CN108987864A - Centre frequency and complete adjustable 1/8th moulds substrate integral wave guide filter of bandwidth - Google Patents
Centre frequency and complete adjustable 1/8th moulds substrate integral wave guide filter of bandwidth Download PDFInfo
- Publication number
- CN108987864A CN108987864A CN201810596537.7A CN201810596537A CN108987864A CN 108987864 A CN108987864 A CN 108987864A CN 201810596537 A CN201810596537 A CN 201810596537A CN 108987864 A CN108987864 A CN 108987864A
- Authority
- CN
- China
- Prior art keywords
- metal
- emsiw
- bandwidth
- varactor
- centre frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 14
- 239000002184 metal Substances 0.000 claims description 105
- 230000005684 electric field Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims 2
- 230000000737 periodic effect Effects 0.000 claims 2
- 238000004891 communication Methods 0.000 abstract description 13
- 239000004744 fabric Substances 0.000 abstract 1
- 239000002356 single layer Substances 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
- H01P1/208—Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
- H01P1/2088—Integrated in a substrate
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
技术领域technical field
本发明属于电子信息技术领域,具体为一种中心频率及带宽全可调的八分之一模基片集成波导(EMSIW)滤波器,是一种同时能够实现中心频率以及带宽全可调并且结构紧凑的射频滤波器。The invention belongs to the field of electronic information technology, and specifically relates to a one-eighth mode substrate integrated waveguide (EMSIW) filter with fully adjustable center frequency and bandwidth. Compact RF filter.
背景技术Background technique
在通信技术飞速发展的时代,射频前端应用最广泛的微波器件是滤波器,滤波器可以滤除频带以外的干扰信号,保障接收机的性能。随着通讯行业的不断发展,能够被利用的频谱资源变的越来越稀少,可用的频段也变的越来越拥挤。这种现象恰能凸显出滤波器的重大作用,其能分离出有用信号的能力在频谱资源稀缺的大背景下变的尤为重要,滤波器性能的好坏直接决定着射频前端电路处理微波信号质量的优劣,在无线通信系统中起着不可估量的作用。In the era of rapid development of communication technology, the most widely used microwave device in the RF front-end is the filter, which can filter out interference signals outside the frequency band and ensure the performance of the receiver. With the continuous development of the communication industry, the spectrum resources that can be used are becoming more and more scarce, and the available frequency bands are also becoming more and more crowded. This phenomenon just highlights the important role of the filter. Its ability to separate useful signals becomes particularly important in the context of scarce spectrum resources. The performance of the filter directly determines the quality of the microwave signal processed by the RF front-end circuit. The advantages and disadvantages of wireless communication systems play an inestimable role.
在移动通讯中有着几种不同的主流通信制式标准,比如CDMA2000、WCDMA、TDD-LTE、FDD-LTE和未来的5G标准等。通常,一个无线通信系统需要大量的滤波器,每个滤波器都有各自的指标和功能,不同的滤波器负责不同频段的通信工作。因此如果在每个射频前端中都用不同标准的滤波器进行选频,这会极大地增加整个通信系统的体积以及复杂性,并且成本也会很高。多频结构虽然可以工作在多个频点,但是相邻频段的串扰一直是其无法解决的问题。从这角度出发,如果采用的射频滤波器能够实现中心频率和带宽的可重构,那么相邻频段的串扰问题和多频段的覆盖问题都能够有效地解决。除此之外,如果一个射频滤波器能够同时满足不同需求的指标,那么就可以用极少个数的可重构射频滤波器代替原来数目较大的固定不可调滤波器。滤波器数目的急剧减少不仅可以极大地降低无线通信系统的体积和成本,还可以简化整个无线通信系统电路的设计过程。There are several different mainstream communication standards in mobile communication, such as CDMA2000, WCDMA, TDD-LTE, FDD-LTE and future 5G standards. Usually, a wireless communication system requires a large number of filters, each filter has its own indicators and functions, and different filters are responsible for communication in different frequency bands. Therefore, if filters of different standards are used for frequency selection in each radio frequency front end, the size and complexity of the entire communication system will be greatly increased, and the cost will also be high. Although the multi-frequency structure can work at multiple frequency points, the crosstalk between adjacent frequency bands has always been an unsolvable problem. From this point of view, if the RF filter used can realize the reconfigurability of the center frequency and bandwidth, then the crosstalk problem of adjacent frequency bands and the coverage problem of multiple frequency bands can be effectively solved. In addition, if a radio frequency filter can meet the indicators of different requirements at the same time, then a very small number of reconfigurable radio frequency filters can be used to replace the original large number of fixed non-tunable filters. A sharp reduction in the number of filters can not only greatly reduce the volume and cost of the wireless communication system, but also simplify the design process of the entire wireless communication system circuit.
在过去的10年里,由于传统的腔体谐振器具有低损耗、高功率容量、高性能以及高稳定性等优点,其仍然被常用来设计高性能的滤波器。但是这种腔体谐振器也有其明显的缺点,比如:体积较大、固定不可调等。在今天这种要求设备小型化和提高频谱利用率的环境下,腔体谐振器的劣势被明显地放大。所以传统的腔体谐振器并不适用于我们所提出的可重构射频滤波器的设计。In the past 10 years, due to the advantages of low loss, high power handling, high performance, and high stability, traditional cavity resonators are still commonly used to design high-performance filters. However, this cavity resonator also has its obvious disadvantages, such as: large volume, fixed and non-adjustable, etc. In today's environment that requires equipment miniaturization and improved spectrum utilization, the disadvantages of cavity resonators are obviously magnified. So the traditional cavity resonator is not suitable for the design of our proposed reconfigurable RF filter.
新兴的衬底集成波导(SIW)技术代表了现代无线通信系统的一个非常有前途的候选者,由于其低成本,低功耗,相对较高Q值,高功率处理能力和高密度集成的优势,为微波和毫米波应用提供了一个有吸引力的平台。与腔体滤波器相比,先进的SIW滤波器的体积明显减小;与微带线滤波器相比,SIW滤波器具有较低的插入损耗和适用于较高频带的优点。SIW技术为可重构射频滤波器提供了一个新的技术选择。此外,SIW结构在滤波器的小型化上也有其独特的优势。目前,根据SIW独特的电磁传播特性已经发展出了半模(HMSIW)、四分之一模(QMSIW)和八分之一模(模)技术。这种小型化技术同时还能保持其与全模SIW具有相同的电磁传播特性,尺寸以对半的形式减小,并且还能保持良好的性能。The emerging substrate-integrated waveguide (SIW) technology represents a very promising candidate for modern wireless communication systems due to its advantages of low cost, low power consumption, relatively high Q, high power handling capability and high density integration , providing an attractive platform for microwave and millimeter wave applications. Compared with cavity filters, the volume of advanced SIW filters is significantly reduced; compared with microstrip line filters, SIW filters have the advantages of lower insertion loss and are suitable for higher frequency bands. SIW technology provides a new technology choice for reconfigurable RF filters. In addition, the SIW structure also has its unique advantages in the miniaturization of the filter. At present, according to the unique electromagnetic propagation characteristics of SIW, half-mode (HMSIW), quarter-mode (QMSIW) and one-eighth mode (mode) technologies have been developed. This miniaturization technique also maintains the same electromagnetic propagation characteristics as the full-mode SIW, reduces the size in half, and maintains good performance.
可重构射频滤波器是今后射频滤波器的发展方向。SIW结构具有诸多优点,并且在可重构滤波器设计中得到越来越广泛的关注和应用。目前无论是实现中心频率可调带宽可预置,带宽可重构中心频率固定,乃至双通带频率独立可调的射频滤波器都已经有比较多的研究成果,但是目前能同时实现中心频率和带宽全可调的研究成果相对还是比较少,中心频率和带宽全可调滤波器能够实现对各种制式的通信业务的“量身定制”,是可调滤波器的终极设计目标。在频谱日益拥挤的当今,很多实际应用中对带宽有一定的要求,带宽未经控制的调谐滤波器很难进入使用。研究性能优良的中心频率和带宽全可调滤波器具有迫切需求。Reconfigurable RF filters are the future development direction of RF filters. The SIW structure has many advantages, and it has received more and more attention and applications in the design of reconfigurable filters. At present, whether it is to realize the adjustable center frequency, the bandwidth can be preset, the bandwidth can be reconfigured, the center frequency is fixed, and even the RF filter with dual passband frequency independently adjustable, there have been many research results, but at present, the center frequency and the frequency can be realized at the same time. There are relatively few research results on fully tunable bandwidth. Fully tunable center frequency and bandwidth filters can realize "tailor-made" communication services of various standards, which is the ultimate design goal of tunable filters. In today's increasingly crowded spectrum, many practical applications have certain requirements for bandwidth, and it is difficult to use tuned filters with uncontrolled bandwidth. There is an urgent need to study fully tunable filters with excellent performance in center frequency and bandwidth.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足,提供一种结构紧凑的八分之一模基片集成波导(EMSIW)结构的中心频率及带宽全可调的带通滤波器。The purpose of the present invention is to provide a compact one-eighth mode substrate integrated waveguide (EMSIW) structure with fully adjustable center frequency and bandwidth band-pass filter for the deficiencies of the prior art.
本发明根据基片集成波导(SIW)腔体的磁对称性,沿SIW腔体中心呈“米”字型切开,取其中的八分之一,由两个EMSIW腔体形成耦合设计滤波器。EMSIW拥有和SIW相似的性能,却只有其尺寸的八分之一,符合现代无线通信系统对于小型化的要求。本滤波器主要包括两个EMSIW谐振腔,短截线,输入输出馈线,耦合间隙,以及用于调谐中心频率、带宽和外部Q值的变容二极管。According to the magnetic symmetry of the substrate integrated waveguide (SIW) cavity, the present invention cuts along the center of the SIW cavity in a "m" shape, takes one eighth of it, and forms a coupling design filter by two EMSIW cavities . EMSIW has similar performance to SIW, but only one-eighth of its size, which meets the miniaturization requirements of modern wireless communication systems. This filter mainly includes two EMSIW resonant cavities, short stubs, input and output feeders, coupling gaps, and varactor diodes for tuning center frequency, bandwidth and external Q value.
所述的滤波器主要由一块介质板构成,介质板的顶层铺设有顶层金属面、输入输出馈线和变容二极管;介质板的底层铺设有底层金属面。The filter is mainly composed of a dielectric board. The top layer of the dielectric board is laid with a top layer metal surface, input and output feeders and variable capacitance diodes; the bottom layer of the dielectric board is laid with a bottom metal surface.
所述的滤波器的顶层金属面包括两块结构相同的第一、二金属面;The top metal surface of the filter includes two first and second metal surfaces with the same structure;
第一金属面的电壁边沿贯穿有一排周期性分布的若干第一金属柱,同时该第一金属柱贯穿介质板、底层金属面;由第一金属面、第一金属柱和底层金属面构成第一个EMSIW结构;The electric wall edge of the first metal surface runs through a row of periodically distributed first metal pillars, and the first metal pillars penetrate the dielectric plate and the bottom metal surface; it is composed of the first metal surface, the first metal pillars and the bottom metal surface The first EMSIW structure;
第一金属面的电场最强位置设置第一短截线,第一短截线的末端连接变容二极管C1和第一金属贴片,第一金属贴片的中心贯穿一个第三金属柱,且第三金属柱贯穿介质板、底层金属面;The first stub line is set at the position with the strongest electric field on the first metal surface, the end of the first stub line is connected to the varactor diode C1 and the first metal patch, the center of the first metal patch runs through a third metal column, and The third metal column penetrates the dielectric plate and the bottom metal surface;
输入馈线设置在第一EMSIW谐振腔的虚拟磁壁上,输入馈线中间加载有变容二极管C2;The input feeder is arranged on the virtual magnetic wall of the first EMSIW resonant cavity, and a varactor diode C2 is loaded in the middle of the input feeder;
第一短截线的长度影响第一个EMSIW腔的谐振频率,第一短截线越长,第一个EMSIW腔的谐振频率越小;The length of the first stub affects the resonant frequency of the first EMSIW cavity, the longer the first stub is, the smaller the resonant frequency of the first EMSIW cavity;
变容二极管C1的大小用于调节中心频率;变容二极管C2的大小用于调整外部Q值。The size of the variable capacitance diode C1 is used to adjust the center frequency; the size of the variable capacitance diode C2 is used to adjust the external Q value.
输入馈线与第一金属面的电壁间的最短距离t1影响外部Q值。The shortest distance t1 between the input feeder and the electrical wall of the first metal plane affects the external Q value.
第二个EMSIW结构与第一个EMSIW结构相同,两EMSIW谐振腔间留有间隙,两EMSIW结构中心对称设置且电耦合。间隙内加载有连接两EMSIW谐振腔的变容二极管C5;The second EMSIW structure is the same as the first EMSIW structure, there is a gap between the two EMSIW resonant cavities, and the centers of the two EMSIW structures are symmetrically arranged and electrically coupled. A varactor diode C5 connected to two EMSIW resonators is loaded in the gap;
第二个EMSIW结构具体由第二金属面、第二金属柱和底层金属面构成。第二金属面的电壁贯穿有一排周期性分布的若干第二金属柱,同时该第二金属柱贯穿介质板、底层金属面;The second EMSIW structure is specifically composed of the second metal surface, the second metal pillar and the bottom metal surface. A row of periodically distributed second metal pillars runs through the electric wall of the second metal surface, and the second metal pillars penetrate the dielectric plate and the underlying metal surface;
第二金属面的电场最强位置设置第二短截线,第二短截线的末端连接变容二极管C3和第二金属贴片,第二金属贴片的中心贯穿一个第四金属柱,且第四金属柱贯穿介质板、底层金属面;The second stub line is set at the position with the strongest electric field on the second metal surface, the end of the second stub line is connected to the varactor diode C3 and the second metal patch, the center of the second metal patch runs through a fourth metal column, and The fourth metal column runs through the dielectric plate and the bottom metal surface;
输出馈线设置在第二EMSIW谐振腔的虚拟磁壁上,输出馈线中间加载有变容二极管C4;The output feeder is arranged on the virtual magnetic wall of the second EMSIW resonant cavity, and a varactor diode C4 is loaded in the middle of the output feeder;
第二短截线的长度影响第二个EMSIW腔的谐振频率,第二短截线越长,第二个EMSIW腔的谐振频率越小;The length of the second stub affects the resonant frequency of the second EMSIW cavity, the longer the second stub is, the smaller the resonant frequency of the second EMSIW cavity;
变容二极管C3的大小用于调节中心频率,变容二极管C4的大小用于调整外部Q值。The size of the variable capacitance diode C3 is used to adjust the center frequency, and the size of the variable capacitance diode C4 is used to adjust the external Q value.
变容二极管C5的大小用于调整两EMSIW谐振腔间的耦合系数。The size of the varactor diode C5 is used to adjust the coupling coefficient between the two EMSIW resonant cavities.
输出馈线与第二金属面的电壁间的最短距离t3影响外部Q值。The shortest distance t3 between the output feeder and the electric wall of the second metal plane influences the external Q value.
所述的滤波器采用PCB板工艺。The filter adopts PCB board technology.
所述的带通滤波器的两个EMSIW腔是一样的,用于调节中心频率的变容二极管C1和C3可以用同一个电压控制,通过给变容二极管C1和C3施加电压,可以调节滤波器的中心频率;通过给变容二极管C5施加电压,可以调节滤波器的耦合系数,改变滤波器的带宽大小;用于调整外部耦合的变容二极管C2和C4可以用同一电压控制,通过给变容二极管C2和C4施加电压,可以调节滤波器的外部Q值。The two EMSIW cavities of the bandpass filter are the same, and the varactors C1 and C3 used to adjust the center frequency can be controlled with the same voltage, and the filter can be adjusted by applying voltage to the varactors C1 and C3 center frequency; by applying a voltage to the varactor diode C5, the coupling coefficient of the filter can be adjusted and the bandwidth of the filter can be changed; the varactor diodes C2 and C4 used to adjust the external coupling can be controlled with the same voltage, by giving the varactor Diodes C2 and C4 apply a voltage that adjusts the external Q of the filter.
本发明创新性的利用EMSIW结构设计可调滤波器,解决了腔体滤波器较难加载调谐元件实现中心频率及带宽调谐的问题,引入EMSIW结构,极大地实现了滤波器的小型化。本发明在EMSIW腔加载短截线及变容二极管,创新性的实现了SIW结构的频率调谐方式;两个EMSIW腔通过边缘电耦合,在EMSIW腔的耦合间隙之间加载变容二极管调谐腔间耦合系数,创新性的实现了SIW结构的带宽调谐方式;同时通过在输入输出馈线上加载变容二极管可以实现滤波器的外部Q值的调谐。The invention innovatively utilizes the EMSIW structure to design the adjustable filter, which solves the problem that the cavity filter is difficult to load tuning elements to realize center frequency and bandwidth tuning, and introduces the EMSIW structure, which greatly realizes the miniaturization of the filter. The present invention loads stubs and varactor diodes in the EMSIW cavity, and innovatively realizes the frequency tuning mode of the SIW structure; two EMSIW cavities are electrically coupled at the edge, and a varactor diode is loaded between the coupling gaps of the EMSIW cavity to tune between the cavities The coupling coefficient innovatively realizes the bandwidth tuning method of the SIW structure; at the same time, the tuning of the external Q value of the filter can be realized by loading a varactor diode on the input and output feeder lines.
本发明EMSIW腔的电场最强位置加载短截线,与未加载短截线相比,能够明显得降低谐振频率,进一步实现滤波器的小型化。The position of the strongest electric field in the EMSIW cavity of the present invention is loaded with a stub, and compared with an unloaded stub, the resonant frequency can be significantly reduced, and the miniaturization of the filter can be further realized.
本发明滤波器结构紧凑,为可调腔体滤波器的小型化提供了新思路,中心频率、带宽调谐方式新颖,带宽调谐范围大,调谐元件较少,制作工艺要求较低。The filter of the present invention has a compact structure, provides a new idea for the miniaturization of the adjustable cavity filter, has novel central frequency and bandwidth tuning methods, a large bandwidth tuning range, fewer tuning elements, and lower manufacturing process requirements.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2(a)、(b)分别为本发明的顶层示意图和底层示意图;Fig. 2 (a), (b) are the top layer schematic diagram and the bottom layer schematic diagram of the present invention respectively;
图3(a)、(b)为该可调滤波器在各频点带宽调谐的S参数仿真图;Figure 3 (a), (b) is the S-parameter simulation diagram of the adjustable filter bandwidth tuning at each frequency point;
其中1为第一块三角形金属面,2为第二块三角形金属面,3为输入馈线,4为输出馈线,5为第一短截线,6为第二短截线,7为第一金属贴片,8为第二金属贴片,9为第一金属柱,10为第二金属柱,11为第三金属柱,12为第四金属柱,13为底层金属面,d是金属柱的直径,P是相邻金属柱之间的距离,h是介质板的厚度。Among them, 1 is the first triangular metal surface, 2 is the second triangular metal surface, 3 is the input feeder, 4 is the output feeder, 5 is the first stub, 6 is the second stub, and 7 is the first metal Patch, 8 is the second metal patch, 9 is the first metal post, 10 is the second metal post, 11 is the third metal post, 12 is the fourth metal post, 13 is the bottom metal surface, d is the metal post diameter, P is the distance between adjacent metal columns, and h is the thickness of the dielectric plate.
具体实施方式Detailed ways
以下结合附图对本发明作进一步说明The present invention will be further described below in conjunction with accompanying drawing
如图1、2所示,该发明EMSIW可调滤波器由一块厚度为h的介电常数为10.2的RogersAs shown in Figures 1 and 2, the EMSIW tunable filter of this invention consists of a piece of Rogers with a dielectric constant of 10.2 and a thickness h.
6010介质板构成,介质板的顶层主要包括第一、第二块三角形金属面1、2,输入输出馈线3、4,第一、第二短截线5、6,第一、第二金属贴片7、8和变容二极管C1-C5。第一块三角形金属面1的第一直角边14边沿贯穿有一排周期性分布的若干第一金属柱9,同时该第一金属柱9贯穿介质板、底层金属面,第一块三角形金属面1、第一金属柱9和底层金属面13构成第一个EMSIW结构,第一块三角形金属面1的第二个直角边15末端连接一段第一短截线5,第一短截线5的长度会影响第一个EMSIW腔的谐振频率,第一短截线5越长,第一个EMSIW腔的谐振频率越低,第一短截线5的末端连接变容二极管C1和第一金属贴片7,第一金属贴片7的中心贯穿一个第三金属柱11,且第三金属柱11贯穿介质板、底层金属面13,调节变容二极管C1的大小用于调节第一个EMSIW腔的的谐振频率,实现中心频率的电可调,输入馈线3放置在这第二直角边15一侧,输入馈线3与第一块三角形金属面1的第一直角边14的最短距离t1的大小可以调整外部Q值,输入馈线3的中间加载有变容二极管C2,调节变容二极管C2的大小用于调谐外部Q值,实现外部Q值的电可调;第二块三角形金属面2的第一直角边16边沿贯穿有一排周期性分布的若干第二金属柱10,同时该第二金属柱10贯穿介质板、底层金属面13,第二块三角形金属面2、第二金属柱10和底层金属面13构成第二个EMSIW结构,第二块三角形金属面2的第二个直角边17末端连接一段第二短截线6,第二短截线6的长度会影响第二个EMSIW腔的谐振频率,第二短截线6越长,第二个EMSIW腔的谐振频率越低,第二短截线6的末端连接变容二极管C3和第二金属贴片8,第二金属贴片8中心贯穿一个第四金属柱12,且第四金属柱12贯穿介质板、底层金属面13,调节变容二极管C3的大小用于调节第二个EMSIW腔的的谐振频率,实现中心频率的电可调,输出馈线放置在这第二直角边17一侧,输出馈线4与第二块三角形金属面2的第一直角边16的最短距离t3的大小可以调整外部Q值,输出馈线4的中间加载有变容二极管C4,调节变容二极管C4的大小用于调谐外部Q值,实现外部Q值的电可调。The top layer of the dielectric board mainly includes the first and second triangular metal surfaces 1 and 2, the input and output feeders 3 and 4, the first and second stub lines 5 and 6, the first and second metal stickers Sheets 7, 8 and varactors C1-C5. A row of periodically distributed first metal columns 9 runs through the edge of the first right-angled side 14 of the first triangular metal surface 1, and the first metal columns 9 penetrate the dielectric plate and the underlying metal surface. The first triangular metal surface 1 , the first metal pillar 9 and the underlying metal surface 13 constitute the first EMSIW structure, the end of the second right-angled side 15 of the first triangular metal surface 1 is connected to a section of the first stub 5, the length of the first stub 5 It will affect the resonance frequency of the first EMSIW cavity. The longer the first stub 5, the lower the resonance frequency of the first EMSIW cavity. The end of the first stub 5 is connected to the varactor diode C1 and the first metal patch 7. The center of the first metal patch 7 runs through a third metal post 11, and the third metal post 11 runs through the dielectric plate and the bottom metal surface 13. Adjusting the size of the varactor diode C1 is used to adjust the first EMSIW cavity The resonant frequency realizes the electrical adjustment of the center frequency. The input feeder 3 is placed on the side of the second right-angled side 15, and the shortest distance t1 between the input feeder 3 and the first right-angled side 14 of the first triangular metal surface 1 can be adjusted. External Q value, the middle of the input feeder 3 is loaded with a varactor diode C2, adjusting the size of the varactor diode C2 is used to tune the external Q value, and realize the electrical adjustment of the external Q value; the first right angle of the second triangular metal surface 2 A row of periodically distributed second metal pillars 10 runs through the edge of the edge 16. At the same time, the second metal pillars 10 penetrate the dielectric plate, the bottom metal surface 13, the second triangular metal surface 2, the second metal pillar 10 and the bottom metal surface 13 forms the second EMSIW structure, the end of the second right-angled side 17 of the second triangular metal surface 2 is connected to a second stub 6, the length of the second stub 6 will affect the resonance frequency of the second EMSIW cavity , the longer the second stub 6, the lower the resonance frequency of the second EMSIW cavity, the end of the second stub 6 is connected to the varactor diode C3 and the second metal patch 8, and the center of the second metal patch 8 runs through A fourth metal column 12, and the fourth metal column 12 penetrates the dielectric plate and the bottom metal surface 13, and adjusting the size of the varactor diode C3 is used to adjust the resonant frequency of the second EMSIW cavity to realize the electrical adjustment of the center frequency, The output feeder is placed on the side of the second right-angled side 17, the shortest distance t3 between the output feeder 4 and the first right-angled side 16 of the second triangular metal surface 2 can adjust the external Q value, and the middle load of the output feeder 4 is changed. Capacitance diode C4, adjusting the size of the varactor diode C4 is used to tune the external Q value to realize the electrical adjustment of the external Q value.
如图1、2所示,第一、第二块三角形金属面1、2沿其斜边具有间隙g相对放置,其间隙g的大小影响滤波器的耦合系数,同时间隙g为加载元件提供了物理空间。第一、第二块三角形金属面1、2的斜边中间加载有变容二极管C5,调节变容二极管C5的大小用于调谐滤波器的耦合系数,实现耦合系数的电可调。As shown in Figures 1 and 2, the first and second triangular metal surfaces 1 and 2 are placed opposite each other with a gap g along their hypotenuses. The size of the gap g affects the coupling coefficient of the filter, and at the same time the gap g provides the loading element physical space. The middle of the hypotenuses of the first and second triangular metal surfaces 1 and 2 is loaded with a varactor diode C5. Adjusting the size of the varactor diode C5 is used to tune the coupling coefficient of the filter to realize the electrical adjustment of the coupling coefficient.
表1显示了所述滤波器的结构参数的具体数值。Table 1 shows the specific values of the structural parameters of the filter.
表1滤波器结构设计参数,单位:毫米Table 1 Filter structure design parameters, unit: mm
通过调节变容二极管C1、C3的施加电压的大小,该滤波器实现中心频率从2.17GHz~2.72GHz的选频调谐范围,同时通过调节变容二极管C2、C4、C5的施加电压大小,可以实现在中心频率调谐范围内的各个频点的带宽大小调谐,加工的滤波器利用网络矢量分析仪测得在2.17GHz的140MHz~208MHz的3dB带宽调谐,在2.45GHz的231MHz~355MHz的3dB带宽调谐,在2.72GHz的314MHz~435MHz的3dB带宽调谐。By adjusting the applied voltage of varactor diodes C1 and C3, the filter realizes the frequency-selective tuning range of the center frequency from 2.17GHz to 2.72GHz. At the same time, by adjusting the applied voltage of varactor diodes C2, C4 and C5, the The bandwidth of each frequency point within the center frequency tuning range is tuned. The processed filter is tuned with a 3dB bandwidth of 140MHz to 208MHz at 2.17GHz and a 3dB bandwidth of 231MHz to 355MHz at 2.45GHz by using a network vector analyzer. 3dB bandwidth tuning from 314MHz to 435MHz at 2.72GHz.
附图3可以看出,本发明较好地实现了带宽以及中心频率可调,具有较宽的中心频率与带宽调谐范围,在整个调谐范围内,插入损耗(S21)是1.59-4dB,回波损耗(S11)均大于10dB,可调性能较好。Accompanying drawing 3 as can be seen, the present invention has preferably realized adjustable bandwidth and center frequency, has wider center frequency and bandwidth tuning range, in the whole tuning range, insertion loss (S21) is 1.59-4dB, echo The loss (S11) is greater than 10dB, and the adjustable performance is good.
本发明创新性的利用EMSIW结构设计可调滤波器,实现了滤波器的中心频率及带宽的全可调谐,解决了腔体滤波器较难加载调谐元件实现中心频率及带宽调谐的问题。引入EMSIW加载短截线结构,极大地实现了滤波器的小型化,本发明的可调滤波器所需的调谐元件少,并且制作工艺要求较低。The invention innovatively utilizes the EMSIW structure to design an adjustable filter, realizes full tunability of the center frequency and bandwidth of the filter, and solves the problem that it is difficult to load a tuning element on a cavity filter to realize center frequency and bandwidth tuning. The introduction of the EMSIW loaded stub structure greatly realizes the miniaturization of the filter, and the tunable filter of the present invention requires few tuning elements and has relatively low manufacturing process requirements.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810596537.7A CN108987864B (en) | 2018-06-11 | 2018-06-11 | Eighth-mode substrate integrated waveguide filter with fully adjustable center frequency and bandwidth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810596537.7A CN108987864B (en) | 2018-06-11 | 2018-06-11 | Eighth-mode substrate integrated waveguide filter with fully adjustable center frequency and bandwidth |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108987864A true CN108987864A (en) | 2018-12-11 |
CN108987864B CN108987864B (en) | 2020-05-05 |
Family
ID=64540240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810596537.7A Active CN108987864B (en) | 2018-06-11 | 2018-06-11 | Eighth-mode substrate integrated waveguide filter with fully adjustable center frequency and bandwidth |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108987864B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110071352A (en) * | 2019-04-29 | 2019-07-30 | 中国科学技术大学 | Full magnetic wall triangle filter |
CN110911789A (en) * | 2019-11-18 | 2020-03-24 | 电子科技大学 | A substrate-integrated waveguide bandpass filter |
CN111600102A (en) * | 2020-05-09 | 2020-08-28 | 中国人民武装警察部队工程大学 | A miniaturized substrate integrated waveguide fully tunable filter |
CN112216939A (en) * | 2020-09-11 | 2021-01-12 | 电子科技大学 | Filter device and method for realizing filtering power division and duplexer functions |
WO2023160333A1 (en) * | 2022-02-28 | 2023-08-31 | 华为技术有限公司 | Communication apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100097392A (en) * | 2009-02-26 | 2010-09-03 | 광운대학교 산학협력단 | Spurious suppressed substrate integrated waveguide (siw) filter using stepped-impedance resonator (sir) structure |
CN105140605A (en) * | 2015-09-10 | 2015-12-09 | 西安电子科技大学 | Band pass filter adjustable in both frequency and bandwidth and based on SLR structure |
CN105742765A (en) * | 2016-01-25 | 2016-07-06 | 杭州电子科技大学 | Half mode substrate integrated waveguide (HMSIW) filter with adjustable central frequency and bandwidth |
CN105789785A (en) * | 2016-03-25 | 2016-07-20 | 成都九洲迪飞科技有限责任公司 | Center frequency and bandwidth adjustable substrate integrated waveguide filter |
CN106129553A (en) * | 2016-07-21 | 2016-11-16 | 杭州电子科技大学 | The full tunable filter that a kind of novel micro-strip combines with SIW structure |
CN106785268A (en) * | 2017-01-16 | 2017-05-31 | 杭州电子科技大学 | Centre frequency and the complete adjustable a quarter mould substrate integral wave guide filter of bandwidth |
-
2018
- 2018-06-11 CN CN201810596537.7A patent/CN108987864B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100097392A (en) * | 2009-02-26 | 2010-09-03 | 광운대학교 산학협력단 | Spurious suppressed substrate integrated waveguide (siw) filter using stepped-impedance resonator (sir) structure |
CN105140605A (en) * | 2015-09-10 | 2015-12-09 | 西安电子科技大学 | Band pass filter adjustable in both frequency and bandwidth and based on SLR structure |
CN105742765A (en) * | 2016-01-25 | 2016-07-06 | 杭州电子科技大学 | Half mode substrate integrated waveguide (HMSIW) filter with adjustable central frequency and bandwidth |
CN105789785A (en) * | 2016-03-25 | 2016-07-20 | 成都九洲迪飞科技有限责任公司 | Center frequency and bandwidth adjustable substrate integrated waveguide filter |
CN106129553A (en) * | 2016-07-21 | 2016-11-16 | 杭州电子科技大学 | The full tunable filter that a kind of novel micro-strip combines with SIW structure |
CN106785268A (en) * | 2017-01-16 | 2017-05-31 | 杭州电子科技大学 | Centre frequency and the complete adjustable a quarter mould substrate integral wave guide filter of bandwidth |
Non-Patent Citations (2)
Title |
---|
BIN YOU: "A Half-mode Substrate-Integrated Filter With Tunable Center Frequency and Reconfigurable Bandwidth", 《IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS》 * |
鲁诗诗: "频率及带宽全可调SIW滤波器设计", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110071352A (en) * | 2019-04-29 | 2019-07-30 | 中国科学技术大学 | Full magnetic wall triangle filter |
CN110071352B (en) * | 2019-04-29 | 2020-12-25 | 中国科学技术大学 | Full magnetic wall triangle filter |
CN110911789A (en) * | 2019-11-18 | 2020-03-24 | 电子科技大学 | A substrate-integrated waveguide bandpass filter |
CN111600102A (en) * | 2020-05-09 | 2020-08-28 | 中国人民武装警察部队工程大学 | A miniaturized substrate integrated waveguide fully tunable filter |
CN112216939A (en) * | 2020-09-11 | 2021-01-12 | 电子科技大学 | Filter device and method for realizing filtering power division and duplexer functions |
WO2023160333A1 (en) * | 2022-02-28 | 2023-08-31 | 华为技术有限公司 | Communication apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN108987864B (en) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108987864A (en) | Centre frequency and complete adjustable 1/8th moulds substrate integral wave guide filter of bandwidth | |
CN110444840B (en) | Double-frequency differential band-pass filter based on stub load resonator | |
CN102610879B (en) | Double-frequency band-pass filter | |
Liu et al. | Compact UWB bandpass filter with two notched bands based on electromagnetic bandgap structures | |
CN109462000B (en) | Multi-layer substrate integrated waveguide third-order filtering power divider | |
CN104037477A (en) | Multi-band tunable microstrip band-pass filter | |
CN108808189A (en) | A kind of realization frequency and bandwidth and the adjustable bimodulus SIW filters of zero | |
CN105990630A (en) | High-selectivity Balun band pass filter based on substrate integrated waveguide | |
CN110137643A (en) | A kind of controllable big frequency of bandwidth is than coaxial cavity double frequency filter | |
CN105514547A (en) | Low-pass band-pass five-duplex based on novel frequency separation structure | |
CN111600101B (en) | Wideband filter with adjustable notch | |
CN105655673A (en) | Medium loaded half-mode substrate integrated waveguide band-pass filter | |
CN108493533A (en) | It is a kind of that there is the tunable filter for stablizing Wide stop bands | |
CN106848507A (en) | Double-band-pass microstrip filter based on combination resonator | |
CN108923104B (en) | High-selectivity substrate integrated gap waveguide band-pass filter | |
CN111146539A (en) | Ceramic dielectric waveguide duplexer | |
CN203339279U (en) | A Miniaturized Controllable Three-band Filter Based on Open Circuit Step Impedance Line Loading | |
CN212257633U (en) | Half-mode substrate integrated waveguide dual-band filter | |
CN108767382A (en) | The adjustable three moulds bandpass filter of electricity based on substrate integration wave-guide | |
CN108428982A (en) | A cavity three-pass band filter | |
Zhang | Miniaturized and harmonics‐rejected slow‐wave branch‐line coupler based on microstrip electromagnetic bandgap element | |
CN217691587U (en) | Attenuation-adjustable microstrip duplexer based on graphene sheet | |
Zeng et al. | Compact microstrip low‐pass filter using complementary split ring resonators with ultra‐wide stopband and high selectivity | |
CN205621824U (en) | Five multiplexers of low pass - band -pass based on novel frequency separation structure | |
CN209747694U (en) | Low-pass filter with complementary split resonant ring and U-shaped groove defected ground |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |