[go: up one dir, main page]

CN109017778A - 四轮独立驱动车辆的期望路径主动转向控制方法 - Google Patents

四轮独立驱动车辆的期望路径主动转向控制方法 Download PDF

Info

Publication number
CN109017778A
CN109017778A CN201810857566.4A CN201810857566A CN109017778A CN 109017778 A CN109017778 A CN 109017778A CN 201810857566 A CN201810857566 A CN 201810857566A CN 109017778 A CN109017778 A CN 109017778A
Authority
CN
China
Prior art keywords
vehicle
time
active steering
control
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810857566.4A
Other languages
English (en)
Other versions
CN109017778B (zh
Inventor
葛平淑
张涛
赵秀春
张江燕
宋鹏
薄纯娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Nationalities University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Nationalities University filed Critical Dalian Nationalities University
Priority to CN201810857566.4A priority Critical patent/CN109017778B/zh
Publication of CN109017778A publication Critical patent/CN109017778A/zh
Application granted granted Critical
Publication of CN109017778B publication Critical patent/CN109017778B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

四轮独立驱动车辆的期望路径主动转向控制方法,属于无人驾驶车辆控制领域,为了解决望路径主动转向控制的问题,要点是S1.二自由度车辆横向动力学模型描述车辆横向运动和橫摆运动,并离散化所述动力学模型,形成状态空间方程;S2.由状态空间方程建立预测模型,实施滚动时域优化算法规划前轮转角,求解当前时刻控制输入向量以得到前轮转角,对车辆主动转向控制以跟踪期望轨迹,效果是提高了模型精确度和车辆行驶的安全性。

Description

四轮独立驱动车辆的期望路径主动转向控制方法
技术领域
本发明属于无人驾驶车辆控制领域,特别是一种四轮独立驱动无人驾驶电动车辆轨迹跟踪控制工作方法。
背景技术
电动化和智能化作为目前汽车工业的发展方向,已经成为国内外学者、科研院所和企业的研究热点。电动汽车不仅可以减少人类对不可再生资源的消耗,改善环境问题,还可以带来传统燃油车辆难以企及的NVH品质。四轮毂电机独立驱动是电动汽车一种独特驱动形式,由于动力系统直接集成在车轮,所以可以对各轮驱动力矩和转速进行独立精确控制,此结构为先进控制算法的实现奠定了基础。无人驾驶技术是车辆智能化的高级阶段,是实现交通事故“零死亡”关键技术,而轨迹跟踪是实现智能车辆自主驾驶的基本要求。
轨迹跟踪控制是无人驾驶车辆实现精确运动控制的关键技术,也是无人驾驶车辆实现智能化和实用化的首要条件。车辆的运动控制可划分为三种:纵向运动控制、横向运动控制、纵横向运动控制。纵向运动控制是指保持使车辆速度能迅速、高精度维持在目标车速范围内。横向运动控制则是控制车辆橫摆运动以及转向运动,目的是使车辆在不同工况下既能保持横向稳定性又能平稳的跟踪期望轨迹,从而使车辆实现车道保持或者自主超车、避障等功能。目前绝大部分无人驾驶车辆轨迹跟踪算法只是对纵向运动和横向运动进行简单解耦,并假定车速为一定值,但是车辆是一个高度非线性和强耦合的系统,如果不考虑纵横向之间的相互关系,那么则不能保证控制精度和车辆稳定性。尤其是车辆在高速工况以及低附工况行驶的时候,更易发生失稳情况。另一方面,目前存在的控制算法大多涉及的是运动学控制,即没有将车辆横向稳定性与纵向运动控制考虑在内,如果不考虑动力学约束会增加车辆在高速与低附路面工况下行驶的不安全性,降低控制精度。因此,设计FWID无人驾驶电动车辆轨迹跟踪控制策略时,需要充分考虑纵横向运动相互关系和行驶稳定性的算法尤为重要。
发明内容
为了解决望路径主动转向控制的问题,本发明提出如下技术方案:.一种四轮独立驱动车辆的期望路径主动转向控制方法,包括如下步骤:
S1.二自由度车辆横向动力学模型描述车辆横向运动和橫摆运动,并离散化所述动力学模型,形成状态空间方程;
S2.由状态空间方程建立预测模型,实施滚动时域优化算法规划前轮转角,求解当前时刻控制输入向量以得到前轮转角,对车辆主动转向控制以跟踪期望轨迹。
进一步的,二自由度车辆横向动力学模型为:
式中:vy为横向速度、vx为纵向速度、为横摆角、β为质心侧偏角;
γ为横摆角速度;m为汽车质量、Cf为前轮侧偏刚度、Cr为后轮侧偏刚度、 lf为质心到前轴的距离、lr为质心到后轴的距离、δf为前轮转角;Iz为车身绕Z 轴的转动惯量。
进一步的,选择k时刻的横向位置y(k)、横摆角质心侧偏角β(k)、横摆角速度γ(k)作为状态量x(k),选择k时刻的前轮转角δf(k)为控制量u(k),选择k 时刻的横向位置y(k)为输出量,将所述动力学模型离散化。
进一步的,所述状态空间方程:
式中:Ts为采样周期,τ为积分变量, A为系统矩阵、B为输入矩阵,且
k时刻预测模型:
Y(k+1)=Sxx(k)+SuU(k)
式中:
U(k)为控制输入向量,预测时域为P,控制时域为M,并且M≤P。
进一步的,所述的k时刻预测模型由下述预测模型简化而得:
预测模型为:
y(k+1)=CcAcx(k)+CcBcu(k)
y(k+2)=CcAcx(k+1)+CcBcu(k+1)
y(k+M)=CcAc Mx(k)+...+CcBcu(k+M-1)
定义预测输出向量Y(k+1|k)和控制输入向量U(k)为:
式中:y(k+P)为k时刻预测时域第P步的横向位置、u(k+M-1)为k时刻控制时域第M步的控制量。
进一步的,期望横向位置序列Ydes(k+i)为:
式中:ydes(k+P)为k时刻预测时域第P步的期望横向位置。
进一步的,滚动时域优化算法:
约束条件为:
Δumin≤Δu(k+i)≤Δumax
umin≤u(k+i)≤umax
βmin≤β(k+i)≤βmax
式中:
J为滚动优化目标函数,Γy、Γu为权重系数;
Δu(k+i)=u(k+i+1)-u(k+i),代表控制量的增量,i=0,1,…,M-1;u(k+i)为k 时刻控制时域第i步的控制量;umax为车辆前轮转角的右极限位置;umin为车辆前轮转角的左极限位置;
β(k+i)为k时刻预测时域第i步的质心侧偏角,βmin和βmax分别为质心侧偏角最小值和最大值。
权重系数定义为对角矩阵:
Γy=diag(Γy1y2,…,ΓyP)
Γu=diag(Γu1u2,…,ΓuM)
式中:ΓyP为k时刻预测时域第P步的权重系数、ΓuM为k时刻控制时域第M 步的权重系数。
进一步的,滚动时域优化算法用于轨迹跟踪主动转向控制器,其由预测模型、滚动优化和反馈校正组成。
与现有技术相比,本发明的有益效果如下:
本发明的滚动时域优化算法规划前轮转角,即使用车辆动力学约束,提高了模型精确度和车辆行驶的安全性,模型过对车辆以及参考轨迹未来时刻的状态变化的考虑,提高了轨迹跟踪的精度,并且对车速、路面附着条件、参考轨迹有很好的鲁棒性。
附图说明
图1为二自由度车辆动力学模型
图2为三自由度车辆动力学模型
图3为模糊自适应PI纵向速度控制器
图4为纵向速度误差e及误差变化率ec的隶属度函数:(a)纵向速度误差e的隶属度函数;(b)纵向速度误差变化率ec的隶属度函数;
图5为纵向速度控制器参数Δkp和Δki的隶属度函数:(a)参数Δkp的输入输出关系,(b)参数Δki的输入输出关系;
图6为跟踪系统的结构示意框图。
具体实施方式
本发明将以四轮独立驱动电动汽车(FWID-EV,Four-Wheel-Independentelectric vehicle)为对象,研究无人驾驶车辆轨迹跟踪控制策略,既要满足对期望轨迹的精确跟踪,还要符合高速和低附工况行驶稳定性的要求。
为提高车辆在高速和低附路面的轨迹跟踪的稳定性和精确性,本发明提供一种四轮独立驱动无人驾驶电动车辆轨迹跟踪算法。鉴于以往的无人驾驶车辆轨迹跟踪算法的研究内容并不考虑车辆稳定性控制和纵向车速控制,并且不适合四轮独立驱动电动车辆。本发明提出一种针对四轮独立驱动无人驾驶电动车辆分层轨迹跟踪控制策略。
本发明所设计的轨迹跟踪策略共分为三层,上层建立了前轮主动转向的滚动时域优化算法,设计优化函数时,将轨迹跟踪精度作为最基本的目标;其次为提高乘坐舒适性,将控制量约束加入了优化问题。为使横摆角速度可以表征车辆稳定性,优化求解中加入质心侧偏角约束。中层控制器以跟踪期望橫摆角速度为控制目标,算法设计时,以等效滑膜控制为基础利用三自由度车辆模型设计了等效控制项;并以双曲正切函数代替不连续的符号函数设计切换鲁棒控制项,有效的削减了抖振现象。下层控制器为考虑速度变化对轨迹跟踪精度的影响,提高纵向车速控制的稳定性和鲁棒性,将速度误差和其变化率作为模糊控制器的输入,通过模糊推理在线整定PI控制器参数,保证了纵向车速的跟随性能。以轮胎利用率做为优化函数,基于伪逆法设计了力矩分配算法。
1上层控制器,根据期望轨迹实现主动转向控制
1.1建立车辆横向动力学模型
二自由度线性自行车模型常用来描述车辆横向运动和橫摆运动。在建模时作出如下假设:假设车辆在平坦路面行驶,不考虑车辆的垂向运动以及悬架运动,并假设车辆是刚性的;不考虑车辆的前后和左右载荷转移;不考虑轮胎力的纵横向耦合关系,只考虑纯侧偏轮胎特性;同时忽略纵横向空气动力学。在以上假设基础上建立二自由度车辆动力学模型,如图1所示。
根据图1所示二自由度车辆动力学模型,为了减少强耦合参数的影响,提高系统的灵活性,忽略车辆的纵向动力学,只考虑汽车的横向运动和橫摆运动,可以推导出二自由度车辆横向动力学方程为:
式中:m为汽车质量、vx为纵向速度、β为质心侧偏角、γ为横摆角速度、Iz为车身绕Z轴的转动惯量、lf为质心到前轴的距离、lr为质心到后轴的距离、Fxf为前轮纵向力、Fxr为后轮纵向力、Fyf为前轮侧向力、Fyr为后轮侧向力。
前、后轮侧偏力可以用下式计算:
式中:Cf为前轮侧偏刚度、Cr为后轮侧偏刚度、αf为前轮侧偏角、αr为后轮侧偏角。
根据小角度假设,前、后轮侧偏角通过可简为:
式中:δf为前轮转角。
因此,可以得到二自由度车辆横向动力学模型为:
式中:vy为横向速度、为横摆角。
选择k时刻的横向位置y(k)、横摆角质心侧偏角β(k)、横摆角速度γ(k) 为状态量为x(k),选择k时刻的前轮转角δf(k)为控制量u(k),选择k时刻的横向位置y(k)为输出量,将上述动力学模型写成离散化状态空间方程的形式为:
式中:Ts为采样周期,τ为积分变量,A为系统矩阵、B为输入矩阵,且
1.2设计基于滚动时域优化算法的轨迹跟踪主动转向控制器
滚动时域优化算法由预测模型、滚动优化和反馈校正等三部分组成。
预测时域为P,控制时域为M,并且M≤P。当前时刻k,假设在控制时域外控制量为定值,即u(k+M-1)=u(k+M)=...=u(k+P-1),根据车辆横向动力学模型确定在k时刻的预测模型为:
y(k+1)=CcAcx(k)+CcBcu(k)
y(k+2)=CcAcx(k+1)+CcBcu(k+1)
y(k+M)=CcAc Mx(k)+...+CcBcu(k+M-1) (7)
定义预测输出向量Y(k+1|k)和控制输入向量U(k)为:
式中:y(k+P)为k时刻预测时域第P步的横向位置、u(k+M-1)为k时刻控制时域第M步的控制量。
上述预测模型可以简化为:
Y(k+1)=Sxx(k)+SuU(k) (9)
式中:
式中:
定义期望横向位置序列Ydes(k+i)为:
式中:ydes(k+P)为k时刻预测时域第P步的期望横向位置。
为使无人驾驶车辆能快速跟踪期望轨迹,规划出合理的前轮转角,选择以下两个控制目标:一是减小车辆实际轨迹与期望轨迹之间的误差;二是为了不产生过大的横向加速度,保证车辆行驶平顺性,要求控制量尽可能的小。因此,建立滚动优化问题:
式中:J为滚动优化目标函数、Γy、Γu为权重系数。
权重系数可定义为对角矩阵:
式中:ΓyP为k时刻预测时域第P步的权重系数、ΓuM为k时刻控制时域第M步的权重系数。
受到车辆转向结构的限制,前轮转角不能超过极限转角,同时,考虑到机械结构响应速度和乘坐舒适性,需要对控制量的增量加以限制,因此,设置约束条件为:
式中:Δu(k+i)=u(k+i+1)-u(k+i),代表控制量的增量,i=0,1,…,M-1;u(k+i)为 k时刻控制时域第i步的控制量;umax为车辆前轮转角的右极限位置;umin为车辆前轮转角的左极限位置。
横摆角速度可以直接反映车辆稳定性,为控制质心侧偏角β在较小范围之内,在约束条件中加入对质心侧偏角的约束:
βmin≤β(k+i)≤βmax (14)
式中:β(k+i)为k时刻预测时域第i步的质心侧偏角,βmin和βmax分别为质心侧偏角最小值和最大值。
综上所述,基于滚动时域优化算法的轨迹跟踪主动转向控制器可以转换为如下优化问题:
约束条件为:
Δumin≤Δu(k+i)≤Δumax
umin≤u(k+i)≤umax
βmin≤β(k+i)≤βmax
上述优化问题可以将其转变为二次规划问题,对于带不等式约束的QP问题可直接用有效集解法进行求解。通过将求解的k时刻控制输入向量 U(k)=[u(k) u(k+1) … u(k+M-1)]T得到的前轮转角实现车辆主动转向控制,重复上述过程,即完成轨迹跟踪控制过程。
2中层控制器,设计横摆力矩控制器跟踪理想的横摆角速度
2.1建立三自由度车辆动力学模型
为研究车辆的橫摆运动,需要建立的车辆动力学建模既能尽量精确描述车辆动力学系统又能减少计算量。为此,假设车辆在平坦路面行驶,不考虑车辆的垂向运动以及悬架运动,并假设车辆是刚性的;不考虑轮胎力的纵横向耦合关系,只考虑纯侧偏轮胎特性;不考虑车辆的前后和左右载荷转移,忽略纵横向空气动力学,建立只考虑车辆的纵向、横向、橫摆运动的三自由度车辆动力学模型,如图2所示。
根据牛顿第二定律对其在x轴、y轴和绕z轴方向进行受力分析,得到三自由度车辆动力学模型为:
式中:m为汽车质量、vx为纵向速度、vy为横向速度、γ为横摆角速度、δf为前轮转角、Iz为车身绕Z轴的转动惯量、lf为质心到前轴的距离、lr为质心到后轴的距离、lw为轮间距、Mx为横摆力矩;Fx1、Fx2、Fx3和Fx4分别为左前轮、右前轮、左后轮、和右后轮纵向力;、Fy1、Fy2、Fy3和Fy4分别为左前轮、右前轮、左后轮、和右后轮侧向力。
2.2基于等效滑膜控制理论建立橫摆力矩控制器
车辆的期望横摆角速度可以由下式计算:
式中:γd为期望横摆角速度、γ0为理想橫摆角速度、γmax为横摆角速度的最大值、sgn()为符号函数。
理想橫摆角速度可由下式计算:
考虑到地面所能提供的附着力的限制,横摆角速度的最大值可有下式确定:
式中:g为重力加速度、μ为路面附着系数。
令误差s=γ-γd,取
等效控制项设计为:
为了降低控制过程出现的抖振现象,采用连续函数代替符号函数,采用双曲正切函数设计切换鲁棒控制项,双曲正切函数为:
式中:ε>0,ε取值决定了函数拐点的变化速度。
为保证成立,取切换控制项为:
其中:D>0。
推导出基于等效滑膜的橫摆力矩控制器为:
3下层控制器,设计力矩分配控制器将纵向速度控制器得到的驱动力矩分配到每个轮毂电机
3.1基于模糊自适应PI算法设计纵向速度控制器
纵向速度控制不仅涉及到无人驾驶车辆行驶安全和乘坐舒适性,而且对轨迹跟踪精度起到重要影响。正常行驶过程中速度波动会带来对期望轨迹跟踪的不稳定性,因此,有必要对纵向速度进行控制。
将理想纵向速度和实际纵向速度的误差以及误差变化率作为控制器输入,模糊PI控制器输出电子节气门开度,然后经过查找提前编制的电子节气门开度与轮毂电机力矩Map图输出车辆的总的驱动力矩。总的驱动力矩通过力矩分配控制器计算每个轮毂电机的驱动力矩,轮毂电机的输出力矩作用在车轮上,实现车辆的稳定行驶以及对纵向速度的控制,其中,以轮胎利用率做为优化函数,根据伪逆法设计力矩分配算法对总的力矩分配。
基于模糊自适应PI算法设计纵向速度控制器如图3所示。
纵向速度误差e的基本论域为[-2,2],在其模糊论域[-1,1]上定义了3个模糊子集[负(用N代替)、零(用Z代替)、正(用P代替)];纵向速度误差变化率 ec的基本论域为[-3,3],在其模糊论域[-1,1]上定义了3个模糊子集[负(用N代替)、零(用Z代替)、正(用P代替)]。e、ec的隶属度函数如图4所示。
控制器参数Δkp的基本论域为[-3,3],在其模糊论域[-1,1]上定义了3个模糊子集[负(用N代替)、零(用Z代替)、正(用P代替)];控制器参数Δki的基本论域为[-0.1,0.1],在其模糊论域[-1,1]上定义了3个模糊子集[负(用N代替)、零 (用Z代替)、正(用P代替)]。Δkp、Δki的隶属度函数如图4所示。
控制器比例系数kp的整定原则为:当响应增大时(即e为P),Δkp为P,即增大比例系数kp;当超调时(即e为N),Δkp为N,即减小比例系数kp;当e 为Z时,分三种情况讨论:当ec为N时,超调量越来越大,Δkp为N,当ec为 Z时,Δkp为P可以降低误差,当ec为P时,正误差越来越大,Δkp为N。
控制器比例系数ki的整定原则为:采用积分分离方法确定,即当e在Z附近时,Δki为P,否则Δki为N。
基于以上分析建立的Δkp、Δki得模糊规则表分别为:
表1 Δkp模糊规则表
表2 Δki模糊规则表
模糊控制器输入输出关系如图5所示,当e增大时,表示实际纵向速度与理想纵向速度的误差增大,此时需要增大比例系数kp,Δkp输出范围为0到2。相反的,当出现超调现象时候,即e范围是-1到0时,需要减小比例系数kp,则Δkp输出范围为-2到0。当误差e在Z附近时,Δki为P,否则Δki为N。由图5可知,输入输出关系符合PI参数的整定要求。
3.2力矩分配控制器设计
为了实现车辆的稳定性控制,需要将纵向车速控制、橫摆力矩控制得到的车辆总的驱动力矩合理分配到各个轮毂电机。以往学者提出的大量在线优化算法,计算量大,实时性差。为解决这个问题,提出一种力矩分配控制器。车辆的车轮纵向力可表示为:
FX=[Fx1 Fx2 Fx3 Fx4]T (25)
式中:FX为车轮纵向力向量,Fx1、Fx2、Fx3和Fx4分别为左前轮、右前轮、左后轮、和右后轮纵向力。
令FT为车辆左、右车轮纵向力向量,则
式中:
定义车轮所受实际附着力与路面所提供的极限附着力之比为轮胎利用率,为了提高车辆稳定性,将每个车轮的轮胎利用率之和作为研究对象,要求轮胎利用率之和尽可能的小,这样可以尽可能保证轮胎处于稳定范围而不超附着极限。
式中:ηi为第i个车轮的轮胎附着率、Fxi为第i个车轮的纵向力、Fyi为第i个车轮的侧向力、Fzi为第i个车轮的垂直载荷,i=1,2,3,4分别代表左前轮、右前轮、左后轮和右后轮。
在研究纵向力矩分配时,忽略车轮侧向力,轮胎利用率计算可简化为:
为了提高车辆在低附路面的安全行驶能力,以轮胎利用率之和作为优化目标,对车辆的总的驱动力矩进行求解,即:
式中:μ为路面附着系数,加权矩阵
建立如下优化问题:
s.t.SFX=FT
为了求解该问题,构建汉密尔顿函数如下:
式中:ξ∈R4为拉格朗日乘子。
对汉密尔顿函数中的Fx和ξ求偏导并令其等于零,则有:
由上式可得:
即:
则车辆的车轮纵向力可写成:
车轮驱动力与轮车轮纵向力之间的关系可写成:
式中:r为车轮有效滚动半径,Ti为第i个车轮的驱动力矩,i=1,2,3,4分别代表左前轮、右前轮、左后轮和右后轮。
因此,每个车轮的驱动力矩分配可表达为:
式中:ΔT1、ΔT2分别为左、右侧车轮总的驱动力矩。
当横摆力矩控制器不工作时,ΔT1,ΔT2应等于总的驱动力矩Td的一半,即
当橫摆力矩控制器工作时,对左、右侧车轮施加橫摆力矩,左、右侧车轮总的驱动力矩ΔT1、ΔT2的关系为:
式中:Mx为横摆力矩、lw为轮间距。
ΔT1、ΔT2可通过下式计算:
则最终分配到轮毂电机的驱动力矩为:
上述本发明的较佳实施例,具有如下有益效果:
1.本发明设计了一种考虑车辆横向稳定性的四轮独立驱动无人驾驶电动车辆分层轨迹跟踪控制策略,通过上层控制器对期望轨迹进行跟踪,中层控制器利用上层控制器规划出的前轮转角对期望横摆角速度进行跟踪,实现了车辆在轨迹跟踪时的稳定性。下层控制器基于模糊PI控制设计了车辆纵向速度控制器,保证了车辆对期望纵向速度跟踪的稳定性。本发明的下层控制器利用伪逆法对所建立的力矩分配控制器进行求解,算法简单有效,求解时间短、实时性好。
2.本发明将车辆动力学约束加入上层控制器,能提高模型精确度和车辆行驶的安全性。上层控制器通过对车辆以及参考轨迹未来时刻的状态变化的考虑,提高了轨迹跟踪的精度。并且所设计的上层控制器对车速、路面附着条件、参考轨迹有很好的鲁棒性。
3.本发明基于准滑膜控制建立了橫摆力矩控制器,利用双曲正切函数代替符号函数,有效降低了准滑膜控制的抖振现象。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (10)

1.一种四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,包括如下步骤:
S1.二自由度车辆横向动力学模型描述车辆横向运动和橫摆运动,并离散化所述动力学模型,形成状态空间方程;
S2.由状态空间方程建立预测模型,实施滚动时域优化算法规划前轮转角,求解当前时刻控制输入向量以得到前轮转角,对车辆主动转向控制以跟踪期望轨迹。
2.如权利要求1所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,二自由度车辆横向动力学模型为:
式中:vy为横向速度、vx为纵向速度、为横摆角、β为质心侧偏角;γ为横摆角速度;m为汽车质量、Cf为前轮侧偏刚度、Cr为后轮侧偏刚度、lf为质心到前轴的距离、lr为质心到后轴的距离、δf为前轮转角;Iz为车身绕Z轴的转动惯量。
3.如权利要求2所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,选择k时刻的横向位置y(k)、横摆角质心侧偏角β(k)、横摆角速度γ(k)作为状态量x(k),选择k时刻的前轮转角δf(k)为控制量u(k),选择k时刻的横向位置y(k)为输出量,将所述动力学模型离散化。
4.如权利要求3所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,所述状态空间方程:
式中:Ts为采样周期,τ为积分变量,A为系统矩阵、B为输入矩阵,且
5.如权利要求4所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,k时刻预测模型:
Y(k+1)=Sxx(k)+SuU(k)
式中:
U(k)为控制输入向量,预测时域为P,控制时域为M,并且M≤P。
6.如权利要求5所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,所述的k时刻预测模型由下述预测模型简化而得:
预测模型为:
y(k+1)=CcAcx(k)+CcBcu(k)
y(k+2)=CcAcx(k+1)+CcBcu(k+1)
y(k+M)=CcAc Mx(k)+...+CcBcu(k+M-1)
定义预测输出向量Y(k+1|k)和控制输入向量U(k)为:
式中:y(k+P)为k时刻预测时域第P步的横向位置、u(k+M-1)为k时刻控制时域第M步的控制量。
7.如权利要求5所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,期望横向位置序列Ydes(k+i)为:
式中:ydes(k+P)为k时刻预测时域第P步的期望横向位置。
8.如权利要求7所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,滚动时域优化算法:
约束条件为:
Δumin≤Δu(k+i)≤Δumax
umin≤u(k+i)≤umax
βmin≤β(k+i)≤βmax
式中:
J为滚动优化目标函数,Γy、Γu为权重系数;
Δu(k+i)=u(k+i+1)-u(k+i),代表控制量的增量,i=0,1,…,M-1;u(k+i)为k时刻控制时域第i步的控制量;umax为车辆前轮转角的右极限位置;umin为车辆前轮转角的左极限位置;
β(k+i)为k时刻预测时域第i步的质心侧偏角,βmin和βmax分别为质心侧偏角最小值和最大值。
9.如权利要求8所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,权重系数定义为对角矩阵:
Γy=diag(Γy1y2,…,ΓyP)
Γu=diag(Γu1u2,…,ΓuM)
式中:ΓyP为k时刻预测时域第P步的权重系数、ΓuM为k时刻控制时域第M步的权重系数。
10.如权利要求1所述的四轮独立驱动车辆的期望路径主动转向控制方法,其特征在于,滚动时域优化算法用于轨迹跟踪主动转向控制器,其由预测模型、滚动优化和反馈校正组成。
CN201810857566.4A 2018-07-31 2018-07-31 四轮独立驱动车辆的期望路径主动转向控制方法 Expired - Fee Related CN109017778B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810857566.4A CN109017778B (zh) 2018-07-31 2018-07-31 四轮独立驱动车辆的期望路径主动转向控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810857566.4A CN109017778B (zh) 2018-07-31 2018-07-31 四轮独立驱动车辆的期望路径主动转向控制方法

Publications (2)

Publication Number Publication Date
CN109017778A true CN109017778A (zh) 2018-12-18
CN109017778B CN109017778B (zh) 2022-04-15

Family

ID=64647969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810857566.4A Expired - Fee Related CN109017778B (zh) 2018-07-31 2018-07-31 四轮独立驱动车辆的期望路径主动转向控制方法

Country Status (1)

Country Link
CN (1) CN109017778B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109885883A (zh) * 2019-01-21 2019-06-14 江苏大学 一种基于gk聚类算法模型预测的无人车横向运动的控制方法
CN110027547A (zh) * 2019-04-29 2019-07-19 百度在线网络技术(北京)有限公司 车辆横向控制方法和装置
CN110091876A (zh) * 2019-05-14 2019-08-06 合肥工业大学 一种线控四轮转向电动叉车的多故障检测和隔离方法
CN110175428A (zh) * 2019-06-03 2019-08-27 北京理工大学 基于车辆动力学模型的车辆运动特性仿真方法及系统
CN110696793A (zh) * 2019-09-19 2020-01-17 江苏理工学院 一种四轮转向联合差动制动的智能车辆分层控制方法
CN110708134A (zh) * 2019-09-09 2020-01-17 南京林业大学 四轮独立转向时间同步方法
CN111086400A (zh) * 2020-01-19 2020-05-01 北京理工大学 全轮独立转向及独立驱动无人车直接力动力学控制方法及系统
CN111267835A (zh) * 2020-03-26 2020-06-12 桂林电子科技大学 基于模型预测算法的四轮独立驱动汽车稳定性控制方法
CN111752150A (zh) * 2020-06-12 2020-10-09 北京理工大学 一种轮足机器人四轮协同控制方法
CN111873991A (zh) * 2020-07-22 2020-11-03 中国第一汽车股份有限公司 一种车辆转向的控制方法、装置、终端及存储介质
CN112230651A (zh) * 2020-07-06 2021-01-15 湖南工业大学 一种基于分层控制理论的分布式无人车路径跟踪控制方法
CN112519882A (zh) * 2019-09-17 2021-03-19 广州汽车集团股份有限公司 一种车辆参考轨迹跟踪方法及系统
CN112537297A (zh) * 2019-09-20 2021-03-23 比亚迪股份有限公司 车道保持方法、系统及车辆
CN112644455A (zh) * 2021-01-08 2021-04-13 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN112849127A (zh) * 2021-01-29 2021-05-28 北京理工大学 车辆转向控制的方法、装置、存储介质和设备
CN113900438A (zh) * 2021-10-08 2022-01-07 清华大学 无人车路径跟踪控制方法、装置、计算机设备和存储介质
CN114044003A (zh) * 2021-12-21 2022-02-15 吉林大学 前后双轴转向车辆的循迹控制方法
CN114407880A (zh) * 2022-02-18 2022-04-29 岚图汽车科技有限公司 一种无人驾驶紧急避障路径跟踪方法
CN114924561A (zh) * 2022-05-09 2022-08-19 重庆大学 一种四舵轮agv轨迹跟踪控制方法
CN115454086A (zh) * 2022-09-27 2022-12-09 江苏大学 一种基于模型预测控制算法的车辆主动避撞控制方法
CN117400944A (zh) * 2023-12-15 2024-01-16 北京理工大学 一种轮腿式车辆速差转向控制方法、系统及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228653A1 (en) * 2021-04-26 2022-11-03 Volvo Truck Corporation Vehicle control based on dynamically configured longitudinal wheel slip limits

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661398A (zh) * 2013-12-24 2014-03-26 东南大学 一种基于滑模观测器的车辆非转向左后轮线速度估计方法
CN104977933A (zh) * 2015-07-01 2015-10-14 吉林大学 一种自主驾驶车辆的区域型路径跟踪控制方法
CN106218633A (zh) * 2016-08-02 2016-12-14 大连理工大学 基于q‑学习的四轮独立驱动电动汽车稳定性控制方法
CN106828464A (zh) * 2017-01-06 2017-06-13 合肥工业大学 一种基于路面附着系数估算的车身稳定控制方法及系统
CN107472082A (zh) * 2017-07-20 2017-12-15 北京长城华冠汽车科技股份有限公司 四驱电动汽车的驱动力矩分配方法、系统及电动汽车
CN107696915A (zh) * 2017-09-20 2018-02-16 江苏大学 一种基于分层控制的电动汽车轮式驱动控制系统及其控制方法
CN107825997A (zh) * 2017-09-05 2018-03-23 同济大学 一种分布式驱动电动汽车的转矩分配控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661398A (zh) * 2013-12-24 2014-03-26 东南大学 一种基于滑模观测器的车辆非转向左后轮线速度估计方法
CN104977933A (zh) * 2015-07-01 2015-10-14 吉林大学 一种自主驾驶车辆的区域型路径跟踪控制方法
CN106218633A (zh) * 2016-08-02 2016-12-14 大连理工大学 基于q‑学习的四轮独立驱动电动汽车稳定性控制方法
CN106828464A (zh) * 2017-01-06 2017-06-13 合肥工业大学 一种基于路面附着系数估算的车身稳定控制方法及系统
CN107472082A (zh) * 2017-07-20 2017-12-15 北京长城华冠汽车科技股份有限公司 四驱电动汽车的驱动力矩分配方法、系统及电动汽车
CN107825997A (zh) * 2017-09-05 2018-03-23 同济大学 一种分布式驱动电动汽车的转矩分配控制方法
CN107696915A (zh) * 2017-09-20 2018-02-16 江苏大学 一种基于分层控制的电动汽车轮式驱动控制系统及其控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
熊璐等: "分布式驱动电动汽车电液复合分配稳定性控制", 《同济大学学报(自然科学版)》 *
邹广才等: "基于全轮纵向力优化分配的4WD车辆直接横摆力矩控制", 《农业机械学报》 *
郑艳等: "Buck变换器的离散时间全程滑模控制", 《控制与决策》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109885883A (zh) * 2019-01-21 2019-06-14 江苏大学 一种基于gk聚类算法模型预测的无人车横向运动的控制方法
CN109885883B (zh) * 2019-01-21 2023-04-18 江苏大学 一种基于gk聚类算法模型预测的无人车横向运动的控制方法
CN110027547A (zh) * 2019-04-29 2019-07-19 百度在线网络技术(北京)有限公司 车辆横向控制方法和装置
CN110027547B (zh) * 2019-04-29 2020-11-06 百度在线网络技术(北京)有限公司 车辆横向控制方法和装置
CN110091876A (zh) * 2019-05-14 2019-08-06 合肥工业大学 一种线控四轮转向电动叉车的多故障检测和隔离方法
CN110091876B (zh) * 2019-05-14 2020-06-26 合肥工业大学 一种线控四轮转向电动叉车的多故障检测和隔离方法
CN110175428A (zh) * 2019-06-03 2019-08-27 北京理工大学 基于车辆动力学模型的车辆运动特性仿真方法及系统
CN110708134A (zh) * 2019-09-09 2020-01-17 南京林业大学 四轮独立转向时间同步方法
CN112519882B (zh) * 2019-09-17 2022-02-22 广州汽车集团股份有限公司 一种车辆参考轨迹跟踪方法及系统
CN112519882A (zh) * 2019-09-17 2021-03-19 广州汽车集团股份有限公司 一种车辆参考轨迹跟踪方法及系统
CN110696793A (zh) * 2019-09-19 2020-01-17 江苏理工学院 一种四轮转向联合差动制动的智能车辆分层控制方法
CN112537297A (zh) * 2019-09-20 2021-03-23 比亚迪股份有限公司 车道保持方法、系统及车辆
CN111086400A (zh) * 2020-01-19 2020-05-01 北京理工大学 全轮独立转向及独立驱动无人车直接力动力学控制方法及系统
CN111086400B (zh) * 2020-01-19 2021-06-25 北京理工大学 全轮独立转向及独立驱动无人车直接力动力学控制方法及系统
CN111267835A (zh) * 2020-03-26 2020-06-12 桂林电子科技大学 基于模型预测算法的四轮独立驱动汽车稳定性控制方法
CN111752150A (zh) * 2020-06-12 2020-10-09 北京理工大学 一种轮足机器人四轮协同控制方法
CN111752150B (zh) * 2020-06-12 2021-07-16 北京理工大学 一种轮足机器人四轮协同控制方法
CN112230651A (zh) * 2020-07-06 2021-01-15 湖南工业大学 一种基于分层控制理论的分布式无人车路径跟踪控制方法
CN111873991A (zh) * 2020-07-22 2020-11-03 中国第一汽车股份有限公司 一种车辆转向的控制方法、装置、终端及存储介质
CN112644455A (zh) * 2021-01-08 2021-04-13 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN112644455B (zh) * 2021-01-08 2022-04-12 福州大学 一种分布式驱动车辆行驶稳定性控制方法
CN112849127A (zh) * 2021-01-29 2021-05-28 北京理工大学 车辆转向控制的方法、装置、存储介质和设备
CN113900438A (zh) * 2021-10-08 2022-01-07 清华大学 无人车路径跟踪控制方法、装置、计算机设备和存储介质
CN113900438B (zh) * 2021-10-08 2023-09-22 清华大学 无人车路径跟踪控制方法、装置、计算机设备和存储介质
CN114044003A (zh) * 2021-12-21 2022-02-15 吉林大学 前后双轴转向车辆的循迹控制方法
CN114044003B (zh) * 2021-12-21 2024-01-23 吉林大学 前后双轴转向车辆的循迹控制方法
CN114407880A (zh) * 2022-02-18 2022-04-29 岚图汽车科技有限公司 一种无人驾驶紧急避障路径跟踪方法
CN114407880B (zh) * 2022-02-18 2023-06-27 岚图汽车科技有限公司 一种无人驾驶紧急避障路径跟踪方法
CN114924561A (zh) * 2022-05-09 2022-08-19 重庆大学 一种四舵轮agv轨迹跟踪控制方法
CN114924561B (zh) * 2022-05-09 2025-05-23 重庆大学 一种四舵轮agv轨迹跟踪控制方法
CN115454086A (zh) * 2022-09-27 2022-12-09 江苏大学 一种基于模型预测控制算法的车辆主动避撞控制方法
CN117400944A (zh) * 2023-12-15 2024-01-16 北京理工大学 一种轮腿式车辆速差转向控制方法、系统及电子设备
CN117400944B (zh) * 2023-12-15 2024-03-08 北京理工大学 一种轮腿式车辆速差转向控制方法、系统及电子设备

Also Published As

Publication number Publication date
CN109017778B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN109017778B (zh) 四轮独立驱动车辆的期望路径主动转向控制方法
CN109017760B (zh) 车辆期望轨迹跟踪方法、装置及滚动时域优化算法
CN109017759B (zh) 期望路径车辆横摆控制方法
CN109017446B (zh) 期待路径车辆纵向速度追踪控制方法及装置
CN109017447B (zh) 无人驾驶车辆总的驱动力矩输出方法
CN109795502B (zh) 智能电动汽车路径跟踪模型预测控制方法
CN107943071B (zh) 无人车的编队保持控制方法及系统
CN107561942B (zh) 基于模型补偿的智能车辆轨迹跟踪模型预测控制方法
CN109017804B (zh) 力矩分配控制器为车辆各轮毂电机分配驱动力矩的方法
CN110827535B (zh) 非线性车辆队列协同自适应抗扰纵向控制方法
CN111055921A (zh) 一种基于数据驱动的四轮转向模型预测控制方法
CN108216231A (zh) 一种基于转向和制动可拓联合的车道偏离辅助控制方法
CN108227491A (zh) 一种基于滑模神经网络的智能车轨迹跟踪控制方法
CN112230651A (zh) 一种基于分层控制理论的分布式无人车路径跟踪控制方法
CN207328574U (zh) 一种基于主动安全的智能汽车轨迹跟踪控制系统
CN110605975A (zh) 一种多轴分布式电驱动车辆转矩分配集成控制器和控制方法
CN115431790B (zh) 8轮分布式电驱动车辆afs和dyc协同控制方法
Li et al. Adaptive sliding mode control of lateral stability of four wheel hub electric vehicles
CN112622875B (zh) 一种四轮毂电机驱动车辆的下层力矩分配控制方法
CN117141507A (zh) 基于前馈和预测lqr自动驾驶车辆路径跟踪方法及实验装置
CN113954833B (zh) 一种全电驱分布式无人车路径跟踪与稳定性协调控制方法
CN116834754A (zh) 一种自动驾驶车辆自适应调速的横纵协同控制方法
CN116819972B (zh) 一种模块化分层式架构的协同控制方法
CN117215202A (zh) 一种自动驾驶车辆横向运动的新型模糊模型预测控制方法
CN117002532A (zh) 基于车辆实时状态进行模型切换的车辆路径跟踪方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220415

CF01 Termination of patent right due to non-payment of annual fee