[go: up one dir, main page]

CN108983119A - A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft - Google Patents

A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft Download PDF

Info

Publication number
CN108983119A
CN108983119A CN201810144172.4A CN201810144172A CN108983119A CN 108983119 A CN108983119 A CN 108983119A CN 201810144172 A CN201810144172 A CN 201810144172A CN 108983119 A CN108983119 A CN 108983119A
Authority
CN
China
Prior art keywords
silicon
transistor
magnetic
sensitive
magnetosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810144172.4A
Other languages
Chinese (zh)
Inventor
赵晓锋
金晨晨
刘红梅
温殿忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201810144172.4A priority Critical patent/CN108983119A/en
Publication of CN108983119A publication Critical patent/CN108983119A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The invention discloses a kind of single-chip integration two-dimensional magnetic vector sensor and its manufacture crafts, the sensor includes for detecting the eight of two-dimensional magnetic field silicon magnetic sensitive transistors, it is wherein two-by-two to be arranged in parallel between silicon magnetic sensitive transistor, and it is respectively formed the first magnetic susceptibility unit (MSE1), second magnetic susceptibility unit (MSE2), third magnetic susceptibility unit (MSE3) and the 4th magnetic susceptibility unit (MSE4), wherein, the first magnetic susceptibility unit (MSE1) and the second magnetic susceptibility unit (MSE2) are arranged along x-axis by phase diamagnetic sensitive direction, form the first differential testing circuit, for the direction x magnetic field (Bx) detection;The third magnetic susceptibility unit (MSE3) and the 4th magnetic susceptibility unit (MSE4) are arranged along y-axis by phase diamagnetic sensitive direction, form the second differential testing circuit, are used for the direction y magnetic field (By) detection.Single-chip integration two-dimensional magnetic vector sensor structure of the present invention is simple, realizes the detection of two-dimensional magnetic field, and chip realizes miniaturization and single-chip integrated.

Description

一种单片集成二维磁矢量传感器及其集成化制作工艺A monolithic integrated two-dimensional magnetic vector sensor and its integrated manufacturing process

技术领域technical field

本发明涉及传感器技术领域,尤其涉及二维磁矢量传感器,特别地,涉及一种单片集成二维磁矢量传感器及其集成化制作工艺。The present invention relates to the technical field of sensors, in particular to a two-dimensional magnetic vector sensor, in particular to a monolithically integrated two-dimensional magnetic vector sensor and its integrated manufacturing process.

背景技术Background technique

随着科学技术的迅速发展,传感器技术倍受重视,尤其是广泛应用于现代工业和电子产品的磁场传感器,而随着应用的广泛,对于磁场传感器集成化的要求也随之提高。With the rapid development of science and technology, sensor technology has attracted much attention, especially the magnetic field sensors widely used in modern industry and electronic products. With the wide application, the requirements for the integration of magnetic field sensors have also increased.

用于检测二维磁场的传感器包括磁敏三极管、磁通门、巨磁电阻(GMR)、隧穿磁敏电阻(TMR)、各向异性磁敏电阻(AMR)和霍尔元件等。Sensors used to detect two-dimensional magnetic fields include magnetotransistors, fluxgates, giant magnetoresistance (GMR), tunneling magnetoresistors (TMR), anisotropic magnetoresistors (AMR), and Hall elements.

在现有技术中,已有采用磁敏三极管进行二维磁场检测的报道,但是,在所述报道中,采用磁敏三极管进行二维磁场检测时,需要较宽的磁敏感区间,即磁场需要覆盖整个芯片进行测量,而对于范围较窄的磁场检测效果不佳。In the prior art, there have been reports on the use of magnetotransistors for two-dimensional magnetic field detection. However, in the reports, when using magnetotransistors for two-dimensional magnetic field detection, a wider susceptibility interval is required, that is, the magnetic field needs Covers the entire chip for measurement, and does not perform well for narrower magnetic field detection.

发明内容Contents of the invention

为了解决上述问题,本发明人进行了锐意研究,采用MEMS技术在高阻单晶硅衬底上设计、制作八个集成化SOI(绝缘层上硅)硅磁敏三极管,其中两两并联设置,并且,对八个硅磁敏三极管进行排布设置,实现两对差分测试电路的单片集成化,分别用于检测平面内二维磁场(Bx、By),从而完成本发明。In order to solve the above problems, the present inventor has carried out intensive research, and adopted MEMS technology to design and manufacture eight integrated SOI (silicon-on-insulator) silicon magnetotransistors on a high-resistance single-crystal silicon substrate, wherein two by two are arranged in parallel, In addition, eight silicon magnetosensitive triodes are arranged to realize monolithic integration of two pairs of differential test circuits, which are respectively used to detect two-dimensional magnetic fields (B x , B y ) in a plane, thereby completing the present invention.

本发明一方面提供了一种单片集成二维磁矢量传感器,具体体现在以下几方面:On the one hand, the present invention provides a monolithic integrated two-dimensional magnetic vector sensor, which is embodied in the following aspects:

(1)一种单片集成二维磁矢量传感器,其中,所述传感器包括作为器件层的第一硅片1和作为衬底的第二硅片2,其中,在第一硅片1上设置有用于检测二维磁场的八个硅磁敏三极管,并且,两两硅磁敏三极管之间为并联设置。(1) A monolithically integrated two-dimensional magnetic vector sensor, wherein the sensor includes a first silicon chip 1 as a device layer and a second silicon chip 2 as a substrate, wherein the first silicon chip 1 is provided with There are eight silicon magnetotransistors for detecting the two-dimensional magnetic field, and two silicon magnetotransistors are arranged in parallel.

(2)根据上述(1)所述的单片集成二维磁矢量传感器,其中,所述八个硅磁敏三极管分别磁敏三极管一SMST1、硅磁敏三极管二SMST2、硅磁敏三极管三SMST3、硅磁敏三极管四SMST4、硅磁敏三极管五SMST5、硅磁敏三极管六SMST6、硅磁敏三极管七SMST7和硅磁敏三极管八SMST8,其中,(2) According to the monolithic integrated two-dimensional magnetic vector sensor described in the above (1), wherein, the eight silicon magnetotransistors are respectively a magnetotransistor one SMST1, a silicon magnetotransistor two SMST2, and a silicon magnetotransistor three SMST3 , silicon magnetic sensitive transistor four SMST4, silicon magnetic sensitive transistor five SMST5, silicon magnetic sensitive transistor six SMST6, silicon magnetic sensitive transistor seven SMST7 and silicon magnetic sensitive transistor eight SMST8, wherein,

所述硅磁敏三极管一SMST1和硅磁敏三极管二SMST2并联设置;The first SMST1 of the silicon magnetosensitive transistor and the second SMST2 of the silicon magnetosensitive transistor are arranged in parallel;

所述硅磁敏三极管五SMST5和硅磁敏三极管六SMST6并联设置;The silicon magnetic sensitive triode five SMST5 and the silicon magnetic sensitive triode six SMST6 are arranged in parallel;

所述硅磁敏三极管三SMST3和硅磁敏三极管四SMST4并联设置;The silicon magnetic sensitive triode SMST3 and the silicon magnetic sensitive triode SMST4 are arranged in parallel;

所述硅磁敏三极管七SMST7和硅磁敏三极管八SMST8并联设置。The silicon magnetic sensitive transistor seven SMST7 and the silicon magnetic sensitive transistor eight SMST8 are arranged in parallel.

(3)根据上述(1)或(3)所述的单片集成二维磁矢量传感器,其中,(3) The monolithic integrated two-dimensional magnetic vector sensor according to the above (1) or (3), wherein,

所述硅磁敏三极管一SMST1和硅磁敏三极管二SMST2在并联后与集电极负载电阻一RL1连接,形成第一磁敏感单元MSE1;The silicon magnetosensitive transistor one SMST1 and the silicon magnetosensitive transistor two SMST2 are connected in parallel with the collector load resistor one R L1 to form the first magnetic sensitive unit MSE1;

所述硅磁敏三极管五SMST5和硅磁敏三极管六SMST6并联后与集电极负载电阻二RL2连接,形成第二磁敏感单元MSE2;The silicon magnetosensitive transistor five SMST5 and the silicon magnetosensitive transistor six SMST6 are connected in parallel with the collector load resistor two R L2 to form a second magnetic sensitive unit MSE2;

所述硅磁敏三极管三SMST3和硅磁敏三极管四SMST4在并联后与集电极负载电阻三RL3连接,形成第三磁敏感单元MSE3;The silicon magnetic sensitive triode SMST3 and the silicon magnetic sensitive triode SMST4 are connected in parallel with the collector load resistor 3 R L3 to form the third magnetic sensitive unit MSE3;

所述硅磁敏三极管七SMST7和硅磁敏三极管八SMST8并联后与集电极负载电阻四RL4连接,形成第四磁敏感单元MSE4。The silicon magnetic sensitive transistor seven SMST7 and the silicon magnetic sensitive transistor eight SMST8 are connected in parallel to the collector load resistor four RL4 to form the fourth magnetic sensitive unit MSE4.

(4)根据上述(1)至(3)之一所述的单片集成二维磁矢量传感器,其中,(4) The monolithic integrated two-dimensional magnetic vector sensor according to any one of the above (1) to (3), wherein,

所述第一磁敏感单元MSE1和第二磁敏感单元MSE2沿x轴按相反磁敏感方向设置,形成第一差分测试电路,用于x方向磁场(Bx)的检测;和/或The first magnetically sensitive unit MSE1 and the second magnetically sensitive unit MSE2 are arranged along the x-axis in opposite magnetically sensitive directions to form a first differential test circuit for detecting the magnetic field (B x ) in the x direction; and/or

所述第三磁敏感单元MSE3和第四磁敏感单元MSE4沿y轴按相反磁敏感方向设置,形成第二差分测试电路,用于y方向磁场(By)的检测。The third magnetically sensitive unit MSE3 and the fourth magnetically sensitive unit MSE4 are arranged along the y-axis in opposite magnetically sensitive directions, forming a second differential test circuit for detecting the magnetic field (B y ) in the y-direction.

(5)根据上述(1)至(4)之一所述的单片集成二维磁矢量传感器,其中,在所述第一磁敏感单元MSE1和第二磁敏感单元MSE2中,(5) The monolithic integrated two-dimensional magnetic vector sensor according to any one of the above (1) to (4), wherein, in the first magnetically sensitive unit MSE1 and the second magnetically sensitive unit MSE2,

硅磁敏三极管一SMST1的基区、硅磁敏三极管二SMST2的基区、硅磁敏三极管五SMST5的集电区和硅磁敏三极管六SMST6的集电区沿x轴方向共线;The base area of silicon magnetic sensitive transistor one SMST1, the base area of silicon magnetic sensitive transistor two SMST2, the collector area of silicon magnetic sensitive transistor five SMST5 and the collector area of silicon magnetic sensitive transistor six SMST6 are collinear along the x-axis direction;

优选地,硅磁敏三极管一SMST1的集电区、硅磁敏三极管二SMST2的集电区、硅磁敏三极管五SMST5的基区和硅磁敏三极管六SMST6的基区沿x轴方向共线。Preferably, the collector region of silicon magnetic sensitive transistor one SMST1, the collector region of silicon magnetic sensitive transistor two SMST2, the base region of silicon magnetic sensitive transistor five SMST5 and the base region of silicon magnetic sensitive transistor six SMST6 are collinear along the x-axis direction .

(6)根据上述(1)至(5)之一所述的单片集成二维磁矢量传感器,其中,在所述第三磁敏感单元MSE3和第四磁敏感单元MSE4中,(6) The monolithic integrated two-dimensional magnetic vector sensor according to any one of the above (1) to (5), wherein, in the third magnetic sensitive unit MSE3 and the fourth magnetic sensitive unit MSE4,

硅磁敏三极管三SMST3的基区、硅磁敏三极管四SMST4的基区、硅磁敏三极管七SMST7的集电区和硅磁敏三极管八SMST8的集电区沿y轴方向共线;The base area of the silicon magnetic sensitive transistor three SMST3, the base area of the silicon magnetic sensitive transistor four SMST4, the collector area of the silicon magnetic sensitive transistor seven SMST7 and the collector area of the silicon magnetic sensitive transistor eight SMST8 are collinear along the y-axis direction;

优选地,硅磁敏三极管三SMST3的集电区、硅磁敏三极管四SMST4的集电区、硅磁敏三极管七SMST7的基区和硅磁敏三极管八SMST8的基区沿y轴方向共线。Preferably, the collector area of the silicon magnetic sensitive transistor three SMST3, the collector area of the silicon magnetic sensitive transistor four SMST4, the base area of the silicon magnetic sensitive transistor seven SMST7 and the base area of the silicon magnetic sensitive transistor eight SMST8 are collinear along the y-axis direction .

(7)根据上述(1)至(6)之一所述的单片集成二维磁矢量传感器,其中,在第一硅片1上、每个硅磁敏三极管周围制作有隔离环11,优选地,所述隔离环11为n+型掺杂。(7) The monolithic integrated two-dimensional magnetic vector sensor according to one of the above (1) to (6), wherein, on the first silicon chip 1, an isolation ring 11 is made around each silicon magnetosensitive triode, preferably Ground, the isolation ring 11 is n + type doped.

本发明第二方面提供一种本发明第一方面所述传感器的制作工艺,具体体现在以下方面:The second aspect of the present invention provides a manufacturing process of the sensor described in the first aspect of the present invention, specifically embodied in the following aspects:

(8)一种上述(1)至(7)之一所述单片集成二维磁矢量传感器的制作工艺,其中,所述工艺包括以下步骤:(8) A manufacturing process of a monolithic integrated two-dimensional magnetic vector sensor described in one of the above (1) to (7), wherein the process includes the following steps:

步骤1、清洗第一硅片1,进行一次氧化,在其下表面生长二氧化硅层;Step 1, cleaning the first silicon wafer 1, performing an oxidation, and growing a silicon dioxide layer on its lower surface;

步骤2、在所述第一硅片1的下表面进行一次光刻,制作得到八个发射区窗口,并进行n+型重掺杂,分别形成八个硅磁敏三极管的发射区;Step 2, performing photolithography on the lower surface of the first silicon wafer 1 to obtain eight emission region windows, and performing n + type heavy doping to form emission regions of eight silicon magnetotransistors respectively;

步骤3、清洗第二硅片,双面生长二氧化硅层,并采用键合工艺使第一硅片与第二硅片之间进行键合,优选第一硅片的下表面与第二硅片的上表面之间进行键合;Step 3. Clean the second silicon wafer, grow silicon dioxide layers on both sides, and use a bonding process to bond the first silicon wafer to the second silicon wafer, preferably the lower surface of the first silicon wafer and the second silicon wafer. bonding between the top surfaces of the chips;

步骤4、键合后,对第一硅片进行减薄、抛光、清洗处理;Step 4, after bonding, thinning, polishing and cleaning the first silicon wafer;

步骤5、清洗,采用热氧化工艺在器件层上表面生长二氧化硅层,作为离子注入缓冲层;Step 5, cleaning, using a thermal oxidation process to grow a silicon dioxide layer on the upper surface of the device layer as an ion implantation buffer layer;

步骤6、在器件层的上表面依次进行二次光刻、三次光刻、四次光刻和五次光刻,分别进行n+型掺杂、n-型掺杂、n+型重掺杂和p+型重掺杂,分别依次形成隔离环、四个集电极负载电阻、八个集电区和八个基区;Step 6: Carry out two photolithography, three photolithography, four photolithography and five photolithography successively on the upper surface of the device layer, respectively perform n + type doping, n - type doping, and n + type heavy doping and p + type heavy doping, respectively forming an isolation ring, four collector load resistors, eight collector regions and eight base regions in sequence;

步骤7、高温退火处理;Step 7, high temperature annealing treatment;

步骤8、清洗,在芯片上生长二氧化硅层,优选厚度为作为金属互连线绝缘层;Step 8, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As metal interconnect insulation layer;

步骤9、第六次光刻,刻蚀金属电极引线孔,然后进行真空蒸镀金属Al层,并在金属Al层表面进行刻蚀,形成金属Al互连线;Step 9, the sixth photolithography, etching the lead hole of the metal electrode, then vacuum-depositing the metal Al layer, and etching on the surface of the metal Al layer to form a metal Al interconnection line;

步骤10、清洗,在芯片上生长二氧化硅层,优选厚度为作为钝化层,第七次光刻,刻蚀钝化层窗口;;Step 10, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As a passivation layer, the seventh photolithography, etch the passivation layer window;

步骤11、清洗,第八次光刻,在第二硅层下表面刻蚀八个发射区引线坑窗口,通过深槽刻蚀技术(ICP)进行刻蚀,形成八个发射区腐蚀坑;Step 11, cleaning, the eighth photolithography, etching eight emission area lead pit windows on the lower surface of the second silicon layer, etching by deep groove etching technology (ICP), forming eight emission area etching pits;

步骤12、清洗,通过真空蒸镀在八个腐蚀坑内制作金属Al,形成金属Al引线;Step 12, cleaning, making metal Al in eight corrosion pits by vacuum evaporation to form metal Al leads;

步骤13、进行合金化处理形成欧姆接触,得到所述单片集成二维磁矢量传感器。Step 13, performing an alloying treatment to form an ohmic contact to obtain the monolithic integrated two-dimensional magnetic vector sensor.

(9)根据上述(8)所述的制作工艺,其中,在步骤1中,所述第一硅片1为<100>晶向高阻p型单晶硅片,优选地,所述第一硅片的电阻率大于1000Ω·cm。(9) The manufacturing process according to the above (8), wherein, in step 1, the first silicon wafer 1 is a high-resistance p-type single crystal silicon wafer with a <100> crystal orientation, preferably, the first The resistivity of the silicon wafer is greater than 1000Ω·cm.

本发明第三方面提供一种利用本发明第二方面所述工艺制得的单片集成二维磁矢量传感器。The third aspect of the present invention provides a monolithic integrated two-dimensional magnetic vector sensor manufactured by using the process described in the second aspect of the present invention.

附图说明Description of drawings

图1示出本发明所述单片集成二维磁矢量传感器的俯视示意图;Fig. 1 shows the schematic top view of the monolithic integrated two-dimensional magnetic vector sensor of the present invention;

图2示出本发明所述单片集成二维磁场传感器的等效电路图;Fig. 2 shows the equivalent circuit diagram of the monolithic integrated two-dimensional magnetic field sensor of the present invention;

图3示出图1中a-a处的一种优选实施方式的截面示意图;Fig. 3 shows a schematic cross-sectional view of a preferred embodiment at a-a in Fig. 1;

图4示出图1中b-b处的一种优选实施方式的截面示意图;Fig. 4 shows a schematic cross-sectional view of a preferred embodiment at b-b in Fig. 1;

图5a~图5g示出本发明所述制作工艺的工艺过程图一(沿a-a截面);Fig. 5a~Fig. 5g show the technological process diagram one (along a-a section) of manufacturing process of the present invention;

图6a~图6g示出本发明所述制作工艺的工艺过程图二(沿b-b截面);Fig. 6a~Fig. 6g show the technological process Fig. 2 (along the b-b cross-section) of the manufacturing process of the present invention;

图7示出区别于本发明所述传感器的对比传感器的俯视示意图。Fig. 7 shows a schematic top view of a comparative sensor different from the sensor of the present invention.

附图标记说明Explanation of reference signs

1-第一硅片;11-隔离环;2-第二硅片;3-二氧化硅层;SMST1-硅磁敏三极管一;SMST2-硅磁敏三极管二;SMST3-硅磁敏三极管三;SMST4-硅磁敏三极管四;SMST5-硅磁敏三极管五;SMST6-硅磁敏三极管六;SMST7-硅磁敏三极管七;SMST8-硅磁敏三极管八;RB1-基极负载电阻一;RB2-基极负载电阻二;RB3-基极负载电阻三;RB4-基极负载电阻四;RB5-基极负载电阻五;RB6-基极负载电阻六;RB7-基极负载电阻七;RB8-基极负载电阻八;RL1-集电极负载电阻一;RL2-集电极负载电阻二;RL3-集电极负载电阻三;RL4-集电极负载电阻四;B3-硅磁敏三极管三的基极;B4-硅磁敏三极管四的基极;B5-硅磁敏三极管五的基极;B6-硅磁敏三极管六的基极;C1-硅磁敏三极管一的集电极;C2-硅磁敏三极管二的集电极;C7-硅磁敏三极管七的集电极;C8-硅磁敏三极管八的集电极;E1-硅磁敏三极管一的发射极;E2-硅磁敏三极管二的发射极;E7-硅磁敏三极管七的发射极;E8-硅磁敏三极管八的发射极;VDD-电源;GND-接地;Vx1-输出电压一;Vx2-输出电压二;Vy3-输出电压三;Vy4-输出电压四。1-first silicon wafer; 11-isolating ring; 2-second silicon wafer; 3-silicon dioxide layer; SMST1-silicon magneto-sensitive transistor one; SMST2-silicon magneto-sensitive transistor two; SMST3-silicon magneto-sensitive transistor three; SMST4-Silicon Magnetic Transistor Four; SMST5-Silicon Magnetic Transistor Five; SMST6-Silicon Magnetic Transistor Six; SMST7-Silicon Magnetic Transistor Seven; SMST8-Silicon Magnetic Transistor Eight; R B1 - Base Load Resistor One; R B2 - base load resistor two; R B3 - base load resistor three; R B4 - base load resistor four; R B5 - base load resistor five; R B6 - base load resistor six; R B7 - base load resistor Resistor seven; R B8 - base load resistor eight; R L1 - collector load resistor one; R L2 - collector load resistor two; R L3 - collector load resistor three; R L4 - collector load resistor four; B 3 - the base of the silicon magnetotransistor three; B 4 - the base of the silicon magnetotransistor four; B 5 - the base of the silicon magnetotransistor five; B 6 - the base of the silicon magnetotransistor six ; The collector of magnetotransistor 1; C 2 - the collector of silicon magnetotransistor 2; C 7 - the collector of silicon magnetotransistor 7; C 8 - the collector of silicon magnetotransistor 8; E 1 - the silicon magnetotransistor Transistor 1 emitter; E 2 -silicon magnetotransistor 2 emitter; E 7 -silicon magnetotransistor 7 emitter; E 8 -silicon magnetotransistor 8 emitter; V DD -power supply; GND-ground ; V x1 - output voltage one; V x2 - output voltage two; V y3 - output voltage three; V y4 - output voltage four.

具体实施方式Detailed ways

下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。The following describes the present invention in detail, and the features and advantages of the present invention will become more clear and definite along with these descriptions.

本发明一方面提供了一种单片集成二维磁矢量传感器,如图1和图3~4所示,所述传感器包括作为器件层的第一硅片1和作为衬底的第二硅片2,其中,在第一硅片1上设置有用于检测二维磁场的八个硅磁敏三极管,分别为硅磁敏三极管一SMST1、硅磁敏三极管二SMST2、硅磁敏三极管三SMST3、硅磁敏三极管四SMST4、硅磁敏三极管五SMST5、硅磁敏三极管六SMST6、硅磁敏三极管七SMST7和硅磁敏三极管八SMST8,用于xy平面二维磁场的检测。One aspect of the present invention provides a monolithic integrated two-dimensional magnetic vector sensor, as shown in Figure 1 and Figures 3-4, the sensor includes a first silicon chip 1 as a device layer and a second silicon chip as a substrate 2. Among them, eight silicon magnetotransistors for detecting two-dimensional magnetic fields are arranged on the first silicon chip 1, which are respectively silicon magnetosensitive transistor one SMST1, silicon magnetosensitive transistor two SMST2, silicon magnetosensitive transistor three SMST3, silicon magnetotransistor three Magnetic transistor four SMST4, silicon magnetic sensitive transistor five SMST5, silicon magnetic sensitive transistor six SMST6, silicon magnetic sensitive transistor seven SMST7 and silicon magnetic sensitive transistor eight SMST8, used for detection of xy plane two-dimensional magnetic field.

其中,所述硅磁敏三极管为NPN型磁敏三极管。Wherein, the silicon magneto-sensitive transistor is an NPN type magneto-sensitive transistor.

根据本发明一种优选的实施方式,第一硅片1的厚度为20~30μm,第二硅片2的厚度为350~450μm。According to a preferred embodiment of the present invention, the thickness of the first silicon wafer 1 is 20-30 μm, and the thickness of the second silicon wafer 2 is 350-450 μm.

在进一步优选的实施方式中,第一硅片1的厚度为30μm,第二硅片2的厚度为400~425μm。In a further preferred embodiment, the thickness of the first silicon wafer 1 is 30 μm, and the thickness of the second silicon wafer 2 is 400˜425 μm.

其中,本发明采用两个硅片进行键合,位于下方的第二硅片用于起支撑作用,这样,作为器件层的第一硅片可以实现减薄。Wherein, the present invention uses two silicon wafers for bonding, and the second silicon wafer located below is used for supporting, so that the first silicon wafer serving as the device layer can be thinned.

在更进一步优选的实施方式中,所述第一硅片1和第二硅片2均为<100>晶向高阻p型单晶硅片,优选地,第一硅片的电阻率大于1000Ω·cm。In a further preferred embodiment, the first silicon wafer 1 and the second silicon wafer 2 are both <100> oriented high-resistance p-type single crystal silicon wafers, preferably, the resistivity of the first silicon wafer is greater than 1000Ω cm.

根据本发明一种优选的实施方式,如图1~2所示,所述硅磁敏三极管一SMST1和硅磁敏三极管二SMST2并联设置,所述硅磁敏三极管五SMST5和硅磁敏三极管六SMST6并联设置。According to a preferred embodiment of the present invention, as shown in FIGS. SMST6 parallel setup.

其中,采用两个硅磁敏三极管进行并联设置,可以提高磁灵敏度,同时,可以优化集电极负载电阻阻值,这样,就明显降低了功耗。Among them, two silicon magnetosensitive transistors are used for parallel setting, which can improve the magnetic sensitivity, and at the same time, can optimize the resistance value of the collector load resistance, thus significantly reducing power consumption.

而在现有技术中,大多是通过调节集电极负载电阻阻值调节灵敏度,但是现在可以降低集电极负载电阻的阻值,减小功耗,但同时还具有很高的灵敏度,实现了低功耗下灵敏度的提高。In the prior art, the sensitivity is mostly adjusted by adjusting the resistance of the collector load resistance, but now the resistance of the collector load resistance can be reduced to reduce power consumption, but at the same time it has high sensitivity and realizes low power consumption. Consumes an increase in sensitivity.

在进一步优选的实施方式中,如图1~2所示,所述硅磁敏三极管一SMST1和硅磁敏三极管二SMST2在并联后与集电极负载电阻一RL1连接,形成第一磁敏感单元MSE1;所述硅磁敏三极管五SMST5和硅磁敏三极管六SMST6并联后与集电极负载电阻二RL2连接,形成第二磁敏感单元MSE2。In a further preferred embodiment, as shown in Figures 1-2, the silicon magnetotransistor 1 SMST1 and the silicon magnetotransistor 2 SMST2 are connected in parallel to the collector load resistor RL1 to form the first magnetic sensitive unit MSE1; the silicon magnetosensitive transistor five SMST5 and the silicon magnetosensitive transistor six SMST6 are connected in parallel to the collector load resistor two R L2 to form a second magnetic sensitive unit MSE2.

在更进一步优选的实施方式中,所述第一磁敏感单元MSE1和第二磁敏感单元MSE2沿x轴按相反磁敏感方向设置,形成第一差分测试电路,用于x方向磁场(Bx)的检测。In a further preferred embodiment, the first magnetically sensitive unit MSE1 and the second magnetically sensitive unit MSE2 are arranged along the x-axis in opposite magnetically sensitive directions to form a first differential test circuit for the x-direction magnetic field (B x ) detection.

根据本发明一种优选的实施方式,如图1所示,在所述第一磁敏感单元MSE1和第二磁敏感单元MSE2中,硅磁敏三极管一SMST1的基区、硅磁敏三极管二SMST2的基区、硅磁敏三极管五SMST5的集电区和硅磁敏三极管六SMST6的集电区沿x轴方向共线。According to a preferred embodiment of the present invention, as shown in FIG. 1, in the first magnetic sensitive unit MSE1 and the second magnetic sensitive unit MSE2, the base area of the silicon magnetic sensitive triode SMST1, the silicon magnetic sensitive triode SMST2 The base region of the silicon magnetosensitive transistor five SMST5 and the collector region of the silicon magnetosensitive transistor six SMST6 are collinear along the x-axis direction.

在进一步优选的实施方式中,如图1所示,在所述第一磁敏感单元MSE1和第二磁敏感单元MSE2中,硅磁敏三极管一SMST1的集电区、硅磁敏三极管二SMST2的集电区、硅磁敏三极管五SMST5的基区和硅磁敏三极管六SMST6的基区沿x轴方向共线。In a further preferred embodiment, as shown in Figure 1, in the first magnetic sensitive unit MSE1 and the second magnetic sensitive unit MSE2, the collector area of the silicon magnetic sensitive transistor SMST1, the silicon magnetic sensitive transistor two SMST2 The collector region, the base region of the silicon magnetosensitive transistor five SMST5 and the base region of the silicon magnetosensitive transistor six SMST6 are collinear along the x-axis direction.

更优选地,如图1所示,硅磁敏三极管一SMST1、硅磁敏三极管二SMST2、硅磁敏三极管五SMST5和硅磁敏三极管六SMST6各自基区与集电区之间所在线与y轴平行。More preferably, as shown in Figure 1, silicon magnetosensitive transistor one SMST1, silicon magnetosensitive transistor two SMST2, silicon magnetosensitive transistor five SMST5 and silicon magnetosensitive transistor six SMST6 place line and y between base area and collector area axis parallel.

这样,如图1所示,使得硅磁敏三极管一SMST1、硅磁敏三极管二SMST2、硅磁敏三极管五SMST5和硅磁敏三极管六SMST6各自基区与集电区之间的长基区相互平行且对齐排列。这样,通过对硅磁敏三极管重新进行排布设置,使得x轴方向探测磁场的区间范围大大减小,为硅磁敏三极管基区和集电区之间的距离。因此,当磁场在x轴方向的范围只有基区与集电区之间的长基区大小时即可实现探测,而不需要磁场覆盖整个x轴。Like this, as shown in Figure 1, make silicon magnetosensitive transistor one SMST1, silicon magnetosensitive transistor two SMST2, silicon magnetosensitive transistor five SMST5 and silicon magnetosensitive transistor six SMST6 respective base areas and long base areas between the collector regions Parallel and aligned. In this way, by re-arranging the silicon magneto-sensitive transistors, the detection range of the magnetic field in the x-axis direction is greatly reduced, which is the distance between the base region and the collector region of the silicon magneto-sensitive transistors. Therefore, detection can be realized when the range of the magnetic field in the x-axis direction is only the size of the long base region between the base region and the collector region, and the magnetic field does not need to cover the entire x-axis.

根据本发明一种优选的实施方式,如图1~2所示,所述硅磁敏三极管三SMST3和硅磁敏三极管四SMST4并联设置,所述硅磁敏三极管七SMST7和硅磁敏三极管八SMST8并联设置。According to a preferred embodiment of the present invention, as shown in Figures 1-2, the silicon magnetotransistor three SMST3 and the silicon magnetotransistor four SMST4 are arranged in parallel, the silicon magnetotransistor seven SMST7 and the silicon magnetotransistor eight SMST8 parallel setup.

其中,采用两个硅磁敏三极管进行并联设置,可以提高磁灵敏度,同时,降低集电极负载电阻的阻值,这样,就明显降低了功耗。Among them, two silicon magnetosensitive triodes are used for parallel arrangement, which can increase the magnetic sensitivity, and at the same time, reduce the resistance value of the collector load resistor, thus significantly reducing the power consumption.

在进一步优选的实施方式中,如图1~2所示,所述硅磁敏三极管三SMST3和硅磁敏三极管四SMST4在并联后与集电极负载电阻三RL3连接,形成第三磁敏感单元MSE3;所述硅磁敏三极管七SMST7和硅磁敏三极管八SMST8并联后与集电极负载电阻四RL4连接,形成第四磁敏感单元MSE4。In a further preferred embodiment, as shown in Figures 1-2, the silicon magnetotransistor 3 SMST3 and the silicon magnetotransistor 4 SMST4 are connected in parallel to the collector load resistor 3 R L3 to form a third magnetic sensitive unit MSE3; the silicon magnetosensitive transistor seven SMST7 and the silicon magnetosensitive transistor eight SMST8 are connected in parallel to the collector load resistor four R L4 to form a fourth magnetic sensitive unit MSE4.

在更进一步优选的实施方式中,所述第三磁敏感单元MSE3和第四磁敏感单元MSE4沿y轴按相反磁敏感方向设置,形成第二差分测试电路,用于y方向磁场(By)的检测。In a further preferred embodiment, the third magnetically sensitive unit MSE3 and the fourth magnetically sensitive unit MSE4 are arranged along the y-axis in opposite magnetically sensitive directions to form a second differential test circuit for the y-direction magnetic field (B y ) detection.

在本发明中,如图1~2所示,当外加磁场在xy平面内沿x轴和y轴存在磁场分量时,由于外加磁场的作用,两对差分测试电路中四个输出电压(Vx1、Vx2、Vy3、Vy4)改变,从而实现对二维磁场(Bx、By)的检测。In the present invention, as shown in Figures 1 to 2, when the external magnetic field has magnetic field components along the x-axis and y-axis in the xy plane, due to the effect of the external magnetic field, the four output voltages (V x1 , V x2 , V y3 , V y4 ) changes, so as to realize the detection of the two-dimensional magnetic field (B x , By y ).

根据本发明一种优选的实施方式,如图1所示,在所述第三磁敏感单元MSE3和第四磁敏感单元MSE4中,硅磁敏三极管三SMST3的基区、硅磁敏三极管四SMST4的基区、硅磁敏三极管七SMST7的集电区和硅磁敏三极管八SMST8的集电区沿y轴方向共线。According to a preferred embodiment of the present invention, as shown in FIG. 1, in the third magnetic sensitive unit MSE3 and the fourth magnetic sensitive unit MSE4, the base area of the silicon magnetic sensitive transistor three SMST3, the silicon magnetic sensitive transistor four SMST4 The base region, the collector region of the silicon magnetosensitive transistor seven SMST7 and the collector region of the silicon magnetosensitive transistor eight SMST8 are collinear along the y-axis direction.

在更进一步优选的实施方式中,如图1所示,在所述第三磁敏感单元MSE3和第四磁敏感单元MSE4中,硅磁敏三极管三SMST3的集电区、硅磁敏三极管四SMST4的集电区、硅磁敏三极管七SMST7的基区和硅磁敏三极管八SMST8的基区沿y轴方向共线。In a further preferred embodiment, as shown in Figure 1, in the third magnetic sensitive unit MSE3 and the fourth magnetic sensitive unit MSE4, the collector area of the silicon magnetic sensitive triode SMST3, the silicon magnetic sensitive triode SMST4 The collector region, the base region of the silicon magnetosensitive transistor seven SMST7 and the base region of the silicon magnetosensitive transistor eight SMST8 are collinear along the y-axis direction.

更优选地,如图1所示,硅磁敏三极管三SMST3、硅磁敏三极管四SMST4、硅磁敏三极管七SMST7和硅磁敏三极管八SMST8各自基区与集电区之间所在线与x轴平行。More preferably, as shown in Figure 1, silicon magnetosensitive transistor three SMST3, silicon magnetosensitive transistor four SMST4, silicon magnetosensitive transistor seven SMST7 and silicon magnetosensitive transistor eight SMST8 each base area and the line between the collector area and x axis parallel.

这样,如图1所示,使得硅磁敏三极管三SMST3、硅磁敏三极管四SMST4、硅磁敏三极管七SMST7和硅磁敏三极管八SMST8各自基区与集电区之间的长基区相互平行且对齐排列。这样,通过对硅磁敏三极管重新进行排布设置,使得y轴方向探测磁场的区间范围大大减小,为硅磁敏三极管基区和集电区之间的距离。因此,当磁场在y轴方向的范围只有基区与集电区之间长基区大小时即可实现探测,而不需要磁场覆盖整个y轴。Like this, as shown in Figure 1, make silicon magnetosensitive transistor three SMST3, silicon magnetosensitive transistor four SMST4, silicon magnetosensitive transistor seven SMST7 and silicon magnetosensitive transistor eight SMST8 each base region and the long base region between the collector region mutually Parallel and aligned. In this way, by re-arranging the silicon magneto-sensitive transistors, the detection range of the magnetic field in the y-axis direction is greatly reduced, which is the distance between the base region and the collector region of the silicon magneto-sensitive transistors. Therefore, detection can be realized when the range of the magnetic field in the y-axis direction is only as large as the long base region between the base region and the collector region, and the magnetic field does not need to cover the entire y-axis.

综上,通过对八个硅磁敏三极管的重新排布,使得所述传感器探测磁场的区间范围大大减小,无论是x轴还是y轴的磁场,只需要有基区与集电区之间的长基区大小即可实现探测。但是,在现有技术中,进行二维磁场探测时,磁场需要覆盖芯片才能实现对x轴和y轴方向磁场的同时检测,继而现有技术所述二维磁传感器要求所探测的磁场具有较大的区间范围。To sum up, by rearranging the eight silicon magnetosensitive transistors, the detection range of the magnetic field of the sensor is greatly reduced. Whether it is the magnetic field of the x-axis or the y-axis, only a gap between the base area and the collector area is required. The long base area size can realize the detection. However, in the prior art, when two-dimensional magnetic field detection is performed, the magnetic field needs to cover the chip to realize simultaneous detection of the magnetic field in the x-axis and y-axis directions, and then the two-dimensional magnetic sensor described in the prior art requires the detected magnetic field to have relatively high large range.

根据本发明一种优选的实施方式,如图1~2所示,所述集电极负载电阻一RL1、集电极负载电阻二RL2、集电极负载电阻三RL3和集电极负载电阻四RL4的另一端均与电源VDD连接。According to a preferred embodiment of the present invention, as shown in Figures 1-2, the collector load resistor RL1 , the collector load resistor RL2 , the collector load resistor RL3 and the collector load resistor RL The other ends of L4 are both connected to the power supply V DD .

在进一步优选的实施方式中,集电极负载电阻一RL1、集电极负载电阻二RL2、集电极负载电阻三RL3和集电极负载电阻四RL4均为n-型掺杂。In a further preferred embodiment, the collector load resistor RL1 , the collector load resistor RL2 , the collector load resistor RL3 and the collector load resistor RL4 are n - type doped.

根据本发明一种优选的实施方式,如图1~2所示,所述传感器还包括基极负载电阻一RB1、基极负载电阻二RB2、基极负载电阻三RB3、基极负载电阻四RB4、基极负载电阻五RB5、基极负载电阻六RB6、基极负载电阻七RB7和基极负载电阻八RB8,分别与硅磁敏三极管一SMST1、硅磁敏三极管二SMST2、硅磁敏三极管三SMST3、硅磁敏三极管四SMST4、硅磁敏三极管五SMST5、硅磁敏三极管六SMST6、硅磁敏三极管七SMST7和硅磁敏三极管八SMST8的基极相连。According to a preferred embodiment of the present invention, as shown in Figures 1-2, the sensor further includes a base load resistor RB1 , a base load resistor RB2 , a base load resistor RB3 , a base load Resistor 4 R B4 , base load resistor 5 R B5 , base load resistor 6 RB6 , base load resistor 7 R B7 and base load resistor 8 R B8 , respectively connected with silicon magnetosensitive transistor SMST1 and silicon magnetosensitive transistor Two SMST2, three SMST3 of silicon magnetic sensitive transistor, four SMST4 of silicon magnetic sensitive transistor, five SMST5 of silicon magnetic sensitive transistor, six SMST6 of silicon magnetic sensitive transistor, seven SMST7 of silicon magnetic sensitive transistor and eight SMST8 of silicon magnetic sensitive transistor are connected to each other.

在进一步优选的实施方式中,基极负载电阻一RB1、基极负载电阻二RB2、基极负载电阻三RB3、基极负载电阻四RB4、基极负载电阻五RB5、基极负载电阻六RB6、基极负载电阻七RB7和基极负载电阻八RB8的另一端均与电源VDD连接。In a further preferred embodiment, base load resistor one R B1 , base load resistor two R B2 , base load resistor three R B3 , base load resistor four R B4 , base load resistor five R B5 , base The other ends of the load resistor six R B6 , the base load resistor seven R B7 and the base load resistor eight R B8 are all connected to the power supply V DD .

在更进一步优选的实施方式中,基极负载电阻一RB1、基极负载电阻二RB2、基极负载电阻三RB3、基极负载电阻四RB4、基极负载电阻五RB5、基极负载电阻六RB6、基极负载电阻七RB7和基极负载电阻八RB8均为n-型掺杂。In a further preferred embodiment, base load resistor one R B1 , base load resistor two R B2 , base load resistor three R B3 , base load resistor four R B4 , base load resistor five R B5 , base load resistor five R B5 , base load resistor two R B2 The pole load resistor six R B6 , the base load resistor seven R B7 and the base load resistor eight R B8 are all n - type doped.

其中,基极与负载电阻相连,这样,在不需要为每个基极提供一个电流源的情况下,即可为基极提供恒定的电流。Among them, the base is connected with the load resistor, so that the base can provide a constant current without providing a current source for each base.

根据本发明一种优选的实施方式,如图1~4所示,所述硅磁敏三极管一SMST1发射极E1、硅磁敏三极管二SMST2发射极E2、硅磁敏三极管三SMST3发射极E3、硅磁敏三极管四SMST4发射极E4、硅磁敏三极管五SMST5发射极E5、硅磁敏三极管六SMST6发射极E6、硅磁敏三极管七SMST7发射极E7和硅磁敏三极管八SMST8发射极E8相连并接地。According to a preferred embodiment of the present invention, as shown in Figures 1 to 4, the silicon magnetotransistor-SMST1 emitter E 1 , the silicon magnetotransistor-two SMST2 emitter E2 , and the silicon magnetotransistor-three SMST3 emitter E 3 , silicon magnetic sensitive transistor four SMST4 emitter E 4 , silicon magnetic sensitive transistor five SMST5 emitter E 5 , silicon magnetic sensitive transistor six SMST6 emitter E 6 , silicon magnetic sensitive transistor seven SMST7 emitter E 7 and silicon magnetic sensitive Transistor eight SMST8 emitter E 8 is connected and grounded.

根据本发明一种优选的实施方式,在第一硅片1上、每个硅磁敏三极管周围制作有隔离环11。According to a preferred embodiment of the present invention, an isolation ring 11 is fabricated on the first silicon chip 1 and around each silicon magnetotransistor.

在进一步优选的实施方式中,所述隔离环11穿透所述第一硅片1。In a further preferred embodiment, the isolation ring 11 penetrates through the first silicon wafer 1 .

在更进一步优选的实施方式中,所述隔离环11为n+型掺杂。In a further preferred embodiment, the isolation ring 11 is doped with n + type.

其中,在p型硅片上,刻蚀n+型掺杂的隔离环11,这样,隔离环11里外均为P型,隔离环与第一硅片的内外接触面形成PN结,而由于PN结具有单向导电特性,因此,总会有一个接触面(内接触面或外接触面)不导通,这样,成功将每个硅磁敏三极管与其它器件进行隔离,防止了器件间的导通,避免了相互干扰,提高了磁灵敏度一致性和传感器的稳定性。Wherein, on the p-type silicon chip, etch the n + type doped spacer ring 11, so that the inside and outside of the spacer ring 11 are all P-type, and the spacer ring forms a PN junction with the inner and outer contact surfaces of the first silicon chip, and because The PN junction has unidirectional conductivity, so there will always be a contact surface (inner contact surface or outer contact surface) that is not conducting. In this way, each silicon magnetosensitive triode is successfully isolated from other devices, preventing the contact between devices. conduction, avoiding mutual interference, and improving the consistency of magnetic sensitivity and the stability of the sensor.

本发明第二方面提供一种本发明第一方面所述单片集成二维磁矢量传感器的制作工艺,如图5所示,所述工艺包括以下步骤:The second aspect of the present invention provides a manufacturing process of the monolithic integrated two-dimensional magnetic vector sensor described in the first aspect of the present invention. As shown in FIG. 5, the process includes the following steps:

步骤1、清洗第一硅片1,进行一次氧化,在其下表面生长二氧化硅层[如图5a和图6a所示];Step 1, cleaning the first silicon wafer 1, performing an oxidation, and growing a silicon dioxide layer on its lower surface [as shown in Figure 5a and Figure 6a];

步骤2、在所述第一硅片1的下表面进行一次光刻,制作得到八个发射区窗口,并进行n+型重掺杂,分别形成八个硅磁敏三极管的发射区[如图5b和图6b所示];Step 2. Perform a photolithography on the lower surface of the first silicon wafer 1 to obtain eight emission region windows, and carry out n + type heavy doping to form emission regions of eight silicon magnetotransistors [as shown in the figure 5b and Figure 6b];

步骤3、清洗第二硅片,双面生长二氧化硅层[如图5c和图6c所示],并采用键合工艺使第一硅片与第二硅片之间进行键合,优选第一硅片的下表面与第二硅片的上表面之间进行键合;Step 3, cleaning the second silicon wafer, growing silicon dioxide layers on both sides [as shown in Figure 5c and Figure 6c], and using a bonding process to bond the first silicon wafer to the second silicon wafer, preferably the second silicon wafer Bonding is performed between the lower surface of a silicon wafer and the upper surface of a second silicon wafer;

步骤4、键合后,对第一硅片进行减薄、抛光、清洗处理;Step 4, after bonding, thinning, polishing and cleaning the first silicon wafer;

步骤5、清洗,采用热氧化工艺在器件层上表面生长二氧化硅层,作为离子注入缓冲层;Step 5, cleaning, using a thermal oxidation process to grow a silicon dioxide layer on the upper surface of the device layer as an ion implantation buffer layer;

步骤6、在器件层的上表面依次进行二次光刻、三次光刻、四次光刻和五次光刻,分别进行n+型掺杂、n-型掺杂、n+型重掺杂和p+型重掺杂,分别依次形成隔离环、四个集电极负载电阻(RL1、RL2、RL3、RL4)、八个集电区和八个基区[如图5d~图5e以及图6d~图6e所示];Step 6: Carry out two photolithography, three photolithography, four photolithography and five photolithography successively on the upper surface of the device layer, respectively perform n + type doping, n - type doping, and n + type heavy doping and p + type heavy doping, respectively forming isolation rings, four collector load resistors ( RL1 , R L2 , R L3 , R L4 ), eight collector regions and eight base regions in turn [as shown in Figure 5d~ 5e and Figure 6d ~ Figure 6e];

步骤7、高温退火处理;Step 7, high temperature annealing treatment;

步骤8、清洗,在芯片上生长二氧化硅层,优选厚度为作为金属互连线绝缘层;Step 8, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As metal interconnect insulation layer;

步骤9、第六次光刻,刻蚀金属电极引线孔,然后进行真空蒸镀金属Al层,并在金属Al层表面进行刻蚀,形成金属Al互连线;Step 9, the sixth photolithography, etching the lead hole of the metal electrode, then vacuum-depositing the metal Al layer, and etching on the surface of the metal Al layer to form a metal Al interconnection line;

步骤10、清洗,在芯片上生长二氧化硅层,优选厚度为作为钝化层,第七次光刻,刻蚀钝化层窗口;Step 10, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As a passivation layer, the seventh photolithography is used to etch the passivation layer window;

步骤11、清洗,第八次光刻,在第二硅层下表面刻蚀八个发射区引线坑窗口,通过深槽刻蚀技术(ICP)进行刻蚀,形成八个发射区腐蚀坑[如图5f和图6f所示];Step 11, cleaning, the eighth photolithography, etch eight emission area lead pit windows on the lower surface of the second silicon layer, and etch through deep groove etching technology (ICP) to form eight emission area etching pits [such as Figure 5f and Figure 6f];

步骤12、清洗,通过真空蒸镀在八个腐蚀坑内制作金属Al,形成金属Al引线[如图5g和图6g所示];Step 12, cleaning, making metal Al in eight corrosion pits by vacuum evaporation to form metal Al leads [as shown in Figure 5g and Figure 6g];

步骤13、进行合金化处理形成欧姆接触,得到所述单片集成二维磁矢量传感器。Step 13, performing an alloying treatment to form an ohmic contact to obtain the monolithic integrated two-dimensional magnetic vector sensor.

根据本发明一种优选的实施方式,在步骤1中,所述第一硅片1为<100>晶向高阻p型单晶硅片。According to a preferred embodiment of the present invention, in step 1, the first silicon wafer 1 is a p-type single crystal silicon wafer with a <100> orientation and high resistance.

在进一步优选的实施方式中,所述第一硅片的电阻率大于1000Ω·cm。In a further preferred embodiment, the resistivity of the first silicon wafer is greater than 1000Ω·cm.

根据本发明一种优选的实施方式,在步骤1中,采用热氧化法生长30~50nm厚度的二氧化硅层,作为离子注入缓冲层。According to a preferred embodiment of the present invention, in step 1, a silicon dioxide layer with a thickness of 30-50 nm is grown by a thermal oxidation method as an ion implantation buffer layer.

在进一步优选的实施方式中,在步骤1中,采用热氧化法生长40nm厚度的二氧化硅层。In a further preferred embodiment, in step 1, a silicon dioxide layer with a thickness of 40 nm is grown by a thermal oxidation method.

根据本发明一种优选的实施方式,在步骤3中,双面生长的二氧化硅层的厚度为 According to a preferred embodiment of the present invention, in step 3, the thickness of the silicon dioxide layer grown on both sides is

在进一步优选的实施方式中,在步骤3中,双面生长的二氧化硅层的厚度为 In a further preferred embodiment, in step 3, the thickness of the silicon dioxide layer grown on both sides is

根据本发明一种优选的实施方式,步骤4减薄后第一硅片1的厚度为20~40μm。According to a preferred embodiment of the present invention, the thickness of the first silicon wafer 1 after thinning in step 4 is 20-40 μm.

在进一步优选的实施方式中,步骤4减薄后第一硅片1的厚度为30μm。In a further preferred embodiment, the thickness of the first silicon wafer 1 after step 4 is thinned is 30 μm.

其中,在本发明中,采用两个硅片进行键合,这样,以作为衬底的第二硅片作为支撑,作为器件层的第一硅片可以实现很薄。Wherein, in the present invention, two silicon wafers are used for bonding, so that the first silicon wafer as a device layer can be very thin with the second silicon wafer as a substrate as a support.

根据本发明一种优选的实施方式,在步骤5中,生长的二氧化硅层的厚度为30~50nm。According to a preferred embodiment of the present invention, in step 5, the thickness of the grown silicon dioxide layer is 30-50 nm.

在进一步优选的实施方式中,在步骤5中,生长的二氧化硅层的厚度为40nm。In a further preferred embodiment, in step 5, the thickness of the grown silicon dioxide layer is 40 nm.

根据本发明一种优选的实施方式,在步骤7中,所述高温退火处理如下进行:在800-900℃下真空环境处理30~40min。According to a preferred embodiment of the present invention, in step 7, the high-temperature annealing treatment is performed as follows: vacuum environment treatment at 800-900° C. for 30-40 minutes.

根据本发明一种优选的实施方式,在步骤13中,所述合金化处理如下进行:在400~450℃下真空环境处理20~40min。According to a preferred embodiment of the present invention, in step 13, the alloying treatment is performed as follows: vacuum environment treatment at 400-450° C. for 20-40 minutes.

在进一步优选的实施方式中,在步骤13中,所述合金化处理如下进行:420℃真空环境下处理30min。In a further preferred embodiment, in step 13, the alloying treatment is carried out as follows: treatment in a vacuum environment at 420° C. for 30 minutes.

本发明第三方面提供了一种根据本发明第二方面所述制作工艺得到的单片集成二维磁矢量传感器。The third aspect of the present invention provides a monolithic integrated two-dimensional magnetic vector sensor obtained according to the manufacturing process described in the second aspect of the present invention.

本发明所具有的有益效果:The beneficial effects that the present invention has:

(1)本发明所述单片集成二维磁矢量传感器将八个硅磁敏三极管(SMST1、SMST2、SMST3、SMST4、SMST5、SMST6、SMST7、SMST8)两两并联后与四个集电极负载电阻(RL1、RL2、RL3、RL4)进行有效结合和单片集成化,分别构成两对差分测试电路,实现了二维磁场(Bx、By)检测;(1) The monolithic integrated two-dimensional magnetic vector sensor of the present invention connects eight silicon magnetosensitive triodes (SMST1, SMST2, SMST3, SMST4, SMST5, SMST6, SMST7, SMST8) in parallel with four collector load resistors (R L1 , R L2 , R L3 , R L4 ) are effectively combined and monolithically integrated to form two pairs of differential test circuits respectively, realizing two-dimensional magnetic field (B x , By y ) detection;

(2)同时,两两三极管的并联结构不仅提高了各方向的磁灵敏度,并且,降低了集电极负载电阻的大小,就明显降低了功耗,这样,在低功耗下实现了高磁灵敏度;(2) At the same time, the parallel structure of two or two triodes not only improves the magnetic sensitivity in all directions, but also reduces the size of the collector load resistance, which significantly reduces power consumption. In this way, high magnetic sensitivity is achieved at low power consumption ;

(3)通过对硅磁敏三极管重新进行排布设置,使得探测磁场的区间范围大大减小,为硅磁敏三极管基区和集电区之间的距离;(3) By rearranging and setting the silicon magnetosensitive transistors, the range of the detection magnetic field is greatly reduced, which is the distance between the base area and the collector area of the silicon magnetosensitive transistors;

(4)本发明所述单片集成二维磁矢量传感器结构简单,实现了芯片的小型化和集成化;(4) The single-chip integrated two-dimensional magnetic vector sensor of the present invention has a simple structure and realizes the miniaturization and integration of the chip;

(5)本发明所述制作工艺简单,易于实现,适合规模化工业应用。(5) The manufacturing process of the present invention is simple, easy to realize, and suitable for large-scale industrial application.

实验例1Experimental example 1

采用北京翠海佳诚磁电科技有限责任公司的磁场发生系统对本发明所述单片集成二维磁矢量传感器(图1所示)和图7所示二维磁场传感器分别进行测试,分析单片集成二维磁场传感器的磁场检测灵敏度,经过检测可知:Adopt the magnetic field generating system of Beijing Cuihai Jiacheng Magnetoelectric Technology Co., Ltd. to test the monolithic integrated two-dimensional magnetic vector sensor (shown in Fig. 1) and the two-dimensional magnetic field sensor shown in Fig. 7 of the present invention respectively, analyze the monolithic The magnetic field detection sensitivity of the integrated two-dimensional magnetic field sensor can be known after testing:

(1)当电源电压5.0V时:(1) When the power supply voltage is 5.0V:

本发明所述传感器的x轴方向磁传感器灵敏度为293mV/T,y方向磁传感器灵敏度292mV/T;The sensitivity of the magnetic sensor in the x-axis direction of the sensor of the present invention is 293mV/T, and the sensitivity of the magnetic sensor in the y-direction is 292mV/T;

图7所示传感器的x轴方向磁传感器灵敏度为285mV/T,y方向磁传感器灵敏度284mV/T;The sensitivity of the magnetic sensor in the x-axis direction of the sensor shown in Figure 7 is 285mV/T, and the sensitivity of the magnetic sensor in the y-direction is 284mV/T;

可知,本发明所述传感器通过三极管两两并联设置,提高了磁灵敏度。It can be seen that the sensors of the present invention are arranged in parallel by two triodes, which improves the magnetic sensitivity.

实验例2Experimental example 2

分别对本发明所述传感器和图7所示传感器施加150μm左右的磁场区域,发现:Apply a magnetic field area of about 150 μm to the sensor of the present invention and the sensor shown in Figure 7 respectively, and find that:

(1)本发明所述传感器可以成功检测到施加的150μm左右的磁场;(1) The sensor of the present invention can successfully detect an applied magnetic field of about 150 μm;

(2)而图7所示传感器磁敏感区间沿磁敏感方向800μm以上。(2) The magnetically sensitive area of the sensor shown in Figure 7 is more than 800 μm along the magnetically sensitive direction.

以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。The present invention has been described in detail above in conjunction with specific implementations and exemplary examples, but these descriptions should not be construed as limiting the present invention. Those skilled in the art understand that without departing from the spirit and scope of the present invention, various equivalent replacements, modifications or improvements can be made to the technical solutions and implementations of the present invention, all of which fall within the scope of the present invention. The protection scope of the present invention shall be determined by the appended claims.

Claims (10)

1.一种单片集成二维磁矢量传感器,其特征在于,所述传感器包括作为器件层的第一硅片(1)和作为衬底的第二硅片(2),其中,在第一硅片(1)上设置有用于检测二维磁场的八个硅磁敏三极管,并且,两两硅磁敏三极管之间为并联设置。1. A monolithic integrated two-dimensional magnetic vector sensor is characterized in that the sensor comprises a first silicon chip (1) as a device layer and a second silicon chip (2) as a substrate, wherein, in the first The silicon chip (1) is provided with eight silicon magneto-sensitive triodes for detecting two-dimensional magnetic fields, and two silicon magneto-sensitive transistors are arranged in parallel. 2.根据权利要求1所述的单片集成二维磁矢量传感器,其特征在于,所述八个硅磁敏三极管分别为硅磁敏三极管一(SMST1)、硅磁敏三极管二(SMST2)、硅磁敏三极管三(SMST3)、硅磁敏三极管四(SMST4)、硅磁敏三极管五(SMST5、硅磁敏三极管六(SMST6)、硅磁敏三极管七(SMST7)和硅磁敏三极管八(SMST8),其中,2. monolithic integrated two-dimensional magnetic vector sensor according to claim 1, is characterized in that, described eight silicon magnetosensitive triodes are respectively silicon magnetosensitive transistor one (SMST1), silicon magnetosensitive transistor two (SMST2), Silicon magnetotransistor three (SMST3), silicon magnetotransistor four (SMST4), silicon magnetotransistor five (SMST5), silicon magnetotransistor six (SMST6), silicon magnetotransistor seven (SMST7) and silicon magnetotransistor eight ( SMST8), where 所述硅磁敏三极管一(SMST1)和硅磁敏三极管二(SMST2)并联设置;Described silicon magnetosensitive triode one (SMST1) and silicon magnetosensitive transistor two (SMST2) are arranged in parallel; 所述硅磁敏三极管五(SMST5)和硅磁敏三极管六(SMST6)并联设置;The silicon magnetic sensitive transistor five (SMST5) and the silicon magnetic sensitive transistor six (SMST6) are arranged in parallel; 所述硅磁敏三极管三(SMST3)和硅磁敏三极管四(SMST4)并联设置;Described silicon magnetosensitive transistor three (SMST3) and silicon magnetosensitive transistor four (SMST4) are arranged in parallel; 所述硅磁敏三极管七(SMST7)和硅磁敏三极管八(SMST8)并联设置。The silicon magneto-sensitive transistor seven (SMST7) and the silicon magneto-sensitive transistor eight (SMST8) are arranged in parallel. 3.根据权利要求1或2所述的单片集成二维磁矢量传感器,其特征在于,3. The monolithic integrated two-dimensional magnetic vector sensor according to claim 1 or 2, characterized in that, 所述硅磁敏三极管一(SMST1)和硅磁敏三极管二(SMST2)在并联后与集电极负载电阻一(RL1)连接,形成第一磁敏感单元(MSE1);The silicon magnetosensitive transistor one (SMST1) and the silicon magnetosensitive transistor two ( SMST2 ) are connected in parallel with the collector load resistor one (RL1) to form a first magnetically sensitive unit (MSE1); 所述硅磁敏三极管五(SMST5)和硅磁敏三极管六(SMST6)并联后与集电极负载电阻二(RL2)连接,形成第二磁敏感单元(MSE2);The silicon magnetic sensitive transistor five (SMST5) and the silicon magnetic sensitive transistor six ( SMST6 ) are connected in parallel with the collector load resistor two (RL2) to form a second magnetic sensitive unit (MSE2); 所述硅磁敏三极管三(SMST3)和硅磁敏三极管四(SMST4)在并联后与集电极负载电阻三(RL3)连接,形成第三磁敏感单元(MSE3);The silicon magnetosensitive transistor three (SMST3) and the silicon magnetosensitive transistor four ( SMST4 ) are connected in parallel with the collector load resistor three (RL3) to form the third magnetic sensitive unit (MSE3); 所述硅磁敏三极管七(SMST7)和硅磁敏三极管八(SMST8)并联后与集电极负载电阻四(RL4)连接,形成第四磁敏感单元(MSE4)。The silicon magnetosensitive transistor seven (SMST7) and the silicon magnetosensitive transistor eight ( SMST8 ) are connected in parallel to the collector load resistor four (RL4) to form a fourth magnetic sensitive unit (MSE4). 4.根据权利要求1至3之一所述的单片集成二维磁矢量传感器,其特征在于,4. The monolithic integrated two-dimensional magnetic vector sensor according to one of claims 1 to 3, characterized in that, 所述第一磁敏感单元(MSE1)和第二磁敏感单元(MSE2)沿x轴按相反磁敏感方向设置,形成第一差分测试电路,用于x方向磁场(Bx)的检测;和/或The first magnetically sensitive unit (MSE1) and the second magnetically sensitive unit (MSE2) are arranged along the x-axis in opposite magnetically sensitive directions to form a first differential test circuit for detecting the magnetic field (B x ) in the x direction; and/ or 所述第三磁敏感单元(MSE3)和第四磁敏感单元(MSE4)沿y轴按相反磁敏感方向设置,形成第二差分测试电路,用于y方向磁场(By)的检测。The third magnetic sensitive unit (MSE3) and the fourth magnetic sensitive unit (MSE4) are arranged along the y-axis in opposite magnetic sensitive directions to form a second differential test circuit for detecting the magnetic field in the y direction (B y ). 5.根据权利要求1至4之一所述的单片集成二维磁矢量传感器,其特征在于,在所述第一磁敏感单元(MSE1)和第二磁敏感单元(MSE2)中,5. The monolithic integrated two-dimensional magnetic vector sensor according to one of claims 1 to 4, characterized in that, in the first magnetically sensitive unit (MSE1) and the second magnetically sensitive unit (MSE2), 硅磁敏三极管一(SMST1)的基区、硅磁敏三极管二(SMST2)的基区、硅磁敏三极管五(SMST5)的集电区和硅磁敏三极管六(SMST6)的集电区沿x轴方向共线;The base area of silicon magneto-sensitive transistor one (SMST1), the base area of silicon magneto-sensitive transistor two (SMST2), the collector area of silicon magneto-sensitive transistor five (SMST5) and the collector area of silicon magneto-sensitive transistor six (SMST6) The x-axis direction is collinear; 优选地,硅磁敏三极管一(SMST1)的集电区、硅磁敏三极管二(SMST2)的集电区、硅磁敏三极管五(SMST5)的基区和硅磁敏三极管六(SMST6)的基区沿x轴方向共线。Preferably, the collector region of silicon magnetosensitive transistor one (SMST1), the collector region of silicon magnetosensitive transistor two (SMST2), the base region of silicon magnetosensitive transistor five (SMST5) and the silicon magnetosensitive transistor six (SMST6) The base regions are collinear along the x-axis direction. 6.根据权利要求1至5之一所述的单片集成二维磁矢量传感器,其特征在于,在所述第三磁敏感单元(MSE3)和第四磁敏感单元(MSE4)中,6. The monolithic integrated two-dimensional magnetic vector sensor according to one of claims 1 to 5, characterized in that, in the third magnetic sensitive unit (MSE3) and the fourth magnetic sensitive unit (MSE4), 硅磁敏三极管三(SMST3)的基区、硅磁敏三极管四(SMST4)的基区、硅磁敏三极管七(SMST7)的集电区和硅磁敏三极管八(SMST8)的集电区沿y轴方向共线;The base area of silicon magneto-sensitive transistor three (SMST3), the base area of silicon magneto-sensitive transistor four (SMST4), the collector area of silicon magneto-sensitive transistor seven (SMST7) and the collector area of silicon magneto-sensitive transistor eight (SMST8) The y-axis direction is collinear; 优选地,硅磁敏三极管三(SMST3)的集电区、硅磁敏三极管四(SMST4)的集电区、硅磁敏三极管七(SMST7)的基区和硅磁敏三极管八(SMST8)的基区沿y轴方向共线。Preferably, the collector region of silicon magnetosensitive transistor three (SMST3), the collector region of silicon magnetosensitive transistor four (SMST4), the base region of silicon magnetosensitive transistor seven (SMST7) and the silicon magnetosensitive transistor eight (SMST8) The base regions are collinear along the y-axis direction. 7.根据权利要求1至6之一所述的单片集成二维磁矢量传感器,其特征在于,在第一硅片(1)上、每个硅磁敏三极管周围制作有隔离环(11),优选地,所述隔离环(11)为n+型掺杂。7. The monolithic integrated two-dimensional magnetic vector sensor according to one of claims 1 to 6, characterized in that, on the first silicon chip (1), an isolation ring (11) is made around each silicon magnetotransistor , preferably, the isolation ring (11) is doped with n + type. 8.一种权利要求1至7之一所述单片集成二维磁矢量传感器的制作工艺,其特征在于,所述工艺包括以下步骤:8. A fabrication process for monolithically integrated two-dimensional magnetic vector sensor according to one of claims 1 to 7, characterized in that the process comprises the following steps: 步骤1、清洗第一硅片(1),进行一次氧化,在其下表面生长二氧化硅层;Step 1, cleaning the first silicon wafer (1), performing an oxidation, and growing a silicon dioxide layer on its lower surface; 步骤2、在所述第一硅片(1)的下表面进行一次光刻,制作得到八个发射区窗口,并进行n+型重掺杂,分别形成八个硅磁敏三极管的发射区;Step 2, performing photolithography on the lower surface of the first silicon wafer (1) to obtain eight emission region windows, and performing n + type heavy doping to form emission regions of eight silicon magnetotransistors respectively; 步骤3、清洗第二硅片,双面生长二氧化硅层,并采用键合工艺使第一硅片与第二硅片之间进行键合,优选第一硅片的下表面与第二硅片的上表面之间进行键合;Step 3. Clean the second silicon wafer, grow silicon dioxide layers on both sides, and use a bonding process to bond the first silicon wafer to the second silicon wafer, preferably the lower surface of the first silicon wafer and the second silicon wafer. bonding between the top surfaces of the chips; 步骤4、键合后,对第一硅片进行减薄、抛光、清洗处理;Step 4, after bonding, thinning, polishing and cleaning the first silicon wafer; 步骤5、清洗,采用热氧化工艺在器件层上表面生长二氧化硅层,作为离子注入缓冲层;Step 5, cleaning, using a thermal oxidation process to grow a silicon dioxide layer on the upper surface of the device layer as an ion implantation buffer layer; 步骤6、在器件层的上表面依次进行二次光刻、三次光刻、四次光刻和五次光刻,分别进行n+型掺杂、n-型掺杂、n+型重掺杂和p+型重掺杂,分别依次形成隔离环、四个集电极负载电阻、八个集电区和八个基区;Step 6: Carry out two photolithography, three photolithography, four photolithography and five photolithography successively on the upper surface of the device layer, respectively perform n + type doping, n - type doping, and n + type heavy doping and p + type heavy doping, respectively forming an isolation ring, four collector load resistors, eight collector regions and eight base regions in sequence; 步骤7、高温退火处理;Step 7, high temperature annealing treatment; 步骤8、清洗,在芯片上生长二氧化硅层,优选厚度为作为金属互连线绝缘层;Step 8, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As metal interconnect insulation layer; 步骤9、第六次光刻,刻蚀金属电极引线孔,然后进行真空蒸镀金属Al层,并在金属Al层表面进行刻蚀,形成金属Al互连线;Step 9, the sixth photolithography, etching the lead hole of the metal electrode, then vacuum-depositing the metal Al layer, and etching the surface of the metal Al layer to form a metal Al interconnection line; 步骤10、清洗,在芯片上生长二氧化硅层,优选厚度为作为钝化层,第七次光刻,刻蚀钝化层窗口;;Step 10, cleaning, growing a silicon dioxide layer on the chip, preferably with a thickness of As a passivation layer, the seventh photolithography, etch the passivation layer window; 步骤11、清洗,第八次光刻,在第二硅层下表面刻蚀八个发射区引线坑窗口,通过深槽刻蚀技术(ICP)进行刻蚀,形成八个发射区腐蚀坑;Step 11, cleaning, the eighth photolithography, etching eight emission area lead pit windows on the lower surface of the second silicon layer, etching by deep groove etching technology (ICP), forming eight emission area etching pits; 步骤12、清洗,通过真空蒸镀在八个腐蚀坑内制作金属Al,形成金属Al引线;Step 12, cleaning, making metal Al in eight corrosion pits by vacuum evaporation to form metal Al leads; 步骤13、进行合金化处理形成欧姆接触,得到所述单片集成二维磁矢量传感器。Step 13, performing an alloying treatment to form an ohmic contact to obtain the monolithic integrated two-dimensional magnetic vector sensor. 9.根据权利要求8所述的制作工艺,其特征在于,在步骤1中,所述第一硅片(1)为<100>晶向高阻p型单晶硅片,优选地,所述第一硅片的电阻率大于1000Ω·cm。9. The manufacturing process according to claim 8, characterized in that, in step 1, the first silicon wafer (1) is a <100> oriented high-resistance p-type single crystal silicon wafer, preferably, the The resistivity of the first silicon wafer is greater than 1000Ω·cm. 10.根据权利要求8或9所述的制作工艺得到的单片集成二维磁矢量传感器。10. The monolithic integrated two-dimensional magnetic vector sensor obtained by the manufacturing process according to claim 8 or 9.
CN201810144172.4A 2018-02-12 2018-02-12 A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft Pending CN108983119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810144172.4A CN108983119A (en) 2018-02-12 2018-02-12 A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810144172.4A CN108983119A (en) 2018-02-12 2018-02-12 A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft

Publications (1)

Publication Number Publication Date
CN108983119A true CN108983119A (en) 2018-12-11

Family

ID=64541734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810144172.4A Pending CN108983119A (en) 2018-02-12 2018-02-12 A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft

Country Status (1)

Country Link
CN (1) CN108983119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975265A (en) * 2018-02-12 2018-12-11 黑龙江大学 A kind of single-chip integration space magnetic vector sensor and its manufacture craft
CN111880130A (en) * 2020-07-09 2020-11-03 黑龙江大学 Space magnetic field vector sensor and manufacturing process method thereof
CN114823843A (en) * 2021-04-14 2022-07-29 黑龙江大学 A kind of all-dielectric isolation silicon magnetotransistor fabrication process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700211A (en) * 1982-07-26 1987-10-13 Lgz Landis & Gyr Zug Ag Sensitive magnetotransistor magnetic field sensor
CN102928651A (en) * 2012-11-26 2013-02-13 王建国 Triple modular redundancy (TMR) current sensor
CN103645369A (en) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 Current sensing apparatus
CN103995240A (en) * 2014-05-30 2014-08-20 江苏多维科技有限公司 Magnetic resistance Z-axis gradient sensor chip
CN105136349A (en) * 2015-09-01 2015-12-09 宁波希磁电子科技有限公司 Magnetic pressure sensor
CN206077338U (en) * 2016-08-18 2017-04-05 江苏多维科技有限公司 A kind of balance magneto-resistor frequency mixer
CN107091996A (en) * 2017-04-28 2017-08-25 黑龙江大学 A kind of composite magnetic field sensor and its manufacture craft
CN206523863U (en) * 2017-02-10 2017-09-26 深圳市汇顶科技股份有限公司 Piezoresistive transducer, pressure-detecting device, electronic equipment
CN206649142U (en) * 2017-04-21 2017-11-17 中国地震局地球物理研究所 A kind of array magneto-dependent sensor for improving signal to noise ratio
CN107356885A (en) * 2017-08-18 2017-11-17 黑龙江大学 A kind of single-chip integration two-dimensional magnetic field sensor and its manufacture craft
CN208721778U (en) * 2018-02-12 2019-04-09 黑龙江大学 A monolithic integrated two-dimensional magnetic vector sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700211A (en) * 1982-07-26 1987-10-13 Lgz Landis & Gyr Zug Ag Sensitive magnetotransistor magnetic field sensor
CN102928651A (en) * 2012-11-26 2013-02-13 王建国 Triple modular redundancy (TMR) current sensor
CN103645369A (en) * 2013-11-15 2014-03-19 无锡乐尔科技有限公司 Current sensing apparatus
CN103995240A (en) * 2014-05-30 2014-08-20 江苏多维科技有限公司 Magnetic resistance Z-axis gradient sensor chip
CN105136349A (en) * 2015-09-01 2015-12-09 宁波希磁电子科技有限公司 Magnetic pressure sensor
CN206077338U (en) * 2016-08-18 2017-04-05 江苏多维科技有限公司 A kind of balance magneto-resistor frequency mixer
CN206523863U (en) * 2017-02-10 2017-09-26 深圳市汇顶科技股份有限公司 Piezoresistive transducer, pressure-detecting device, electronic equipment
CN206649142U (en) * 2017-04-21 2017-11-17 中国地震局地球物理研究所 A kind of array magneto-dependent sensor for improving signal to noise ratio
CN107091996A (en) * 2017-04-28 2017-08-25 黑龙江大学 A kind of composite magnetic field sensor and its manufacture craft
CN107356885A (en) * 2017-08-18 2017-11-17 黑龙江大学 A kind of single-chip integration two-dimensional magnetic field sensor and its manufacture craft
CN208721778U (en) * 2018-02-12 2019-04-09 黑龙江大学 A monolithic integrated two-dimensional magnetic vector sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOFENG ZHAO 等: "Research of the Monolithic Integrated 3-D Magnetic Field Sensor Based on MEMS Technology", IEEE SENSORS JOURNAL, vol. 17, no. 18, pages 1 - 4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975265A (en) * 2018-02-12 2018-12-11 黑龙江大学 A kind of single-chip integration space magnetic vector sensor and its manufacture craft
CN108975265B (en) * 2018-02-12 2024-08-13 黑龙江大学 Monolithic integrated space magnetic vector sensor and manufacturing process thereof
CN111880130A (en) * 2020-07-09 2020-11-03 黑龙江大学 Space magnetic field vector sensor and manufacturing process method thereof
CN111880130B (en) * 2020-07-09 2021-09-21 黑龙江大学 Space magnetic field vector sensor and manufacturing process method thereof
CN114823843A (en) * 2021-04-14 2022-07-29 黑龙江大学 A kind of all-dielectric isolation silicon magnetotransistor fabrication process

Similar Documents

Publication Publication Date Title
CN107356885B (en) Monolithic integrated two-dimensional magnetic field sensor and manufacturing process thereof
JP6474833B2 (en) Monolithic three-axis linear magnetic sensor and manufacturing method thereof
WO2015144073A1 (en) Single-chip three-axis magnetic field sensor and preparation method therefor
US20130134970A1 (en) Integrated Magnetometer and its Manufacturing Process
JP2017534855A (en) Single-chip differential free layer push-pull magnetic field sensor bridge and manufacturing method
CN110376537B (en) Manufacturing method of semiconductor three-dimensional Hall sensor suitable for high-temperature working environment
JP2016525689A (en) Single-chip push-pull bridge type magnetic field sensor
TW201216538A (en) Hall sensor
CN108983119A (en) A kind of single-chip integration two-dimensional magnetic vector sensor and its integrated manufacture craft
CN110632538B (en) A magnetic field/acceleration integrated sensor and integrated process method
CN109244234B (en) GaAs-based three-dimensional Hall sensor based on planar process and production process thereof
CN105527451B (en) Magnetoresistive device
US11169225B2 (en) TMR high-sensitivity single-chip push-pull bridge magnetic field sensor
CN103630854B (en) Space three-dimensional magnetic field detection sensor
JP2005308749A (en) Wheatstone bridge mechanism for sensor
CN107091996B (en) Composite magnetic field sensor and manufacturing process thereof
CN108975265B (en) Monolithic integrated space magnetic vector sensor and manufacturing process thereof
CN207037051U (en) A kind of single-chip integration two-dimensional magnetic field sensor
JP2017103378A (en) Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor
CN105098061B (en) Sensor device and sensor arrangement
CN203502576U (en) Space three-dimensional magnetic field detection sensor
CN108987392B (en) Composite magnetic field sensor and manufacturing process thereof
CN208087223U (en) A kind of single-chip integration space magnetic vector sensor
CN208721778U (en) A monolithic integrated two-dimensional magnetic vector sensor
CN111880130B (en) Space magnetic field vector sensor and manufacturing process method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination