CN109039464A - A kind of microwave photon millimeter wave ultra-wideband signal generating method and device based on up-conversion - Google Patents
A kind of microwave photon millimeter wave ultra-wideband signal generating method and device based on up-conversion Download PDFInfo
- Publication number
- CN109039464A CN109039464A CN201810998856.0A CN201810998856A CN109039464A CN 109039464 A CN109039464 A CN 109039464A CN 201810998856 A CN201810998856 A CN 201810998856A CN 109039464 A CN109039464 A CN 109039464A
- Authority
- CN
- China
- Prior art keywords
- mach
- signal
- zehnder modulator
- output
- circulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title claims abstract description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 45
- 239000000835 fiber Substances 0.000 claims abstract description 31
- 238000001228 spectrum Methods 0.000 claims abstract description 31
- 230000000694 effects Effects 0.000 claims abstract description 16
- 230000010287 polarization Effects 0.000 claims abstract description 13
- 238000004891 communication Methods 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 claims abstract description 10
- 230000009977 dual effect Effects 0.000 claims abstract description 9
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims abstract 2
- 239000013307 optical fiber Substances 0.000 claims abstract 2
- 230000005540 biological transmission Effects 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 4
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 230000005693 optoelectronics Effects 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 2
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Lasers (AREA)
Abstract
一种基于上变频的微波光子毫米波超宽带信号产生方法及装置,属于微波光子学技术领域。由激光源、偏振控制器、任意波形发生器、微波信号源、双平行马赫曾德尔调制器、掺铒光纤放大器、光隔离器、第一环形器、单模光纤、第二环形器、光电探测器和频谱分析仪组成。本发明基于上变频技术产生位于22GHz‑29GHz的毫米波超宽带信号,用单边带调制实现的上变频能够克服单模光纤中的色散影响,使得产生的超宽带信号能够进行远距离传输;利用二次布里渊散射效应实现单边带调制,具有结构简单易于实现的特点。而且布里渊增益的放大与损耗的衰减特性使得生成超宽带信号的频谱较好的满足美国联邦通信委员会规定的功率谱密度掩膜。
A microwave photonic millimeter wave ultra-wideband signal generation method and device based on up-conversion, belonging to the technical field of microwave photonics. Composed of laser source, polarization controller, arbitrary waveform generator, microwave signal source, dual parallel Mach-Zehnder modulator, erbium-doped fiber amplifier, optical isolator, first circulator, single-mode fiber, second circulator, photoelectric detection device and spectrum analyzer. The present invention generates a millimeter-wave ultra-wideband signal at 22GHz-29GHz based on the up-conversion technology, and the up-conversion realized by single-sideband modulation can overcome the dispersion effect in the single-mode optical fiber, so that the generated ultra-wideband signal can be transmitted over a long distance; The double Brillouin scattering effect realizes single sideband modulation, which has the characteristics of simple structure and easy implementation. Moreover, the amplification of the Brillouin gain and the attenuation characteristics of the loss make the spectrum of the generated ultra-wideband signal better meet the power spectral density mask specified by the Federal Communications Commission of the United States.
Description
技术领域technical field
本发明属于微波光子学技术领域,具体涉及一种基于上变频的微波光子毫米波超宽带信号产生方法及装置。The invention belongs to the technical field of microwave photonics, and in particular relates to a method and device for generating a microwave photon millimeter wave ultra-wideband signal based on up-conversion.
背景技术Background technique
随着无线通讯技术的快速发展,各类型无线通信系统相继开发,可利用的频谱日渐饱和。但是人们对无线通讯系统的要求仍然在不停的增加,以求其数据传输速率更快、成本更低、功耗更小。在这样的需求背景下,超宽带信号引起人们的广泛关注,并且已经成为无线通信范畴研究和开发的一个热点问题。超宽带信号由于其低功耗、抗多径衰落、无载波和高数据速率等特点,可应用于近距离大容量无线通信和传感器网络中,被当作下一代无线通讯领域的关键因素。With the rapid development of wireless communication technology, various types of wireless communication systems have been developed one after another, and the available spectrum is increasingly saturated. However, people's requirements for wireless communication systems are still increasing, in order to achieve faster data transmission rates, lower costs, and lower power consumption. Under the background of such demand, UWB signal has attracted people's widespread attention, and has become a hot issue in the research and development of wireless communication. Due to its low power consumption, anti-multipath fading, no carrier and high data rate, ultra-wideband signals can be applied to short-distance large-capacity wireless communications and sensor networks, and are regarded as key factors in the field of next-generation wireless communications.
传统的基于电域信号处理的超宽带生成方法,受限于电子瓶颈效应,无法生成带宽数十GHz甚至上百GHz的信号,而且容易受到电磁干扰导致传输距离缩短。而光学技术具有大带宽、高频率、低相位噪声等优点。通过利用微波光子技术将光信号与微波频段的电信号相互作用,可以产生稳定有效的超宽带信号。The traditional ultra-wideband generation method based on electrical domain signal processing is limited by the electronic bottleneck effect, unable to generate signals with a bandwidth of tens of GHz or even hundreds of GHz, and is susceptible to electromagnetic interference that shortens the transmission distance. Optical technology has the advantages of large bandwidth, high frequency, and low phase noise. By using microwave photonics technology to interact optical signals with electrical signals in the microwave band, stable and efficient ultra-wideband signals can be generated.
发明内容Contents of the invention
本发明的目的是提供一种基于上变频的微波光子毫米波超宽带信号产生方法及装置。本发明利用二次布里渊效应对超宽带信号进行上变频,使系统结构简单易于实现。得益于布里渊增益谱和损耗谱的选择性放大和衰减特性,产生的超宽带信号频谱符合美国联邦通信委员会对超宽带信号的规定。The purpose of the present invention is to provide a microwave photon millimeter wave ultra-wideband signal generation method and device based on up-conversion. The invention uses the secondary Brillouin effect to up-convert the ultra-wideband signal, so that the system structure is simple and easy to implement. Thanks to the selective amplification and attenuation characteristics of the Brillouin gain spectrum and loss spectrum, the generated UWB signal spectrum complies with the regulations of the U.S. Federal Communications Commission for UWB signals.
本发明所提出的基于上变频的微波光子毫米波超宽带信号产生装置,其结构如图1所示,由激光源、偏振控制器、任意波形发生器、微波信号源、双平行马赫曾德尔调制器、掺铒光纤放大器、光隔离器、第一环形器、单模光纤、第二环形器、光电探测器和频谱分析仪组成。The structure of the microwave photonic millimeter wave ultra-broadband signal generation device based on up-conversion proposed by the present invention is shown in Figure 1. It consists of a laser source, a polarization controller, an arbitrary waveform generator, a microwave signal source, and dual-parallel Mach-Zehnder modulation. It consists of an erbium-doped fiber amplifier, an optical isolator, a first circulator, a single-mode fiber, a second circulator, a photodetector and a spectrum analyzer.
由激光源输出的连续光信号fc通过偏振控制器输入到双平行马赫曾德尔调制器中。偏振控制器用来将入射光的偏振态与双平行马赫曾德尔调制器的主轴对准。双平行马赫曾德尔调制器是集成在单个芯片上的商用器件,由第一子马赫曾德尔调制器、第二子马赫曾德尔调制器、第三母马赫曾德尔调制器组成;第一子马赫曾德尔调制器和第二子马赫曾德尔调制器作为两个子调制器嵌入在第三母马赫曾德尔调制器的两个臂上,第一直流稳压电源、第二直流稳压电源、第三直流稳压电源分别为第一子马赫曾德尔调制器、第二子马赫曾德尔调制器、第三母马赫曾德尔调制器提供直流电压;通过调整第一直流稳压电源、第二直流稳压电源、第三直流稳压电源的输出电压,改变双平行马赫曾德尔调制器的三个直流偏置,可以控制双平行马赫曾德尔调制器的工作状态。控制任意波形发生器,使其发送出一系列电高斯脉冲,作为电学超宽带信号,然后将其施加到第一子马赫曾德尔调制器中,作为第一子马赫曾德尔调制器电学信号输入,控制第一直流稳压电源的输出电压,使第一子马赫曾德尔调制器工作在最大传输点;同时,将微波信号源输出的频率等于布里渊频移fB的微波信号施加到第二子马赫曾德尔调制器,并控制第二直流稳压电源的输出电源,使第二子马赫曾德尔调制器工作在正交传输点;再通过调整第三直流稳压电源的输出电压,改变第三母马赫曾德尔调制器的偏置电压,在双平行马赫曾德尔调制器的输出端产生一个载有电学超宽带信号的光载波和一系列频率间隔为fB的边带,如图2(a)所示。通常情况下,超宽带信号的10dB带宽小于fB,因此附加在光载波上的超宽带信号不会被别的边带影响。双平行马赫曾德尔调制器输出的光载波和频率间隔为fB的边带由掺铒光纤放大器放大,经过光隔离器发送到第一环形器的Ⅰ端口,光隔离器的作用是确保光信号单向传输,随后,被掺铒光纤放大器放大的信号从第一环形器的Ⅱ端口输出进入单模光纤,这个信号有两个作用。The continuous optical signal fc output by the laser source is input into the dual parallel Mach- Zehnder modulator through the polarization controller. A polarization controller is used to align the polarization state of the incident light with the main axis of the dual parallel Mach-Zehnder modulator. The dual-parallel Mach-Zehnder modulator is a commercial device integrated on a single chip, consisting of the first sub-Mach-Zehnder modulator, the second sub-Mach-Zehnder modulator, and the third sub-Mach-Zehnder modulator; the first sub-Mach-Zehnder modulator The Zendel modulator and the second sub-Mach-Zehnder modulator are embedded as two sub-modulators on the two arms of the third mother Mach-Zehnder modulator, the first DC regulated power supply, the second DC regulated power supply, the second The three DC regulated power supplies respectively provide DC voltages for the first sub-Mach-Zehnder modulator, the second sub-Mach-Zehnder modulator, and the third female Mach-Zehnder modulator; by adjusting the first DC regulated power supply, the second DC The output voltages of the stabilized power supply and the third DC stabilized power supply change the three DC biases of the dual-parallel Mach-Zehnder modulator to control the working state of the dual-parallel Mach-Zehnder modulator. controlling the arbitrary waveform generator so that it sends out a series of electrical Gaussian pulses as electrical ultra-wideband signals, and then applying them to the first sub-Mach-Zehnder modulator as the electrical signal input of the first sub-Mach-Zehnder modulator, controlling the output voltage of the first DC stabilized power supply so that the first sub-Mach-Zehnder modulator works at the maximum transmission point; at the same time, applying the microwave signal whose frequency is equal to the Brillouin frequency shift f B output by the microwave signal source to the first The second sub-Mach-Zehnder modulator controls the output power of the second DC stabilized power supply so that the second sub-Mach-Zehnder modulator works at the orthogonal transmission point; and then adjusts the output voltage of the third DC stabilized power supply to change The bias voltage of the third female Mach-Zehnder modulator produces an optical carrier carrying an electrical ultra-wideband signal and a series of sidebands with a frequency interval of f B at the output of the dual-parallel Mach-Zehnder modulator, as shown in Figure 2 (a) shown. Usually, the 10dB bandwidth of the UWB signal is smaller than f B , so the UWB signal attached to the optical carrier will not be affected by other sidebands. The optical carrier and the sideband with a frequency interval of f B output by the dual-parallel Mach-Zehnder modulator are amplified by the erbium-doped fiber amplifier, and sent to the I port of the first circulator through the optical isolator. The function of the optical isolator is to ensure that the optical signal One-way transmission, then, the signal amplified by the erbium-doped fiber amplifier is output from the port II of the first circulator into the single-mode fiber, and this signal has two functions.
首先,当第一环形器的Ⅱ端口输出的光载波信号功率超过单模光纤产生受激布里渊散射的阈值时,在单模光纤中就会生成一个反向传输的斯托克斯光,这个斯托克斯光和光载波的频率差为布里渊频移fB,因此其频率为fc-fB,如图2(b)所示。在受激布里渊散射效应中,作为泵浦光的光载波的功率会逐渐转移到反向传播的斯托克斯光中,使得调制信号中的光载波有很大程度的衰减。同时,因为调制信号的各阶边带和搭载在光载波上的超宽带信号达不到受激布里渊散射的阈值,它们的幅度保持不变。产生的频率为fc-fB的斯托克斯光从第一环形器的Ⅱ端口输入、Ⅲ端口输出,然后由第二环形器的Ⅰ端口输入、Ⅱ端口输出,作为一个新的泵浦光输入到单模光纤中。这个新的泵浦信号与从第一环形器的Ⅱ端口输出到单模光纤中的正向传输的信号相互作用发生第二次受激布里渊散射效应。由这个频率为fc-fB的新泵浦光同时产生位于fc-2fB处的增益谱和位于fc处的损耗谱。增益谱与光隔离器输出的调制信号(图2(a))中的负二阶边带重叠,从而对负二阶边带进行放大。同样的,损耗谱与光隔离器输出的调制信号(图2(a))中的光载波重叠,因此对光载波进行进一步的衰减,经过二次衰减在很大程度上抑制了光载波中的低频分量。图2(c)展示了光隔离器输出的调制信号经过二次布里渊效应处理后的最终结果,即负二阶边带被放大,而剩余的边带在调制信号中被相对抑制。随后,经过受激布里渊散射处理的信号由第二环形器的Ⅲ端口输出,然后传输到光电探测器中进行光电转换,附加在载波上的超宽带信号与在fc-2fB处的负二阶边带进行拍频,从而将超宽带信号的频率向高频方向移动了2fB,最终获得毫米波段的超宽带信号。First, when the power of the optical carrier signal output by the port II of the first circulator exceeds the threshold value of stimulated Brillouin scattering in the single-mode fiber, a Stokes light propagating backward will be generated in the single-mode fiber, The frequency difference between the Stokes light and the light carrier is the Brillouin frequency shift f B , so its frequency is f c -f B , as shown in Figure 2(b). In the stimulated Brillouin scattering effect, the power of the optical carrier used as the pump light will gradually be transferred to the counterpropagating Stokes light, so that the optical carrier in the modulated signal is attenuated to a large extent. At the same time, because the sidebands of each order of the modulated signal and the UWB signal carried on the optical carrier do not reach the threshold of stimulated Brillouin scattering, their amplitudes remain unchanged. The generated Stokes light with frequency f c -f B is input from port II and output from port III of the first circulator, and then input from port I and output from port II of the second circulator as a new pump Light is input into a single-mode fiber. This new pump signal interacts with the signal output from the port II of the first circulator to the forward transmission signal in the single-mode fiber to produce the second stimulated Brillouin scattering effect. A gain spectrum at fc - 2fB and a loss spectrum at fc are simultaneously produced by this new pump light at frequency fc-fB . The gain spectrum overlaps with the negative second-order sidebands in the modulated signal output from the optoisolator (Figure 2(a)), thereby amplifying the negative second-order sidebands. Similarly, the loss spectrum overlaps with the optical carrier in the modulated signal output by the optical isolator (Figure 2(a)), so the optical carrier is further attenuated, and the second attenuation suppresses the optical carrier low frequency components. Figure 2(c) shows the final result after the modulated signal output by the optical isolator is processed by the secondary Brillouin effect, that is, the negative second-order sidebands are amplified, while the remaining sidebands are relatively suppressed in the modulated signal. Subsequently, the signal processed by stimulated Brillouin scattering is output from the port III of the second circulator, and then transmitted to the photodetector for photoelectric conversion. The negative second-order sidebands are beat, so that the frequency of the ultra-wideband signal is shifted to the high frequency direction by 2f B , and finally the ultra-wideband signal in the millimeter wave band is obtained.
本发明装置所述的器件特点:The device features described in the device of the present invention:
(1)基于上变频技术产生位于22GHz-29GHz的毫米波超宽带信号。(1) Based on the up-conversion technology, the millimeter-wave ultra-wideband signal at 22GHz-29GHz is generated.
(2)用单边带调制实现的上变频能够克服单模光纤中的色散影响,使得产生的超宽带信号能够进行远距离传输。(2) The frequency up-conversion realized by single-sideband modulation can overcome the influence of dispersion in single-mode fiber, so that the generated ultra-wideband signal can be transmitted over long distances.
(3)利用二次布里渊散射效应实现单边带调制,具有结构简单易于实现的特点。而且布里渊增益的放大与损耗的衰减特性使得生成超宽带信号的频谱较好的满足美国联邦通信委员会规定的功率谱密度掩膜。(3) The single sideband modulation is realized by using the secondary Brillouin scattering effect, which has the characteristics of simple structure and easy implementation. Moreover, the amplification of the Brillouin gain and the attenuation characteristics of the loss make the spectrum of the generated ultra-wideband signal better meet the power spectral density mask specified by the Federal Communications Commission of the United States.
附图说明Description of drawings
图1:基于上变频的微波光子毫米波超宽带信号产生装置;Figure 1: Microwave photonic millimeter wave ultra-wideband signal generation device based on up-conversion;
图2:频谱处理图;Figure 2: Spectrum processing diagram;
图3:由任意波形发生器产生的高斯序列频谱图;Figure 3: Spectrogram of a Gaussian sequence generated by an arbitrary waveform generator;
图4:调制器信号的光谱图;Figure 4: Spectrogram of the modulator signal;
图5:在第一环形器的Ⅲ端口测量到的反向传输的斯托克斯光的光谱图;Figure 5: Spectrogram of the reverse propagating Stokes light measured at port III of the first circulator;
图6:由二次布里渊散射效应产生的单边带调制信号的光谱图;Figure 6: Spectrogram of the SSB modulation signal produced by the quadratic Brillouin scattering effect;
图7:生成的毫米波超宽带信号的频谱图。Figure 7: Spectrogram of the generated mmWave UWB signal.
具体实施方式Detailed ways
实施例1:Example 1:
激光源为Santec公司的TSL-510可调激光器,激光器的波长范围为1510nm~1630nm;偏振控制器为四川梓冠公司的三环偏振控制器;双平行马赫曾德尔调制器为Photline公司的MX-LN-40-PFA-PFA,带宽为40GHz,工作的光波长为1530nm~1580nm,其中第一子马赫曾德尔调制器和第二子马赫曾德尔调制器的半波电压为4.6V,第三母马赫德尔调制器的半波电压为9.1V;微波信号源为安捷伦公司的微波信号发生器E8257D,输出频率范围为100kHz~70GHz;任意波形发生器是安捷伦公司的M8195A;第一直流稳压电源、第二直流稳压电源、第三直流稳压电源均为固纬公司的GPS-4303C,输出电压幅度在1V~20V可调;掺铒光纤放大器为无锡市中兴光电子技术公司的WZEDFA-SO-P-S-0-1-2;飞博特光电科技(深圳)有限公司的光隔离器,隔离度大于40dB;单模光纤长度为14km;第一环形器和第二环形器均为深圳市智源光通讯技术公司的CIR-3-1550-900um-1m-FC/APC;光电探测器是Optilab公司的PD-40-M,带宽为40GHz;频谱分析仪是安捷伦公司的N9010A,测量信号范围带宽为10Hz~26.5GHz。The laser source is the TSL-510 tunable laser of Santec Company, the wavelength range of the laser is 1510nm~1630nm; the polarization controller is the three-ring polarization controller of Sichuan Ziguan Company; the dual parallel Mach-Zehnder modulator is the MX- LN-40-PFA-PFA, the bandwidth is 40GHz, the working optical wavelength is 1530nm~1580nm, the half-wave voltage of the first sub-Mach-Zehnder modulator and the second sub-Mach-Zehnder modulator is 4.6V, the third mother The half-wave voltage of the Mahder modulator is 9.1V; the microwave signal source is Agilent's microwave signal generator E8257D, and the output frequency range is 100kHz to 70GHz; the arbitrary waveform generator is Agilent's M8195A; the first DC stabilized power supply , the second DC stabilized power supply, and the third DC stabilized power supply are all GPS-4303C of GW Instek, and the output voltage range is adjustable from 1V to 20V; the erbium-doped fiber amplifier is WZEDFA-SO- P-S-0-1-2; the optical isolator of Fibot Optoelectronics Technology (Shenzhen) Co., Ltd., the isolation is greater than 40dB; the length of the single-mode fiber is 14km; the first circulator and the second circulator are Shenzhen Zhiyuan CIR-3-1550-900um-1m-FC/APC from Optical Communication Technology Company; the photodetector is PD-40-M from Optilab, with a bandwidth of 40GHz; the spectrum analyzer is N9010A from Agilent, and the bandwidth of the measurement signal range is 10Hz~26.5GHz.
连接好系统之后,打开设备的开关,使所有的设备处于工作状态。激光源输出波长1549.58nm的连续光,经过偏振控制器,发送到双平行马赫曾德尔调制器中进行调制。由微波信号源输出一个射频信号,设置其频率值等于布里渊频移10.875GHz,然后将该射频信号施加到第二子马赫曾德尔调制器中。控制任意波形发生器输出一个13Gb/s的高斯伪随机比特序列,它的10dB带宽约为7GHz,将其作为超宽带信号施加在第一子马赫曾德尔调制器上。图3展示了由任意波形发生器产生的超宽带信号的频谱。为了获得具有最佳光载波与调制边带比的调制信号,令第一子马赫曾德尔调制器偏置在最大传输点,令第二子马赫曾德尔调制器偏置在正交传输点。因此,将第一直流稳压源设置为0V,将第二直流稳压源设置为9.1V。然后在第一子马赫曾德尔调制器和第二子马赫曾德尔调制器之间引入零相位差,因此将第三直流稳压源设置为0V。图4展示了光载波携带超宽带信号和没有携带超宽带信号的调制信号的光谱。在虚线与实线的对比中可以看出,光载波的线宽明显变宽,这表明超宽带信号成功地由光学载波携带,而其他边带几乎没有变化。然后将调制信号输入到了掺铒光纤放大器中,调制信号被放大了10dB。可以观察到,只有光载波超过了在14km单模光纤中的受激布里渊散射的阈值。单模光纤是用来发生受激布里渊散射效应的介质,经过测量,14km单模光纤的受激布里渊散射临界功率为7.5dBm,其布里渊频移为10.875GHz。图5展示了在14km单模光纤中由受激布里渊散射效应产生的反向传播的斯托克斯光的光谱。将由掺铒光纤放大器输出的信号输入到由第一环形器、第二环形器和一个14km的单模光纤组成的光环路中,以产生二次受激布里渊散射效应。在通过受激布里渊散射效应选择性地放大和衰减之后,正如理论所分析所示,调制信号中负二阶边带被放大,载波被抑制。图6展示了经过受激布里渊散射效应处理后产生的单边带调制信号的频谱。可以观察到,负二阶边带相比于其他边带幅度增加了20dB,而且载波被超宽带信号所淹没。由于上边带和下边带之间的不平衡,载波携带的超宽带信号与负二阶边带通过光电探测器拍频,从而超宽带信号被上变频到21.75GHz。通过频谱分析仪测量,光电探测器的输出频谱如图7所示。可以发现生成信号的频谱开始于22GHz。而21.75GHz和22GHz之间的频率分量被损耗谱抑制,该损耗谱是由反向斯托克斯光作泵浦光时所产生的,尽管这改变了超宽带信号的波形,但在实际应用中不会影响超宽带信号使用。更重要的是,这一特性使得生成的信号的频谱与美国联邦通信委员会所规定的掩膜很好地吻合。然而,由于使用频谱分析仪的频率测量范围是从10Hz到26.5GHz的,所以不能获得从22GHz到29GHz的完整频谱。尽管如此,基于所获得的现有数据,可以肯定是所提出的方案能够成功的生成有效地符合美国联邦通信委员会所规定的掩膜的毫米波超宽带信号。After connecting the system, turn on the switch of the equipment to make all the equipment in working condition. The laser source outputs continuous light with a wavelength of 1549.58nm, which is sent to a dual-parallel Mach-Zehnder modulator through a polarization controller for modulation. A radio frequency signal is output from a microwave signal source, its frequency value is set equal to the Brillouin frequency shift of 10.875 GHz, and then the radio frequency signal is applied to the second sub-Mach-Zehnder modulator. Control the arbitrary waveform generator to output a 13Gb/s Gaussian pseudo-random bit sequence, its 10dB bandwidth is about 7GHz, and apply it to the first sub-Mach-Zehnder modulator as an ultra-wideband signal. Figure 3 shows the spectrum of an UWB signal generated by an arbitrary waveform generator. In order to obtain a modulated signal with an optimal optical carrier to modulation sideband ratio, the first sub-Mach-Zehnder modulator is biased at the maximum transmission point, and the second sub-Mach-Zehnder modulator is biased at the orthogonal transmission point. Therefore, set the first DC stabilized voltage source to 0V, and set the second DC stabilized voltage source to 9.1V. Then a zero phase difference is introduced between the first sub-Mach-Zehnder modulator and the second sub-Mach-Zehnder modulator, thus setting the third DC regulated source to 0V. Figure 4 shows the spectrum of the optical carrier carrying the UWB signal and the modulated signal without the UWB signal. As can be seen in the comparison of the dotted line with the solid line, the linewidth of the optical carrier is significantly wider, which indicates that the UWB signal is successfully carried by the optical carrier with little change in other sidebands. Then the modulation signal is input into the erbium-doped fiber amplifier, and the modulation signal is amplified by 10dB. It can be observed that only the optical carrier exceeds the threshold of stimulated Brillouin scattering in a 14 km single-mode fiber. The single-mode fiber is the medium used to generate the stimulated Brillouin scattering effect. After measurement, the stimulated Brillouin scattering critical power of the 14km single-mode fiber is 7.5dBm, and its Brillouin frequency shift is 10.875GHz. Figure 5 shows the spectrum of the backpropagating Stokes light produced by the stimulated Brillouin scattering effect in a 14 km single-mode fiber. The signal output by the erbium-doped fiber amplifier is input into the optical loop composed of the first circulator, the second circulator and a 14km single-mode fiber to produce the secondary stimulated Brillouin scattering effect. After selective amplification and attenuation by the stimulated Brillouin scattering effect, as shown by theoretical analysis, the negative second-order sidebands in the modulated signal are amplified and the carrier is suppressed. Figure 6 shows the spectrum of the SSB modulated signal produced by the stimulated Brillouin scattering effect. It can be observed that the magnitude of the negative second-order sideband increases by 20dB compared to other sidebands, and the carrier is submerged by the UWB signal. Due to the imbalance between the upper sideband and the lower sideband, the UWB signal carried by the carrier and the negative second-order sideband are beat by the photodetector, so that the UWB signal is up-converted to 21.75GHz. Measured by a spectrum analyzer, the output spectrum of the photodetector is shown in Figure 7. It can be found that the spectrum of the generated signal starts at 22GHz. The frequency components between 21.75 GHz and 22 GHz are suppressed by the loss spectrum, which is generated when the reverse Stokes light is used as the pump light. Although this changes the waveform of the UWB signal, in practical applications It will not affect the use of UWB signals. What's more, this property allows the spectrum of the generated signal to match well with the mask specified by the FCC. However, since the frequency measurement range using a spectrum analyzer is from 10 Hz to 26.5 GHz, the complete spectrum from 22 GHz to 29 GHz cannot be obtained. Nonetheless, based on the available data obtained, it is certain that the proposed scheme can successfully generate mmWave UWB signals that effectively comply with the mask specified by the US Federal Communications Commission.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810998856.0A CN109039464B (en) | 2018-08-30 | 2018-08-30 | A method and device for generating microwave photonic millimeter wave ultra-wideband signal based on frequency up-conversion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810998856.0A CN109039464B (en) | 2018-08-30 | 2018-08-30 | A method and device for generating microwave photonic millimeter wave ultra-wideband signal based on frequency up-conversion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109039464A true CN109039464A (en) | 2018-12-18 |
CN109039464B CN109039464B (en) | 2021-07-13 |
Family
ID=64626326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810998856.0A Active CN109039464B (en) | 2018-08-30 | 2018-08-30 | A method and device for generating microwave photonic millimeter wave ultra-wideband signal based on frequency up-conversion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109039464B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109639364A (en) * | 2019-01-30 | 2019-04-16 | 广东工业大学 | A kind of multichannel arbitrary carry system phase-coded signal optics generation device and production method |
CN110336611A (en) * | 2019-07-23 | 2019-10-15 | 中国科学院半导体研究所 | Image Interference Suppression Mixer Based on Fiber Dispersion Effect |
CN110518983A (en) * | 2019-09-10 | 2019-11-29 | 中国科学院半导体研究所 | Reconfigurable filter based on dual-polarization double parallel MZ Mach-Zehnder |
CN110808789A (en) * | 2019-11-12 | 2020-02-18 | 中国舰船研究设计中心 | Ultra-wideband high-frequency electromagnetic environment signal generation method based on optical heterodyne technology |
CN111447013A (en) * | 2020-04-07 | 2020-07-24 | 吉林大学 | Method and device for generating fourth-order ultra-wideband signal based on microwave photonics |
CN113391121A (en) * | 2020-03-13 | 2021-09-14 | 西安电子科技大学 | Method for realizing instantaneous frequency measurement based on frequency response monitoring |
CN113489551A (en) * | 2021-07-05 | 2021-10-08 | 吉林大学 | Centimeter wave/millimeter wave ultra-wideband signal generating device |
CN113691314A (en) * | 2020-05-18 | 2021-11-23 | 西安电子科技大学 | Photon linear frequency conversion and optical fiber transmission method for microwave and millimeter wave signals |
CN114389711A (en) * | 2020-10-16 | 2022-04-22 | 西安电子科技大学 | All-optical multi-channel/multi-band linear frequency modulation signal optical generation method with good reconfigurability |
CN115380483A (en) * | 2020-04-03 | 2022-11-22 | 微技术设备有限公司 | Apparatus and method for up-conversion of millimeter wave signals and detection of up-converted signals |
CN117692014A (en) * | 2024-02-01 | 2024-03-12 | 北京雷格讯电子股份有限公司 | Microwave millimeter wave communication method and communication system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030189745A1 (en) * | 2002-04-05 | 2003-10-09 | Nobuhiko Kikuchi | Optical single sideband transmitter |
CN105467376A (en) * | 2016-01-14 | 2016-04-06 | 中国人民解放军空军工程大学 | Large tuning range chirp signal generating method and device |
CN106788756A (en) * | 2016-12-22 | 2017-05-31 | 中国电子科技集团公司第二十七研究所 | Ultra wide band Larger Dynamic frequency conversion channel based on Microwave photonics |
CN206259943U (en) * | 2016-12-22 | 2017-06-16 | 中国电子科技集团公司第二十七研究所 | Ultra wide band Larger Dynamic frequency conversion channel based on Microwave photonics |
CN107919914A (en) * | 2017-12-20 | 2018-04-17 | 西安电子科技大学 | Quadruple signal is generated based on double-parallel modulator and realizes the device and method of microwave photon phase shift |
CN108199776A (en) * | 2018-02-08 | 2018-06-22 | 吉林大学 | A kind of microwave photon means of upconversion and method based on optical-electronic oscillator |
-
2018
- 2018-08-30 CN CN201810998856.0A patent/CN109039464B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030189745A1 (en) * | 2002-04-05 | 2003-10-09 | Nobuhiko Kikuchi | Optical single sideband transmitter |
CN105467376A (en) * | 2016-01-14 | 2016-04-06 | 中国人民解放军空军工程大学 | Large tuning range chirp signal generating method and device |
CN106788756A (en) * | 2016-12-22 | 2017-05-31 | 中国电子科技集团公司第二十七研究所 | Ultra wide band Larger Dynamic frequency conversion channel based on Microwave photonics |
CN206259943U (en) * | 2016-12-22 | 2017-06-16 | 中国电子科技集团公司第二十七研究所 | Ultra wide band Larger Dynamic frequency conversion channel based on Microwave photonics |
CN107919914A (en) * | 2017-12-20 | 2018-04-17 | 西安电子科技大学 | Quadruple signal is generated based on double-parallel modulator and realizes the device and method of microwave photon phase shift |
CN108199776A (en) * | 2018-02-08 | 2018-06-22 | 吉林大学 | A kind of microwave photon means of upconversion and method based on optical-electronic oscillator |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109639364A (en) * | 2019-01-30 | 2019-04-16 | 广东工业大学 | A kind of multichannel arbitrary carry system phase-coded signal optics generation device and production method |
CN109639364B (en) * | 2019-01-30 | 2021-07-06 | 广东工业大学 | A kind of multi-channel arbitrary system phase encoding signal optical generating device and generating method |
CN110336611B (en) * | 2019-07-23 | 2021-01-29 | 中国科学院半导体研究所 | Image interference rejection mixer based on optical fiber dispersion effect |
CN110336611A (en) * | 2019-07-23 | 2019-10-15 | 中国科学院半导体研究所 | Image Interference Suppression Mixer Based on Fiber Dispersion Effect |
CN110518983A (en) * | 2019-09-10 | 2019-11-29 | 中国科学院半导体研究所 | Reconfigurable filter based on dual-polarization double parallel MZ Mach-Zehnder |
CN110518983B (en) * | 2019-09-10 | 2020-08-25 | 中国科学院半导体研究所 | Reconfigurable filter based on dual-polarization dual-parallel Mach-Zehnder modulator |
CN110808789A (en) * | 2019-11-12 | 2020-02-18 | 中国舰船研究设计中心 | Ultra-wideband high-frequency electromagnetic environment signal generation method based on optical heterodyne technology |
CN110808789B (en) * | 2019-11-12 | 2022-06-03 | 中国舰船研究设计中心 | Ultra-wideband high-frequency electromagnetic environment signal generation method based on optical heterodyne technology |
CN113391121A (en) * | 2020-03-13 | 2021-09-14 | 西安电子科技大学 | Method for realizing instantaneous frequency measurement based on frequency response monitoring |
CN113391121B (en) * | 2020-03-13 | 2022-08-02 | 西安电子科技大学 | Method for realizing instantaneous frequency measurement based on frequency response monitoring |
CN115380483B (en) * | 2020-04-03 | 2023-08-01 | 微技术设备有限公司 | Apparatus and method for up-conversion of millimeter wave signals and detection of up-converted signals |
CN115380483A (en) * | 2020-04-03 | 2022-11-22 | 微技术设备有限公司 | Apparatus and method for up-conversion of millimeter wave signals and detection of up-converted signals |
CN111447013A (en) * | 2020-04-07 | 2020-07-24 | 吉林大学 | Method and device for generating fourth-order ultra-wideband signal based on microwave photonics |
CN111447013B (en) * | 2020-04-07 | 2022-09-13 | 吉林大学 | Fourth-order ultra-wideband signal generation device based on microwave photonics |
CN113691314A (en) * | 2020-05-18 | 2021-11-23 | 西安电子科技大学 | Photon linear frequency conversion and optical fiber transmission method for microwave and millimeter wave signals |
CN113691314B (en) * | 2020-05-18 | 2022-11-22 | 西安电子科技大学 | Photon linear frequency conversion and optical fiber transmission method for microwave and millimeter wave signals |
CN114389711A (en) * | 2020-10-16 | 2022-04-22 | 西安电子科技大学 | All-optical multi-channel/multi-band linear frequency modulation signal optical generation method with good reconfigurability |
CN114389711B (en) * | 2020-10-16 | 2023-12-08 | 西安电子科技大学 | Optical generation method of all-optical multichannel/multiband linear frequency modulation signal with good reconfigurability |
CN113489551B (en) * | 2021-07-05 | 2022-09-20 | 吉林大学 | Centimeter wave/millimeter wave ultra-wideband signal generating device |
CN113489551A (en) * | 2021-07-05 | 2021-10-08 | 吉林大学 | Centimeter wave/millimeter wave ultra-wideband signal generating device |
CN117692014A (en) * | 2024-02-01 | 2024-03-12 | 北京雷格讯电子股份有限公司 | Microwave millimeter wave communication method and communication system |
CN117692014B (en) * | 2024-02-01 | 2024-04-23 | 北京雷格讯电子股份有限公司 | Microwave millimeter wave communication method and communication system |
Also Published As
Publication number | Publication date |
---|---|
CN109039464B (en) | 2021-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109039464A (en) | A kind of microwave photon millimeter wave ultra-wideband signal generating method and device based on up-conversion | |
CN104993358B (en) | Single-side belt light based on stimulated Brillouin scattering carries microwave signal generation device | |
CN104618022A (en) | Millimeter wave signal photonics generating method and millimeter wave signal photonics generating device | |
CN108199776A (en) | A kind of microwave photon means of upconversion and method based on optical-electronic oscillator | |
CN111447013B (en) | Fourth-order ultra-wideband signal generation device based on microwave photonics | |
CN111277338A (en) | Device for generating broadband chaotic laser | |
Xiong et al. | A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio | |
US12155419B2 (en) | Generation of optical pulses with controlled distributions of quadrature values | |
Zhang et al. | Integrated direct single sideband modulation utilizing sideband amplification injection locking effect based on multi-section mutual injection DFB laser | |
CN113489551B (en) | Centimeter wave/millimeter wave ultra-wideband signal generating device | |
Yaakob et al. | On the carrier generation and HD signal transmission using the millimeter-wave radio over fiber system | |
Luo et al. | Bandwidth-tunable single-carrier UWB monocycle generation using a nonlinear optical loop mirror | |
Moodie et al. | Efficient harmonic generation using an electroabsorption modulator | |
Yu et al. | All-optical modulation format conversion from PSK to ASK based on phase-sensitive amplification | |
Rzaigui et al. | Optical heterodyning for reduction of chromatic dispersion sensitivity in 60 GHz mode-locked laser systems | |
Babiel et al. | Radio-over-fiber photonic wireless bridge in the W-Band | |
Zhou et al. | High-speed photonic power-efficient ultra-wideband transceiver based on multiple PM-IM conversions | |
Chang et al. | A radio over fiber system for simultaneous generation and transmission of multiband signals | |
Ding et al. | Pulsed Sagnac loop phase-modulated microwave photonic link | |
CN110460383A (en) | A Quantum Key Distribution Light Source | |
Hu et al. | Microwave photonic filter design and optimization based on stimulated Brillouin scattering using a directly modulated pump | |
Rampone et al. | Electro-optical radiofrequency up-converter based on a semiconductor optical amplifier | |
Pinna et al. | High-power integrated indium phosphide transmitter for free-space optical communications | |
Du et al. | Photonic generation of millimeter-wave ultra-wideband monocycle signal using up-conversion based on stimulated Brillouin scattering effect | |
Du et al. | Photonic generation of MMW-UWB monocycle and doublet signals based on frequency up-conversion and delay-line filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |