Preparation and application of antibacterial electrostatic spinning nanofiber air filtering material
Technical Field
The invention belongs to the field of biomedical materials, and particularly relates to preparation of a multilayer nanofiber air filtering material with an antibacterial function.
Background
Nowadays, economy develops rapidly, people's living standard improves day by day, but also brings serious environmental problem simultaneously. Air pollution is increasingly serious, and a large amount of dust particles and bacteria and viruses are carried in polluted atmosphere and spread along with air flow, so that great trouble is caused to the health of people.
The electrostatic spinning technology is that polymer solution is charged in a high-voltage electric field, the surface tension of the polymer solution is overcome through electrostatic attraction, and the polymer solution is sprayed and stretched to obtain the fiber with the nanometer diameter. The nanofiber obtained by electrostatic spinning has the characteristics of large surface area, low porosity, small diameter and the like, is a very good filtering material, has high filtering efficiency on fine particles and bacteria and viruses, and has huge application prospect in the field of medical materials.
The hydantoin derivative is a novel halamine bactericide which has the characteristics of easy regeneration, good stability, high efficiency and broad-spectrum antibiosis. The N-vinylformamide-copolymerization-3-allyl-5, 5-dimethylhydantoin is a hydantoin derivative containing active amino, has antibacterial performance after chlorination, can achieve a strong sterilization effect in a short time, and has a chlorination regeneration characteristic.
Chitosan is a natural high molecular compound, is cheap and easy to obtain, has good biodegradability and biocompatibility, is nontoxic, has antibacterial property, and is widely applied to the field of medical materials. However, the chitosan needs to be in contact with bacteria for a long time to kill the bacteria, so that the application range of the chitosan is limited, and the chitosan has poor spinnability and is usually blended and spun with other materials.
Polyvinyl alcohol (PVA) is a water-soluble polymer, has good biodegradability, biocompatibility and chemical stability, is nontoxic, and has good spinnability and film-forming property. Meanwhile, the solvent of the polyvinyl alcohol is water, so that the use of toxic solvents can be avoided, and the polyvinyl alcohol can be widely applied as a good biomedical material.
Disclosure of Invention
The invention aims to provide a preparation method of an antibacterial electrospun nanofiber filtering material under the condition that the antibacterial and filtering effects of the existing mask are poor. The composite nanofiber membrane prepared by the method has high filtering efficiency and antibacterial function on particles in air, and can be used as a leading filtering layer of an air filtering device such as a mask.
The technical scheme adopted by the invention is as follows:
(1) heating in a water bath at 80 ℃ to dissolve polyvinyl alcohol, preparing a polyvinyl alcohol aqueous solution with a certain concentration, preparing a chitosan acetic acid solution with a certain concentration, mixing and stirring chitosan and polyvinyl alcohol according to a certain proportion for 1h, adding the mixture into an injector, adopting an aluminum foil as a collecting matrix, and spinning under a proper condition to obtain the nanofiber membrane.
(2) Weighing a certain mass of copolymer sample, dissolving the copolymer sample in the polyvinyl alcohol aqueous solution prepared in the step (1), mixing and stirring for 2 hours at room temperature to obtain a transparent solution, and spinning under appropriate conditions by taking the nanofiber membrane obtained by spinning in the step (1) as a collecting matrix to obtain two layers of nanofiber membranes.
(3) And (3) spinning by taking the nanofiber membrane obtained in the step (2) as a collecting matrix to obtain a three-layer nanofiber membrane.
(4) And (3) placing the three-layer composite nanofiber membrane in a dryer, performing crosslinking treatment by using glutaraldehyde steam, then placing the membrane in a vacuum drying oven for drying, and then placing the membrane in a 0.10% sodium hypochlorite solution for chlorination treatment.
(5) The permeability and efficiency of interception of particles were tested using sodium chloride aerosol particles having a diameter of 300 to 500 nm. And testing the antibacterial property of the prepared composite electrostatic spinning nanofiber membrane by adopting escherichia coli and staphylococcus aureus.
Preferably, the mass concentration of the polyvinyl alcohol aqueous solution is 8-10%, and if the concentration is too low, the solution viscosity is too small, so that the electrostatic spinning machine sprays liquid drops, and the liquid drops cannot be electrosprayed into filaments. If the concentration is too high, the viscosity of the solution is too high, the solution is difficult to form a cone at the tip of the needle head, and the silk cannot be produced.
Preferably, the concentration of the chitosan acetic acid solution is 1% -3%, the concentration of acetic acid is 1%, chitosan is difficult to dissolve in water and dilute acetic acid, and the decomposition of chitosan can be caused due to the excessively high concentration of acetic acid. If the concentration of chitosan is too high, the viscosity is high, and the spinning is difficult, and the chitosan itself is difficult to spin.
Preferably, the mass concentration ratio of the polyvinyl alcohol aqueous solution to the chitosan acetic acid solution is 1:1,2: 1,3: 1. when the proportion of polyvinyl alcohol is small, the spinning is difficult, and the chitosan is difficult to spin. The mass ratio of the polyvinyl alcohol aqueous solution to the copolymer sample is 1:1,2: 1,3:1.
Preferably, the environment temperature of the electric spraying is 10-50 ℃, the output voltage of the high-voltage power supply is 15-30KV, the distance between the receiving device and the spinneret orifice is 5-15cm, and the flow rate is 0.3-0.5 mL/h.
Preferably, the microorganisms tested for antibacterial activity using sodium chloride aerosol particles having a diameter of 300-500nm are Escherichia coli and Staphylococcus aureus.
The application of the composite electrostatic spinning nanofiber membrane is used as an antibacterial air filtering material for a mask, and sodium chloride aerosol particles are used for testing air permeability and interception efficiency of the particles, and meanwhile, the pressure drop of the composite electrostatic spinning nanofiber membrane can also be tested. The filtering efficiency can reach 95-99%, the pressure drop is 25-300Pa, and the filtering efficiency is superior to the N90 and N95 masks on the market. And testing the antibacterial property of the prepared composite electrostatic spinning nanofiber membrane by adopting escherichia coli and staphylococcus aureus. The bacteriostasis rate can reach 100 percent within 30 min.
Compared with the prior literature reports, the three-layer electrostatic spinning nanofiber membrane used as the antibacterial filter material for the mask has the following advantages:
(1) the preparation method is simple and feasible, the conditions are controllable, and the cost is low.
(2) The middle layer of the antibacterial nanofiber membrane is a mixed spinning membrane of a macromolecular antibacterial agent and polyvinyl alcohol, and plays a leading antibacterial role. The innermost layer and the outermost layer are spinning films formed by mixing chitosan acetic acid solution and polyvinyl alcohol aqueous solution, have an auxiliary antibacterial effect, and have a mechanical supporting effect after cross-linking. Meanwhile, the diameters of the three layers of nanofiber membranes and the thickness of the membranes can be manually controlled, the composite membrane has an interception effect on ultrafine particles and bacteria in the air, and the intercepted bacteria can be killed by hydantoin copolymer samples and chitosan on the fiber membranes.
(3) The nanofiber membrane contains the macromolecular antibacterial agent, so that the separation of the antibacterial agent in the using process can be avoided, and the stability of the filter material is improved.
(4) The mask made of the antibacterial nanofiber filtering material has good air permeability and can effectively intercept sodium chloride aerosol particles.
Drawings
FIG. 1 is a diagram of a simple electrospinning apparatus according to the present invention;
FIG. 2 is a scanning electron microscope image of the composite spinning fiber membrane prepared by the invention;
FIG. 3 is a scanning electron microscope image of the composite spinning fiber membrane prepared by the invention after being soaked in water;
figure 4 is a TGA profile of a composite spun fibrous membrane made according to the present invention.
Detailed Description
Example 1
Preparing 8% polyvinyl alcohol aqueous solution and 1% chitosan acetic acid solution, stirring and mixing the solutions uniformly according to the mass fraction ratio of 1:1, adding the mixture into an injector, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 20KV, the distance between a needle head and a receiving device is 10cm, and the flow rate is 0.3mL/h to obtain a first layer of nano-fiber membrane.
And (3) dissolving a copolymer sample in 8% polyvinyl alcohol aqueous solution in a ratio of 1:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the steps are used as collecting matrixes, and the three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 2
Preparing 9% polyvinyl alcohol aqueous solution and 2% chitosan acetic acid solution, stirring and mixing the two solutions uniformly according to the mass fraction ratio of 2:1, adding the mixture into an injector, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 25KV, the distance between a needle head and a receiving device is 15cm, and the flow rate is 0.4mL/h to obtain a first layer of nano-fiber membrane.
And (3) dissolving a copolymer sample in 9% polyvinyl alcohol aqueous solution in a ratio of 2:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 3
Preparing a 10% polyvinyl alcohol aqueous solution and a 3% chitosan acetic acid solution, and mixing the two solutions in percentage by mass as 3:1, adding the mixture into an injector after uniformly stirring and mixing, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 15KV, the distance between a needle head and a receiving device is 5cm, and the flow rate is 0.5mL/h to obtain a first layer of nanofiber membrane.
And (3) dissolving a copolymer sample in 10% polyvinyl alcohol aqueous solution in a ratio of 3:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 4
Preparing a 10% polyvinyl alcohol aqueous solution and a 3% chitosan acetic acid solution, uniformly stirring and mixing the polyvinyl alcohol aqueous solution and the chitosan acetic acid solution according to the mass fraction ratio of 1:1, adding the mixture into an injector, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 15KV, the distance between a needle head and a receiving device is 10cm, and the flow rate is 0.3mL/h to obtain a first layer of nanofiber membrane.
And (3) dissolving a copolymer sample in 10% polyvinyl alcohol aqueous solution in a ratio of 1:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 5
Preparing a 10% polyvinyl alcohol aqueous solution and a 3% chitosan acetic acid solution, uniformly stirring and mixing the solutions according to the mass ratio of 2:1, adding the solutions into an injector, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 20KV, the distance between a needle head and a receiving device is 15cm, and the flow rate is 0.4mL/h to obtain a first layer of nano-fiber membrane.
And (3) dissolving a copolymer sample in 10% polyvinyl alcohol aqueous solution in a ratio of 2:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 6
Preparing a 10% polyvinyl alcohol aqueous solution and a 3% chitosan acetic acid solution, uniformly stirring and mixing the polyvinyl alcohol aqueous solution and the chitosan acetic acid solution according to the mass fraction ratio of 3:1, adding the mixture into an injector, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 25KV, the distance between a needle head and a receiving device is 15cm, and the flow rate is 0.5mL/h to obtain a first layer of nanofiber membrane.
And (3) dissolving the copolymer sample in 10% polyvinyl alcohol aqueous solution according to the mass fraction ratio of 3:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain two layers of fiber membranes.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
Example 7
Preparing a 10% polyvinyl alcohol aqueous solution and a 3% chitosan acetic acid solution, and mixing the two solutions in percentage by mass as 3:1, adding the mixture into an injector after uniformly stirring and mixing, and spinning by using an electrostatic spinning machine under the conditions that the output voltage of a high-voltage power supply is 20KV, the distance between a needle head and a receiving device is 15cm, and the flow rate is 0.5mL/h to obtain a first layer of nanofiber membrane.
And (2) dissolving a copolymer sample in 10% polyvinyl alcohol aqueous solution according to the mass fraction ratio of 1:1, and performing electrostatic spinning by taking the fiber membrane obtained in the step as a collecting matrix to obtain a two-layer fiber membrane.
And the same as the preparation method of the spinning solution of the first layer of spinning membrane, the two layers of fiber membranes obtained in the step (1) are used as collecting matrixes, and three layers of fiber membranes are obtained by spinning.
And (3) placing the three-layer nanofiber membrane obtained by spinning in the step into a dryer, and carrying out steam crosslinking by using 50% glutaraldehyde.
In the above embodiment, the composite nanofiber membrane can be prepared by adjusting the ratio of the polymer in the spinning solution, the concentration of the polymer and the electrostatic spinning parameters according to experimental operations, so that the composite nanofiber membrane has the optimal filtration efficiency. It should be noted that the above embodiments are non-limiting examples of the present invention, and the present invention is not limited to the above embodiments, and many modifications can be made, and all modifications that can be derived from the present invention are considered to be within the scope of the present invention.