CN108989805A - Image processing method and device based on WebP image compression algorithm - Google Patents
Image processing method and device based on WebP image compression algorithm Download PDFInfo
- Publication number
- CN108989805A CN108989805A CN201810573736.6A CN201810573736A CN108989805A CN 108989805 A CN108989805 A CN 108989805A CN 201810573736 A CN201810573736 A CN 201810573736A CN 108989805 A CN108989805 A CN 108989805A
- Authority
- CN
- China
- Prior art keywords
- sub
- block
- macroblock
- boundary
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/146—Data rate or code amount at the encoder output
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本发明公开了一种基于WebP图像压缩算法的图像处理方法、装置、设备以及计算机可读存储介质,包括:获取待处理图像的YUV图像数据,将所述YUV图像数据的Y数据通道划分为多个预设大小的Y宏块后,将每个Y宏块划分为多个预设大小的子块;依据所述Y宏块内子块间的依赖关系,对所述Y宏块内子块的遍历顺序进行重组;根据重组后的子块遍历顺序对每个Y宏块内的子块进行处理,从而得到所述Y数据通道中各个Y宏块的数据处理结果;利用所述Y数据通道中各个Y宏块的数据处理结果,得到所述待检测图像的亮度值。本发明所提供的图像处理方法、装置、设备以及计算机可读存储介质,使宏块内的子块可以流水执行,提高了Web图像压缩算法的吞吐率性能。
The invention discloses an image processing method, device, device and computer-readable storage medium based on a WebP image compression algorithm, comprising: acquiring YUV image data of an image to be processed, and dividing the Y data channel of the YUV image data into multiple After Y macroblocks of a preset size, each Y macroblock is divided into sub-blocks of a plurality of preset sizes; according to the dependency relationship between the sub-blocks in the Y macroblock, the traversal of the sub-blocks in the Y macroblock Reorganize in sequence; process the subblocks in each Y macroblock according to the subblock traversal order after reorganization, so as to obtain the data processing results of each Y macroblock in the Y data channel; use each of the Y data channels The data processing result of the Y macroblock is used to obtain the brightness value of the image to be detected. The image processing method, device, equipment and computer-readable storage medium provided by the present invention enable the sub-blocks in the macro block to be executed in a pipeline, and improve the throughput performance of the Web image compression algorithm.
Description
技术领域technical field
本发明涉及图像处理技术领域,特别是涉及一种基于WebP图像 压缩算法的图像处理方法、装置、设备以及计算机可读存储介质。The present invention relates to the technical field of image processing, in particular to an image processing method, device, equipment and computer-readable storage medium based on a WebP image compression algorithm.
背景技术Background technique
随着手机、平板、数码相机等图像采集设备的发展及图片像素规 模提升,导致互联网图像数据规模呈指数级增长。最新研究表明,2016 年至2021年,数据中心服务器上数据存储规模将增长四倍,从663EB 增长至2.6ZB,其中,大部分数据存储来源于图像和视频。例如,2013 年Facebook用户上传图片规模已超2500亿张,至2015年,Facebook 每天增加近20亿张图像;据腾讯2016年最新的统计,腾讯公司数据 中心服务器上因QQ、微信等应用,每天新增80亿张图像存储量。这 给数据中心服务器的数据存储和网络带宽将带来严重挑战。With the development of image acquisition equipment such as mobile phones, tablets, and digital cameras, and the increase in image pixel scale, the scale of Internet image data has grown exponentially. The latest research shows that from 2016 to 2021, the data storage scale on data center servers will increase four-fold, from 663EB to 2.6ZB, and most of the data storage comes from images and videos. For example, in 2013, Facebook users uploaded more than 250 billion pictures. By 2015, Facebook added nearly 2 billion pictures every day; Added 8 billion image storage capacity. This will bring serious challenges to the data storage and network bandwidth of the data center server.
由于目前JPEG图片文件格式的压缩编码算法优化在理论上几乎 已达极致,为了降低图像存储的大小,往往会采用具有较高压缩率的 图像文件格式WebP来替代现有的JPEG图像文件,与JPEG有损压缩 算法相比,WebP图像有损压缩算法能够降低30%左右的文件大小。 在数据中心服务器上采用WebP图像压缩算法对JPEG文件进行编码 转换,能够有效的缓解图片规模增长所带来的数据中心存储和网络带 宽访问的压力。Since the compression coding algorithm optimization of the current JPEG image file format has almost reached the extreme in theory, in order to reduce the size of image storage, the image file format WebP with a higher compression ratio is often used to replace the existing JPEG image file. Compared with the lossy compression algorithm, the WebP image lossy compression algorithm can reduce the file size by about 30%. Using the WebP image compression algorithm on the data center server to encode and convert JPEG files can effectively relieve the pressure on data center storage and network bandwidth access brought about by the increase in image size.
但是WebP图像有损压缩算法数据处理过程计算复杂度较高,对 Y数据通道和UV数据通道分开进行处理。UV数据通道只需要进行 宏块级别的预测、变换、量化、压缩编码过程。而Y通道需要对各个 宏块级别进行预测、变换、量化、压缩编码的过程,还需要对每个宏块中的每个子块进行一次重复的预测、变换、量化、压缩编码过程。 在对Y数据通道进行处理时,首先,在宏块级别进行处理,利用宏块 边界对该宏块数据进行预测,选择最优的宏块预测模式,根据最优预 测模式计算宏块原始数据与预测数据的残差值,得到需要进行压缩编 码的图像残差数据宏块;其次,利用DCT(Discrete Cosine Transform) 变换、WHT(Walsh-Hadamard Transform)变换、量化步骤,计算得到 压缩处理后的残差系数。在子块级别进行Y数据通道处理时,针对每 个子块进行单独的预测过程,选择每个子块的最优预测模式,根据每 个子块的最优预测模式计算每个子块原始数据与预测数据的残差值; 其次,利用DCT变换、WHT变换、量化步骤,计算得到每个子块压 缩处理后的残差系数。通过对比在宏块级别和子块级别得到的残差系 数,选择最优的子块或宏块预测模式。如果最终选择的是子块预测模 式,针对Y宏块中每个子块,都需要进行单独的预测,对每个子块的 残差系数进行反量化、DCT逆变换、WHT逆变换,得到相邻子块预 测所需的边界值。However, the data processing process of the WebP image lossy compression algorithm has high computational complexity, and the Y data channel and the UV data channel are processed separately. The UV data channel only needs to perform prediction, transformation, quantization, and compression coding processes at the macroblock level. The Y channel requires the process of prediction, transformation, quantization, and compression coding for each macroblock level, and also needs to perform a repeated prediction, transformation, quantization, and compression coding process for each sub-block in each macroblock. When processing the Y data channel, first, process at the macroblock level, use the macroblock boundary to predict the macroblock data, select the optimal macroblock prediction mode, and calculate the macroblock original data and Predict the residual value of the data to obtain the image residual data macroblock that needs to be compressed and encoded; secondly, use DCT (Discrete Cosine Transform) transformation, WHT (Walsh-Hadamard Transform) transformation, and quantization steps to calculate the compressed residual difference coefficient. When the Y data channel is processed at the sub-block level, a separate prediction process is performed for each sub-block, the optimal prediction mode of each sub-block is selected, and the ratio between the original data and the predicted data of each sub-block is calculated according to the optimal prediction mode of each sub-block. residual value; secondly, the DCT transform, WHT transform, and quantization steps are used to calculate the residual coefficient of each sub-block after compression. By comparing the residual coefficients obtained at the macroblock level and the subblock level, the optimal subblock or macroblock prediction mode is selected. If the sub-block prediction mode is finally selected, a separate prediction is required for each sub-block in the Y macroblock, and inverse quantization, DCT inverse transform, and WHT inverse transform are performed on the residual coefficient of each sub-block to obtain the adjacent sub-block Boundary value required for block prediction.
基于OpenCL进行WebP算法实现时,例如只能处理完第2个Y 宏块之后才能处理第3个Y宏块,在处理完第3个Y宏块之后才能启 动第4个Y宏块;且Y数据通道的子块处理流程也只能这样串行执行, 无法实现子块间的流水线执行,导致整体吞吐率较低,算法性能无法提高。When implementing the WebP algorithm based on OpenCL, for example, the third Y macroblock can only be processed after the second Y macroblock is processed, and the fourth Y macroblock can only be started after the third Y macroblock is processed; and Y The sub-block processing flow of the data channel can only be executed serially in this way, and the pipeline execution between sub-blocks cannot be realized, resulting in a low overall throughput rate and algorithm performance cannot be improved.
综上所述可以看出,如何实现Y宏块内子块间流水执行是目前有 待解决的问题。From the above, it can be seen that how to implement pipeline execution between sub-blocks in Y macroblock is a problem to be solved at present.
发明内容Contents of the invention
本发明的目的是提供一种基于WebP图像压缩算法的图像处理方 法、装置、设备以及计算机可读存储介质,已解决现有技术中Webp 算法执行时无法实现宏块内子块间流水执行的问题。The object of the present invention is to provide a kind of image processing method, device, equipment and computer-readable storage medium based on WebP image compression algorithm, have solved the problem that cannot realize the flow execution between the sub-blocks in the macroblock when Webp algorithm is executed in the prior art.
为解决上述技术问题,本发明提供一种基于WebP图像压缩算法 的图像处理方法,包括:获取待处理图像的YUV图像数据,将所述 YUV图像数据的Y数据通道划分为多个预设大小的Y宏块后,将每 个Y宏块划分为多个预设大小的子块;依据所述Y宏块内子块间的依赖关系,对所述Y宏块内子块的遍历顺序进行重组;根据重组后的子 块遍历顺序对每个Y宏块内的子块进行处理,从而得到所述Y数据通 道中各个Y宏块的数据处理结果;利用所述Y数据通道中各个Y宏 块的数据处理结果,得到所述待检测图像的亮度值。In order to solve the above technical problems, the present invention provides an image processing method based on the WebP image compression algorithm, comprising: acquiring YUV image data of the image to be processed, and dividing the Y data channel of the YUV image data into a plurality of preset sizes After the Y macroblock, each Y macroblock is divided into sub-blocks of a plurality of preset sizes; according to the dependency between the sub-blocks in the Y macroblock, the traversal order of the sub-blocks in the Y macroblock is reorganized; according to The reorganized sub-block traversal sequence processes the sub-blocks in each Y macroblock, thereby obtaining the data processing results of each Y macroblock in the Y data channel; using the data of each Y macroblock in the Y data channel As a result of processing, the brightness value of the image to be detected is obtained.
优选地,所述根据重组后的子块遍历顺序对每个Y宏块内的子块 进行处理包括:Preferably, said processing the sub-blocks in each Y macroblock according to the reorganized sub-block traversal order includes:
依据所述Y宏块内第一子块的右边界和第二子块的左边界的依赖 关系,在完成所述第一子块的处理后,对所述第二子块进行处理;完 成对所述第二子块的处理后,对所述Y宏块的第三子块进行处理的同 时,对所述Y宏块的第四子块进行处理;其中,选取所述Y宏块的左 边界和上边界中公共的子块作为所述第一子块;所述第二子块的左边 界与所述第一子块的右边界相邻;所述第三子块的左边界与所述第二 子块的右边界相邻;所述第四子块的上边界与所述第一子块的下边界 相邻。According to the dependency relationship between the right boundary of the first subblock and the left boundary of the second subblock in the Y macroblock, after the processing of the first subblock is completed, the second subblock is processed; After the processing of the second sub-block, while processing the third sub-block of the Y macro-block, process the fourth sub-block of the Y macro-block; wherein, the left side of the Y macro-block is selected The common sub-block in the boundary and the upper boundary is used as the first sub-block; the left boundary of the second sub-block is adjacent to the right boundary of the first sub-block; the left boundary of the third sub-block is adjacent to the The right boundary of the second sub-block is adjacent; the upper boundary of the fourth sub-block is adjacent to the lower boundary of the first sub-block.
优选地,所述完成对所述第二子块的处理后,对所述Y宏块的第 三子块进行处理的同时,对所述Y宏块的第四子块进行处理后包括:Preferably, after the processing of the second sub-block is completed, processing the third sub-block of the Y macroblock while processing the fourth sub-block of the Y macroblock includes:
在处理完成所述第三子块后,对所述Y宏块的第五子块进行处理; 所述第三子块和所述第四子块的处理均完成后,对所述Y宏块的第六 子块进行处理;对所述第六子块处理完成后,同时对所述Y宏块的第 七子块和第八子块进行处理;其中,所述第五子块的左边界与所述第 三宏块的右边界相邻,所述第六子块的左边界与所述第四子块的右边 界相邻;所述第七子块的左边界与所述第六子块的右边界相邻;所述 第八子块的上边界与所述第四子块的下边界相邻。After the processing of the third sub-block is completed, the fifth sub-block of the Y macroblock is processed; after the processing of the third sub-block and the fourth sub-block are both completed, the Y macroblock is processed The sixth sub-block of the Y macroblock is processed; after the processing of the sixth sub-block is completed, the seventh sub-block and the eighth sub-block of the Y macroblock are processed at the same time; wherein, the left boundary of the fifth sub-block Adjacent to the right boundary of the third macroblock, the left boundary of the sixth subblock is adjacent to the right boundary of the fourth subblock; the left boundary of the seventh subblock is adjacent to the sixth subblock right borders of the blocks are adjacent; the upper border of the eighth sub-block is adjacent to the lower border of the fourth sub-block.
优选地,所述对所述第六子块处理完成后,同时对所述Y宏块的 第七子块和第八子块进行处理后包括:Preferably, after the processing of the sixth sub-block is completed, processing the seventh sub-block and the eighth sub-block of the Y macroblock at the same time includes:
在处理完成所述第七子块后,对所述Y宏块的第九子块和第十子 块同时进行处理;所述第十子块处理完成后,对所述Y宏块的第十一 子块和第十二子块同时进行处理;对所述第十一子块处理完成后,同 时对所述Y宏块的第十三块和第十四子块同时进行处理;其中,所述 第九子块的左边界与所述第七宏块的右边界相邻,所述第十子块的左 边界与所述第八子块的右边界相邻;所述第十一子块的左边界与所述 第十子块的右边界相邻;所述第十二子块的上边界与所述第八子块的 下边界相邻;所述第十三子块的左边界与所述第十一子块的右边界相 邻;所述第十四子块的左边界和所述第十二子块的右边界相邻。After the seventh sub-block is processed, the ninth sub-block and the tenth sub-block of the Y macroblock are processed simultaneously; after the tenth sub-block is processed, the tenth sub-block of the Y macroblock is processed. A sub-block and the twelfth sub-block are processed at the same time; after the eleventh sub-block is processed, the thirteenth sub-block and the fourteenth sub-block of the Y macroblock are simultaneously processed; wherein, the The left boundary of the ninth sub-block is adjacent to the right boundary of the seventh macroblock, and the left boundary of the tenth sub-block is adjacent to the right boundary of the eighth sub-block; the eleventh sub-block The left boundary of the tenth sub-block is adjacent to the right boundary; the upper boundary of the twelfth sub-block is adjacent to the lower boundary of the eighth sub-block; the left boundary of the thirteenth sub-block is adjacent to the The right boundary of the eleventh sub-block is adjacent; the left boundary of the fourteenth sub-block is adjacent to the right boundary of the twelfth sub-block.
优选地,所述获取待处理图像的YUV图像数据,将所述YUV图 像数据的Y数据通道划分为多个预设大小的Y宏块后,将每个Y宏 块划分为多个预设大小的子块包括:Preferably, after obtaining the YUV image data of the image to be processed, after dividing the Y data channel of the YUV image data into a plurality of Y macroblocks of a preset size, each Y macroblock is divided into a plurality of preset sizes The subblocks include:
获取待处理图像的YUV图像数据后,将所述YUV图像数据的Y 数据通道中每16×16个像素Y数据组成一个Y宏块,其中,每个Y 宏块横向占16个像素位置,纵向占16个像素位置;将所述Y数据通 道划分为多个16×16大小的Y宏块后,将每个Y宏块划分为16个4 ×4大小的子块。After obtaining the YUV image data of the image to be processed, every 16×16 pixel Y data in the Y data channel of the YUV image data is formed into a Y macroblock, wherein each Y macroblock occupies 16 pixel positions horizontally and vertically It occupies 16 pixel positions; after the Y data channel is divided into multiple Y macroblocks with a size of 16×16, each Y macroblock is divided into 16 sub-blocks with a size of 4×4.
本发明还提供了一种基于WebP图像压缩算法的图像处理装置, 包括:The present invention also provides an image processing device based on the WebP image compression algorithm, including:
获取模块,获取待处理图像的YUV图像数据,将所述YUV图像 数据的Y数据通道划分为多个预设大小的Y宏块后,将每个Y宏块 划分为多个预设大小的子块;The acquisition module acquires the YUV image data of the image to be processed, divides the Y data channel of the YUV image data into a plurality of Y macroblocks of a preset size, and then divides each Y macroblock into a plurality of subscales of a preset size piece;
重组模块,用于依据所述Y宏块内子块间的依赖关系,对所述Y 宏块内子块的遍历顺序进行重组;A reorganization module, configured to reorganize the traversal order of the subblocks in the Y macroblock according to the dependency relationship between the subblocks in the Y macroblock;
处理模块,用于根据重组后的子块遍历顺序对每个Y宏块内的子 块进行处理,从而得到所述Y数据通道中各个Y宏块的数据处理结果;The processing module is used to process the sub-blocks in each Y macro-block according to the reorganized sub-block traversal order, so as to obtain the data processing results of each Y macro-block in the Y data channel;
计算模块,用于利用所述Y数据通道中各个Y宏块的数据处理结 果,得到所述待检测图像的亮度值。A calculation module, configured to use the data processing results of each Y macroblock in the Y data channel to obtain the brightness value of the image to be detected.
优选地,所述处理模块具体用于:Preferably, the processing module is specifically used for:
依据所述Y宏块内第一子块的右边界和第二子块的左边界的依赖 关系,在完成所述第一子块的处理后,对所述第二子块进行处理;完 成对所述第二子块的处理后,对所述Y宏块的第三子块进行处理的同 时,对所述Y宏块的第四子块进行处理;其中,选取所述Y宏块的左 边界和上边界中公共的子块作为所述第一子块;所述第二子块的左边 界与所述第一子块的右边界相邻;所述第三子块的左边界与所述第二 子块的右边界相邻;所述第四子块的上边界与所述第一子块的下边界 相邻。According to the dependency relationship between the right boundary of the first subblock and the left boundary of the second subblock in the Y macroblock, after the processing of the first subblock is completed, the second subblock is processed; After the processing of the second sub-block, while processing the third sub-block of the Y macro-block, process the fourth sub-block of the Y macro-block; wherein, the left side of the Y macro-block is selected The common sub-block in the boundary and the upper boundary is used as the first sub-block; the left boundary of the second sub-block is adjacent to the right boundary of the first sub-block; the left boundary of the third sub-block is adjacent to the The right boundary of the second sub-block is adjacent; the upper boundary of the fourth sub-block is adjacent to the lower boundary of the first sub-block.
优选地,所述完成对所述第二子块的处理后,对所述Y宏块的第 三子块进行处理的同时,对所述Y宏块的第四子块进行处理后包括:Preferably, after the processing of the second sub-block is completed, processing the third sub-block of the Y macroblock while processing the fourth sub-block of the Y macroblock includes:
在处理完成所述第三子块后,对所述Y宏块的第五子块进行处理; 所述第三子块和所述第四子块的处理均完成后,对所述Y宏块的第六 子块进行处理;对所述第六子块处理完成后,同时对所述Y宏块的第 七子块和第八子块进行处理;其中,所述第五子块的左边界与所述第 三宏块的右边界相邻,所述第六子块的左边界与所述第四子块的右边 界相邻;所述第七子块的左边界与所述第六子块的右边界相邻;所述 第八子块的上边界与所述第四子块的下边界相邻。After the processing of the third sub-block is completed, the fifth sub-block of the Y macroblock is processed; after the processing of the third sub-block and the fourth sub-block are both completed, the Y macroblock is processed The sixth sub-block of the Y macroblock is processed; after the processing of the sixth sub-block is completed, the seventh sub-block and the eighth sub-block of the Y macroblock are processed at the same time; wherein, the left boundary of the fifth sub-block Adjacent to the right boundary of the third macroblock, the left boundary of the sixth subblock is adjacent to the right boundary of the fourth subblock; the left boundary of the seventh subblock is adjacent to the sixth subblock right borders of the blocks are adjacent; the upper border of the eighth sub-block is adjacent to the lower border of the fourth sub-block.
本发明还提供了一种基于WebP图像压缩算法的图像处理设备, 包括:The present invention also provides an image processing device based on the WebP image compression algorithm, including:
存储器,用于存储计算机程序;处理器,用于执行所述计算机程 序时实现上述一种基于WebP图像压缩算法的图像处理方法的步骤。The memory is used to store the computer program; the processor is used to implement the steps of the above-mentioned image processing method based on the WebP image compression algorithm when the computer program is executed.
本发明还提供了一种计算机可读存储介质,所述计算机可读存储 介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述 一种基于WebP图像压缩算法的图像处理方法的步骤。The present invention also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above-mentioned image processing method based on the WebP image compression algorithm are realized .
本发明所提供的基于WebP图像压缩算法的图像处理方法,获取 待处理图像的YUV图像数据后,将所述YUV图像数据中的Y数据通 道划分为多个预设大小的Y宏块后,将每个Y宏块划分为多个预设大 小的子块。依据所述Y宏块内子块间的依赖关系,对所述Y宏块内子块的遍历顺序进行重组,根据重组后的子块遍历顺序对每个Y宏块内 的子块进行处理,从而得到所述Y数据通道中各个Y宏块的数据处理 结果;利用所述Y数据通道中各个Y宏块的数据处理结果,得到所述 待检测图像的亮度值。本发明所提供的图像处理方法中,优先处理对 相邻子块造成依赖关系的子块,从而使所述Y宏块内的子块可以流水 执行,提高了Web图像压缩算法的吞吐率性能。In the image processing method based on the WebP image compression algorithm provided by the present invention, after obtaining the YUV image data of the image to be processed, after dividing the Y data channel in the YUV image data into a plurality of Y macroblocks of a preset size, the Each Y macroblock is divided into multiple sub-blocks of preset size. Reorganize the traversal order of the subblocks in the Y macroblock according to the dependencies among the subblocks in the Y macroblock, and process the subblocks in each Y macroblock according to the reorganized subblock traversal order, so as to obtain The data processing result of each Y macroblock in the Y data channel; using the data processing result of each Y macroblock in the Y data channel to obtain the brightness value of the image to be detected. In the image processing method provided by the present invention, the sub-blocks that cause dependencies on adjacent sub-blocks are preferentially processed, so that the sub-blocks in the Y macroblock can be executed in a pipeline, and the throughput performance of the Web image compression algorithm is improved.
附图说明Description of drawings
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将 对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易 见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普 通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附 图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions of the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only For some embodiments of the present invention, those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明所提供的一种基于WebP图像压缩算法的图像处理 方法的第一种具体实施例的流程图;Fig. 1 is the flow chart of the first specific embodiment of a kind of image processing method based on WebP image compression algorithm provided by the present invention;
图2为本发明所提供的基于WebP图像压缩算法的图像处理方法 的第二种具体实施例的流程图;Fig. 2 is the flowchart of the second specific embodiment of the image processing method based on WebP image compression algorithm provided by the present invention;
图3为子块数据对边界数据的依赖关系示意图;Fig. 3 is a schematic diagram of the dependence of sub-block data on boundary data;
图4为宏块内子块间的依赖关系示意图;FIG. 4 is a schematic diagram of dependencies among sub-blocks in a macroblock;
图5为子块遍历顺序重组后宏块内子块实际遍历顺序示意图;FIG. 5 is a schematic diagram of the actual traversal sequence of sub-blocks in a macroblock after sub-block traversal sequence reorganization;
图6为本发明实施例提供的一种基于WebP图像压缩算法的图像 处理装置的结构框图。Fig. 6 is a structural block diagram of an image processing device based on a WebP image compression algorithm provided by an embodiment of the present invention.
具体实施方式Detailed ways
本发明的核心是提供一种基于WebP图像压缩算法的图像处理方 法、装置、设备以及计算机可读存储介质,使宏块内的子块可以流水 执行,提高了Web图像压缩算法的吞吐率性能。The core of the present invention is to provide an image processing method, device, equipment and computer-readable storage medium based on the WebP image compression algorithm, so that the sub-blocks in the macroblock can be executed in a pipeline, and the throughput performance of the Web image compression algorithm is improved.
为了使本技术领域的人员更好地理解本发明方案,下面结合附图 和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施 例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得 的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Apparently, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
请参考图1,图1为本发明所提供的基于WebP图像压缩算法的 图像处理方法的第一种具体实施例的流程图;具体操作步骤如下:Please refer to Fig. 1, Fig. 1 is the flow chart of the first kind of specific embodiment of the image processing method based on WebP image compression algorithm provided by the present invention; Concrete operation steps are as follows:
步骤S101:获取待处理图像的YUV图像数据,将所述YUV图 像数据的Y数据通道划分为多个预设大小的Y宏块后,将每个Y宏 块划分为多个预设大小的子块;Step S101: Acquire the YUV image data of the image to be processed, divide the Y data channel of the YUV image data into a plurality of Y macroblocks of a preset size, and then divide each Y macroblock into a plurality of sub-blocks of a preset size piece;
获取待处理图像的YUV图像数据后,将所述YUV图像数据的Y 数据通道中每16×16个像素Y数据组成一个Y宏块,其中,每个Y 宏块横向占16个像素位置,纵向占16个像素位置;对于图像边界不 满足16整数倍的数据,采用复制边界像素的方式进行补齐。After obtaining the YUV image data of the image to be processed, every 16×16 pixel Y data in the Y data channel of the YUV image data is formed into a Y macroblock, wherein each Y macroblock occupies 16 pixel positions horizontally and vertically Occupies 16 pixel positions; for the data whose image boundary does not meet the integer multiple of 16, it is filled by copying the boundary pixels.
将所述Y数据通道划分为多个16×16大小的Y宏块后,将每个 Y宏块划分为16个4×4大小的子块。每个子块在图像Y像素宏块数 据坐标中,横向占4个像素位置,纵向坐标占4个像素位置,每个Y 宏块共包含16个4×4子块。After the Y data channel is divided into multiple Y macroblocks with a size of 16×16, each Y macroblock is divided into 16 sub-blocks with a size of 4×4. Each sub-block occupies 4 pixel positions horizontally and 4 pixel positions vertically in the Y pixel macroblock data coordinates of the image, and each Y macroblock contains 16 4×4 sub-blocks in total.
步骤S102:依据所述Y宏块内子块间的依赖关系,对所述Y宏 块内子块的遍历顺序进行重组;Step S102: Reorganize the traversal order of the sub-blocks in the Y macro-block according to the dependency between the sub-blocks in the Y macro-block;
步骤S103:根据重组后的子块遍历顺序对每个Y宏块内的子块 进行处理,从而得到所述Y数据通道中各个Y宏块的数据处理结果;Step S103: Process the sub-blocks in each Y macro-block according to the reorganized sub-block traversal order, so as to obtain the data processing results of each Y macro-block in the Y data channel;
步骤S104:利用所述Y数据通道中各个Y宏块的数据处理结果, 得到所述待检测图像的亮度值。Step S104: using the data processing results of each Y macroblock in the Y data channel to obtain the brightness value of the image to be detected.
本实施例所提供的基于WebP图像压缩算法的图像处理方法,解 决了采用OpenCL实现WebP图像有损压缩算法的FPGA硬件电路映 射实现时,宏块内子块间只能串行执行的问题;通过对宏块内子块遍 历顺序进行重组,缓解子块间边界数据依赖关系对程序执行时子块间 流水的影响,提高宏块内子块的流水线执行性能,从而提高FPGA异 构加速WebP图像压缩算法的能效。The image processing method based on the WebP image compression algorithm provided by this embodiment solves the problem that the sub-blocks in the macroblock can only be executed serially when implementing the FPGA hardware circuit mapping of the WebP image lossy compression algorithm using OpenCL; The traversal order of the sub-blocks in the macro block is reorganized to alleviate the impact of the boundary data dependencies between sub-blocks on the pipeline between sub-blocks during program execution, improve the pipeline execution performance of the sub-blocks in the macro block, and thus improve the energy efficiency of the FPGA heterogeneous accelerated WebP image compression algorithm .
基于上述实施例,本实施例中,依据所述Y宏块内子块间的边界 依赖关系,在对所述Y宏块内的第一子块、第二子块后,可以实现第 三子块和第四子块的同时处理,请参考图2,图2为本发明所提供的 基于WebP图像压缩算法的图像处理方法的第二种具体实施例的流程 图;具体操作步骤如下:Based on the above embodiment, in this embodiment, according to the boundary dependency between the sub-blocks in the Y macroblock, after the first sub-block and the second sub-block in the Y macroblock, the third sub-block can be realized And the simultaneous processing of the 4th sub-block, please refer to Fig. 2, Fig. 2 is the flow chart of the second specific embodiment of the image processing method based on WebP image compression algorithm provided by the present invention; Concrete operation steps are as follows:
步骤S201:获取待处理图像的YUV图像数据,将所述Y数据通 道划分为多个16×16大小的Y宏块后,将每个Y宏块划分为16个4 ×4大小的子块;Step S201: obtain the YUV image data of the image to be processed, after the Y data channel is divided into a plurality of Y macroblocks of 16 × 16 sizes, each Y macroblock is divided into 16 sub-blocks of 4 × 4 sizes;
步骤S202:依据所述Y宏块内第一子块的右边界和第二子块的 左边界的依赖关系,在完成所述第一子块的处理后,对所述第二子块 进行处理;Step S202: According to the dependency relationship between the right boundary of the first subblock and the left boundary of the second subblock in the Y macroblock, after the processing of the first subblock is completed, process the second subblock ;
如图3和图4所示,图3为子块数据对边界数据的依赖关系示意图;图4 为宏块内子块间的依赖关系示意图;原始Y宏块内的子块索引定义为 y_sub[index],y_sub[i]表示在对Y宏块内的子块进行遍历时,处理的第i个子 块索引值为y_sub[i]。其中index最大值等于16,表示Y宏块内包含16个4×4 子块,原始的Y宏块内子块顺序遍历方式为: y_sub_old[i]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}。As shown in Figure 3 and Figure 4, Figure 3 is a schematic diagram of the dependency relationship between sub-block data and boundary data; Figure 4 is a schematic diagram of the dependency relationship between sub-blocks in a macroblock; the sub-block index in the original Y macroblock is defined as y_sub[index ], y_sub[i] indicates that when traversing the sub-blocks in the Y macroblock, the i-th sub-block index value to be processed is y_sub[i]. Among them, the maximum value of index is equal to 16, which means that the Y macroblock contains 16 4×4 sub-blocks, and the original sub-block order traversal method in the Y macroblock is: y_sub_old[i]={1,2,3,4,5,6 ,7,8,9,10,11,12,13,14,15,16}.
步骤S203:完成对所述第二子块的处理后,对所述Y宏块的第 三子块进行处理的同时,对所述Y宏块的第四子块进行处理;Step S203: After completing the processing of the second sub-block, while processing the third sub-block of the Y macro-block, process the fourth sub-block of the Y macro-block;
重组后宏块内子块遍历顺序如图5所示,图5中的子块编号表示 重组后Y宏块内子块位置的遍历顺序。选取所述Y宏块的左边界和上 边界中公共的子块作为所述第一子块;所述第二子块的左边界与所述 第一子块的右边界相邻;所述第三子块的左边界与所述第二子块的右 边界相邻;所述第四子块的上边界与所述第一子块的下边界相邻。The traversal order of the sub-blocks in the macroblock after reorganization is shown in Figure 5, and the sub-block numbers in Figure 5 represent the traversal order of the sub-block positions in the Y macroblock after reorganization. Select the common sub-block in the left boundary and the upper boundary of the Y macroblock as the first sub-block; the left boundary of the second sub-block is adjacent to the right boundary of the first sub-block; The left border of the third sub-block is adjacent to the right border of the second sub-block; the upper border of the fourth sub-block is adjacent to the lower border of the first sub-block.
步骤S204:在处理完成所述第三子块后,对所述Y宏块的第五 子块进行处理;Step S204: After processing the third sub-block, process the fifth sub-block of the Y macroblock;
步骤S205:所述第三子块和所述第四子块的处理均完成后,对所 述Y宏块的第六子块进行处理;Step S205: After the processing of the third sub-block and the fourth sub-block is completed, process the sixth sub-block of the Y macroblock;
其中,所述第五子块的左边界与所述第三宏块的右边界相邻,所 述第六子块的左边界与所述第四子块的右边界相邻;所述第七子块的 左边界与所述第六子块的右边界相邻;所述第八子块的上边界与所述 第四子块的下边界相邻。Wherein, the left boundary of the fifth sub-block is adjacent to the right boundary of the third macroblock, and the left boundary of the sixth sub-block is adjacent to the right boundary of the fourth sub-block; the seventh The left boundary of the sub-block is adjacent to the right boundary of the sixth sub-block; the upper boundary of the eighth sub-block is adjacent to the lower boundary of the fourth sub-block.
步骤S206:在处理完成所述第七子块后,对所述Y宏块的第九 子块和第十子块同时进行处理;Step S206: After processing the seventh sub-block, process the ninth sub-block and the tenth sub-block of the Y macroblock simultaneously;
步骤S207:所述第十子块处理完成后,对所述Y宏块的第十一 子块和第十二子块同时进行处理;Step S207: After the processing of the tenth sub-block is completed, the eleventh sub-block and the twelfth sub-block of the Y macroblock are processed simultaneously;
步骤S208:对所述第十一子块处理完成后,同时对所述Y宏块 的第十三块和第十四子块同时进行处理;Step S208: After the eleventh sub-block is processed, simultaneously process the thirteenth and fourteenth sub-blocks of the Y macroblock;
其中,所述第九子块的左边界与所述第七宏块的右边界相邻,所 述第十子块的左边界与所述第八子块的右边界相邻;所述第十一子块 的左边界与所述第十子块的右边界相邻;所述第十二子块的上边界与 所述第八子块的下边界相邻;所述第十三子块的左边界与所述第十一 子块的右边界相邻;所述第十四子块的左边界和所述第十二子块的右 边界相邻。Wherein, the left boundary of the ninth sub-block is adjacent to the right boundary of the seventh macroblock, and the left boundary of the tenth sub-block is adjacent to the right boundary of the eighth sub-block; the tenth The left boundary of a sub-block is adjacent to the right boundary of the tenth sub-block; the upper boundary of the twelfth sub-block is adjacent to the lower boundary of the eighth sub-block; the thirteenth sub-block The left boundary is adjacent to the right boundary of the eleventh sub-block; the left boundary of the fourteenth sub-block is adjacent to the right boundary of the twelfth sub-block.
步骤S209:完成所述第十四子块的处理后,依次对第十五子块和 第十六子块进行处理,从而得到所述Y宏块的数据处理结果;Step S209: After completing the processing of the fourteenth sub-block, sequentially process the fifteenth sub-block and the sixteenth sub-block, so as to obtain the data processing result of the Y macroblock;
其中,所述第十五子块的左边界与所述第十四子块的右边界相 邻,所述第十六子块的左边界与所述第十五子块的右边界相邻。Wherein, the left boundary of the fifteenth sub-block is adjacent to the right boundary of the fourteenth sub-block, and the left boundary of the sixteenth sub-block is adjacent to the right boundary of the fifteenth sub-block.
步骤S210:得到所述Y数据通道中各个Y宏块的数据处理结果, 后,利用所述Y数据通道中各个Y宏块的数据处理结果,得到所述待 检测图像的亮度值。Step S210: Obtain the data processing results of each Y macroblock in the Y data channel, and then use the data processing results of each Y macroblock in the Y data channel to obtain the brightness value of the image to be detected.
本实施例中,在对Y宏块内4×4子块遍历顺序进行重组映射后, Y宏块内的子块遍历顺序:In this embodiment, after reorganizing and mapping the traversal order of the 4×4 sub-blocks in the Y macroblock, the traversal order of the sub-blocks in the Y macroblock is:
y_sub_new[i]={y_sub_old[1,2,3],y_sub_old[5],y_sub_old[4],y_sub_new[i]={y_sub_old[1,2,3], y_sub_old[5], y_sub_old[4],
y_sub_old[6,7],y_sub_old[9],y_sub_old[8],y_sub_old[10,11],y_sub_old[6,7], y_sub_old[9], y_sub_old[8], y_sub_old[10,11],
y_sub_old[13],y_sub_old[12],?y_sub_old[14,15,16]}y_sub_old[13], y_sub_old[12], ? y_sub_old[14,15,16]}
在依据y_sub_new[i]映射顺序对图像Y宏块数据4×4子块进行遍 历顺序重组,在串行处理完前三个子块后,就可以实现剩余子块间的 流水执行,避免了所有子块间都是串行执行,在FPGA上能够提高宏 块处理的性能。According to the mapping order of y_sub_new[i], the 4×4 sub-blocks of the image Y macroblock data are reorganized in traversal order. After the first three sub-blocks are serially processed, the pipeline execution between the remaining sub-blocks can be realized, avoiding all sub-blocks. Blocks are executed serially, which can improve the performance of macro block processing on FPGA.
本实施例所提供的基于WebP图像压缩算法的图像处理方法,通 过对Y宏块内的子块遍历顺序进行重组映射,能够实现Y宏块内子块 间的流水执行,对因Y宏块内子块间边界数据依赖关系导致的宏块内 子块间只能串行处理的低效率进行改善,实现宏块内子块间处理过程 的流水,提高WebP图像压缩算法的吞吐率性能。The image processing method based on the WebP image compression algorithm provided by this embodiment can realize the pipeline execution among the sub-blocks in the Y macroblock by reorganizing and mapping the traversal order of the sub-blocks in the Y macroblock, and the sub-blocks in the Y macroblock Improve the inefficiency of serial processing between sub-blocks in a macro block caused by the data dependency between the boundaries, realize the pipeline of the processing process between sub-blocks in a macro block, and improve the throughput performance of the WebP image compression algorithm.
请参考图6,图6为本发明实施例提供的一种基于WebP图像压 缩算法的图像处理装置的结构框图;具体装置可以包括:Please refer to Fig. 6, Fig. 6 is a structural block diagram of an image processing device based on a WebP image compression algorithm provided by an embodiment of the present invention; the specific device may include:
本实施例的基于WebP图像压缩算法的图像处理装置用于实现前 述的基于WebP图像压缩算法的图像处理方法,因此基于WebP图像 压缩算法的图像处理装置中的具体实施方式可见前文中的基于WebP 图像压缩算法的图像处理方法的实施例部分,例如,获取模块100, 重组模块200,处理模块300,计算模块400,分别用于实现上述基于 WebP图像压缩算法的图像处理方法中步骤S101,S102,S103和S104, 所以,其具体实施方式可以参照相应的各个部分实施例的描述,在此 不再赘述。The image processing device based on the WebP image compression algorithm of this embodiment is used to implement the aforementioned image processing method based on the WebP image compression algorithm, so the specific implementation in the image processing device based on the WebP image compression algorithm can be seen in the previous article based on WebP image The embodiment part of the image processing method of the compression algorithm, for example, the acquisition module 100, the reorganization module 200, the processing module 300, and the calculation module 400 are respectively used to realize steps S101, S102, and S103 in the above-mentioned image processing method based on the WebP image compression algorithm and S104, therefore, for its specific implementation, reference may be made to the descriptions of the corresponding partial embodiments, and details are not repeated here.
本发明具体实施例还提供了一种基于WebP图像压缩算法的图像 处理设备,包括:存储器,用于存储计算机程序;处理器,用于执行 所述计算机程序时实现上述一种基于WebP图像压缩算法的图像处理 方法的步骤。A specific embodiment of the present invention also provides an image processing device based on a WebP image compression algorithm, including: a memory for storing a computer program; a processor for implementing the above-mentioned WebP image compression algorithm when executing the computer program The steps of the image processing method.
本发明具体实施例还提供了一种计算机可读存储介质,所述计算 机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行 时实现上述一种基于WebP图像压缩算法的图像处理方法的步骤。A specific embodiment of the present invention also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned image processing based on the WebP image compression algorithm is realized method steps.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说 明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分 互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的 方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other. For the device disclosed in the embodiment, because it corresponds to the method disclosed in the embodiment, it is relatively simple to describe, and for relevant parts, please refer to the description of the method part.
专业人员还可以进一步意识到,结合本文中所公开的实施例描述 的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者 的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明 中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟 以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束 条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所 描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are implemented by hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
结合本文中所公开的实施例描述的方法或算法的步骤可以直接 用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块 可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程 ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in conjunction with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.
以上对本发明所提供的基于WebP图像压缩算法的图像处理方 法、装置、设备以及计算机可读存储介质进行了详细介绍。本文中应 用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的 说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于 本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还 可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权 利要求的保护范围内。The image processing method, device, equipment and computer-readable storage medium based on the WebP image compression algorithm provided by the present invention have been introduced in detail above. In this paper, specific examples are used to illustrate the principles and implementation methods of the present invention, and the descriptions of the above embodiments are only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810573736.6A CN108989805A (en) | 2018-06-06 | 2018-06-06 | Image processing method and device based on WebP image compression algorithm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810573736.6A CN108989805A (en) | 2018-06-06 | 2018-06-06 | Image processing method and device based on WebP image compression algorithm |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108989805A true CN108989805A (en) | 2018-12-11 |
Family
ID=64540758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810573736.6A Pending CN108989805A (en) | 2018-06-06 | 2018-06-06 | Image processing method and device based on WebP image compression algorithm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108989805A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1529512A (en) * | 2003-10-17 | 2004-09-15 | 中国科学院计算技术研究所 | Pipeline-Based Acceleration Method for Intra Prediction Mode Block Coding |
CN103763561A (en) * | 2014-01-19 | 2014-04-30 | 林雁 | H264 video code parallel operation method |
CN106797479A (en) * | 2014-10-09 | 2017-05-31 | 高通股份有限公司 | Prediction limitation is replicated for the intra block of parallel processing |
CN106851298A (en) * | 2017-03-22 | 2017-06-13 | 腾讯科技(深圳)有限公司 | A kind of efficient video coding method and device |
US20170264784A1 (en) * | 2014-12-16 | 2017-09-14 | Guangzhou Ucweb Computer Technology Co., Ltd. | Picture data transmission method and device |
CN107613301A (en) * | 2017-10-17 | 2018-01-19 | 郑州云海信息技术有限公司 | An image processing method and device |
CN107820091A (en) * | 2017-11-23 | 2018-03-20 | 郑州云海信息技术有限公司 | A kind of image processing method, system and a kind of image processing device |
-
2018
- 2018-06-06 CN CN201810573736.6A patent/CN108989805A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1529512A (en) * | 2003-10-17 | 2004-09-15 | 中国科学院计算技术研究所 | Pipeline-Based Acceleration Method for Intra Prediction Mode Block Coding |
CN103763561A (en) * | 2014-01-19 | 2014-04-30 | 林雁 | H264 video code parallel operation method |
CN106797479A (en) * | 2014-10-09 | 2017-05-31 | 高通股份有限公司 | Prediction limitation is replicated for the intra block of parallel processing |
US20170264784A1 (en) * | 2014-12-16 | 2017-09-14 | Guangzhou Ucweb Computer Technology Co., Ltd. | Picture data transmission method and device |
CN106851298A (en) * | 2017-03-22 | 2017-06-13 | 腾讯科技(深圳)有限公司 | A kind of efficient video coding method and device |
CN107613301A (en) * | 2017-10-17 | 2018-01-19 | 郑州云海信息技术有限公司 | An image processing method and device |
CN107820091A (en) * | 2017-11-23 | 2018-03-20 | 郑州云海信息技术有限公司 | A kind of image processing method, system and a kind of image processing device |
Non-Patent Citations (1)
Title |
---|
万帅等: "《新一代高效视频编码H.265/HEVC:原理、标准与实现》", 30 December 2014, 电子工业出版社 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI759389B (en) | Low-complexity sign prediction for video coding | |
TW201843999A (en) | Intra reference filter for video coding | |
TW201906406A (en) | Internal filtering applied with transform processing in video write code | |
CN104683805B (en) | Image coding, coding/decoding method and device | |
WO2020253829A1 (en) | Coding/decoding method and device, and storage medium | |
TW201943278A (en) | Multiple transforms adjustment stages for video coding | |
WO2015096822A1 (en) | Image coding and decoding methods and devices | |
ITUB20153912A1 (en) | METHODS AND EQUIPMENT TO CODIFY AND DECODE DIGITAL IMAGES BY SUPERPIXEL | |
CN104125466A (en) | GPU (Graphics Processing Unit)-based HEVC (High Efficiency Video Coding) parallel decoding method | |
CN111654696B (en) | An intra-frame multi-reference line prediction method, device, storage medium and terminal | |
CN108769684A (en) | Image processing method based on WebP image compression algorithms and device | |
TW202032993A (en) | Escape coding for coefficient levels | |
WO2023082834A1 (en) | Video compression method and apparatus, and computer device and storage medium | |
CN114303380B (en) | Encoder, decoder and corresponding methods for CABAC coding of indices of geometric partition flags | |
CN104754343B (en) | Image processing method and system, decoding method, encoder and decoder | |
JP2006217180A (en) | Image processor and method | |
CN115118976A (en) | An image coding method, readable medium and electronic device thereof | |
CN102271251A (en) | Lossless Image Compression Method | |
JP7628631B2 (en) | Point cloud attribute encoding method, point cloud attribute decoding method, and terminal | |
CN108989805A (en) | Image processing method and device based on WebP image compression algorithm | |
CN106303548A (en) | HEVC intra-frame predictive encoding method | |
CN107172425B (en) | Thumbnail generation method and device and terminal equipment | |
CN107105297B (en) | A fast optimization method for intra-frame prediction coding of 3D-HEVC depth map | |
TW202341739A (en) | Image decoding methods, image coding method, and devices thereof | |
CN113676616B (en) | Image Reversible Information Hiding Method and System Based on DCT Coefficient Correlation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181211 |
|
RJ01 | Rejection of invention patent application after publication |