设计的波峰数(仿生前缘凸起数)分别为6、8、10的仿生机翼。图7中的小图为失速区的放大图像。从图中可以看出,在失速区仿生机翼的升力系数均明显大于普通矩形翼,且可以有效延迟失速角的出现。其中,6l模型在失速区表现最好。
图8表示本发明新型微型无人机仿生正弦前缘四个不同机翼模型机翼滚转角--迎角的变化曲线示意图。横坐标α为迎角,纵坐标Φ表示滚转角,其中,baseline模型为普通矩形翼, 6l、8l、10l表示正弦前缘凸起数分别为6、8、10的仿生机翼。可以看出,baseline机翼在15°迎角时即开始出现滚转现象,且滚转现象出现后发展很快;而三个仿生机翼均可以显著抑制滚转现象,一方面将滚转现象起始迎角推迟至17°之后,另一方面显著降低最大滚转角幅值,且6l机翼模型对滚转现象的抑制效果最好。
图9为6l仿生机翼与普通矩形翼的滚转角-时间历程曲线示意图。图中横坐标为时间t,纵坐标为滚转角Φ。从图中可以看出,普通矩形翼的滚转角达到了50°左右,且频率更高;6l 的仿生机翼模型将滚转角降低到了10°左右,且一定程度上减小了滚转频率。
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810767234.7A CN109050876B (zh) | 2018-07-13 | 2018-07-13 | 一种使用仿生机翼的微型无人机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810767234.7A CN109050876B (zh) | 2018-07-13 | 2018-07-13 | 一种使用仿生机翼的微型无人机 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109050876A CN109050876A (zh) | 2018-12-21 |
CN109050876B true CN109050876B (zh) | 2021-04-06 |
Family
ID=64816341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810767234.7A Active CN109050876B (zh) | 2018-07-13 | 2018-07-13 | 一种使用仿生机翼的微型无人机 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109050876B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111907699A (zh) * | 2020-08-10 | 2020-11-10 | 北京航空航天大学 | 基于仿鲸鳍前缘的直升机旋翼动态失速控制结构 |
CN112373673B (zh) * | 2020-09-25 | 2023-09-26 | 哈尔滨工业大学 | 改善双凸起翼段性能的前缘双凸起结构的流动控制方法 |
CN112298549A (zh) * | 2020-10-30 | 2021-02-02 | 北京航空航天大学 | 具有仿生波状前缘的倾转旋翼及倾转旋翼机 |
CN117669056B (zh) * | 2023-12-13 | 2024-10-22 | 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) | 一种基于仿生凹凸前缘抑制机翼颤振气动结构及优化方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779199A (en) * | 1969-09-25 | 1973-12-18 | R Mayer | Boundary layer control means |
CN1321859C (zh) * | 2004-03-16 | 2007-06-20 | 清华大学 | 一种微型飞行器 |
CN2681998Y (zh) * | 2004-03-16 | 2005-03-02 | 清华大学 | 翼身融合体微型飞行器 |
US20060060721A1 (en) * | 2004-03-30 | 2006-03-23 | Phillip Watts | Scalloped leading edge advancements |
CN103318410A (zh) * | 2013-07-05 | 2013-09-25 | 西北工业大学 | 一种无舵面垂直起降微型飞行器 |
CN106564585B (zh) * | 2016-10-26 | 2019-12-10 | 北京航空航天大学 | 高性能深失速机翼结构及飞行器 |
CN107499513A (zh) * | 2017-09-01 | 2017-12-22 | 无锡翼鸥科技有限公司 | 微小型可悬停固定翼飞行器 |
-
2018
- 2018-07-13 CN CN201810767234.7A patent/CN109050876B/zh active Active
Non-Patent Citations (1)
Title |
---|
仿生前缘凹凸鳍性能理论及实验研究;张佐天;《万方学位论文数据库》;20160505 * |
Also Published As
Publication number | Publication date |
---|---|
CN109050876A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230202646A1 (en) | Method and apparatus for mitigating trailing vortex wakes of lifting or thrust generating bodies | |
CN109050876B (zh) | 一种使用仿生机翼的微型无人机 | |
US10661884B2 (en) | Oblique blended wing body aircraft | |
Barnard et al. | Aircraft flight: a description of the physical principles of aircraft flight | |
Broering et al. | Numerical investigation of energy extraction in a tandem flapping wing configuration | |
von Ellenrieder et al. | Fluid mechanics of flapping wings | |
CN103693187B (zh) | 一种机翼结构 | |
ElGhazali et al. | Aerodynamic optimization of unmanned aerial vehicle through propeller improvements | |
Othman et al. | Aerial and aquatic biological and bioinspired flow control strategies | |
US10011350B2 (en) | Vertical take-off and landing drag rudder | |
Dinesh et al. | Diagnostic investigation of aircraft performance at different winglet cant angles | |
Gopalakrishnan et al. | Effect of rotation kinematics and angle of attack on flapping flight | |
Schroeder et al. | Using computational fluid dynamics for micro-Air vehicle airfoil validation and prediction | |
CN109050877B (zh) | 一种使用斜槽引气机翼的微型无人机 | |
Santhanakrishnan et al. | Enabling flow control technology for low speed UAVs | |
Yusoff et al. | The evolution of induced drag of multi-winglets for aerodynamic performance of NACA23015 | |
Arshad et al. | Computational investigations for the application of winglets on small-scale UAVs | |
Kashyap et al. | Study of flow around bio-inspired corrugated aerofoil at different angle of attacks in low Reynolds number regime | |
RU2606216C1 (ru) | Беспилотный летательный аппарат короткого взлета и посадки | |
Makgantai et al. | A review on wingtip devices for reducing induced drag on fixed-wing drones | |
CN113968341A (zh) | 一种使用仿生小翼的新型微型无人机 | |
Makgantai et al. | Design optimization of wingtip devices to reduce induced drag on fixed-wings | |
Goodman | Conceptual aerodynamic design of delta-type tailless unmanned aircraft | |
Yu et al. | Optimum design of a flexible wing for portable aerial vehicle | |
Marqués | Advanced UAV aerodynamics, flight stability and control: an Introduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |