CN109004096A - A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode - Google Patents
A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode Download PDFInfo
- Publication number
- CN109004096A CN109004096A CN201810840601.1A CN201810840601A CN109004096A CN 109004096 A CN109004096 A CN 109004096A CN 201810840601 A CN201810840601 A CN 201810840601A CN 109004096 A CN109004096 A CN 109004096A
- Authority
- CN
- China
- Prior art keywords
- layer
- organic light
- emitting diode
- blue fluorescent
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005525 hole transport Effects 0.000 claims abstract description 33
- -1 styryl benzene Chemical compound 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 10
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000004305 biphenyl Substances 0.000 claims abstract description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 4
- HNWFFTUWRIGBNM-UHFFFAOYSA-N 2-methyl-9,10-dinaphthalen-2-ylanthracene Chemical compound C1=CC=CC2=CC(C3=C4C=CC=CC4=C(C=4C=C5C=CC=CC5=CC=4)C4=CC=C(C=C43)C)=CC=C21 HNWFFTUWRIGBNM-UHFFFAOYSA-N 0.000 claims description 27
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 claims description 9
- 229920000144 PEDOT:PSS Polymers 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 5
- SKEDXQSRJSUMRP-UHFFFAOYSA-N lithium;quinolin-8-ol Chemical compound [Li].C1=CN=C2C(O)=CC=CC2=C1 SKEDXQSRJSUMRP-UHFFFAOYSA-N 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical group O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 4
- GEQBRULPNIVQPP-UHFFFAOYSA-N 2-[3,5-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1 GEQBRULPNIVQPP-UHFFFAOYSA-N 0.000 claims description 3
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- 239000011737 fluorine Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- ONFSYSWBTGIEQE-NBHCHVEOSA-N n,n-diphenyl-4-[(e)-2-[4-[(e)-2-[4-(n-phenylanilino)phenyl]ethenyl]phenyl]ethenyl]aniline Chemical compound C=1C=C(\C=C\C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1/C=C/C(C=C1)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ONFSYSWBTGIEQE-NBHCHVEOSA-N 0.000 claims description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical group [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 claims 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 230000002378 acidificating effect Effects 0.000 claims 1
- 229910000024 caesium carbonate Inorganic materials 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 abstract 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract 2
- 235000010290 biphenyl Nutrition 0.000 abstract 1
- 238000005286 illumination Methods 0.000 abstract 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 abstract 1
- 230000027756 respiratory electron transport chain Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 134
- 238000012360 testing method Methods 0.000 description 37
- ONFSYSWBTGIEQE-UHFFFAOYSA-N n,n-diphenyl-4-[2-[4-[2-[4-(n-phenylanilino)phenyl]ethenyl]phenyl]ethenyl]aniline Chemical compound C=1C=C(C=CC=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1C=CC(C=C1)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ONFSYSWBTGIEQE-UHFFFAOYSA-N 0.000 description 23
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 22
- 238000010586 diagram Methods 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 9
- 238000011056 performance test Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000001194 electroluminescence spectrum Methods 0.000 description 6
- 239000002346 layers by function Substances 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 4
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- FJFLGYOUAGKKNQ-UHFFFAOYSA-N benzene 1,10-phenanthroline Chemical compound N1=CC=CC2=CC=C3C=CC=NC3=C12.C1=CC=CC=C1 FJFLGYOUAGKKNQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- ZTLUNQYQSIQSFK-UHFFFAOYSA-N n-[4-(4-aminophenyl)phenyl]naphthalen-1-amine Chemical compound C1=CC(N)=CC=C1C(C=C1)=CC=C1NC1=CC=CC2=CC=CC=C12 ZTLUNQYQSIQSFK-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
技术领域technical field
本发明属于基本电气元件技术领域,具体涉及一种结构简单且高效率的蓝色荧光有机发光二极管。The invention belongs to the technical field of basic electrical components, and in particular relates to a blue fluorescent organic light-emitting diode with simple structure and high efficiency.
背景技术Background technique
1963年美国Pope等通过在单晶蒽上通直流电,首次发现了电致发光这一现象,而这种单层结构的器件(如图1)由于有机层蒽过于太厚(20微米),导致驱动电压高达400V,且发光效率和亮度都极低,因此没有受到广泛关注。1987年Tang等人提出的带有空穴传输的双层结构器件(如图2)。与单层结构相比,双层结构因空穴传输层的引入大大提高了空穴注入,所以这种器件结构能有效地解决载流子的注入、传输和复合问题,从而降低了驱动电压,且提高了器件亮度。1988年日本的Adachi等人提出了三层器件结构,他们在双层结构的基础上延伸的三层结构(如图3),它的特点在于空穴传输层、发光层、电子传输层分别采用不同的材料,可以使器件结构能级很好的匹配;且载流子复合和激子扩散被限定在发光层内,复合区域远离电极,进而减小了激子的猝灭,同时也能平衡载流子的注入效率,从而可提高器件的发光效率和亮度,缺点是增加了制备工艺的复杂性。近年来,人们为优化有机发光二极管(OLED)器件功能层之间的能级匹配度和平衡器件的载流子传输能力以便提高有机电致发光器件的发光效率,在实际OLED器件设计中会引入多种不同作用的功能层(如图4),比如引入空穴阻挡层和电子阻挡层。对于空穴阻挡层和电子阻挡层的引入则是利用空穴阻挡层的较深的最高占有轨道(HOMO)能级和电子阻挡层较低的最低未占有轨道(LUMO)能级分别阻挡空穴和电子的迁移,减少漏电流,限定载流子区域,提高器件的发光效率。In 1963, Pope et al. in the United States discovered the phenomenon of electroluminescence for the first time by passing direct current on single crystal anthracene, and this single-layer structure device (as shown in Figure 1) was too thick (20 microns) due to the organic layer anthracene, resulting in The driving voltage is as high as 400V, and the luminous efficiency and brightness are extremely low, so it has not received much attention. In 1987, Tang et al. proposed a double-layer structure device with hole transport (as shown in Figure 2). Compared with the single-layer structure, the double-layer structure greatly improves the hole injection due to the introduction of the hole transport layer, so this device structure can effectively solve the problems of carrier injection, transport and recombination, thereby reducing the driving voltage. And the brightness of the device is improved. In 1988, Adachi and others in Japan proposed a three-layer device structure. They extended the three-layer structure on the basis of the double-layer structure (as shown in Figure 3). It is characterized in that the hole transport layer, the light-emitting layer, and the electron transport layer use Different materials can make the energy level of the device structure well matched; and the carrier recombination and exciton diffusion are limited in the light-emitting layer, and the recombination area is far away from the electrode, thereby reducing the quenching of excitons and balancing The injection efficiency of carriers can improve the luminous efficiency and brightness of the device, but the disadvantage is that it increases the complexity of the preparation process. In recent years, in order to optimize the energy level matching between the functional layers of the organic light-emitting diode (OLED) device and balance the carrier transport capability of the device so as to improve the luminous efficiency of the organic electroluminescent device, people will introduce A variety of functional layers with different roles (as shown in Figure 4), such as the introduction of a hole blocking layer and an electron blocking layer. For the introduction of the hole blocking layer and the electron blocking layer, the deeper highest occupied orbital (HOMO) energy level of the hole blocking layer and the lower lowest unoccupied orbital (LUMO) energy level of the electron blocking layer are used to block holes respectively. And the migration of electrons, reduce the leakage current, limit the carrier area, and improve the luminous efficiency of the device.
由于阳极层和阴极层与有机层(如空穴传输层、电子传输层)的能级不匹配。同时,阳极层和阴极层本身存在针孔、晶界等微缺陷,需要对阳极层和阴极层分别引入阳极界面层(空穴注入层)和阴极界面层(电子注入层)进行修饰处理,一方面可以有效降低空穴和电子的注入势垒,使空穴和电子更容易从阳极和阴极注入到有机层,从而降低器件的启动电压和工作电压,提高器件的功率效率。另外,阳极界面层和阴极界面层还有利于改善电极与有机层之间的界面特性,对于减少漏电流、提高器件稳定性也起到非常有效的作用,因此现有OLED结构中,阳极界面层和阴极界面层都作为必不可少的功能性修饰层。Due to the energy level mismatch between the anode layer and the cathode layer and the organic layer (such as hole transport layer, electron transport layer). At the same time, there are micro-defects such as pinholes and grain boundaries in the anode layer and the cathode layer, and the anode layer and the cathode layer need to be respectively introduced into the anode interface layer (hole injection layer) and the cathode interface layer (electron injection layer) for modification. On the one hand, it can effectively reduce the injection barrier of holes and electrons, making it easier for holes and electrons to be injected from the anode and cathode into the organic layer, thereby reducing the starting voltage and working voltage of the device and improving the power efficiency of the device. In addition, the anode interface layer and the cathode interface layer are also conducive to improving the interface characteristics between the electrode and the organic layer, and also play a very effective role in reducing leakage current and improving device stability. Therefore, in the existing OLED structure, the anode interface layer Both the cathode interface layer and the cathode interface layer are essential functional modification layers.
为提高OLED器件的发光效率、亮度,降低OLED器件的启动电压和工作电压,常规研究思路是通过增加相应的功能层来实现,比如空穴传输层的引入相比单层结构提高了发光效率和亮度,且降低了驱动电压;三层结构(空穴传输层、发光层和电子传输层)相比两层结构提高了发光效率和亮度。目前实际应用的OLED器件基本采用的是三层及三层以上结构,单层及两层结构虽然结构简单,但是由于发光效率、亮度等性能差基本不被采用。In order to improve the luminous efficiency and brightness of OLED devices and reduce the start-up voltage and working voltage of OLED devices, conventional research ideas are achieved by adding corresponding functional layers. For example, the introduction of a hole transport layer improves the luminous efficiency and Brightness, and reduce the driving voltage; the three-layer structure (hole transport layer, light-emitting layer and electron transport layer) improves the luminous efficiency and brightness compared with the two-layer structure. At present, OLED devices in practical use basically use three-layer or more structures. Although single-layer and two-layer structures are simple in structure, they are basically not used due to poor performance such as luminous efficiency and brightness.
作为三原色之一的蓝光对于实现基于OLED的全色显示和固态照明是必不可少的。与高效率、长寿命的红光和绿光OLED相比,蓝色荧光OLED在效率和稳定性等方面仍存在性能低下的问题。其中,制约蓝色荧光OLED器件性能的瓶颈就是蓝光发光材料的带隙较宽(约3.0eV),宽带隙有机材料难以同时满足高荧光效率和结构稳定的双重需求。一方面,宽带隙限制了发光材料不能有很大的共轭结构,即分子尺寸不能太大,而小分子结构会降低材料的热稳定性;另一方面,高效荧光蓝光强烈依赖于大的分子刚性结构,而分子结构刚性太大导致薄膜材料的稳定性变差。此外,宽带隙使得电子和空穴的平衡注入与传输变得困难,从而制约了发光效率的提高。另外,蓝光的激子形成与发光区域较宽,容易导致界面激基复合物发光,光谱发生红移,光谱特性不理想。由于空穴传输材料的空穴迁移率通常优越于电子传输材料的电子迁移率,所以大量的空穴会在发光层中累积损害载流子平衡,通常需要改进发光层结构。例如,增加发光层的层数或者引入空穴阻挡层以达到调节载流子平衡的作用,该方法增加了工艺成本并使器件结构复杂化。Blue light, one of the three primary colors, is essential to realize OLED-based full-color displays and solid-state lighting. Compared with high-efficiency and long-life red and green OLEDs, blue fluorescent OLEDs still suffer from poor performance in terms of efficiency and stability. Among them, the bottleneck restricting the performance of blue fluorescent OLED devices is the wide bandgap (about 3.0eV) of blue light-emitting materials, and it is difficult for wide-bandgap organic materials to meet the dual requirements of high fluorescence efficiency and structural stability at the same time. On the one hand, the wide bandgap restricts the luminescent material from having a large conjugated structure, that is, the molecular size cannot be too large, and the small molecular structure will reduce the thermal stability of the material; on the other hand, efficient fluorescent blue light strongly depends on large molecules Rigid structure, and too much rigidity of the molecular structure leads to poor stability of the film material. In addition, the wide band gap makes the balanced injection and transport of electrons and holes difficult, thus restricting the improvement of luminous efficiency. In addition, the exciton formation and light-emitting region of blue light is relatively wide, which easily causes the interface exciplex to emit light, and the spectrum is red-shifted, resulting in unsatisfactory spectral characteristics. Since the hole mobility of the hole transport material is generally superior to the electron mobility of the electron transport material, a large number of holes will accumulate in the light-emitting layer and impair the carrier balance, and it is usually necessary to improve the structure of the light-emitting layer. For example, increasing the number of layers of the light-emitting layer or introducing a hole blocking layer to achieve the function of adjusting the carrier balance, this method increases the process cost and complicates the device structure.
综上所述,目前本领域的技术解决思路主要是通过增加不同的功能层来提高蓝色荧光OLED器件的发光效率、功率效率和亮度等性能指标,因此如今高效率的蓝色荧光OLED器件基本是采用多层结构,即在蓝色荧光OLED的电极与发光层之间加入若干功能层,如多层发光层、空穴阻挡层等,虽然多层结构有利于最终高效率的实现,但采用这样的结构同时也带来了高成本、低可靠性、工艺复杂、生产效率低等系列问题,严重地制约了蓝色荧光OLED生产的低成本化和大规模化应用。因此,急需一种结构简单且高效率的蓝色荧光OLED器件结构。In summary, the current technical solutions in this field are mainly to improve the performance indicators such as luminous efficiency, power efficiency and brightness of blue fluorescent OLED devices by adding different functional layers. Therefore, today's high-efficiency blue fluorescent OLED devices are basically It adopts a multi-layer structure, that is, several functional layers are added between the electrode and the light-emitting layer of the blue fluorescent OLED, such as a multi-layer light-emitting layer, a hole blocking layer, etc. Although the multi-layer structure is conducive to the realization of the final high efficiency, the use of Such a structure also brings a series of problems such as high cost, low reliability, complex process, and low production efficiency, which seriously restricts the low cost and large-scale application of blue fluorescent OLED production. Therefore, there is an urgent need for a blue fluorescent OLED device structure with simple structure and high efficiency.
发明内容Contents of the invention
有鉴于此,本发明的目的之一在于提供一种结构简单且高效率的蓝色荧光有机发光二极管。In view of this, one of the objectives of the present invention is to provide a blue fluorescent organic light emitting diode with simple structure and high efficiency.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
1、一种结构简单且高效率的蓝色荧光有机发光二极管,所述二极管包括空穴传输兼发光层和电子传输层,所述空穴传输兼发光层由掺杂有1-4-二-[4-(N,N-二苯基)氨基]苯乙烯基苯的2-甲基-9,10-二(2-萘基)蒽制成。1. A blue fluorescent organic light-emitting diode with simple structure and high efficiency, the diode includes a hole transport and light emitting layer and an electron transport layer, and the hole transport and light emitting layer is doped with 1-4-di- [4-(N,N-diphenyl)amino]styrylbenzene from 2-methyl-9,10-bis(2-naphthyl)anthracene.
优选地,所述二极管还包括衬底、阳极层、阳极界面层、阴极界面层和阴极层;所述衬底、阳极层、阳极界面层、空穴传输兼发光层、电子传输层、阴极界面层和阴极层依次层叠设置。Preferably, the diode also includes a substrate, an anode layer, an anode interface layer, a cathode interface layer, and a cathode layer; The cathode layer and the cathode layer are stacked in sequence.
优选地,所述衬底由玻璃、石英或聚对苯二甲酸乙二醇酯制成。Preferably, the substrate is made of glass, quartz or polyethylene terephthalate.
优选地,所述阳极层由氧化铟锡、Al2O3掺杂的ZnO或氟掺杂的SnO2制成;所述阴极层由Al、Sm或Ca制成。Preferably, the anode layer is made of indium tin oxide, Al 2 O 3 doped ZnO or fluorine doped SnO 2 ; the cathode layer is made of Al, Sm or Ca.
优选地,所述阳极界面层由聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、MoO3、WO3或V2O5制成。Preferably, the anode interface layer is made of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid, MoO 3 , WO 3 or V 2 O 5 .
优选地,所述电子传输层由4,7-二苯基-1,10-菲罗啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-菲罗啉、2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]或3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑制成。Preferably, the electron transport layer is composed of 4,7-diphenyl-1,10-phenanthroline, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 2,9-Dimethyl-4,7-biphenyl-1,10-phenanthroline, 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)- 1,3,4-oxadiazole] or 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole to make.
优选地,所述阴极界面层由LiF、Cs2CO3或8-羟基喹啉-锂制成。Preferably, the cathode interface layer is made of LiF, Cs 2 CO 3 or 8-hydroxyquinoline-lithium.
优选地,所述2-甲基-9,10-二(2-萘基)蒽中1-4-二-[4-(N,N-二苯基)氨基]苯乙烯基苯的掺杂量为1-5wt%。Preferably, the doping of 1-4-bis-[4-(N,N-diphenyl)amino]styrylbenzene in the 2-methyl-9,10-bis(2-naphthyl)anthracene The amount is 1-5 wt%.
优选地,所述空穴传输兼发光层的厚度为60-90nm。Preferably, the thickness of the hole transport and light emitting layer is 60-90 nm.
优选地,所述阳极界面层为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸时厚度为20-40nm,阳极界面层为MoO3时厚度为0.5-15nm,阳极界面层为WO3时厚度为0.5-5nm,阳极界面层为V2O5时厚度为0.5-5nm;电子传输层的厚度为20-50nm;阴极界面层为LiF时厚度为0.5-1nm,阴极界面层为Cs2CO3时厚度为1-20nm,阴极界面层为8-羟基喹啉-锂时厚度为1-5nm。Preferably, when the anode interface layer is poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid, the thickness is 20-40nm, and when the anode interface layer is MoO3, the thickness is 0.5-15nm , and the anode interface layer is The thickness of WO 3 is 0.5-5nm, the thickness of the anode interface layer is 0.5-5nm when V 2 O 5 ; the thickness of the electron transport layer is 20-50nm; the thickness of the cathode interface layer is 0.5-1nm when the cathode interface layer is LiF Cs 2 CO 3 has a thickness of 1-20nm, and a cathode interface layer of 8-hydroxyquinoline-lithium has a thickness of 1-5nm.
本发明的工作原理及有益效果在于:本发明提供了一种结构简单且高效率的蓝色荧光有机发光二极管,该二极管中将空穴传输层与发光层集成于一体,构建出空穴传输兼发光层,一方面减少了传统结构中的空穴传输层与发光层之间的界面,简化了器件的结构;另一方面空穴传输兼发光层的厚度比传统结构中单纯的发光层厚度大,因而扩大了激子的复合区域,有利于主体和客体之间的能量转移,提高了激子的复合率以及利用率,从而提升了二极管的发光效率;另外,本发明中限定了用于制备空穴传输兼发光层的材料及该材料中的掺杂量,用该材料制备的空穴传输兼发光层不但作为主体和客体之间能量转移的载体,有效地进行激子复合,实现高效发光的功能,而且还能起到调控空穴传输能力的作用,因为材料中的掺杂剂可以作为影响电荷传输机理的陷阱且具有散射作用,使从阳极层注入的多余空穴被陷阱捕获或通过散射作用而被延迟,起到调控进入发光层的空穴数量,进而改善了载流子的平衡,最终提高二极管的效率。本发明中的蓝色荧光有机发光二极管不但具有简单的结构,还具有较高的效率,克服了目前本领域技术人员普遍认为的多层结构有利于二极管最终效率提高的技术偏见,本发明采用了人们由于技术偏见而舍弃的双层结构,不但使最终制备的蓝色荧光有机发光二极管的发光效率远远高于现有技术中多层结构的蓝色荧光有机发光二极管,而且还克服了现有技术中多层结构所带来的高成本、低可靠性、工艺复杂、生产效率低等系列问题,有效促进了蓝色荧光有机发光二极管生产的低成本化和大规模化应用,具有极大的经济价值。The working principle and beneficial effects of the present invention are: the present invention provides a blue fluorescent organic light-emitting diode with simple structure and high efficiency. In the diode, the hole transport layer and the light-emitting layer are integrated to construct a The light-emitting layer, on the one hand, reduces the interface between the hole transport layer and the light-emitting layer in the traditional structure, and simplifies the structure of the device; on the other hand, the thickness of the hole transport and light-emitting layer is larger than that of the simple light-emitting layer in the traditional structure. , thus expanding the recombination region of the excitons, which is beneficial to the energy transfer between the host and the guest, improving the recombination rate and utilization rate of the excitons, thereby improving the luminous efficiency of the diode; The material of the hole transport and light-emitting layer and the doping amount in the material. The hole transport and light-emitting layer prepared with this material not only serves as a carrier for energy transfer between the host and the guest, but also effectively performs exciton recombination to achieve high-efficiency light emission. function, and can also play a role in regulating the hole transport ability, because the dopant in the material can act as a trap that affects the charge transport mechanism and has a scattering effect, so that the excess holes injected from the anode layer are captured by the trap or pass through The effect of scattering is delayed, which can regulate the number of holes entering the light-emitting layer, thereby improving the balance of carriers, and finally improving the efficiency of the diode. The blue fluorescent organic light-emitting diode in the present invention not only has a simple structure, but also has high efficiency, which overcomes the technical prejudice that the multi-layer structure is beneficial to the improvement of the final efficiency of the diode generally believed by those skilled in the art. The double-layer structure that people abandon due to technical prejudice not only makes the luminous efficiency of the blue fluorescent organic light-emitting diode finally prepared far higher than that of the blue fluorescent organic light-emitting diode with multi-layer structure in the prior art, but also overcomes the existing problems. A series of problems such as high cost, low reliability, complex process, and low production efficiency brought about by the multilayer structure in the technology have effectively promoted the low cost and large-scale application of blue fluorescent organic light-emitting diodes, and have great potential Economic Value.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为单层结构的有机发光二极管示意图;1 is a schematic diagram of an organic light-emitting diode with a single-layer structure;
图2为双层结构的有机发光二极管示意图;2 is a schematic diagram of an organic light emitting diode with a double-layer structure;
图3为三层结构的有机发光二极管示意图;3 is a schematic diagram of an organic light emitting diode with a three-layer structure;
图4为多层结构的有机发光二极管示意图;4 is a schematic diagram of an organic light emitting diode with a multilayer structure;
图5为本发明中蓝色荧光有机发光二极管示意图;5 is a schematic diagram of a blue fluorescent organic light-emitting diode in the present invention;
图6为实施1中蓝色荧光有机发光二极管性能测试图;Fig. 6 is a performance test diagram of the blue fluorescent organic light-emitting diode in the implementation 1;
图7为实施2中蓝色荧光有机发光二极管性能测试图;FIG. 7 is a performance test diagram of blue fluorescent organic light-emitting diodes in implementation 2;
图8为实施3中蓝色荧光有机发光二极管性能测试图;Fig. 8 is a performance test diagram of blue fluorescent organic light-emitting diode in implementation 3;
图9为实施4中蓝色荧光有机发光二极管性能测试图;Fig. 9 is a performance test diagram of blue fluorescent organic light-emitting diodes in implementation 4;
图10为实施5中蓝色荧光有机发光二极管性能测试图;Fig. 10 is a performance test diagram of blue fluorescent organic light-emitting diode in implementation 5;
图11为实施6中蓝色荧光有机发光二极管性能测试图;Fig. 11 is a performance test diagram of the blue fluorescent organic light-emitting diode in implementation 6;
图12为对比实施1中蓝色荧光有机发光二极管性能测试图;Fig. 12 is a performance test chart of the blue fluorescent organic light-emitting diode in comparative implementation 1;
图13为对比实施2中蓝色荧光有机发光二极管性能测试图;Fig. 13 is a performance test diagram of blue fluorescent organic light-emitting diodes in comparative implementation 2;
图14为实施例7中三种单空穴器件的电流-电压(I-V)特性和阻抗谱分析结果图。14 is a graph showing the current-voltage (I-V) characteristics and impedance spectrum analysis results of three single-hole devices in Example 7.
其中,图6至图13中,a均为蓝色荧光有机发光二极管的最大发光效率测试图,b均为蓝色荧光有机发光二极管的最大功率效率测试图,c均为蓝色荧光有机发光二极管的最大外量子效率测试图,d为电致发光光谱测试图。图14中,a为三种单空穴器件的I-V图,b为三种单空穴器件的阻抗-电压(Z-V)图,c为三种单空穴器件的相角-电压图,d为三种单空穴器件的电容-电压(C-V)图。Among them, in Figure 6 to Figure 13, a is the maximum luminous efficiency test chart of the blue fluorescent organic light emitting diode, b is the maximum power efficiency test chart of the blue fluorescent organic light emitting diode, c is the blue fluorescent organic light emitting diode The maximum external quantum efficiency test chart, d is the electroluminescence spectrum test chart. In Fig. 14, a is the IV diagram of three kinds of single hole devices, b is the impedance-voltage (ZV) diagram of three kinds of single hole devices, and c is the phase angle-voltage of three kinds of single hole devices Figure, d is the capacitance-voltage (CV) diagram of three single-hole devices.
具体实施方式Detailed ways
下面将对本发明的优选实施例进行详细的描述。Preferred embodiments of the present invention will be described in detail below.
图5为本发明中一种结构简单且高效率的蓝色荧光有机发光二极管的示意图,由图5可知,该二极管由下往上依次层叠设置有衬底、阳极层、阳极界面层、空穴传输兼发光层、电子传输层、阴极界面层和阴极层。Fig. 5 is a schematic diagram of a blue fluorescent organic light-emitting diode with simple structure and high efficiency in the present invention. As can be seen from Fig. 5, the diode is sequentially stacked with substrate, anode layer, anode interface layer, hole Transport and light-emitting layer, electron transport layer, cathode interface layer and cathode layer.
各实施例中,In each embodiment,
ITO为氧化铟锡;ITO is indium tin oxide;
PEDOT:PSS为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸;PEDOT:PSS is poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid;
NPB为N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺;NPB is N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine;
DSA-Ph为1-4-二-[4-(N,N-二苯基)氨基]苯乙烯基苯,其结构如式Ⅰ所示;DSA-Ph is 1-4-bis-[4-(N,N-diphenyl)amino]styrylbenzene, the structure of which is shown in formula I;
MADN为2-甲基-9,10-二(2-萘基)蒽,其结构如式Ⅱ所示;MADN is 2-methyl-9,10-di(2-naphthyl)anthracene, its structure is shown in formula II;
BPhen为4,7-二苯基-1,10-菲罗啉;BPhen is 4,7-diphenyl-1,10-phenanthroline;
LiF为氟化锂;LiF is lithium fluoride;
Al为铝。Al is aluminum.
实施例1Example 1
一种结构简单且高效率的蓝色荧光有机发光二极管,该二极管包括依次层叠设置的1mm厚的玻璃衬底、方阻为15Ω/□的ITO阳极层、30nm厚的PEDOT:PSS阳极界面层、60nm厚的掺杂量为3wt%的MADN:DSA-Ph空穴传输兼发光层、30nm厚的BPhen电子传输层、0.7nm厚的LiF阴极界面层和100nm厚的Al阴极层。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及电致发光光谱和色坐标,结果见图6,其中,图6中a为最大发光效率测试图,图6中b为最大功率效率测试图,图6中c为最大外量子效率测试图,图6中d为电致发光光谱测试图,色坐标值列于表1中。A blue fluorescent organic light-emitting diode with simple structure and high efficiency, which includes a 1mm thick glass substrate, an ITO anode layer with a square resistance of 15Ω/□, a 30nm thick PEDOT:PSS anode interface layer, A 60nm-thick MADN:DSA-Ph hole-transport and light-emitting layer with a doping amount of 3wt%, a 30nm-thick BPhen electron-transport layer, a 0.7nm-thick LiF cathode interface layer and a 100nm-thick Al cathode layer. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency, and electroluminescent spectrum and color coordinates of the diode were tested respectively, and the results are shown in Figure 6, wherein a in Figure 6 is the maximum luminous efficiency test chart, and b in Figure 6 is the maximum Power efficiency test chart, c in Figure 6 is the maximum external quantum efficiency test chart, d in Figure 6 is the electroluminescent spectrum test chart, and the color coordinates are listed in Table 1.
实施例2Example 2
与实施例1的区别在于,掺杂量为3wt%的MADN:DSA-Ph空穴传输兼发光层的厚度为70nm。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图7,其中,图7中a为最大发光效率测试图,图7中b为最大功率效率测试图,图7中c为最大外量子效率测试图,图7中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Example 1 is that the thickness of the MADN:DSA-Ph hole-transporting and light-emitting layer with a doping amount of 3wt% is 70nm. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 7, wherein a in Figure 7 is the maximum luminous efficiency test chart, and b in Figure 7 is the maximum power efficiency test chart , c in Figure 7 is the maximum external quantum efficiency test chart, d in Figure 7 is the electroluminescent spectrum test chart, and the color coordinates are listed in Table 1.
实施例3Example 3
与实施例1的区别在于,掺杂量为3wt%的MADN:DSA-Ph空穴传输兼发光层的厚度为80nm。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图8,其中,图8中a为最大发光效率测试图,图8中b为最大功率效率测试图,图8中c为最大外量子效率测试图,图8中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Example 1 is that the thickness of the MADN:DSA-Ph hole-transporting and light-emitting layer with a doping amount of 3wt% is 80nm. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 8, wherein a in Figure 8 is the maximum luminous efficiency test chart, and b in Figure 8 is the maximum power efficiency test chart , c in Figure 8 is the maximum external quantum efficiency test chart, d in Figure 8 is the electroluminescent spectrum test chart, and the color coordinates are listed in Table 1.
实施例4Example 4
与实施例1的区别在于,掺杂量为3wt%的MADN:DSA-Ph空穴传输兼发光层的厚度为90nm。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图9,其中,图9中a为最大发光效率测试图,图9中b为最大功率效率测试图,图9中c为最大外量子效率测试图,图9中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Example 1 is that the thickness of the MADN:DSA-Ph hole-transporting and light-emitting layer with a doping amount of 3wt% is 90nm. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 9, wherein a in Figure 9 is the maximum luminous efficiency test chart, and b in Figure 9 is the maximum power efficiency test chart , c in Figure 9 is the maximum external quantum efficiency test chart, d in Figure 9 is the electroluminescence spectrum test chart, and the color coordinates are listed in Table 1.
实施例5Example 5
与实施例3的区别在于,MADN:DSA-Ph空穴传输兼发光层中DSA-Ph掺杂量为1wt%。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图10,其中,图10中a为最大发光效率测试图,图10中b为最大功率效率测试图,图10中c为最大外量子效率测试图,图10中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Example 3 is that the doping amount of DSA-Ph in the MADN:DSA-Ph hole-transporting and light-emitting layer is 1 wt%. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 10, wherein a in Figure 10 is the maximum luminous efficiency test chart, and b in Figure 10 is the maximum power efficiency test chart , c in Figure 10 is the maximum external quantum efficiency test chart, d in Figure 10 is the electroluminescent spectrum test chart, and the color coordinates are listed in Table 1.
实施例6Example 6
与实施例5的区别在于,MADN:DSA-Ph空穴传输兼发光层中DSA-Ph掺杂量为5wt%。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图11,其中,图11中a为最大发光效率测试图,图11中b为最大功率效率测试图,图11中c为最大外量子效率测试图,图11中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Example 5 is that the doping amount of DSA-Ph in the MADN:DSA-Ph hole transport and light-emitting layer is 5 wt%. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 11, wherein a in Figure 11 is the maximum luminous efficiency test chart, and b in Figure 11 is the maximum power efficiency test chart , c in Figure 11 is the maximum external quantum efficiency test chart, d in Figure 11 is the electroluminescence spectrum test chart, and the color coordinates are listed in Table 1.
对比例1Comparative example 1
一种蓝色荧光有机发光二极管,该二极管包括依次层叠设置的1mm厚的玻璃衬底、方阻为15Ω/□的ITO阳极层、30nm厚的PEDOT:PSS阳极界面层、35nm厚的NPB空穴传输层、45nm厚的掺杂量为3wt%的MADN:DSA-Ph发光层、30nm厚的BPhen电子传输层、0.7nm厚的LiF阴极界面层和100nm厚的Al阴极层。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及电致发光光谱和色坐标,结果见图12,其中,图12中a为最大发光效率测试图,图12中b为最大功率效率测试图,图12中c为最大外量子效率测试图,图12中d为电致发光光谱测试图,色坐标值列于表1中。A blue fluorescent organic light-emitting diode, which includes a 1mm-thick glass substrate, an ITO anode layer with a square resistance of 15Ω/□, a 30nm-thick PEDOT:PSS anode interface layer, and a 35nm-thick NPB hole Transport layer, 45nm-thick MADN:DSA-Ph emitting layer with a doping amount of 3wt%, 30nm-thick BPhen electron-transport layer, 0.7nm-thick LiF cathode interface layer and 100nm-thick Al cathode layer. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency, electroluminescence spectrum and color coordinates of the diode were tested respectively, and the results are shown in Figure 12, wherein a in Figure 12 is the maximum luminous efficiency test chart, and b in Figure 12 is the maximum Power efficiency test chart, c in Figure 12 is the maximum external quantum efficiency test chart, d in Figure 12 is the electroluminescence spectrum test chart, and the color coordinates are listed in Table 1.
对比例2Comparative example 2
与对比实施例1的区别在于,空穴传输层为厚度为35nm的MADN。分别测试该二极管的最大发光效率、最大功率效率、最大外量子效率及CIE色坐标,结果见图13,其中,图13中a为最大发光效率测试图,图13中b为最大功率效率测试图,图13中c为最大外量子效率测试图,图13中d为电致发光光谱测试图,色坐标值列于表1中。The difference from Comparative Example 1 is that the hole transport layer is MADN with a thickness of 35 nm. The maximum luminous efficiency, maximum power efficiency, maximum external quantum efficiency and CIE color coordinates of the diode were tested respectively, and the results are shown in Figure 13, wherein a in Figure 13 is the maximum luminous efficiency test chart, and b in Figure 13 is the maximum power efficiency test chart , c in Figure 13 is the maximum external quantum efficiency test chart, d in Figure 13 is the electroluminescence spectrum test chart, and the color coordinates are listed in Table 1.
对比例3Comparative example 3
现有文献:C.H.Liao,M.T.Lee,C.H.Tsai,C.H.Chen,Highly efficient blueorganic light-emitting devices incorporating a composite hole transportlayer,Appl.Phys.Lett.86(2005)203507中记载的蓝色荧光有机发光二极管,其结构为:ITO/CFx/[NPB:CuPc](40nm)/NPB(30nm)/[MADN:DSA-Ph](40nm)/Alq3(10nm)/LiF(1nm)/Al(200nm),其中,ITO为阳极;CFx为阳极界面层;[NPB:CuPc](40nm)/NPB(30nm)为双层空穴传输层;[MADN:DSA-Ph](40nm)为蓝色荧光发光层;Alq3(10nm)为电子传输层;LiF(1nm)为阴极界面层;Al(200nm)为阴极。该二极管最大发光效率为16.2cd/A,最大功率效率为7.9lm/W,最大外量子效率为8.7%,1931CIE色坐标为(0.15,0.29)。Existing documents: CHLiao, MTLee, CHTsai, CHChen, Highly efficient blueorganic light-emitting devices incorporating a composite hole transportlayer, the blue fluorescent organic light-emitting diode recorded in Appl.Phys.Lett.86(2005) 203507, its structure is: ITO/CF x /[NPB:CuPc](40nm)/NPB(30nm)/[MADN:DSA-Ph](40nm)/Alq 3 (10nm)/LiF(1nm)/Al(200nm), where, ITO is anode; CF x is the anode interface layer; [NPB:CuPc](40nm)/NPB(30nm) is the double-layer hole transport layer; [MADN:DSA-Ph](40nm) is the blue fluorescent layer; Alq 3 ( 10nm) is the electron transport layer; LiF (1nm) is the cathode interface layer; Al (200nm) is the cathode. The maximum luminous efficiency of the diode is 16.2cd/A, the maximum power efficiency is 7.9lm/W, the maximum external quantum efficiency is 8.7%, and the 1931CIE color coordinates are (0.15,0.29).
对比例4Comparative example 4
现有文献:S.Yue,S.Zhang,Z.Zhang,Y.Wu,P.Wang,R.Guo,Y.Chen,D.Qu,Q.Wu,Y.Zhao,S.Liu,Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure,J.Lumin.143(2013)619中记载的蓝色荧光有机发光二极管,其结构为:ITO/NPB(40nm)/[NPB:DSA-Ph](9nm)/[NPB:MADN:DSA-Ph](2nm)/[MADN:DSA-Ph](9nm)/BPhen(40nm)/LiF(1nm)/Al(100nm),其中,ITO为阳极;NPB(40nm)为空穴传输层;[NPB:DSA-Ph](9nm)/[NPB:MADN:DSA-Ph](2nm)/[MADN:DSA-Ph](9nm)为多层蓝色荧光发光层;BPhen(40nm)为电子传输层;LiF(1nm)为阴极界面层;Al(100nm)为阴极。该二极管最大发光效率为10.5cd/A,最大功率效率为8.7lm/W,1931CIE色坐标为(0.15,0.29)。Existing literature: S. Yue, S. Zhang, Z. Zhang, Y. Wu, P. Wang, R. Guo, Y. Chen, D. Qu, Q. Wu, Y. Zhao, S. Liu, Improved power The blue fluorescent organic light-emitting diode described in efficiency of blue fluorescent organic light-emitting diode with intermixed host structure, J.Lumin.143(2013) 619, its structure is: ITO/NPB(40nm)/[NPB:DSA-Ph ](9nm)/[NPB:MADN:DSA-Ph](2nm)/[MADN:DSA-Ph](9nm)/BPhen(40nm)/LiF(1nm)/Al(100nm), where ITO is the anode; NPB (40nm) is a hole transport layer; [NPB:DSA-Ph](9nm)/[NPB:MADN:DSA-Ph](2nm)/[MADN:DSA-Ph](9nm) is a multilayer blue fluorescence Light-emitting layer; BPhen (40nm) is the electron transport layer; LiF (1nm) is the cathode interface layer; Al (100nm) is the cathode. The maximum luminous efficiency of the diode is 10.5cd/A, the maximum power efficiency is 8.7lm/W, and the 1931CIE color coordinates are (0.15,0.29).
根据图6至图13的测试结果,对实施例1至实施例6中制备的结构简单且高效率的蓝色荧光有机发光二极管及对比例1和对比例2中制备的蓝色荧光有机发光二极管的各个性能数据进行统计,统计结果见表1,并同时将对比例3和对比例4中二极管的各性能数据同时罗列在表1中。According to the test results in Fig. 6 to Fig. 13, the blue fluorescent organic light emitting diodes prepared in Examples 1 to 6 with simple structure and high efficiency and the blue fluorescent organic light emitting diodes prepared in Comparative Example 1 and Comparative Example 2 The various performance data of the diodes in Comparative Example 3 and Comparative Example 4 are listed in Table 1 at the same time.
表1Table 1
由表1可知,实施例1至实施例6中制备的各蓝色荧光有机发光二极管的最大发光效率、最大功率效率、最大外量子效率均比对比例1、对比例2和对比例4高,最大功率效率和最大外量子效率均比对比例3高,其中,对比例1至对比例4中的蓝色荧光有机发光二极管均具有多层复杂结构。经对比发现,本发明中仅为双层结构的蓝色荧光有机发光二极管较具有多层复杂结构的蓝色荧光有机发光二极管具有更高的效率。It can be seen from Table 1 that the maximum luminous efficiency, maximum power efficiency, and maximum external quantum efficiency of the blue fluorescent organic light-emitting diodes prepared in Examples 1 to 6 are all higher than those of Comparative Example 1, Comparative Example 2 and Comparative Example 4, Both the maximum power efficiency and the maximum external quantum efficiency are higher than those of Comparative Example 3, wherein the blue fluorescent organic light-emitting diodes in Comparative Examples 1 to 4 all have multilayer complex structures. After comparison, it is found that the blue fluorescent organic light emitting diode with only a double-layer structure in the present invention has higher efficiency than the blue fluorescent organic light emitting diode with a multilayer complex structure.
实施例7Example 7
验证掺杂量为3wt%的MADN:DSA-Ph空穴传输兼发光层的空穴传输能力Verification of the hole transport ability of the MADN:DSA-Ph hole-transport and light-emitting layer with a doping amount of 3wt%
通过构建由NPB,MADN和掺杂量为3wt%的MADN:DSA-Ph三种材料构成的单空穴器件,并分别通过电流-电压(I-V)特性和阻抗谱分析对三种单空穴器件进行分析,分析结果见图14,其中图14中a为三种单空穴器件的I-V图,图14中b为三种单空穴器件的阻抗-电压(Z-V)图,图14中c为三种单空穴器件的相角-电压图,图14中d为三种单空穴器件的电容-电压(C-V)图。By constructing a single-hole device composed of NPB, MADN and MADN:DSA-Ph with a doping amount of 3wt%, and analyzing the three single-hole devices by current-voltage (IV) characteristics and impedance spectroscopy Analysis is carried out, and the analysis results are shown in Figure 14, wherein a in Figure 14 is the IV diagram of three kinds of single-hole devices, b in Figure 14 is the impedance-voltage (ZV) diagram of three kinds of single-hole devices, and c in Figure 14 is Phase Angle-Voltage of Three Single-hole Devices Fig. 14 d is the capacitance-voltage (CV) diagram of three kinds of single-hole devices.
三种单空穴器件的结构分别如下:The structures of the three single-hole devices are as follows:
器件H1:ITO/PEDOT:PSS/NPB(90nm)/Al(100nm)Device H1:ITO/PEDOT:PSS/NPB(90nm)/Al(100nm)
器件H2:ITO/PEDOT:PSS/MADN(60nm)/NPB(30nm)/AlDevice H2: ITO/PEDOT:PSS/MADN(60nm)/NPB(30nm)/Al
器件H3:ITO/PEDOT:PSS/[MADN:DSA-Ph](60nm)/NPB(30nm)/AlDevice H3:ITO/PEDOT:PSS/[MADN:DSA-Ph](60nm)/NPB(30nm)/Al
其中,器件H2和器件H3中的30nm厚的NPB起到电子阻挡层的作用。Among them, the 30 nm thick NPB in device H2 and device H3 acted as an electron blocking layer.
由图14中a可知,在相同电压下,器件H1显示最高电流,其次为器件H2和器件H3,表明掺杂量为3wt%的MADN:DSA-Ph具有最低的空穴迁移率。It can be seen from a in Figure 14 that at the same voltage, device H1 shows the highest current, followed by device H2 and device H3, indicating that MADN:DSA-Ph with a doping amount of 3wt% has the lowest hole mobility.
由图14中b和14中c可知,三种单空穴器件在低电压(<1.3V)下为105Ω的高阻抗和-90°的相位,均表现出绝缘状态,随着电压的增加,三种单空穴器件均显示出半导体状态,因为观察到急剧下降的阻抗和大约0°的相位。对应于Z-V图和图的转变电压按照器件H1<器件H2<器件H3的顺序增加,足以说明三种单空穴器件的空穴传输能力以相同的顺序逐渐减弱。From Figure 14b and Figure 14c, it can be seen that the three single-hole devices have a high impedance of 10 5 Ω and a phase of -90° at a low voltage (<1.3V), and all exhibit an insulating state. increase, all three hole-only devices show a semiconducting state, as a sharply decreasing impedance and a phase around 0° are observed. corresponding to the ZV graph and The transition voltages of the graphs increase in the order of device H1<device H2<device H3, which is sufficient to illustrate that the hole transport capabilities of the three single-hole devices gradually weaken in the same order.
由图14中d可知,三种单空穴器件在低电压下观察到几乎相同的电容,但随着电压的增加,电容由于注入空穴的积累而升高,随着电压进一步升高,观察到电容出现峰值(图中箭头所示),这意味着空穴-电子开始复合,从图14中d中可以看出,达到峰值对应的电压为器件H1(3.1V)<器件H2(6.1V)<器件H3(9.0V)的序列增加,足以表明空穴传输逐渐减少。It can be seen from d in Figure 14 that almost the same capacitance is observed at low voltage for the three hole-only devices, but as the voltage increases, the capacitance increases due to the accumulation of injected holes, and as the voltage is further increased, the observed When the capacitance peaks (shown by the arrow in the figure), it means that holes-electrons start to recombine. It can be seen from d in Figure 14 that the voltage corresponding to the peak value is device H1 (3.1V)<device H2 (6.1V ) < the sequence of device H3 (9.0 V) increased enough to indicate a gradual decrease in hole transport.
综合对图14中a、b、c、d的分析可知,空穴迁移率按照μNPB>μMADN>μ3wt%的MADN:DSA-Ph的顺序降低。Comprehensive analysis of a, b, c, and d in Figure 14 shows that the hole mobility decreases in the order of μ NPB > μ MADN > μ 3wt% MADN :DSA-Ph.
本发明中衬底除了为玻璃,还可以为石英或聚对苯二甲酸乙二醇酯;阳极层除了为氧化铟锡,还可以为Al2O3掺杂的ZnO或氟掺杂的SnO2;阳极界面层除了为聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸,还可以为MoO3、WO3或V2O5;电子传输层除了为4,7-二苯基-1,10-菲罗啉,还可以为1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-菲罗啉、2,2'-(1,3-苯基)二[5-(4-叔丁基苯基)-1,3,4-恶二唑]或3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑;阴极界面层除了为LiF,还可以为Cs2CO3或8-羟基喹啉-锂,阴极除了为Al,还可以为Sm或Ca,各功能层使用上述材料后能够达到相同的技术效果。In the present invention, in addition to being glass, the substrate can also be quartz or polyethylene terephthalate; the anode layer can also be Al 2 O 3 doped ZnO or fluorine doped SnO 2 in addition to indium tin oxide. ; The anode interface layer can be MoO 3 , WO 3 or V 2 O 5 in addition to poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid; the electron transport layer can be 4,7-diphenyl -1,10-phenanthroline, can also be 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 2,9-dimethyl-4,7-bis Benzene-1,10-phenanthroline, 2,2'-(1,3-phenyl)bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole] or 3- (Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole; in addition to LiF, the cathode interface layer can also be Cs 2 CO 3 or 8-hydroxyquinoline-lithium, the cathode can be Sm or Ca in addition to Al, and the same technical effect can be achieved after using the above materials for each functional layer.
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810840601.1A CN109004096A (en) | 2018-07-27 | 2018-07-27 | A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810840601.1A CN109004096A (en) | 2018-07-27 | 2018-07-27 | A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109004096A true CN109004096A (en) | 2018-12-14 |
Family
ID=64598401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810840601.1A Pending CN109004096A (en) | 2018-07-27 | 2018-07-27 | A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109004096A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585668A (en) * | 2019-01-10 | 2019-04-05 | 京东方科技集团股份有限公司 | OLED display device, display panel, OLED display device preparation method |
CN113161495A (en) * | 2020-01-22 | 2021-07-23 | 京东方科技集团股份有限公司 | Organic light emitting diode and display device |
CN113805379A (en) * | 2020-06-17 | 2021-12-17 | 北京小米移动软件有限公司 | Display screen, manufacturing method and device thereof, display method and device and medium |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1773746A (en) * | 2004-11-12 | 2006-05-17 | 三星Sdi株式会社 | organic electroluminescent device |
CN101179115A (en) * | 2007-12-17 | 2008-05-14 | 中国科学院长春应用化学研究所 | White light organic electroluminescent device based on fluorescent dye and its preparation method |
CN102171848A (en) * | 2008-10-06 | 2011-08-31 | 索尼公司 | Organic electroluminescent element and display device |
CN103606633A (en) * | 2013-11-28 | 2014-02-26 | 电子科技大学 | Organic electroluminescence and photovoltaic integration device and manufacturing method |
CN104051630A (en) * | 2013-03-11 | 2014-09-17 | 海洋王照明科技股份有限公司 | Organic light-emitting device and preparation method thereof |
CN104377309A (en) * | 2014-10-14 | 2015-02-25 | 天津理工大学 | Low-voltage organic electroluminescent blue light emitting device and preparation method thereof |
CN104576958A (en) * | 2013-10-11 | 2015-04-29 | 三星显示有限公司 | Organic light-emitting device |
CN105185908A (en) * | 2015-08-10 | 2015-12-23 | 华南理工大学 | Solution-processed organic-inorganic planar heterojunction light emitting diode and manufacturing method thereof |
CN106848071A (en) * | 2015-10-30 | 2017-06-13 | 吴忠帜 | Electro photo-luminescent apparatus |
-
2018
- 2018-07-27 CN CN201810840601.1A patent/CN109004096A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1773746A (en) * | 2004-11-12 | 2006-05-17 | 三星Sdi株式会社 | organic electroluminescent device |
CN101179115A (en) * | 2007-12-17 | 2008-05-14 | 中国科学院长春应用化学研究所 | White light organic electroluminescent device based on fluorescent dye and its preparation method |
CN102171848A (en) * | 2008-10-06 | 2011-08-31 | 索尼公司 | Organic electroluminescent element and display device |
CN104051630A (en) * | 2013-03-11 | 2014-09-17 | 海洋王照明科技股份有限公司 | Organic light-emitting device and preparation method thereof |
CN104576958A (en) * | 2013-10-11 | 2015-04-29 | 三星显示有限公司 | Organic light-emitting device |
CN103606633A (en) * | 2013-11-28 | 2014-02-26 | 电子科技大学 | Organic electroluminescence and photovoltaic integration device and manufacturing method |
CN104377309A (en) * | 2014-10-14 | 2015-02-25 | 天津理工大学 | Low-voltage organic electroluminescent blue light emitting device and preparation method thereof |
CN105185908A (en) * | 2015-08-10 | 2015-12-23 | 华南理工大学 | Solution-processed organic-inorganic planar heterojunction light emitting diode and manufacturing method thereof |
CN106848071A (en) * | 2015-10-30 | 2017-06-13 | 吴忠帜 | Electro photo-luminescent apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109585668A (en) * | 2019-01-10 | 2019-04-05 | 京东方科技集团股份有限公司 | OLED display device, display panel, OLED display device preparation method |
US11737296B2 (en) | 2019-01-10 | 2023-08-22 | Boe Technology Group Co., Ltd. | OLED display device, display panel and manufacturing method of OLED display device |
CN113161495A (en) * | 2020-01-22 | 2021-07-23 | 京东方科技集团股份有限公司 | Organic light emitting diode and display device |
CN113805379A (en) * | 2020-06-17 | 2021-12-17 | 北京小米移动软件有限公司 | Display screen, manufacturing method and device thereof, display method and device and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101447555B (en) | Laminated organic electro-luminescent device of an organic semiconductor-based hetero-junction electric-charge generating layer taken as a connecting layer and preparation method thereof | |
CN104681731B (en) | Perovskite type electroluminescent device and preparation method thereof | |
CN102273320B (en) | Low voltage-driven organic electroluminescence device, and manufacturing method thereof | |
KR20120108897A (en) | Organic electroluminescent device, display device, and illumination apparatus | |
CN108011040B (en) | Green light organic electroluminescent device | |
CN108922978A (en) | Light emitting diode and preparation method thereof | |
CN102169966A (en) | Organic light emitting diode | |
CN102738414A (en) | Blue-ray fluorescent organic light emitting diode and manufacturing method thereof | |
CN102185112A (en) | Laminated organic light-emitting diode and preparation method thereof | |
CN102891262A (en) | Lamination organic electroluminescent device and preparation method thereof | |
WO2014019295A1 (en) | White organic electroluminescent device and manufacturing method thereof | |
CN102130302A (en) | Stacked organic light emitting diode and its preparation method | |
CN108666432A (en) | An Organic Light Emitting Diode Containing a Multilevel Organic Semiconductor Heterojunction | |
CN109004096A (en) | A kind of structure is simple and efficient blue-fluorescence Organic Light Emitting Diode | |
CN102569660A (en) | Organic electroluminescent device with laminated structure | |
CN101452997A (en) | Organic electroluminescent devices of laminated construction | |
CN108807701A (en) | White organic light emitting diode comprising thermally activated delayed fluorescent material and preparation method thereof | |
CN101859881B (en) | Electronic transmission material, organic electroluminescent device and preparation method thereof | |
WO2014187084A1 (en) | Organic electroluminescent component and display device | |
CN101540375A (en) | Organic electroluminescence device | |
CN100452476C (en) | Organic electroluminescent device | |
CN102683597B (en) | White light electroluminescent device and preparation method thereof | |
CN104882545A (en) | Organic electroluminescent device and preparation method thereof | |
Hsu et al. | High morphology stability and ambipolar transporting host for use in blue phosphorescent single-layer organic light-emitting diodes | |
CN101777626A (en) | Micro molecular white-light organic light-emitting device produced by wet method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181214 |
|
RJ01 | Rejection of invention patent application after publication |