CN109034662A - A kind of production target Visualized Monitoring System and method based on process flow - Google Patents
A kind of production target Visualized Monitoring System and method based on process flow Download PDFInfo
- Publication number
- CN109034662A CN109034662A CN201811010246.1A CN201811010246A CN109034662A CN 109034662 A CN109034662 A CN 109034662A CN 201811010246 A CN201811010246 A CN 201811010246A CN 109034662 A CN109034662 A CN 109034662A
- Authority
- CN
- China
- Prior art keywords
- index
- data
- production
- production target
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- General Physics & Mathematics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Marine Sciences & Fisheries (AREA)
- Primary Health Care (AREA)
- Mining & Mineral Resources (AREA)
- Animal Husbandry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- General Factory Administration (AREA)
Abstract
Description
技术领域technical field
本发明属于生产指标监控领域,具体涉及一种基于工艺流程的生产指标可视化监控系统及方法。The invention belongs to the field of production index monitoring, and in particular relates to a production index visualization monitoring system and method based on a technological process.
背景技术Background technique
目前国内关于生产全流程生产指标可视化监控系统及方法的研究和应用为数不多且功能单一。“201310723320.5(可视化选矿生产全流程工艺指标优化决策系统)”从选矿生产现场控制系统获取选矿生产全流程控制策略所需数据并从本地获取离线数据,对算法进行封装,或者对封装好的算法进行模块化修改,组态形成选矿生产全流程控制策略,该专利主要针对选矿生产指标的优化。“201610807805.6(一种基于物联网和工业云的选矿设备移动监测系统及方法)”提供一种基于物联网和工业云的选矿设备移动监测系统及方法,实现了使设备的监控不必在固定场所内进行,可以向企业管理人员和科研人员提供随时随地监测数据。“201711283037.X(一种选矿生产指标可视化分析系统与方法)”实现对选矿生产各工序指标的整合和配置并对指标异常进行分析可视,该专利主要针对选矿生产指标异常情况进行可视分析。但是上述专利没有涉及到选矿生产指标可视化监控的可配置和组态化。针对生产指标可视化监控,虽然201711283037.X专利涉及到了生产指标可视化,但是其仅仅使用雷达图对生产指标进行可视化,并没有根据生产指标监控实际需求采用不同的可视化方案。此外,上述专利都没有涉及到生产指标可视化与指标监控算法结合的情况。针对上述专利中存在的问题,本发明提出了一种基于工艺流程图的生产指标可视化监控系统及方法。At present, there are only a few researches and applications on the visualization monitoring system and method of production indicators in the whole production process in China, and the functions are single. "201310723320.5 (visualized mineral processing production process index optimization decision-making system)" obtains the data required for the mineral processing production process control strategy from the mineral processing production site control system and obtains offline data from the local, and encapsulates the algorithm, or performs the packaged algorithm Modular modification and configuration form the whole process control strategy of mineral processing production. This patent is mainly aimed at the optimization of mineral processing production indicators. "201610807805.6 (A mobile monitoring system and method for mineral processing equipment based on the Internet of Things and industrial cloud)" provides a mobile monitoring system and method for mineral processing equipment based on the Internet of Things and industrial cloud, which realizes that the monitoring of the equipment does not have to be in a fixed place It can provide monitoring data anytime and anywhere to enterprise managers and scientific researchers. "201711283037.X (a system and method for visual analysis of mineral processing production indicators)" realizes the integration and configuration of various process indicators of mineral processing production and analyzes and visualizes abnormal indicators. This patent mainly focuses on visual analysis of abnormal mineral processing production indicators . However, the above-mentioned patents do not relate to the configuration and configuration of the visual monitoring of mineral processing production indicators. For the visual monitoring of production indicators, although the 201711283037.X patent involves the visualization of production indicators, it only uses radar charts to visualize production indicators, and does not adopt different visualization solutions according to the actual needs of production indicator monitoring. In addition, none of the above-mentioned patents involves the combination of production indicator visualization and indicator monitoring algorithm. Aiming at the problems existing in the above patents, the present invention proposes a production index visualization monitoring system and method based on the process flow chart.
本发明具有以下创新点:The present invention has the following innovative points:
提供了基于生产工艺流程的生产指标可视化组态设计模块,根据生产工艺以组态方式绘制工艺流程图,并通过可视界面定义其节点功能、触发事件、报警信息、提示信息、工艺规则,建立工艺与设备、工艺与生产指标间的关联关系,从而实现对生产指标的可视化监控;Provides a visual configuration design module for production indicators based on the production process, draws the process flow chart in a configuration mode according to the production process, and defines its node functions, trigger events, alarm information, prompt information, and process rules through the visual interface, and establishes The relationship between process and equipment, process and production indicators, so as to realize the visual monitoring of production indicators;
将生产指标按工序和指标类型进行分类,实现对不同分类指标的多视图监控,提升指标监控的交互性和便捷性;Classify production indicators by process and indicator type, realize multi-view monitoring of different classification indicators, and improve the interactivity and convenience of indicator monitoring;
支持实时数据、历史数据、历史数据统计特性、多指标综合对比分析、数据关联关系分析的可视化方案,提升生产过程中对生产指标的监控功能和效率;支持自定义可视化方案,用户借助可视化组态设计模块和所监控的生产指标,实现个性化定制生产指标可视化方案,提升用户对生产指标的监控效率;It supports real-time data, historical data, statistical characteristics of historical data, multi-indicator comprehensive comparative analysis, and visualization solutions for data correlation analysis to improve the monitoring function and efficiency of production indicators in the production process; it supports custom visualization solutions, and users can use visual configuration Design modules and monitored production indicators, realize personalized customization of production indicator visualization solutions, and improve users' monitoring efficiency of production indicators;
支持通过可视化的方式为生产指标监控配置生产指标监控算法,实现对生产指标的监控。It supports the configuration of production index monitoring algorithms for production index monitoring in a visualized way to realize the monitoring of production indexes.
发明内容Contents of the invention
针对现有技术,本发明提供一种基于工艺流程的生产指标可视化监控系统及方法:For prior art, the present invention provides a kind of production index visual monitoring system and method based on technological process:
一种基于工艺流程的生产指标可视化监控系统,包括:数据采集模块、生产指标管理模块、生产指标可视化组态设计模块、生产指标监控配置模块、算法管理模块、数据处理模块、生产指标可视化模块和生产指标多视图交互模块;A production index visualization monitoring system based on technological process, including: data acquisition module, production index management module, production index visualization configuration design module, production index monitoring configuration module, algorithm management module, data processing module, production index visualization module and Production index multi-view interactive module;
数据采集模块:采集企业生产全流程生产指标数据,并将其存储到本地数据库,包括PLC(Programmable Logic Controller,可编程逻辑控制器)和数据采集传感器;Data acquisition module: collect the production index data of the whole production process of the enterprise, and store it in the local database, including PLC (Programmable Logic Controller, programmable logic controller) and data acquisition sensors;
所述数据采集传感器从工业现场采集设备实时运行状态数据;The data acquisition sensor collects real-time operating status data of the equipment from the industrial site;
所述PLC,用于将传感器采集的生产过程实时数据保存至本地数据库;The PLC is used to save the real-time data of the production process collected by the sensor to a local database;
生产指标管理模块:对指标进行编码和数据源绑定,包括创建生产指标、编辑生产指标、删除生产指标、查看生产指标;Production indicator management module: encode indicators and bind data sources, including creating production indicators, editing production indicators, deleting production indicators, and viewing production indicators;
所述生产指标包括:指标编码、指标名称、指标数据、采集时间以及指标单位;The production index includes: index code, index name, index data, collection time and index unit;
所述指标编码是多位数字组合而成的代表指标的唯一ID(identification);The index code is the unique ID (identification) of the representative index composed of multiple digits;
所述指标名称是工厂对全流程工艺指标的命名;The name of the indicator is the factory's naming of the process indicators of the whole process;
所述指标数据是从数据采集模块采集来的代表该指标大小、高低的数字值;The index data is a digital value representing the size and height of the index collected from the data acquisition module;
所述采集时间是所述指标数据从采集模块中被采集时的时间;The collection time is the time when the indicator data is collected from the collection module;
所述指标单位是所述指标数据所采用的量化单位;The indicator unit is the quantification unit adopted by the indicator data;
所述创建生产指标是指在本地数据库中创建一个由指标编码、指标名称、指标数据、采集时间以及指标单位的向量并存储;The creation of a production index refers to creating and storing a vector consisting of index code, index name, index data, collection time and index unit in the local database;
所述编辑生产指标是指对本地数据库中已创建指标的指标编码、指标名称、指标数据、采集时间以及指标单位的已有赋值进行改变;The editing of production indicators refers to changing the existing assignments of indicator codes, indicator names, indicator data, collection time and indicator units that have been created in the local database;
所述删除生产指标是指删除本地数据库中关于已创建指标的指标编码、指标名称、指标数据、采集时间以及指标单位已有信息;The deletion of the production index refers to the deletion of the index code, index name, index data, collection time and existing information of the index unit in the local database about the created index;
所述查看生产指标是指对本地数据库中已创建指标的指标编码、指标名称、指标数据、采集时间以及指标单位已有赋值进行查看;The viewing of production indicators refers to viewing the indicator codes, indicator names, indicator data, collection time, and existing assignments of indicator units that have been created in the local database;
生产指标可视化组态设计模块:将生产工序以组态化的方式绘制成流程图,展示给用户;Production indicator visualization configuration design module: draw the production process into a flow chart in a configurable way, and display it to the user;
所述工艺流程图包括:可视化组态工具、工序节点、连接线、端点、锚点和覆盖物;The process flow chart includes: visual configuration tools, process nodes, connection lines, endpoints, anchor points and coverings;
所述可视化组态工具,包括功能栏、图元库、绘制面板三个部分;The visual configuration tool includes three parts: a function bar, a graph element library, and a drawing panel;
所述功能栏包括保存、清除、刷新、导入、图元配置功能;The function bar includes functions of saving, clearing, refreshing, importing, and graphic element configuration;
所述图元库,包括常见形状图元节点,并可根据需求自定义图元形状添加至图元库中;The primitive library includes common shape primitive nodes, and custom primitive shapes can be added to the primitive library according to requirements;
所述绘制面板用于绘制工艺流程,用户通过鼠标拖拽方式将图元库中节点拖至绘制面板中,在配置界面配置端点、锚点相应属性,并通过鼠标进行各个图元节点间的连线,绘制好的流程图以特定格式保存至数据库或导出为文本文件保存至本地;The drawing panel is used to draw the process flow. The user drags the nodes in the graphic element library to the drawing panel by dragging the mouse, configures the corresponding attributes of the endpoint and the anchor point on the configuration interface, and performs the connection between each graphic element node through the mouse. Line, the drawn flow chart is saved to the database in a specific format or exported as a text file and saved locally;
所述工序节点是指流程图中用图元表示的有实际物理意义的生产工序,工序节点包括工序文本信息、工序状态和工序事件绑定;The process node refers to the production process with actual physical meaning represented by the graph element in the flowchart, and the process node includes process text information, process state and process event binding;
所述工序文本信息表示工序名称,通过拖动图元节点到绘制面板中,弹出输入框用于设置工序节点文本信息;The process text information represents the process name, and by dragging the graphic element node into the drawing panel, an input box pops up for setting the process node text information;
所述工序状态是指工序节点通过设置闪烁不同颜色边框和添加提示图标表示工序中设备、生产指标的状态通知信息;The process status refers to the status notification information of the process node indicating the equipment and production indicators in the process by setting flashing borders of different colors and adding prompt icons;
所述工序事件绑定是指对每个工序节点可绑定事件,包括“单击”事件、“双击”事件、鼠标“悬浮”事件;The process event binding refers to events that can be bound to each process node, including "click" events, "double-click" events, and mouse "hover" events;
所述鼠标“单击”事件为进入子工序操作,使当前界面跳转至工序子界面,在工序子界面中绘制工序更加详细的子流程图,使工序流程图具有嵌套功能;The mouse "click" event is to enter the sub-process operation, so that the current interface jumps to the process sub-interface, and draws a more detailed sub-flow chart of the process in the process sub-interface, so that the process flow chart has a nesting function;
所述鼠标“双击”事件可设置为弹出对话框展示提示信息;The mouse "double-click" event can be set to pop up a dialog box to display prompt information;
所述鼠标“悬浮”事件可定义为浮出提示框展示工序基本信息;The mouse "floating" event can be defined as a pop-up prompt box to display the basic information of the process;
所述连接线是指节点与节点之间的连线,通过连接线不同颜色表示该工序节点输出是否存在异常;The connecting line refers to the connecting line between nodes, and the different colors of the connecting line indicate whether there is any abnormality in the output of the process node;
所述端点是指连接工序节点的连接线的起始点;自定义端点形状、大小、样式以及端点个数;The endpoint refers to the starting point of the connection line connecting the process nodes; the shape, size, style and number of endpoints can be customized;
所述锚点指明端点在节点上出现的位置,通过区分起始锚点和结束锚点来指明连接线的走向;The anchor point indicates the position where the end point appears on the node, and indicates the direction of the connecting line by distinguishing the start anchor point and the end anchor point;
所述覆盖物是指连接线上添加装饰物,包括标签文本和连接点的箭头;Said overlay refers to the addition of decorations on the connection line, including label text and arrowheads at connection points;
生产指标监控配置模块:配置用户想要监测的生产指标和指标的可视化方案,支持对生产指标配置监控算法,可实现对指标的诊断与趋势预测,包括生产指标列表、工序列表和可视化方案列表;Production index monitoring configuration module: configure the production index that the user wants to monitor and the visualization scheme of the index, support the configuration of the monitoring algorithm for the production index, and realize the diagnosis and trend prediction of the index, including the production index list, process list and visualization plan list;
所述生产指标列表用于显示所有可监控指标;The production indicator list is used to display all monitorable indicators;
所述工序列表显示所有可监控工序,用户通过选中所述生产指标列表中需要监控的指标,将其配置给相应工序;The process list displays all monitorable processes, and the user selects the indicators that need to be monitored in the production index list and configures them to the corresponding processes;
所述可视化方案列表显示所有可视化方案,用户通过选中具体的可视化方案配置给监控的指标;The list of visualization schemes displays all visualization schemes, and the user configures indicators for monitoring by selecting a specific visualization scheme;
所述算法管理模块用于对所述模块提到的所有算法进行统一管理,包括增加、删除、修改功能;The algorithm management module is used for unified management of all the algorithms mentioned by the module, including adding, deleting and modifying functions;
所述数据处理模块用于计算处理所采集的数据,包括日均值和日方差;The data processing module is used to calculate and process the collected data, including daily mean value and daily variance;
所述生产指标可视化模块用于显示数据采集模块产生的原始数据和数据处理模块产生的对比数据、预测数据。包括实时数据曲线图、历史数据曲线图、日均值趋势折线图、日方差趋势柱状图;The production index visualization module is used to display the raw data generated by the data acquisition module and the comparison data and forecast data generated by the data processing module. Including real-time data curve chart, historical data curve chart, daily mean trend line chart, daily variance trend histogram;
所述实时数据曲线图以时间(小时)为横轴,指标值为纵轴显示实时数据,鼠标悬浮在数据点时会显示数据采集时间、指标名称和指标值;The real-time data graph takes time (hour) as the horizontal axis, and the index value is the vertical axis to display real-time data, and the data collection time, index name and index value will be displayed when the mouse hovers over the data point;
所述历史数据曲线图以时间(日期)为横轴,指标值为纵轴,用户可选择小于两个月的一段范围内的数据进行查看;The historical data graph takes time (date) as the horizontal axis, and the index value is the vertical axis, and the user can select data within a range of less than two months to view;
所述日均值趋势折线图以时间(日期)为横轴,指标数据日均值为纵轴显示,显示范围为历史数据所选范围,鼠标悬浮会显示日期、指标名称和数据日均值;The daily average value trend line chart takes time (date) as the horizontal axis, and the daily average value of the index data is displayed on the vertical axis, and the display range is the selected range of historical data, and the date, index name and data daily average value will be displayed when the mouse hovers;
所述日方差趋势柱状图以时间(日期)为横轴,指标数据日方差为纵轴显示,显示范围为历史数据所选范围,鼠标悬浮会显示日期、指标名称和数据日方差值。The daily variance trend histogram uses time (date) as the horizontal axis, and the daily variance of indicator data is displayed on the vertical axis. The display range is the selected range of historical data. The date, indicator name and data daily variance value will be displayed when the mouse hovers.
生产指标多视图交互模块:对指标进行多视图显示,包括指标总览视图和指标分类视图;Production indicator multi-view interactive module: display indicators in multiple views, including indicator overview view and indicator classification view;
所述的总览视图用于显示所有用户配置的监控指标,对所有监控指标的概览;The overview view is used to display all user-configured monitoring indicators and an overview of all monitoring indicators;
所述的指标分类视图用于显示用户配置的不同分类的指标,包括根据工序和指标类型分类的各类指标,实现对具体工序或者某一类型所包含指标的显示,以方便用户查看某一工序或者某一类别的指标,用户可以同时显示多个分类视图,用户可以在多个分类视图和总览视图间进行交互切换,提高用户对指标监控的便捷性。此外,不同分类指标监控视图为不同用户的监控需求提供很好的途径,使得用户可以仅仅选择自己关心的指标进行监控。The indicator classification view is used to display indicators of different categories configured by the user, including various indicators classified according to the process and indicator type, so as to realize the display of indicators contained in a specific process or a certain type, so as to facilitate users to view a certain process Or for a certain category of indicators, users can display multiple classification views at the same time, and users can interactively switch between multiple classification views and overview views to improve the convenience for users to monitor indicators. In addition, the monitoring views of different classification indicators provide a good way to meet the monitoring needs of different users, so that users can only select the indicators they care about for monitoring.
采用所述的基于工艺流程图的生产指标可视化监控系统进行生产全流程生产指标监控,包括如下步骤:Using the production index visualization monitoring system based on the process flow chart to monitor the production index in the whole production process includes the following steps:
步骤1:采集企业生产全流程生产指标数据并存储到本地数据库。Step 1: Collect the production index data of the whole production process of the enterprise and store it in the local database.
步骤2:对生产指标进行编码及数据源配置。Step 2: Coding production indicators and configuring data sources.
步骤2.1:为生产过程所有生产指标分配唯一指标编码,将企业生产全流程的生产指标进行统一管理。Step 2.1: Assign unique index codes to all production indicators in the production process, and manage the production indicators of the entire production process of the enterprise in a unified manner.
步骤2.2:将唯一编码的生产指标与数据采集模块通过所述步骤1采集到的数据源进行绑定,使得调用生产指标编码就可以查看数据源。Step 2.2: Bind the uniquely encoded production index with the data source collected by the data collection module through the step 1, so that the data source can be viewed by calling the production index code.
步骤3:对生产工序进行流程图式组态。展示生产过程中前后工序间逻辑关系,展现整个生产工艺流程。Step 3: Perform flow chart configuration on the production process. Show the logical relationship between the front and back processes in the production process, and show the entire production process.
步骤3.1:如果数据库中已有的生产流程图,跳至步骤3.3,否则执行下一步。Step 3.1: If there is a production flow chart in the database, skip to step 3.3, otherwise go to the next step.
步骤3.2:新建生产流程图。Step 3.2: Create a new production flow chart.
步骤3.2.1:通过拖拽搭建企业全流程生产工序节点。Step 3.2.1: Build the production process nodes of the whole process of the enterprise by dragging and dropping.
步骤3.2.2:为工序节点配置关键指标,同时设置样式、事件通知、报警上下限、连接线状态,使得流程图在运行态时可以监视指标实时状态,实现事件通知、连接线闪烁、超限报警功能。Step 3.2.2: Configure key indicators for process nodes, and set styles, event notifications, alarm upper and lower limits, and connection line status at the same time, so that the flow chart can monitor the real-time status of indicators when it is running, and realize event notification, connection line flashing, and overrun Alarm function.
步骤3.2.3:绘制好的流程图可以封装成图元,规定输入输出。然后此图元可以被当作子工序添加到更高一级的流程图中去。Step 3.2.3: The drawn flow chart can be packaged into graphic elements to specify input and output. This primitive can then be added as a sub-process to a higher-level flowchart.
步骤3.2.4:根据企业全流程生产工序间的逻辑关系,将各个生产工序节点连接成一条完整的生产流程图。Step 3.2.4: According to the logical relationship between the production processes of the whole process of the enterprise, connect the nodes of each production process into a complete production flow chart.
步骤3.3:增加新的节点或删除不必要的节点,调整生产流程图内逻辑关系。Step 3.3: Add new nodes or delete unnecessary nodes, and adjust the logical relationship in the production flow chart.
步骤3.4:保存生产流程图至本地数据库。Step 3.4: Save the production flow chart to the local database.
步骤4:管理和配置系统中的所有算法。Step 4: Manage and configure all algorithms in the system.
步骤5:对工艺流程图中每道生产工序进行算法配置,确定对各个工序所监测指标采用的算法。Step 5: Configure the algorithm for each production process in the process flow chart, and determine the algorithm used for the monitoring indicators of each process.
步骤5.1:从本地数据库读取生产流程图。Step 5.1: Read the production flow chart from the local database.
步骤5.2:为生产流程图上需要监测的生产指标添加算法并保存配置。Step 5.2: Add algorithms for the production indicators that need to be monitored on the production flow chart and save the configuration.
步骤5.3:将算法所得数据保存至本地数据库。Step 5.3: Save the data obtained by the algorithm to the local database.
步骤6:对本地数据库中已采集的数据进行计算处理,得到所需数据。Step 6: Calculate and process the collected data in the local database to obtain the required data.
步骤6.1:根据本地数据库中相应指标的历史数据计算每天数据的均值。Step 6.1: Calculate the average value of the daily data based on the historical data of the corresponding indicator in the local database.
步骤6.2:根据本地数据库中相应指标的历史数据计算每天数据的方差。Step 6.2: Calculate the variance of each day's data based on the historical data of the corresponding indicator in the local database.
步骤6.3:保存所有计算数据。Step 6.3: Save all calculated data.
步骤7:将所有所需数据通过不同的可视化方案显示给工作人员。Step 7: Display all required data to workers through different visualization schemes.
步骤7.1:选择已配置的生产指标,从数据库读取该生产指标的实时数据,监控实时数据。Step 7.1: Select the configured production index, read the real-time data of the production index from the database, and monitor the real-time data.
步骤7.1.1:选择指标总览视图对所有用户配置的指标进行监控,对所有监控指标的概览。Step 7.1.1: Select the indicator overview view to monitor all user-configured indicators and get an overview of all monitoring indicators.
步骤7.1.2:选择指标分类视图,根据工序和指标类型分类,对具体工序或者某一类型所包含指标的监控。Step 7.1.2: Select the indicator classification view, classify according to the process and indicator type, and monitor the indicators contained in a specific process or a certain type.
步骤7.1.3:选择不同的视图方式可以同时监控多个视图,在多个分类视图和总览视图间进行交互切换。Step 7.1.3: Select different view modes to monitor multiple views at the same time, and switch between multiple classification views and overview views interactively.
步骤7.2:选择不同的可视化方案实现历史数据查看、对比分析和关联分析。Step 7.2: Select different visualization schemes to realize historical data viewing, comparative analysis and correlation analysis.
步骤7.2.1:为指标配置可视化方案,使得在后续步骤中可以为指标选择相应的可视化方案,如历史数据、对比分析、关联分析以及自定义方案。Step 7.2.1: Configure visualization schemes for indicators, so that in subsequent steps, corresponding visualization schemes can be selected for indicators, such as historical data, comparative analysis, correlation analysis, and custom schemes.
步骤7.2.2:指定需要查看的某个生产指标,生成历史数据图表。Step 7.2.2: Specify a certain production indicator to be viewed, and generate a historical data chart.
步骤7.2.2.1:从本地数据库读取该生产指标的历史数据,通过时间选择器选择时间范围,生成历史数据曲线。Step 7.2.2.1: Read the historical data of the production index from the local database, select the time range through the time selector, and generate the historical data curve.
步骤7.2.2.2:从本地数据库读取该生产指标的日均值数据,生成日数据均值趋势折线。Step 7.2.2.2: Read the daily average value data of the production index from the local database, and generate the daily average value trend line.
步骤7.2.2.3:从本地数据库读取该生产指标的日方差数据,生成日数据方差趋势柱状图。Step 7.2.2.3: Read the daily variance data of the production index from the local database, and generate a histogram of the daily variance trend of the data.
步骤7.2.3:选择多个生产指标对比分析,生成雷达图。Step 7.2.3: Select multiple production indicators for comparative analysis and generate a radar chart.
步骤7.2.3.1:进行指标选择。Step 7.2.3.1: Perform indicator selection.
步骤7.2.3.2:设置指标上下限。Step 7.2.3.2: Set the upper and lower limits of the indicator.
步骤7.2.3.3:选择历史时间,生成指定时间的指标雷达图。Step 7.2.3.3: Select the historical time and generate the indicator radar chart at the specified time.
步骤7.2.4:生成工序指标与生产指标关联关系图。Step 7.2.4: Generate a relationship diagram between process indicators and production indicators.
步骤7.2.4.1:在影响综合生产指标的众多工序生产指标中选出少数的主要影响指标,并计算出每个工序指标对综合生产指标的贡献率。Step 7.2.4.1: Select a small number of main influencing indicators from among the many process production indicators that affect the comprehensive production indicator, and calculate the contribution rate of each process indicator to the comprehensive production indicator.
步骤7.2.4.2:根据各工序指标对综合生产指标影响的贡献率,确定各个指标的比例关系。根据不同颜色区分不同指标,生成工序指标与生产指标关联关系图。有益效果:综上,本发明针对复杂工业过程流程长、工序多、生产指标多的特点,结合数据可视化在流程工业中应用的技术需求,提出一种基于工艺流程图的生产指标可视化监控系统及方法。首先设计了基于生产工艺流程图的生产指标可视化组态工具,它可以根据生产工艺以组态方式绘制工艺流程图,并能通过可视界面自定义其节点功能、触发事件、提示信息、指标分析算法,从而实现对生产指标的可视化监控,同时由于该工具以组态方式提供,使其可以快速应用于其他流程行业,实现生产指标可视化监控的组态化。对于复杂过程生产指标监控而言,工艺流程图除了可用于表达工艺流程的逻辑关系之外,还可以用于显示工序中的设备运行状态、设备报警信息、指标异常信息、生产通知信息,进而实现对整个生产过程的可视化监控。其次,将生产指标按工序进行分类,以分类的生产指标为基础,以提升生产过程中对生产指标的监控功能和效率为目标,设计了对实时数据、历史数据、历史数据统计特性、多指标综合对比分析、数据关联关系分析的可视化方案,以实现对生产指标的可视化监控。Step 7.2.4.2: According to the contribution rate of each process index to the comprehensive production index, determine the proportional relationship of each index. Different indicators are distinguished according to different colors, and a relationship diagram between process indicators and production indicators is generated. Beneficial effects: To sum up, the present invention aims at the characteristics of long complex industrial processes, many procedures, and many production indicators, combined with the technical requirements for the application of data visualization in the process industry, and proposes a visual monitoring system for production indicators based on process flow charts and method. Firstly, a production indicator visualization configuration tool based on the production process flow chart is designed. It can draw the process flow chart in a configuration mode according to the production process, and can customize its node functions, trigger events, prompt information, and index analysis through the visual interface. Algorithm, so as to realize the visual monitoring of production indicators. At the same time, because the tool is provided in configuration mode, it can be quickly applied to other process industries to realize the configuration of visual monitoring of production indicators. For the monitoring of complex process production indicators, the process flow chart can not only be used to express the logical relationship of the process flow, but also can be used to display the equipment operation status, equipment alarm information, index abnormal information, and production notification information in the process, and then realize Visual monitoring of the entire production process. Secondly, the production indicators are classified according to the process, based on the classified production indicators, aiming at improving the monitoring function and efficiency of the production indicators in the production process, the real-time data, historical data, statistical characteristics of historical data, and multi-indicators are designed. Comprehensive comparative analysis and visualization scheme of data correlation analysis to realize visual monitoring of production indicators.
说明书附图Instructions attached
图1本发明系统功能模块图Fig. 1 system functional block diagram of the present invention
图2本发明方法步骤流程图Fig. 2 method flow chart of the present invention
图3可视化组态设计工具图元连接图Figure 3 Visual configuration design tool graphic element connection diagram
图4可视化组态设计工具节点提示信息图Figure 4 Visual configuration design tool node prompt information diagram
图5选矿综精S历史数据曲线图(2018/7/4-2018/8/4)Figure 5 S historical data curve of comprehensive mineral processing (2018/7/4-2018/8/4)
图6选矿综精S日均值变化趋势曲线图(2018/7/4-2018/8/4)Figure 6 Trend curve of the daily average value of mineral processing comprehensive fine S (2018/7/4-2018/8/4)
图7选矿综精S日方差变化趋势柱状图(2018/7/4-2018/8/4)Figure 7 Histogram of daily variance change trend of mineral processing comprehensive fine S (2018/7/4-2018/8/4)
具体实施方式Detailed ways
下面对本发明的具体实施方式做详细说明。Specific embodiments of the present invention will be described in detail below.
本实施方式是将基于工艺流程图的生产指标可视化监控系统及方法应用于选矿工业流程的选矿综合生产指标和工序生产指标的监控。This implementation mode is to apply the visual monitoring system and method of production indicators based on the process flow chart to the monitoring of the comprehensive production indicators and process production indicators of the mineral processing industrial process.
如图1所示;本实施方式的基于工艺流程图的选矿生产指标可视化监控系统,包括数据采集模块、生产指标管理模块、生产指标可视化组态设计模块、生产指标配置模块、算法管理模块、数据处理模块和可视化模块;As shown in Figure 1; the mineral processing production index visualization monitoring system based on the process flow chart of the present embodiment includes a data acquisition module, a production index management module, a production index visualization configuration design module, a production index configuration module, an algorithm management module, and a data collection module. processing module and visualization module;
数据采集模块用于采集选矿生产全流程生产指标数据,并将其存储到本地数据库,包括PLC(Programmable Logic Controller,可编程逻辑控制器)和数据采集传感器。数据采集传感器用于从工业现场采集设备实时运行状态数据;PLC,用于将传感器采集的设备实时运行状态数据保存至本地数据库。The data acquisition module is used to collect the production index data of the whole process of beneficiation production and store it in the local database, including PLC (Programmable Logic Controller, programmable logic controller) and data acquisition sensors. The data acquisition sensor is used to collect the real-time operation status data of the equipment from the industrial site; the PLC is used to save the real-time operation status data of the equipment collected by the sensor to the local database.
本实施方式中,数据采集传感器采用典型的OPC工业标准。In this embodiment, the data acquisition sensor adopts a typical OPC industry standard.
本实施方式中,监控的设备,包括球磨机、竖炉、过滤机、强磁选机、弱磁选机、高梯度磁选机、高频细筛。In this embodiment, the monitored equipment includes ball mills, shaft furnaces, filters, strong magnetic separators, weak magnetic separators, high-gradient magnetic separators, and high-frequency fine screens.
生产指标管理模块用于对指标进行编码和数据源绑定。包括创建、编辑、删除、查看操作。The production indicator management module is used to encode indicators and bind data sources. Including create, edit, delete, view operations.
生产指标具体包括:指标编码、指标名称、指标数据、采集时间、停用标记以及指标单位。Production indicators specifically include: indicator code, indicator name, indicator data, collection time, deactivation mark and indicator unit.
指标编码是用12位十进制数字编码而成,例如“选矿综精S”指标ID为“020206000104”(如表1)。The index code is coded with 12 decimal numbers, for example, the index ID of "Comprehensive Concentration S" is "020206000104" (see Table 1).
指标名称是选矿厂对全流程选矿工艺指标的命名(如表1)。The index name is the naming of the mineral processing plant for the whole process mineral processing process index (as shown in Table 1).
指标数据是从数据采集模块采集来的该指标的值(如表1)。The index data is the value of the index collected from the data acquisition module (as shown in Table 1).
采集时间是所述指标数据从采集模块中被采集时的时间。The collection time is the time when the index data is collected from the collection module.
本实施方式中,采集时间以“2018/8/4 13:00:00”格式表示(如表1)。In this embodiment, the collection time is expressed in the format of "2018/8/4 13:00:00" (as shown in Table 1).
停用标记是所述指标的停用状态。The disabled flag is the disabled status of the metric in question.
本实施方式中,停用标记用0表示停用,1表示启用。In this embodiment, the disabled flag uses 0 to indicate disabled, and 1 to indicate enabled.
指标单位是所述指标数据所采用的量化单位。The indicator unit is the quantitative unit adopted by the indicator data.
本实施方式中,指标单位有百分比(%)、吨(t)、千瓦时(kwh)、立方米(m3)、小时(h)、焦耳(GJ)、米(m)、赫兹(HZ)等。In this embodiment, the index units include percentage (%), ton (t), kilowatt-hour (kwh), cubic meter (m3), hour (h), joule (GJ), meter (m), hertz (HZ), etc. .
数据源是用来保存指标数据的数据库表名。The data source is the name of the database table used to save the indicator data.
本实施方式中,数据源包括SAPDATA、PIKDATA、STRAPDATAHOUR、REALTIMEDATAHOUR、ENERGYDATAHOUR、INDEXRUNTIME、REPORTCELLDATA。In this embodiment, the data sources include SAPDATA, PIKDATA, STRAPDATAHOUR, REALTIMEDATAHOUR, ENERGYDATAHOUR, INDEXRUNTIME, REPORTCELLDATA.
生产指标可视化组态设计模块用于将生产工序以组态化的方式绘制成流程图,展示给用户。工艺流程图包括:可视化组态工具、工序节点、连接线、端点、锚点和覆盖物;如图3所示;The production indicator visualization configuration design module is used to draw the production process into a flow chart in a configurable way and display it to the user. The process flow chart includes: visual configuration tools, process nodes, connecting lines, endpoints, anchor points and coverings; as shown in Figure 3;
可视化组态工具,包括功能栏、图元库、绘制面板三个部分。Visual configuration tool, including three parts: function bar, graphic element library, and drawing panel.
本实施方式中,用户通过鼠标拖拽方式将图元库中节点拖至绘制面板中,在配置界面配置端点、锚点属性,并通过鼠标进行各个图元节点间的连线。绘制好的流程图以json格式保存至数据库或导出为文本文件保存至本地。In this embodiment, the user drags the nodes in the graph element library to the drawing panel by dragging the mouse, configures the endpoint and anchor point attributes on the configuration interface, and connects the graph element nodes through the mouse. The drawn flow chart is saved to the database in json format or exported as a text file and saved locally.
功能栏包括保存、清除、刷新、导入、图元配置功能。The function bar includes save, clear, refresh, import, and primitive configuration functions.
图元库包括常见形状图元节点,可根据需求自定义图元形状添加至图元库中。The primitive library includes common shape primitive nodes, and custom primitive shapes can be added to the primitive library according to requirements.
本实施方式中,默认有常见图元节点包括正方形、矩形、菱形和圆。In this embodiment, by default, common primitive nodes include square, rectangle, rhombus and circle.
工序节点是指流程图中用图元表示的有实际物理意义的生产工序,工序节点包括工序文本信息、工序状态和工序事件绑定。The process node refers to the production process with actual physical meaning represented by the graph element in the flow chart. The process node includes process text information, process state and process event binding.
本实施方式中,用户通过拖动图元节点到绘制面板中,弹出输入框用于设置工序节点文本信息。In this embodiment, the user drags the primitive node to the drawing panel, and an input box pops up for setting the text information of the process node.
本实施方式中,工序状态是指工序节点通过设置闪烁不同颜色边框和添加提示图标表示工序中设备、生产指标的状态通知信息。当工序节点正常时边框不闪烁,有提示时以黄色边框显示,有警告时以紫色边框显示,出现异常时则用红色边框显示。上述提示信息分为三种:通知、设备、指标,以红色背景白色字体显示在节点右上角,以醒目地提示操作人员,如图4所示。In this embodiment, the process status refers to the status notification information of the process node indicating the equipment and production indicators in the process by setting blinking borders of different colors and adding prompt icons. When the process node is normal, the border does not flash, and when there is a prompt, it is displayed with a yellow border, when there is a warning, it is displayed with a purple border, and when an abnormality occurs, it is displayed with a red border. The above prompt information is divided into three types: notification, equipment, and indicator, which are displayed in the upper right corner of the node with a red background and white font to remind the operator prominently, as shown in Figure 4.
工序事件绑定是指对每个工序节点可绑定事件,包括“单击”事件、“双击”事件、鼠标“悬浮”事件。Process event binding refers to events that can be bound to each process node, including "click" event, "double click" event, and mouse "hover" event.
本实施方式中,鼠标“单击”事件为进入子工序操作,使之当前界面跳转至工序子界面,在工序子界面中如上述方式绘制该工序更加详细的子流程图,从而实现工序流程图嵌套功能;鼠标“双击”事件可设置为弹出对话框展示提示信息;鼠标“悬浮”事件可定义为浮出提示框展示工序基本信息。In this embodiment, the mouse "click" event is to enter the sub-process operation, so that the current interface jumps to the process sub-interface, and draws a more detailed sub-flow chart of the process in the process sub-interface as described above, thereby realizing the process flow Diagram nesting function; the mouse "double-click" event can be set to pop up a dialog box to display prompt information; the mouse "hover" event can be defined as a pop-up prompt box to display the basic information of the process.
连接线是指节点与节点之间的连线,通过连接线不同颜色表示该工序节点输出是否存在异常。The connection line refers to the connection between nodes, and the different colors of the connection line indicate whether there is any abnormality in the output of the process node.
本实施方式中,连接线为灰色时表示输出指标正常,当连接线为红色时,表示该工序的输出指标存在异常。In this embodiment, when the connecting line is gray, it indicates that the output index is normal, and when the connecting line is red, it indicates that the output index of the process is abnormal.
端点是指连接工序节点的连接线的起始点。可自定义端点形状、大小、样式以及端点个数。An endpoint is the starting point of a connecting line connecting process nodes. The shape, size, style and number of endpoints can be customized.
锚点指明端点在节点上出现的位置,通过区分起始锚点和结束锚点来指明连接线的走向。Anchor points indicate where the end point appears on the node, and indicate the direction of the connecting line by distinguishing the start anchor point and the end anchor point.
覆盖物是指连接线上添加装饰物。Covering refers to the addition of decorations on the connecting wires.
本实施方式中,用户可以为连接线添加标签文本和连接点的箭头。In this embodiment, the user can add label text and arrows for connection points to the connection line.
生产指标监控配置模块用于配置用户想要监测的生产指标,还支持对生产指标插入算法,对指标做预测、诊断。生产指标监控配置模块包括生产指标列表和工序列表,用户通过选中所述生产指标列表中需要监控的指标,将其配置给相应工序。例如,选中选矿综精S、选矿综精CaO、选矿综精产量(湿重)、选矿综精烧损Ig,将其配置给选矿综合指标工序。The production index monitoring configuration module is used to configure the production index that the user wants to monitor, and also supports inserting algorithms for the production index, and predicts and diagnoses the index. The production index monitoring configuration module includes a production index list and a process list, and the user selects the index to be monitored in the production index list and configures it to the corresponding process. For example, select ore dressing comprehensive concentrate S, ore dressing comprehensive concentrate CaO, ore dressing comprehensive concentrate output (wet weight), ore beneficiation comprehensive concentrate burning loss Ig, and configure it to the mineral processing comprehensive index process.
本实施方式中,生产指标列表用于显示所有可监控指标(见表2)。In this embodiment, the production indicator list is used to display all monitorable indicators (see Table 2).
本实施方式中,工序列表显示所有可监控工序(见表3)。In this embodiment, the process list displays all monitorable processes (see Table 3).
算法管理模块用于对所述模块提到的所有算法进行统一管理,包括增加、删除、修改功能。The algorithm management module is used for unified management of all the algorithms mentioned in the module, including adding, deleting and modifying functions.
本实施方式中,算法有主元分析法PCA(Principal Component Analysis)等。In this embodiment, the algorithm includes principal component analysis (PCA) (Principal Component Analysis) and the like.
数据处理模块用于计算处理所采集的数据。The data processing module is used to calculate and process the collected data.
本实施方式中,计算处理的数据包括日均值和日方差。例如选矿综精SiO2在“2018/8/3”的日均值为8.134,日方差为0.016338(见表4)。In this embodiment, the data to be calculated and processed includes daily mean value and daily variance. For example, the daily average value of SiO2 in "2018/8/3" is 8.134, and the daily variance is 0.016338 (see Table 4).
可视化模块用于显示数据采集模块产生的原始数据和数据处理模块产生的对比数据、预测数据。包括实时数据曲线图、历史数据曲线图、日均值趋势折线图、日方差趋势柱状图。The visualization module is used to display the original data generated by the data acquisition module and the comparison data and forecast data generated by the data processing module. Including real-time data graphs, historical data graphs, daily average trend line graphs, and daily variance trend histograms.
本实施方式中,实时数据曲线图以时间(小时)为横轴,指标值为纵轴显示实时数据,鼠标悬浮在数据点时会显示数据采集时间、指标名称和指标值。In this embodiment, the real-time data graph takes time (hours) as the horizontal axis, and the vertical axis displays real-time data with index values. When the mouse hovers over a data point, the data collection time, index name, and index value will be displayed.
本实施方式中,历史数据曲线图以时间(日期)为横轴,指标值为纵轴,用户可选择小于两个月的一段范围内的数据进行查看。In this embodiment, the historical data graph takes time (date) as the horizontal axis and the index value as the vertical axis, and the user can select data within a range less than two months to view.
本实施方式中,日均值趋势折线图以时间(日期)为横轴,指标数据日均值为纵轴显示,显示范围为历史数据所选范围,鼠标悬浮会显示日期、指标名称和数据日均值。In this embodiment, the daily average value trend line chart takes time (date) as the horizontal axis, and the daily average value of the indicator data is displayed on the vertical axis. The display range is the range selected by the historical data, and the date, indicator name and daily average value of the data will be displayed when the mouse hovers.
本实施方式中,日方差趋势柱状图以时间(日期)为横轴,指标数据日方差为纵轴显示,显示范围为历史数据所选范围,鼠标悬浮会显示日期、指标名称和数据日方差值。In this embodiment, the daily variance trend histogram takes time (date) as the horizontal axis, and the daily variance of the indicator data is displayed on the vertical axis. The display range is the range selected by the historical data, and the date, indicator name and data daily variance will be displayed when the mouse hovers value.
生产指标多视图交互模块用于对指标进行多视图显示,包括指标总览视图和指标分类视图。The multi-view interaction module of production indicators is used to display indicators in multiple views, including indicator overview view and indicator classification view.
本实施方式中,总览视图用于显示所有用户配置的监控指标(如表2),实现对所有监控指标的概览。In this embodiment, the overview view is used to display all monitoring indicators configured by the user (as shown in Table 2), so as to realize an overview of all monitoring indicators.
指标分类视图用于显示用户配置的不同分类的指标,包括根据工序和指标类型分类的指标。The indicator classification view is used to display indicators of different categories configured by the user, including indicators classified by process and indicator type.
本实施方式中,根据工序(见表3)可将指标分为综合生产指标、原矿信息指标、筛分过程指标、粉矿指标、块矿指标、竖炉焙烧指标、强磁磨矿指标、弱磁磨矿指标、废石指标、强磁选别指标、弱磁选别指标、中矿浓缩指标、反浮选指标、精矿浓缩指标、尾矿浓缩指标、精矿过滤指标。In this embodiment, according to the process (see Table 3), the indicators can be divided into comprehensive production indicators, raw ore information indicators, screening process indicators, fine ore indicators, lump ore indicators, shaft furnace roasting indicators, strong magnetic grinding indicators, and weak ore indicators. Magnetic grinding index, waste rock index, strong magnetic separation index, weak magnetic separation index, middle ore concentration index, reverse flotation index, concentrate concentration index, tailings concentration index, concentrate filtration index.
本实施方式中,根据指标类型可将指标分为计划生产指标、设备指标、全厂生产指标、实时指标、化检验指标等。In this embodiment, the indicators can be divided into planned production indicators, equipment indicators, plant-wide production indicators, real-time indicators, chemical inspection indicators, etc. according to the indicator types.
采用上述基于工艺流程图的选矿生产指标可视化监控系统及方法进行选矿工业流程的选矿综合生产指标和工序生产指标的监控,如图2所示;具体实施步骤如下:The above-mentioned visual monitoring system and method for mineral processing production indicators based on the process flow chart are used to monitor the comprehensive mineral processing production indicators and process production indicators of the mineral processing industrial process, as shown in Figure 2; the specific implementation steps are as follows:
步骤1:采集选矿生产全流程生产指标数据并存储到本地数据库。Step 1: Collect the production index data of the whole process of beneficiation production and store it in the local database.
步骤2:对生产指标进行编码及数据源配置。Step 2: Coding production indicators and configuring data sources.
步骤2.1:为选矿过程所有生产指标分配唯一指标编码,便于将选矿全流程的生产指标进行统一管理,选矿综精S编码020206000104。Step 2.1: Allocate a unique index code for all production indicators in the mineral processing process, so as to facilitate the unified management of the production indicators in the whole process of mineral processing.
步骤2.2:将唯一编码的生产指标与数据采集模块通过所述步骤1采集到的数据源进行绑定,使得调用生产指标编码就可以查看数据源,选矿综精S配置数据源为SAPDATA。Step 2.2: Bind the uniquely encoded production index with the data source collected by the data acquisition module through the step 1, so that the data source can be viewed by calling the production index code.
步骤3:对生产工序进行流程图式组态。指明生产过程中前后工序间逻辑关系,展现整个生产工艺流程。Step 3: Perform flow chart configuration on the production process. Indicate the logical relationship between the front and back processes in the production process, and show the entire production process.
步骤3.1:如果数据库中已有的生产流程图,跳至步骤3.3,否则执行下一步。Step 3.1: If there is a production flow chart in the database, skip to step 3.3, otherwise go to the next step.
步骤3.2:新建生产流程图。Step 3.2: Create a new production flow chart.
步骤3.2.1:通过拖拽搭建选矿全流程生产工序节点。Step 3.2.1: Build the production process nodes of the whole process of beneficiation by dragging and dropping.
步骤3.2.2:为工序节点配置关键指标,同时设置样式、事件通知、报警上下限、连接线状态,使得流程图在运行态时可以监视指标实时状态,实现事件通知、连接线闪烁、超限报警功能。Step 3.2.2: Configure key indicators for process nodes, and set styles, event notifications, alarm upper and lower limits, and connection line status at the same time, so that the flow chart can monitor the real-time status of indicators when it is running, and realize event notification, connection line flashing, and overrun Alarm function.
步骤3.2.3:绘制好的流程图可以封装成图元,规定输入输出。然后此图元可以被当作子工序添加到更高一级的流程图中去。Step 3.2.3: The drawn flow chart can be packaged into graphic elements to specify input and output. This primitive can then be added as a sub-process to a higher-level flowchart.
步骤3.2.4:根据选矿全流程生产工序间的逻辑关系,将各个生产工序节点连接成一条完整的生产流程图。Step 3.2.4: According to the logical relationship between the production processes of the whole mineral processing process, connect each production process node into a complete production flow chart.
步骤3.3:增加新的节点或删除不必要的节点,调整生产流程图内逻辑关系。Step 3.3: Add new nodes or delete unnecessary nodes, and adjust the logical relationship in the production flow chart.
步骤3.4:保存生产流程图至本地数据库。Step 3.4: Save the production flow chart to the local database.
步骤4:管理和配置系统中的所有算法。Step 4: Manage and configure all algorithms in the system.
步骤4.1:默认有算法供用户使用,同时用户也可新增、删除和修改算法。Step 4.1: There are algorithms for users to use by default, and users can also add, delete and modify algorithms.
步骤4.2:为新增算法配置可应用的生产指标,使得用户在相关生产指标下可通过步骤5.3选择添加该算法。Step 4.2: Configure the applicable production index for the new algorithm, so that the user can choose to add the algorithm through step 5.3 under the relevant production index.
步骤5:对工艺流程图中每道生产工序进行算法配置,即确定需要对各个工序所监测指标采用的算法。Step 5: Configure the algorithm for each production process in the process flow chart, that is, determine the algorithm that needs to be used for the monitoring indicators of each process.
步骤5.1:从本地数据库读取生产流程图。Step 5.1: Read the production flow chart from the local database.
步骤5.2:为生产流程图上需要监测的生产指标添加算法并保存配置。Step 5.2: Add algorithms for the production indicators that need to be monitored on the production flow chart and save the configuration.
步骤5.3:将算法所得数据保存至本地数据库。Step 5.3: Save the data obtained by the algorithm to the local database.
步骤6:对本地数据库中已采集的数据进行计算处理,得到所需数据。Step 6: Calculate and process the collected data in the local database to obtain the required data.
步骤6.1:根据本地数据库中相应指标的历史数据计算每天数据的均值,选矿综精S在“2018/8/1”的日均值为0.277。Step 6.1: Calculate the average value of the daily data based on the historical data of the corresponding indicators in the local database. The daily average value of Mineral Concentration S in "2018/8/1" is 0.277.
步骤6.2:根据本地数据库中相应指标的历史数据计算每天数据的方差,选矿综精S在“2018/8/1”的日方差为0.003536。Step 6.2: Calculate the variance of the daily data based on the historical data of the corresponding indicators in the local database. The daily variance of Mineral Processing Comprehensive S is 0.003536 on "2018/8/1".
步骤6.3:保存所有计算数据。Step 6.3: Save all calculated data.
步骤7:将所需数据通过不同的可视化方案显示给工作人员。Step 7: Display the required data to the staff through different visualization schemes.
步骤7.1:选择已配置的生产指标,从数据库读取该生产指标的实时数据,监控实时数据。Step 7.1: Select the configured production index, read the real-time data of the production index from the database, and monitor the real-time data.
步骤7.1.1:选择指标总览视图对所有用户配置的指标进行监控,实现对所有监控指标的概览。Step 7.1.1: Select the indicator overview view to monitor all user-configured indicators to achieve an overview of all monitoring indicators.
步骤7.1.2:选择指标分类视图,根据工序和指标类型分类,实现对具体工序或者某一类型所包含指标的监控。Step 7.1.2: Select the index classification view, and classify according to the process and index type to realize the monitoring of specific processes or indicators contained in a certain type.
步骤7.1.3:选择总览视图、工序分类视图、指标类型分类视图同时监控多个视图,用户可以在多个分类视图和总览视图间进行交互切换。Step 7.1.3: Select the overview view, process classification view, and indicator type classification view to monitor multiple views at the same time, and the user can interactively switch between multiple classification views and overview views.
步骤7.2:选择不同的可视化方案。Step 7.2: Choose a different visualization scheme.
步骤7.2.1:为指标配置可视化方案,使得在后续步骤中可以为指标选择相应的可视化方案,包括历史数据、对比分析、关联分析以及自定义方案。Step 7.2.1: Configure visualization schemes for indicators, so that in subsequent steps, corresponding visualization schemes can be selected for indicators, including historical data, comparative analysis, correlation analysis, and custom schemes.
步骤7.2.2:指定需要查看的生产指标,选择时间范围,生成历史数据图表。Step 7.2.2: Specify the production indicators to be viewed, select the time range, and generate historical data charts.
步骤7.2.2.1:从本地数据库读取该生产指标的历史数据,通过时间选择器选择时间范围,生成历史数据曲线(选矿综精S在2018年7月4日到2018年8月4日的历史数据曲线,见图5)。Step 7.2.2.1: Read the historical data of the production indicator from the local database, select the time range through the time selector, and generate the historical data curve (the historical data of Mineral Concentration S from July 4, 2018 to August 4, 2018 Data curve, see Figure 5).
步骤7.2.2.2:从本地数据库读取该生产指标的日均值数据,生成日数据均值趋势折线(选矿综精S在2018年7月4日到2018年8月4日的日数据均值趋势折线图,见图6)。Step 7.2.2.2: Read the daily average value data of the production index from the local database, and generate a daily average data trend line (the daily data average trend line chart of Mineral Processing Synthesis S from July 4, 2018 to August 4, 2018 , see Figure 6).
步骤7.2.2.3:从本地数据库读取该生产指标的日方差数据,生成日数据方差趋势柱状图(选矿综精S在2018年7月4日到2018年8月4日的日数据方差趋势柱状图,见图7)。Step 7.2.2.3: Read the daily variance data of the production index from the local database, and generate a histogram of the daily data variance trend (the daily data variance trend column of Mineral Processing Synthesis S from July 4, 2018 to August 4, 2018 Figure, see Figure 7).
步骤7.2.3:选择选矿综精品位(Tfe)、选矿综精水分、选矿综精烧损Ig、选矿综精S、选矿综精CaO、选矿综精SiO2、测算烧结矿品位多个生产指标对比分析,生成雷达图。Step 7.2.3: Select the comprehensive fine grade of mineral dressing (Tfe), the water content of mineral processing comprehensive fine, the burning loss Ig of mineral processing comprehensive fine, the mineral processing comprehensive fine S, the mineral processing comprehensive fine CaO, the mineral processing comprehensive fine SiO2, and the comparison of multiple production indicators of the sintered ore grade Analyze and generate radar charts.
步骤7.2.3.1:选择选矿综精品位(Tfe)、选矿综精水分、选矿综精烧损Ig、选矿综精S、选矿综精CaO、选矿综精SiO2、测算烧结矿品位等生产指标。Step 7.2.3.1: Select production indicators such as mineral processing fine grade (Tfe), mineral processing fine water, mineral processing fine burning loss Ig, mineral processing fine S, mineral processing fine CaO, ore dressing SiO2, and calculate sinter grade.
步骤7.2.3.2:设置指标上下限[a,b],其中a表示指标下限,b表示指标上限。Step 7.2.3.2: Set the upper and lower limits of the indicator [a,b], where a indicates the lower limit of the indicator, and b indicates the upper limit of the indicator.
选矿综精品位(Tfe)[50.00%-61.40%]、选矿综精水分[11.20%-15.60%]、选矿综精烧损Ig[9.00%-9.80%]、选矿综精S[0.23%-0.31%]、选矿综精CaO[1.80%-1.98%]、选矿综精SiO2[7.10%-8.40%]、测算烧结矿品位[48.00%-51.00%]。Mineral processing comprehensive fine grade (Tfe) [50.00%-61.40%], mineral processing comprehensive fine moisture [11.20%-15.60%], mineral processing comprehensive fine burning loss Ig [9.00%-9.80%], mineral processing comprehensive fine S [0.23%-0.31 %], comprehensive mineral processing concentrate CaO [1.80%-1.98%], mineral processing comprehensive concentration SiO2 [7.10%-8.40%], estimated sinter grade [48.00%-51.00%].
步骤7.2.3.3:选择历史时间2018年7月20日到2018年8月4日,生成指定时间的指标雷达图。Step 7.2.3.3: Select the historical time from July 20, 2018 to August 4, 2018, and generate an indicator radar chart for the specified time.
步骤7.2.4:生成工序指标与生产指标关联关系。Step 7.2.4: Generate the relationship between process indicators and production indicators.
步骤7.2.4.1:在影响综合精矿品位的众多工序生产指标中选出少数的主要影响指标一次溢流回收率、强磁选理论金属回收率、强磁球磨机给矿量、弱磁选理论金属回收率、旋流器给矿流量、旋流器给矿压力、浮选选比、综合尾矿品位,并计算出每个工序指标对综合精矿品位的贡献率,如表5所示。Step 7.2.4.1: Select a few of the main influencing indicators among the many process production indicators that affect the comprehensive concentrate grade. The recovery rate, cyclone feeding flow rate, cyclone feeding pressure, flotation ratio, comprehensive tailings grade, and the contribution rate of each process index to the comprehensive concentrate grade are calculated, as shown in Table 5.
步骤7.2.4.2:根据各工序指标对综合生产指标影响的贡献率,确定各个指标的比例关系。根据不同颜色区分不同指标,生成工序指标与生产指标关联关系图。Step 7.2.4.2: According to the contribution rate of each process index to the comprehensive production index, determine the proportional relationship of each index. Different indicators are distinguished according to different colors, and a relationship diagram between process indicators and production indicators is generated.
表格1选矿综精S指标历史数据(2018/7/4-2018/8/4)Table 1 Historical data of S indicators of comprehensive mineral processing (2018/7/4-2018/8/4)
表格2可监控指标列表(部分)Table 2 list of monitorable indicators (partial)
表格3工序列表Form 3 Process List
表格4选矿综精SiO2指标日均值和方差(2018/8/3)Table 4 The daily average value and variance of SiO2 indicators in comprehensive mineral processing (2018/8/3)
表5影响综合精矿品位的主要指标贡献率Table 5 Contribution rate of main indicators affecting comprehensive concentrate grade
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811010246.1A CN109034662B (en) | 2018-08-31 | 2018-08-31 | A production index visualization monitoring system and method based on process flow |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811010246.1A CN109034662B (en) | 2018-08-31 | 2018-08-31 | A production index visualization monitoring system and method based on process flow |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109034662A true CN109034662A (en) | 2018-12-18 |
CN109034662B CN109034662B (en) | 2022-03-25 |
Family
ID=64623011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811010246.1A Active CN109034662B (en) | 2018-08-31 | 2018-08-31 | A production index visualization monitoring system and method based on process flow |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109034662B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109840718A (en) * | 2019-02-28 | 2019-06-04 | 东北大学 | A kind of production target Visualized Monitoring System and method based on configuration |
CN110222100A (en) * | 2019-04-26 | 2019-09-10 | 广州明珞汽车装备有限公司 | Processing method, system and the storage medium of process timing sequence figure are shown based on big data |
CN110320842A (en) * | 2019-07-16 | 2019-10-11 | 东北大学 | Multi-Scale Data acquisition and processing unit and method for aluminum oxide production process |
CN110531723A (en) * | 2019-09-12 | 2019-12-03 | 东北大学 | A kind of preparation equipment malfunction visual analysis system and method |
CN110619465A (en) * | 2019-09-16 | 2019-12-27 | 上海移远通信科技有限公司 | Data storage method, data query method, data storage system, data query system, electronic equipment and storage medium |
CN111611301A (en) * | 2020-06-16 | 2020-09-01 | 武汉虹信通信技术有限责任公司 | KPI (Key Performance indicator) representation method, calculation method and system of wireless communication equipment |
CN111985890A (en) * | 2020-08-05 | 2020-11-24 | 上海卫星装备研究所 | Satellite assembly quota man-hour estimation method, system and man-hour management system |
CN112068534A (en) * | 2020-09-11 | 2020-12-11 | 中国石油天然气集团有限公司 | Graphical display system and method for industrial control logic |
CN112632162A (en) * | 2020-12-16 | 2021-04-09 | 上海华力集成电路制造有限公司 | Manufacturing production monitoring and reporting system |
CN112767513A (en) * | 2020-12-31 | 2021-05-07 | 浙江中控技术股份有限公司 | Visual flow chart, event synchronous configuration tool and flow chart drawing method |
CN112785165A (en) * | 2021-01-27 | 2021-05-11 | 重庆工业大数据创新中心有限公司 | Productivity data management method for small and medium-sized manufacturing enterprises |
CN113077139A (en) * | 2021-03-30 | 2021-07-06 | 深圳市智莱科技股份有限公司 | Process configuration method, device, equipment and computer readable storage medium |
CN113128942A (en) * | 2019-12-30 | 2021-07-16 | 北京国双科技有限公司 | Visual workflow processing method and device |
CN113342327A (en) * | 2020-03-02 | 2021-09-03 | 中国科学院沈阳自动化研究所 | Method for generating visual industrial configuration interactive graph |
CN113906356A (en) * | 2019-06-10 | 2022-01-07 | 三菱电机株式会社 | Index management system, index management method, engineering device, and engineering program |
CN114424133A (en) * | 2019-09-23 | 2022-04-29 | 西门子股份公司 | Extended trend display of process data and secondary alarms |
CN114547155A (en) * | 2022-02-17 | 2022-05-27 | 浙江中控技术股份有限公司 | Process flow chart display method and system |
CN115202540A (en) * | 2022-07-15 | 2022-10-18 | 浪潮云信息技术股份公司 | A state indicator device for industrial configuration based on the Internet of Things |
CN115310825A (en) * | 2022-08-10 | 2022-11-08 | 深圳市玄羽科技有限公司 | A visual data security monitoring system and method |
CN115542853A (en) * | 2022-09-19 | 2022-12-30 | 上海雷昶科技有限公司 | A new method and system for monitoring pharmaceutical production process |
CN116775750A (en) * | 2023-08-15 | 2023-09-19 | 中钢集团武汉安全环保研究院有限公司 | Data management method and device based on metallurgical industry |
CN116996746A (en) * | 2023-07-19 | 2023-11-03 | 苏州旭智设计营造有限公司 | Whole process display radar induction interaction system |
CN117085833A (en) * | 2023-08-24 | 2023-11-21 | 上海晨洋新材料有限公司 | Aluminum powder classification process monitoring system based on data analysis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472807A (en) * | 2013-09-23 | 2013-12-25 | 雅化集团绵阳实业有限公司 | Primary explosive continuous automatic production monitoring system |
CN103745406A (en) * | 2013-12-23 | 2014-04-23 | 东北大学 | Visual ore dressing production full-flow technic index optimized decision system and method thereof |
CN104142897A (en) * | 2013-05-06 | 2014-11-12 | 沈阳中科博微自动化技术有限公司 | Visual configuration method for integrated circuit production line monitoring system |
CN105630962A (en) * | 2015-12-25 | 2016-06-01 | 甘肃万维信息技术有限责任公司 | Data visualization presentation system capable of customizing configuration |
CN108108880A (en) * | 2017-12-07 | 2018-06-01 | 东北大学 | A kind of mineral processing production index Visualized Analysis System and method |
-
2018
- 2018-08-31 CN CN201811010246.1A patent/CN109034662B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104142897A (en) * | 2013-05-06 | 2014-11-12 | 沈阳中科博微自动化技术有限公司 | Visual configuration method for integrated circuit production line monitoring system |
CN103472807A (en) * | 2013-09-23 | 2013-12-25 | 雅化集团绵阳实业有限公司 | Primary explosive continuous automatic production monitoring system |
CN103745406A (en) * | 2013-12-23 | 2014-04-23 | 东北大学 | Visual ore dressing production full-flow technic index optimized decision system and method thereof |
CN105630962A (en) * | 2015-12-25 | 2016-06-01 | 甘肃万维信息技术有限责任公司 | Data visualization presentation system capable of customizing configuration |
CN108108880A (en) * | 2017-12-07 | 2018-06-01 | 东北大学 | A kind of mineral processing production index Visualized Analysis System and method |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020172913A1 (en) * | 2019-02-28 | 2020-09-03 | 东北大学 | Production index visual monitoring system and method based on configuration |
CN109840718A (en) * | 2019-02-28 | 2019-06-04 | 东北大学 | A kind of production target Visualized Monitoring System and method based on configuration |
CN110222100A (en) * | 2019-04-26 | 2019-09-10 | 广州明珞汽车装备有限公司 | Processing method, system and the storage medium of process timing sequence figure are shown based on big data |
CN113906356A (en) * | 2019-06-10 | 2022-01-07 | 三菱电机株式会社 | Index management system, index management method, engineering device, and engineering program |
CN113906356B (en) * | 2019-06-10 | 2024-04-19 | 三菱电机株式会社 | Index management system, index management method, engineering design device, and computer-readable recording medium |
CN110320842A (en) * | 2019-07-16 | 2019-10-11 | 东北大学 | Multi-Scale Data acquisition and processing unit and method for aluminum oxide production process |
CN110531723A (en) * | 2019-09-12 | 2019-12-03 | 东北大学 | A kind of preparation equipment malfunction visual analysis system and method |
CN110531723B (en) * | 2019-09-12 | 2022-07-05 | 东北大学 | Visual analysis system and method for fault state of mineral processing equipment |
CN110619465A (en) * | 2019-09-16 | 2019-12-27 | 上海移远通信科技有限公司 | Data storage method, data query method, data storage system, data query system, electronic equipment and storage medium |
CN114424133A (en) * | 2019-09-23 | 2022-04-29 | 西门子股份公司 | Extended trend display of process data and secondary alarms |
CN113128942A (en) * | 2019-12-30 | 2021-07-16 | 北京国双科技有限公司 | Visual workflow processing method and device |
CN113342327A (en) * | 2020-03-02 | 2021-09-03 | 中国科学院沈阳自动化研究所 | Method for generating visual industrial configuration interactive graph |
CN111611301A (en) * | 2020-06-16 | 2020-09-01 | 武汉虹信通信技术有限责任公司 | KPI (Key Performance indicator) representation method, calculation method and system of wireless communication equipment |
CN111611301B (en) * | 2020-06-16 | 2023-12-08 | 武汉虹信科技发展有限责任公司 | KPI index representing method, calculating method and system of wireless communication equipment |
CN111985890A (en) * | 2020-08-05 | 2020-11-24 | 上海卫星装备研究所 | Satellite assembly quota man-hour estimation method, system and man-hour management system |
CN111985890B (en) * | 2020-08-05 | 2023-12-08 | 上海卫星装备研究所 | Satellite assembly quota man-hour estimation method, system and man-hour management system |
CN112068534B (en) * | 2020-09-11 | 2022-02-01 | 中国石油天然气集团有限公司 | Graphical display system and method for industrial control logic |
CN112068534A (en) * | 2020-09-11 | 2020-12-11 | 中国石油天然气集团有限公司 | Graphical display system and method for industrial control logic |
CN112632162A (en) * | 2020-12-16 | 2021-04-09 | 上海华力集成电路制造有限公司 | Manufacturing production monitoring and reporting system |
CN112767513A (en) * | 2020-12-31 | 2021-05-07 | 浙江中控技术股份有限公司 | Visual flow chart, event synchronous configuration tool and flow chart drawing method |
CN112785165A (en) * | 2021-01-27 | 2021-05-11 | 重庆工业大数据创新中心有限公司 | Productivity data management method for small and medium-sized manufacturing enterprises |
CN113077139A (en) * | 2021-03-30 | 2021-07-06 | 深圳市智莱科技股份有限公司 | Process configuration method, device, equipment and computer readable storage medium |
CN114547155A (en) * | 2022-02-17 | 2022-05-27 | 浙江中控技术股份有限公司 | Process flow chart display method and system |
CN115202540A (en) * | 2022-07-15 | 2022-10-18 | 浪潮云信息技术股份公司 | A state indicator device for industrial configuration based on the Internet of Things |
CN115310825A (en) * | 2022-08-10 | 2022-11-08 | 深圳市玄羽科技有限公司 | A visual data security monitoring system and method |
CN115542853A (en) * | 2022-09-19 | 2022-12-30 | 上海雷昶科技有限公司 | A new method and system for monitoring pharmaceutical production process |
CN116996746A (en) * | 2023-07-19 | 2023-11-03 | 苏州旭智设计营造有限公司 | Whole process display radar induction interaction system |
CN116775750A (en) * | 2023-08-15 | 2023-09-19 | 中钢集团武汉安全环保研究院有限公司 | Data management method and device based on metallurgical industry |
CN116775750B (en) * | 2023-08-15 | 2023-10-31 | 中钢集团武汉安全环保研究院有限公司 | Data management method and device based on metallurgical industry |
CN117085833A (en) * | 2023-08-24 | 2023-11-21 | 上海晨洋新材料有限公司 | Aluminum powder classification process monitoring system based on data analysis |
CN117085833B (en) * | 2023-08-24 | 2024-07-09 | 上海晨洋新材料有限公司 | Aluminum powder classification process monitoring system based on data analysis |
Also Published As
Publication number | Publication date |
---|---|
CN109034662B (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109034662A (en) | A kind of production target Visualized Monitoring System and method based on process flow | |
CN109840718B (en) | A configuration-based production indicator visualization monitoring system and method | |
US6577304B1 (en) | System and method for visually representing a supply chain | |
CN112734284B (en) | Flow industrial energy consumption optimization decision system and method for improving accuracy of evaluation result | |
CN104820154A (en) | Power supply data visualized monitoring system based on visualization technology | |
CN102436337B (en) | Graphical user interface device | |
CN108475335B (en) | Method for post-inspection analysis of tripped field devices in process industry using optical character recognition, smart character recognition | |
US12313257B1 (en) | System and method for remote monitoring and control of landfill and recycling operations | |
CN108108880A (en) | A kind of mineral processing production index Visualized Analysis System and method | |
DE112014001390T5 (en) | Systems and methods for graphically displaying process control system information | |
CN110531723B (en) | Visual analysis system and method for fault state of mineral processing equipment | |
JP2012018589A (en) | Apparatus data display device and apparatus data display method | |
JP2007199783A (en) | Energy monitoring device | |
CN112347752A (en) | Autonomous drawing management method and device for industrial chain | |
US12189359B2 (en) | Method for simultaneous data visualization of data stemming from controlling and/or monitoring an industrial production process | |
CN118760794B (en) | Pain signal visualization method and system for production process | |
CN113485265B (en) | Real-time interconnection method based on chart and industrial intelligent manufacturing equipment data | |
CN106843656A (en) | A kind of data display and the method for interaction | |
CN106503920A (en) | A kind of distribution project management As-Is Assessment method and device | |
CN114417093B (en) | A railway equipment graphical display method and system | |
US7957932B1 (en) | Data analysis systems and related methods | |
DE60012636T2 (en) | Method for controlling a complex dynamic process | |
JP2010067113A (en) | Production energy monitoring control system | |
CN113643769A (en) | Management system and method for combining mineral gene with mineral processing technology | |
CN113610467B (en) | Visual analysis system for monitoring and processing e-commerce warehouse detention order in real time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |