CN108963194A - A kind of silicon based composite material and its preparation method and application - Google Patents
A kind of silicon based composite material and its preparation method and application Download PDFInfo
- Publication number
- CN108963194A CN108963194A CN201710350431.4A CN201710350431A CN108963194A CN 108963194 A CN108963194 A CN 108963194A CN 201710350431 A CN201710350431 A CN 201710350431A CN 108963194 A CN108963194 A CN 108963194A
- Authority
- CN
- China
- Prior art keywords
- silicon
- oxide
- based composite
- composite material
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 149
- 239000002131 composite material Substances 0.000 title claims abstract description 147
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 239000010703 silicon Substances 0.000 title claims abstract description 133
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 239000007773 negative electrode material Substances 0.000 claims abstract description 45
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 20
- 229910052718 tin Inorganic materials 0.000 claims abstract description 18
- 229910052802 copper Inorganic materials 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 16
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 14
- 229910052796 boron Inorganic materials 0.000 claims abstract description 13
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 12
- 229910052788 barium Inorganic materials 0.000 claims abstract description 12
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 12
- 239000003990 capacitor Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 90
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims description 43
- 229910000676 Si alloy Inorganic materials 0.000 claims description 39
- 239000010949 copper Substances 0.000 claims description 29
- 239000000203 mixture Substances 0.000 claims description 29
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 26
- 239000010936 titanium Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 24
- 239000011572 manganese Substances 0.000 claims description 23
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 22
- 239000000843 powder Substances 0.000 claims description 22
- 239000011734 sodium Substances 0.000 claims description 22
- 239000011575 calcium Substances 0.000 claims description 19
- 239000011777 magnesium Substances 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 17
- 239000011701 zinc Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 13
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011787 zinc oxide Substances 0.000 claims description 12
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical class 0.000 claims description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 10
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 9
- 230000006698 induction Effects 0.000 claims description 9
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 claims description 8
- 229910052810 boron oxide Inorganic materials 0.000 claims description 8
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910001887 tin oxide Inorganic materials 0.000 claims description 8
- 239000004115 Sodium Silicate Substances 0.000 claims description 6
- 239000004110 Zinc silicate Substances 0.000 claims description 6
- 229910052916 barium silicate Inorganic materials 0.000 claims description 6
- HMOQPOVBDRFNIU-UHFFFAOYSA-N barium(2+);dioxido(oxo)silane Chemical compound [Ba+2].[O-][Si]([O-])=O HMOQPOVBDRFNIU-UHFFFAOYSA-N 0.000 claims description 6
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000292 calcium oxide Substances 0.000 claims description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 6
- 235000012241 calcium silicate Nutrition 0.000 claims description 6
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 6
- AIOWANYIHSOXQY-UHFFFAOYSA-N cobalt silicon Chemical compound [Si].[Co] AIOWANYIHSOXQY-UHFFFAOYSA-N 0.000 claims description 6
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 6
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 claims description 6
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 6
- 239000000391 magnesium silicate Substances 0.000 claims description 6
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 6
- 235000019792 magnesium silicate Nutrition 0.000 claims description 6
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 claims description 6
- GALOTNBSUVEISR-UHFFFAOYSA-N molybdenum;silicon Chemical compound [Mo]#[Si] GALOTNBSUVEISR-UHFFFAOYSA-N 0.000 claims description 6
- 229910021382 natural graphite Inorganic materials 0.000 claims description 6
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 6
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 6
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 6
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 claims description 6
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- 235000019352 zinc silicate Nutrition 0.000 claims description 6
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 6
- 229910019001 CoSi Inorganic materials 0.000 claims description 5
- 229910008484 TiSi Inorganic materials 0.000 claims description 5
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 5
- -1 ferro-silicium Inorganic materials 0.000 claims description 5
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 5
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 5
- 239000003575 carbonaceous material Substances 0.000 claims description 4
- 229910005347 FeSi Inorganic materials 0.000 claims description 3
- 229910017028 MnSi Inorganic materials 0.000 claims description 3
- 229910005883 NiSi Inorganic materials 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 229910021385 hard carbon Inorganic materials 0.000 claims description 2
- 229910000765 intermetallic Inorganic materials 0.000 claims description 2
- 229910021384 soft carbon Inorganic materials 0.000 claims description 2
- 238000013329 compounding Methods 0.000 claims 17
- 229910052635 ferrosilite Inorganic materials 0.000 claims 3
- 229910052909 inorganic silicate Inorganic materials 0.000 claims 3
- CSSYLTMKCUORDA-UHFFFAOYSA-N barium(2+);oxygen(2-) Chemical compound [O-2].[Ba+2] CSSYLTMKCUORDA-UHFFFAOYSA-N 0.000 claims 2
- MPMSMUBQXQALQI-UHFFFAOYSA-N cobalt phthalocyanine Chemical compound [Co+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 MPMSMUBQXQALQI-UHFFFAOYSA-N 0.000 claims 2
- 238000005137 deposition process Methods 0.000 claims 2
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 claims 2
- 229910052839 forsterite Inorganic materials 0.000 claims 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical group O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims 2
- VIAPNRBXEJNZKV-UHFFFAOYSA-N nickel silicic acid Chemical compound [Ni].[Si](O)(O)(O)O VIAPNRBXEJNZKV-UHFFFAOYSA-N 0.000 claims 2
- 235000019795 sodium metasilicate Nutrition 0.000 claims 2
- 229910016064 BaSi2 Inorganic materials 0.000 claims 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910004715 CaSi2O5 Inorganic materials 0.000 claims 1
- 229910021244 Co2Si Inorganic materials 0.000 claims 1
- 229910018999 CoSi2 Inorganic materials 0.000 claims 1
- 229910017488 Cu K Inorganic materials 0.000 claims 1
- 229910017541 Cu-K Inorganic materials 0.000 claims 1
- 229910018268 Cu15Si4 Inorganic materials 0.000 claims 1
- 229910018139 Cu5Si Inorganic materials 0.000 claims 1
- 229910005331 FeSi2 Inorganic materials 0.000 claims 1
- 229910016823 Mn3Si Inorganic materials 0.000 claims 1
- 229910015503 Mo5Si3 Inorganic materials 0.000 claims 1
- 229910020968 MoSi2 Inorganic materials 0.000 claims 1
- 229910005487 Ni2Si Inorganic materials 0.000 claims 1
- 229910005108 Ni3Si2 Inorganic materials 0.000 claims 1
- 229910021543 Nickel dioxide Inorganic materials 0.000 claims 1
- 229910007270 Si2O6 Inorganic materials 0.000 claims 1
- 229910009973 Ti2O3 Inorganic materials 0.000 claims 1
- 229910009815 Ti3O5 Inorganic materials 0.000 claims 1
- 229910009871 Ti5Si3 Inorganic materials 0.000 claims 1
- 229910008479 TiSi2 Inorganic materials 0.000 claims 1
- 229910007661 ZnSiO3 Inorganic materials 0.000 claims 1
- 229910008257 Zr2Si Inorganic materials 0.000 claims 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 claims 1
- 229910000171 calcio olivine Inorganic materials 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 229910052634 enstatite Inorganic materials 0.000 claims 1
- 229910052840 fayalite Inorganic materials 0.000 claims 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229910052883 rhodonite Inorganic materials 0.000 claims 1
- 238000004544 sputter deposition Methods 0.000 claims 1
- 229910052844 willemite Inorganic materials 0.000 claims 1
- 229910052882 wollastonite Inorganic materials 0.000 claims 1
- 229910052845 zircon Inorganic materials 0.000 claims 1
- 229910021354 zirconium(IV) silicide Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 8
- 239000012071 phase Substances 0.000 description 44
- 229910052814 silicon oxide Inorganic materials 0.000 description 36
- 229910004283 SiO 4 Inorganic materials 0.000 description 16
- 239000002245 particle Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000001228 spectrum Methods 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000002210 silicon-based material Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 5
- 239000010405 anode material Substances 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000010426 asphalt Substances 0.000 description 4
- 239000000378 calcium silicate Substances 0.000 description 4
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- ASTZLJPZXLHCSM-UHFFFAOYSA-N dioxido(oxo)silane;manganese(2+) Chemical compound [Mn+2].[O-][Si]([O-])=O ASTZLJPZXLHCSM-UHFFFAOYSA-N 0.000 description 4
- FMQXRRZIHURSLR-UHFFFAOYSA-N dioxido(oxo)silane;nickel(2+) Chemical compound [Ni+2].[O-][Si]([O-])=O FMQXRRZIHURSLR-UHFFFAOYSA-N 0.000 description 4
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 239000004005 microsphere Substances 0.000 description 4
- 239000011863 silicon-based powder Substances 0.000 description 4
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 229910016066 BaSi Inorganic materials 0.000 description 2
- 229910004706 CaSi2 Inorganic materials 0.000 description 2
- 229910004762 CaSiO Inorganic materials 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- 229910005329 FeSi 2 Inorganic materials 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 2
- 229910017625 MgSiO Inorganic materials 0.000 description 2
- 229910016006 MoSi Inorganic materials 0.000 description 2
- 229910020328 SiSn Inorganic materials 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910006249 ZrSi Inorganic materials 0.000 description 2
- 229910006501 ZrSiO Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000011031 large-scale manufacturing process Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910004028 SiCU Inorganic materials 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂离子电池领域,具体涉及一种硅基复合材料及其制备方法和应用。The invention relates to the field of lithium ion batteries, in particular to a silicon-based composite material and a preparation method and application thereof.
背景技术Background technique
锂离子电池自上世纪90年代首次面世以来,逐步占据了以手机,电脑等为代表的便携式消费电子市场,在大规模储能,电动汽车领域也有广阔的应用前景。锂离子电池负极材料从最开始的焦炭类逐渐演变到如今的天然石墨,人造石墨等,碳基负极的技术已经非常成熟,然而,372mAh/g的理论比容量已经不能满足人们对能量密度日益增长的要求,开发新型负极材料已成重中之重。Lithium-ion batteries have gradually occupied the portable consumer electronics market represented by mobile phones and computers since they first appeared in the 1990s. They also have broad application prospects in the fields of large-scale energy storage and electric vehicles. Lithium-ion battery anode materials have gradually evolved from the initial coke to today's natural graphite, artificial graphite, etc. The technology of carbon-based anodes is very mature. However, the theoretical specific capacity of 372mAh/g can no longer meet people's increasing demand for energy density. The development of new anode materials has become a top priority.
硅材料的理论比容量高达4200mAh/g,且又有电压低,资源丰富等优点,被认为是下一代锂离子电池负极材料。然而,硅在循环过程中巨大的体积应变对其循环性能有很大的影响,在此基础上,中国专利申请CN1513922A和CN102460784A公开了由纳米级别的硅微晶弥散分布在氧化硅基体中构成的氧化亚硅表现出很好的循环性能,受到了人们的青睐。The theoretical specific capacity of silicon material is as high as 4200mAh/g, and it has the advantages of low voltage and abundant resources. It is considered to be the anode material of the next generation of lithium-ion batteries. However, the huge volume strain of silicon during the cycle has a great impact on its cycle performance. On this basis, Chinese patent applications CN1513922A and CN102460784A disclose nanoscale silicon microcrystals dispersed in a silicon oxide matrix. Silicon oxide shows good cycle performance and is favored by people.
然而,氧化亚硅中的氧化硅不能可逆脱嵌锂,导致氧化亚硅的首周效率普遍偏低,且其嵌锂形成的硅酸盐导电性差,导致氧化亚硅的倍率性能也较差。为解决上述问题,在中国专利申请CN103022446A、CN104022257A、CN103872303A和CN103779547A中,人们尝试对氧化亚硅进行不同的表面处理以及掺杂处理,取得了一定效果,然而并没有改变氧化亚硅的微观结构和组成,上述问题依然存在。However, silicon oxide in silicon oxide cannot reversibly deintercalate lithium, resulting in generally low first-week efficiency of silicon oxide, and the silicate formed by lithium intercalation has poor conductivity, resulting in poor rate performance of silicon oxide. In order to solve the above problems, in Chinese patent applications CN103022446A, CN104022257A, CN103872303A and CN103779547A, people tried to carry out different surface treatments and doping treatments on silicon oxide, and achieved certain effects, but did not change the microstructure and Composition, the above-mentioned problems still exist.
发明内容Contents of the invention
因此,本发明的一个目的是针对氧化硅本身的首效低,倍率性能差的缺点,由材料的微观结构和组成出发,提供一种硅基复合材料和包含该硅基复合材料的负极材料。包含本发明的硅基复合材料的负极材料具有首次效率高,循环性能优异,倍率性能好等特点,且制备方法简单,易于大规模生产。Therefore, an object of the present invention is to provide a silicon-based composite material and an anode material containing the silicon-based composite material based on the microstructure and composition of the material, aiming at the disadvantages of low first efficiency and poor rate performance of silicon oxide itself. The negative electrode material comprising the silicon-based composite material of the present invention has the characteristics of high first-time efficiency, excellent cycle performance, good rate performance, etc., and has a simple preparation method and is easy for large-scale production.
本发明的另一个目的是提供一种制备本发明的硅基复合材料的方法。Another object of the present invention is to provide a method for preparing the silicon-based composite material of the present invention.
本发明的又一个目的是提供一种包含本发明的硅基复合材料的负极材料。Another object of the present invention is to provide an anode material comprising the silicon-based composite material of the present invention.
本发明的再一个目的是提供一种包含本发明的硅基复合材料或本发明的负极材料的电池或锂离子电容器。Another object of the present invention is to provide a battery or lithium ion capacitor comprising the silicon-based composite material of the present invention or the negative electrode material of the present invention.
本发明的另一个目的是提供本发明所述的负极材料的用途。Another object of the present invention is to provide the use of the negative electrode material described in the present invention.
除非另外说明,本发明中所述的XRD衍射峰是使用Cu-Kα辐射测量得到的、以2θ角度表示的特征峰。其精度为±0.2度。Unless otherwise stated, the XRD diffraction peaks described in the present invention are characteristic peaks measured using Cu-Kα radiation and expressed in 2θ angles. Its accuracy is ±0.2 degrees.
本发明的目的是通过以下技术方案来实现的。The purpose of the present invention is achieved through the following technical solutions.
一方面,本发明提供一种硅基复合材料,其通式为SiAxOy,其中A为B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的一种或多种,其中x大于0.001且小于10,y大于0.1且小于10。In one aspect, the present invention provides a silicon-based composite material whose general formula is SiA x O y , wherein A is B, Al, Na, Mg, Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Zn , one or more of Zr, Mo, Ge, Sn, wherein x is greater than 0.001 and less than 10, and y is greater than 0.1 and less than 10.
优选地,其中所述硅基复合材料的微观结构为多相弥散分布,所述硅基复合材料至少包括一种金属相、一种金属氧化物相和/或复合氧化物相;更优选地,其中所述金属相的含量为所述硅基复合材料总质量的20%-90%,更优选为30%-60%;所述金属氧化物相和/或复合氧化物相的含量为所述硅基复合材料总质量的20%-90%,更优选为30%-60%。Preferably, the microstructure of the silicon-based composite material is a multiphase dispersed distribution, and the silicon-based composite material includes at least one metal phase, one metal oxide phase and/or a composite oxide phase; more preferably, Wherein the content of the metal phase is 20%-90% of the total mass of the silicon-based composite material, more preferably 30%-60%; the content of the metal oxide phase and/or composite oxide phase is the 20%-90% of the total mass of the silicon-based composite material, more preferably 30%-60%.
优选地,其中所述金属相的尺寸为0.5-100nm;更优选地,所述金属相由Si和B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的一种或多种的单质或合金组成。Preferably, the size of the metal phase is 0.5-100nm; more preferably, the metal phase is composed of Si and B, Al, Na, Mg, Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Elemental or alloy composition of one or more of Zn, Zr, Mo, Ge, Sn.
优选地,其中所述金属相均匀分布在一种或多种金属氧化物相和/或复合氧化物相中;更优选地,所述金属氧化物相为Si、B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的一种或多种的氧化物,所述复合氧化物相为Si、B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的一种或多种的复合氧化物。Preferably, the metal phase is uniformly distributed in one or more metal oxide phases and/or composite oxide phases; more preferably, the metal oxide phase is Si, B, Al, Na, Mg, Oxides of one or more of Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, the composite oxide phase is Si, B, Al, Na , Mg, Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn in one or more composite oxides.
优选地,所述B元素在材料中以氧化硼、硼硅合金或者与其它元素复合方式存在,所述氧化硼对应的XRD衍射峰的最强峰位于27.8度处,所述硼硅合金对应的XRD衍射峰的最强峰位于33.4度处。Preferably, the B element exists in the material as boron oxide, borosilicate alloy or compounded with other elements, the strongest peak of the XRD diffraction peak corresponding to the boron oxide is located at 27.8 degrees, and the corresponding borosilicate The strongest peak of the XRD diffraction peak is located at 33.4 degrees.
优选地,所述的Al元素在材料中以氧化铝、硅酸铝或者与其它元素复合方式存在,所述氧化铝对应的XRD衍射峰的最强峰位于42.7度处,所述硅酸铝对应的XRD衍射峰的最强峰位于26.6度和/或26.2度处。Preferably, the Al element exists in the material in the form of alumina, aluminum silicate or compounded with other elements, the strongest peak of the XRD diffraction peak corresponding to the alumina is located at 42.7 degrees, and the aluminum silicate corresponds to The strongest peaks of the XRD diffraction peaks are located at 26.6 degrees and/or 26.2 degrees.
优选地,所述的Na元素在材料中以硅酸钠或者与其它元素复合方式存在,所述硅酸钠为Na2(Si3O7)、Na2(Si2O5)和Na(SiO3)中的一种或多种混合。Preferably, the Na element exists in the material as sodium silicate or in a composite form with other elements, and the sodium silicate is Na 2 (Si 3 O 7 ), Na 2 (Si 2 O 5 ) and Na(SiO 3 ) One or more mixtures.
优选地,所述的Mg元素在材料中以氧化镁、硅酸镁或者与其它元素复合方式存在,所述氧化镁对应的XRD衍射峰的最强峰位于42.9度处,所述硅酸镁为MgSiO3、Mg2SiO4和Mg2Si2O6中的一种或多种混合,其中Mg2SiO4对应的XRD在37.3度和38.4度处有一对特征峰。Preferably, the Mg element exists in the material as magnesium oxide, magnesium silicate or in a composite form with other elements, the strongest peak of the XRD diffraction peak corresponding to the magnesium oxide is located at 42.9 degrees, and the magnesium silicate is One or more of MgSiO 3 , Mg 2 SiO 4 and Mg 2 Si 2 O 6 are mixed, and the XRD corresponding to Mg 2 SiO 4 has a pair of characteristic peaks at 37.3 degrees and 38.4 degrees.
优选地,所述的Ca元素在材料中以氧化钙、硅酸钙或者与其它元素复合方式存在,所述氧化钙对应的XRD衍射峰的最强峰位于37.4度处,所述硅酸钙为CaSiO3、CaSi2O5、Ca2SiO4和Ca3Si3O9中的一种或多种混合。Preferably, the Ca element exists in the material as calcium oxide, calcium silicate or compounded with other elements, the strongest peak of the XRD diffraction peak corresponding to the calcium oxide is located at 37.4 degrees, and the calcium silicate is One or more of CaSiO 3 , CaSi 2 O 5 , Ca 2 SiO 4 and Ca 3 Si 3 O 9 are mixed.
优选地,所述的Ba元素在材料中以氧化钡、硅酸钡或者与其它元素复合方式存在,所述氧化钡对应的XRD衍射峰的最强峰位于28.1度处,所述硅酸钡为BaSiO3、BaSi2O5、Ba2SiO4、Ba4Si6O16和Ba6Si10O26中的一种或多种混合。Preferably, the Ba element exists in the material as barium oxide, barium silicate or compounded with other elements, the strongest peak of the XRD diffraction peak corresponding to the barium oxide is located at 28.1 degrees, and the barium silicate is One or more of BaSiO 3 , BaSi 2 O 5 , Ba 2 SiO 4 , Ba 4 Si 6 O 16 and Ba 6 Si 10 O 26 are mixed.
优选地,所述的Ti元素在材料中以氧化钛、钛硅合金或者与其它元素复合方式存在,所述氧化钛为TiO2、Ti2O3和Ti3O5等一种或几种的混合物,所述钛硅合金为TiSi2、Ti5Si4、Ti5Si3和TiSi中的一种或几种的组合,其对应XRD分别在40.4、37.2、40.8和36.9度处有特征峰。Preferably, the Ti element exists in the material as titanium oxide, titanium-silicon alloy or composited with other elements, and the titanium oxide is one or more of TiO 2 , Ti 2 O 3 and Ti 3 O 5 The titanium-silicon alloy is one or a combination of TiSi 2 , Ti 5 Si 4 , Ti 5 Si 3 and TiSi, and its corresponding XRD has characteristic peaks at 40.4, 37.2, 40.8 and 36.9 degrees respectively.
优选地,所述的Mn元素在材料中以氧化锰、锰硅合金、硅酸锰或者与其它元素复合方式存在,所述氧化锰为MnO2、Mn3O4和Mn2O3中的一种或几种的混合,所述锰硅合金为Mn3Si、MnSi和Mn5Si2中的一种或几种的混合,其对应XRD分别在44.8、44.4和43.1度处有特征峰,所述硅酸锰为MnSiO3,其对应XRD在32.5度处有特征峰。Preferably, the Mn element exists in the material as manganese oxide, manganese-silicon alloy, manganese silicate or composited with other elements, and the manganese oxide is one of MnO 2 , Mn 3 O 4 and Mn 2 O 3 The manganese-silicon alloy is a mixture of one or more of Mn 3 Si, MnSi and Mn 5 Si 2 , and its corresponding XRD has characteristic peaks at 44.8, 44.4 and 43.1 degrees respectively, so The above-mentioned manganese silicate is MnSiO 3 , which corresponds to a characteristic peak at 32.5 degrees in XRD.
优选地,所述的Fe元素在材料中以氧化铁、铁硅合金、硅酸铁或者与其它元素复合方式存在,所述氧化铁为Fe2O3,对应XRD在33.2度处有特征峰,所述铁硅合金为FeSi2和/或FeSi,对应的XRD分别在17.3、45.0度处有特征峰,所述硅酸铁为FeSiO3和/或Fe2SiO4。Preferably, the Fe element exists in the material as iron oxide, iron-silicon alloy, iron silicate or composited with other elements, and the iron oxide is Fe 2 O 3 , which corresponds to a characteristic peak at 33.2 degrees in XRD, The iron-silicon alloy is FeSi 2 and/or FeSi, and the corresponding XRD has characteristic peaks at 17.3 and 45.0 degrees respectively, and the iron silicate is FeSiO 3 and/or Fe 2 SiO 4 .
优选地,所述Co元素在材料中以氧化钴、钴硅合金、硅酸钴或者与其它元素复合方式存在,所述氧化钴为Co3O4和/或CoO,对应的XRD分别在36.8、42.4度处有特征峰,所述钴硅合金为CoSi、Co2Si和CoSi2中的一种或几种的混合,对应的XRD分别在45.7、45.3和47.9度处有特征峰,所述硅酸钴为CoSiO3和/或Co2SiO4。Preferably, the Co element exists in the material as cobalt oxide, cobalt-silicon alloy, cobalt silicate or in a composite form with other elements, and the cobalt oxide is Co 3 O 4 and/or CoO, and the corresponding XRD values are 36.8, There is a characteristic peak at 42.4 degrees. The cobalt-silicon alloy is a mixture of one or more of CoSi, Co 2 Si and CoSi 2 . The corresponding XRD has characteristic peaks at 45.7, 45.3 and 47.9 degrees. Cobalt acid is CoSiO 3 and/or Co 2 SiO 4 .
优选地,所述的Ni元素在材料中以氧化镍、镍硅合金、硅酸镍或者与其它元素复合方式存在,所述氧化镍为NiO和/或NiO2,对应的XRD分别在43.3、18.6度处有特征峰,所述镍硅合金为NiSi、Ni2Si、Ni3Si2和Ni3Si中的一种或者几种的混合,对应的XRD分别在47.2、46.2、45.0和44.7度处有特征峰,所述硅酸镍为Ni2SiO4。Preferably, the Ni element exists in the material in the form of nickel oxide, nickel-silicon alloy, nickel silicate or composited with other elements, the nickel oxide is NiO and/or NiO 2 , and the corresponding XRD values are 43.3, 18.6 There are characteristic peaks at degrees, the nickel-silicon alloy is one or a mixture of NiSi, Ni 2 Si, Ni 3 Si 2 and Ni 3 Si, and the corresponding XRD is at 47.2, 46.2, 45.0 and 44.7 degrees, respectively There are characteristic peaks, and the nickel silicate is Ni 2 SiO 4 .
优选地,所述的Cu元素在材料中以铜硅合金、硅酸酮或者与其它元素复合方式存在,所述铜硅合金为Cu9Si、Cu5Si、Cu6.6Si、Cu15Si4和Cu3Si中的一种或者几种的混合,对应的XRD分别在43.3,43.7,43.2,44.1,45.0度处有特征峰,所述硅酸酮为CuSiO3,对应的XRD在28.0度处有特征峰。Preferably, the Cu element exists in the material in the form of Cu 9 Si, Cu 5 Si, Cu 6.6 Si, Cu 15 Si 4 and Cu 15 Si 4 One or a mixture of Cu 3 Si, the corresponding XRD has characteristic peaks at 43.3, 43.7, 43.2, 44.1, and 45.0 degrees, and the ketone silicate is CuSiO 3 , and the corresponding XRD has Characteristic peaks.
优选地,所述的Zn元素在材料中以氧化锌、硅酸锌或者与其它元素复合方式存在,所述氧化锌为ZnO和/或ZnO2,对应的XRD分别在42.3、37.0度处有特征峰;所述硅酸锌为ZnSiO3和/或Zn2SiO4。Preferably, the Zn element exists in the material as zinc oxide, zinc silicate or composited with other elements, the zinc oxide is ZnO and/or ZnO 2 , and the corresponding XRD has characteristics at 42.3 and 37.0 degrees respectively peak; the zinc silicate is ZnSiO 3 and/or Zn 2 SiO 4 .
优选地,所述的Zr元素在材料中以锆硅合金、硅酸锆或者与其它元素复合方式存在,所述锆硅合金为Zr2Si、Zr5Si3、ZrSi2、Zr5Si4和Zr3Si2中一种或几种的混合,所述硅酸锆为ZrSiO4,其XRD在27.0度处有特征峰。Preferably, the Zr element exists in the material as a zirconium-silicon alloy, zirconium silicate or composited with other elements, and the zirconium-silicon alloy is Zr 2 Si, Zr 5 Si 3 , ZrSi 2 , Zr 5 Si 4 and A mixture of one or more of Zr 3 Si 2 , the zirconium silicate is ZrSiO 4 , and its XRD has a characteristic peak at 27.0 degrees.
优选地,所述的Mo元素在材料中以钼硅合金或者与其它元素复合方式存在,所述钼硅合金为MoSi2、Mo5Si3和Mo3Si中的一种或混合。Preferably, the Mo element exists in the material as a molybdenum-silicon alloy or in a composite form with other elements, and the molybdenum-silicon alloy is one or a mixture of MoSi 2 , Mo 5 Si 3 and Mo 3 Si.
优选地,所述的Ge元素在材料中以任意比例的GeSi合金、氧化锗或者与其它元素复合方式存在,所述氧化锗为GeO2,其XRD在26.4度处有特征峰。Preferably, the Ge element exists in the material in any proportion of GeSi alloy, germanium oxide or compounded with other elements. The germanium oxide is GeO 2 , and its XRD has a characteristic peak at 26.4 degrees.
优选地,所述的Sn元素在材料中以氧化锡、金属锡、或者与其它元素复合方式存在,所述氧化锡为SnO2和/或SnO,对应XRD分别在26.5度、29.9度处有特征峰;所述金属锡为单质Sn,对应XRD在30.6度处有特征峰。Preferably, the Sn element exists in the material as tin oxide, metal tin, or in a composite form with other elements, and the tin oxide is SnO 2 and/or SnO, and the corresponding XRD has characteristics at 26.5 degrees and 29.9 degrees respectively peak; the metal tin is elemental Sn, and corresponding XRD has a characteristic peak at 30.6 degrees.
优选地,其中所述硅基复合材料的平均粒径为50纳米~40微米;优选地,所述硅基复合材料的平均粒径为1微米~10微米。Preferably, the average particle diameter of the silicon-based composite material is 50 nanometers to 40 micrometers; preferably, the average particle diameter of the silicon-based composite material is 1 micrometer to 10 micrometers.
优选地,其中所述硅基复合材料作为负极材料的充电比容量为400-2500mAh/g。Preferably, the silicon-based composite material used as the negative electrode material has a charging specific capacity of 400-2500mAh/g.
本发明的硅基复合材料可以用于锂离子电池、锂硫电池、全固态电池或锂离子电容器等。The silicon-based composite material of the present invention can be used in lithium-ion batteries, lithium-sulfur batteries, all-solid-state batteries, or lithium-ion capacitors.
优选地,本发明所述的硅基复合材料是通过一步气相沉积法或两步法制备的;所述一步气相沉积法包括以下步骤:将单质硅、单质A和A的氧化物之一或两者,以及任选的氧化硅按元素摩尔比Si:A:O=1:x:y的比例混合后经电子束轰击、磁控溅射、电感应加热、电阻加热等方式蒸发为气体后沉积,之后粉碎,得到所述硅基复合材料;所述两步法包括以下步骤:首先将单质硅和氧化硅按比例混合后经电子束轰击、磁控溅射、电感应加热、电阻加热等方式蒸发为气体后沉积为氧化亚硅,之后再与单质A和/或A的氧化物均匀混合后进行热处理,得到所述硅基复合材料。Preferably, the silicon-based composite material of the present invention is prepared by a one-step vapor deposition method or a two-step method; Or, and optional silicon oxide is mixed according to the ratio of element molar ratio Si:A:O=1:x:y, and then evaporated into gas by electron beam bombardment, magnetron sputtering, electric induction heating, resistance heating, etc. , and then pulverized to obtain the silicon-based composite material; the two-step method includes the following steps: firstly mix elemental silicon and silicon oxide in proportion, and then undergo electron beam bombardment, magnetron sputtering, electric induction heating, resistance heating, etc. After evaporating into a gas, it is deposited as silicon oxide, and then it is uniformly mixed with the element A and/or the oxide of A and then heat-treated to obtain the silicon-based composite material.
另一方面,本发明提供一种制备本发明所述的硅基复合材料的方法,其为一步气相沉积法或两步法,其中:In another aspect, the present invention provides a method for preparing the silicon-based composite material described in the present invention, which is a one-step vapor deposition method or a two-step method, wherein:
所述一步气相沉积法包括以下步骤:将单质硅、单质A和A的氧化物之一或两者,以及任选的氧化硅按元素摩尔比Si:A:O=1:x:y的比例混合后经电子束轰击、磁控溅射、电感应加热、电阻加热至800-1800℃等方式蒸发为气体后沉积在温度为50-800℃的基板上,之后将沉积物破碎为粉末,得到所述硅基复合材料;The one-step vapor phase deposition method includes the following steps: one or both of elemental silicon, elemental A and the oxide of A, and optional silicon oxide in the ratio of elemental molar ratio Si:A:O=1:x:y After mixing, it is evaporated into a gas by electron beam bombardment, magnetron sputtering, electric induction heating, and resistance heating to 800-1800°C, and then deposited on a substrate at a temperature of 50-800°C. After that, the deposit is broken into powder to obtain The silicon-based composite material;
所述两步法包括以下步骤:首先将单质硅和氧化硅按比例混合后经电子束轰击、磁控溅射、电感应加热、电阻加热等方式蒸发为气体后沉积为氧化亚硅,之后与单质A和/或A的氧化物均匀混合后在600-1500℃进行热处理2-24h,得到所述硅基复合材料。The two-step method includes the following steps: firstly, elemental silicon and silicon oxide are mixed in proportion, evaporated into gas by means of electron beam bombardment, magnetron sputtering, electric induction heating, resistance heating, etc., and then deposited as silicon oxide; The silicon-based composite material is obtained by uniformly mixing the simple substance A and/or the oxide of A and then performing heat treatment at 600-1500° C. for 2-24 hours.
优选地,所述单质A为B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的任意一种或者多种的单质元素或金属间化合物。Preferably, the simple substance A is any one or more of B, Al, Na, Mg, Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn Elemental elements or intermetallic compounds.
又一方面,本发明提供一种负极材料,其包含本发明所述的硅基复合材料和碳材料,其中所述硅基复合材料的含量为所述负极材料总质量的2%以上;所述碳材料包括软碳、硬碳、中间相碳微球、石墨化中间相碳微球、天然石墨、改性天然石墨和人造石墨中的一种或几种的组合;优选地,对所述硅基复合材料进行碳包覆处理。In another aspect, the present invention provides a negative electrode material, which includes the silicon-based composite material and carbon material described in the present invention, wherein the content of the silicon-based composite material is more than 2% of the total mass of the negative electrode material; Carbon materials include soft carbon, hard carbon, mesocarbon microspheres, graphitized mesocarbon microspheres, natural graphite, modified natural graphite and artificial graphite; preferably, the silicon Carbon-coated composites.
再一方面,本发明提供一种电池,其包含本发明所述的硅基复合材料或本发明所述的负极材料;优选地,所述电池为锂离子电池、锂硫电池或全固态电池等。In another aspect, the present invention provides a battery comprising the silicon-based composite material of the present invention or the negative electrode material of the present invention; preferably, the battery is a lithium-ion battery, a lithium-sulfur battery or an all-solid-state battery, etc. .
另一方面,本发明提供一种锂离子电容器,其包含本发明所述的硅基复合材料或本发明所述的负极材料。In another aspect, the present invention provides a lithium ion capacitor, which comprises the silicon-based composite material or the negative electrode material described in the present invention.
又一方面,本发明提供了本发明所述的负极材料的用途,其用于作为锂离子电池、锂离子电容器、锂硫电池、全固态电池等的负极材料或其一部分。In another aspect, the present invention provides the use of the negative electrode material described in the present invention, which is used as a negative electrode material or a part thereof for lithium-ion batteries, lithium-ion capacitors, lithium-sulfur batteries, all-solid-state batteries, etc.
本发明的硅基复合材料基于目前技术较成熟的氧化亚硅,对其微观结构与组成进行根本上的改变,在提高循环性能的同时,大幅提高了倍率性能及其首效。同时本发明还公开了所述硅基复合材料的制备方法,该制备方法具有简单高效的特点,易于大规模生产。包含该复合材料的负极材料以及锂离子电池、锂离子电容器等同样具有高能量密度、高循环性能、高倍率性能、高首效的特点。The silicon-based composite material of the present invention is based on silicon oxide, which is a relatively mature technology at present, and its microstructure and composition are fundamentally changed. While improving cycle performance, the rate performance and its first effect are greatly improved. At the same time, the invention also discloses a preparation method of the silicon-based composite material. The preparation method has the characteristics of simplicity and high efficiency, and is easy for large-scale production. The negative electrode material containing the composite material, lithium ion battery, lithium ion capacitor, etc. also have the characteristics of high energy density, high cycle performance, high rate performance, and high first efficiency.
附图说明Description of drawings
以下,结合附图来详细说明本发明的实施方案,其中:Below, describe embodiment of the present invention in detail in conjunction with accompanying drawing, wherein:
图1为本发明实施例1中所得材料的XRD图;Fig. 1 is the XRD pattern of the material gained in the embodiment of the present invention 1;
图2为本发明实施例1所得材料的循环图;Fig. 2 is the cycle diagram of the material obtained in Example 1 of the present invention;
图3为本发明实施例1所得材料的倍率图;Fig. 3 is the magnification diagram of the material obtained in Example 1 of the present invention;
图4为本发明实施例2所得材料的XRD图;Fig. 4 is the XRD pattern of the material obtained in Example 2 of the present invention;
图5为本发明实施例3所得材料的XRD图;Fig. 5 is the XRD pattern of the material obtained in Example 3 of the present invention;
图6为本发明实施例4所得材料的XRD图;Fig. 6 is the XRD pattern of the material obtained in Example 4 of the present invention;
图7为本发明实施例5所得材料的XRD图;Fig. 7 is the XRD pattern of the material obtained in Example 5 of the present invention;
图8为本发明实施例7所得材料的XRD图;Fig. 8 is the XRD pattern of the material obtained in Example 7 of the present invention;
图9为本发明实施例8所得材料的XRD图;Fig. 9 is the XRD pattern of the material obtained in Example 8 of the present invention;
图10为对比例1所得材料的XRD图;Fig. 10 is the XRD figure of comparative example 1 obtained material;
图11为对比例1所得材料的循环图;Fig. 11 is the cycle diagram of comparative example 1 obtained material;
图12为对比例1所得材料的倍率图。12 is a magnification diagram of the material obtained in Comparative Example 1.
具体实施方式Detailed ways
下面结合具体实施例对本发明做进一步说明,下面各实施例仅用于说明本发明而并非对本发明的限制。The present invention will be further described below in conjunction with specific examples, and each of the following examples is only used to illustrate the present invention rather than limit the present invention.
根据生成物的物相组成可将元素分为(B)、(Al Na Mg Ca Ba Zn)、(Ti Mn Fe CoNi Cu Zr Mo)和(Ge Sn)四类。According to the phase composition of the product, the elements can be divided into four types: (B), (Al Na Mg Ca Ba Zn), (Ti Mn Fe CoNi Cu Zr Mo) and (Ge Sn).
实施例1Example 1
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅粉,氧化硼粉末,二氧化硅粉末按照摩尔比2:1:1混合后进入电阻加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度,在低温衬底区收集气体,衬底温度为500度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米(激光粒度仪测试,下同)的粉末,得到本发明的化学式为SiB0.5O1.25的硅基复合材料。(1) Mix metal silicon powder, boron oxide powder, and silicon dioxide powder according to the molar ratio of 2:1:1 and put them into a resistance-heated vacuum furnace. Gas is collected in the bottom area, and the substrate temperature is 500 degrees. After the reaction is finished, the obtained block is processed to a powder whose median particle size is 3 microns (laser particle size analyzer test, the same below) through a jaw crusher, a rough crusher, and a jet mill to obtain the chemical formula of the present invention A silicon-based composite material of SiB 0.5 O 1.25 .
(2)将上述复合材料与沥青以90:10质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The composite material and pitch are uniformly mixed at a mass ratio of 90:10 and then heat-treated, and the obtained material is mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
将上述负极材料与质量比为2%的炭黑,2%的纤维素酸钠,3%的丁苯橡胶在水溶剂中均匀混合成电池浆料,涂敷在铜箔上,烘干后裁成8*8mm的方片,在110摄氏度下真空干燥12h后在手套箱中组装半电池,评价其电化学性能。Mix the above-mentioned negative electrode material with 2% carbon black by mass, 2% sodium cellulose, and 3% styrene-butadiene rubber in a water solvent to form a battery slurry, coat it on a copper foil, and cut it after drying. Formed into 8*8mm square pieces, dried in vacuum at 110 degrees Celsius for 12 hours, assembled half-cells in a glove box, and evaluated their electrochemical performance.
电化学测试模式为第一周0.1C放电至0.005V,0.05C放电至0.005V,0.02C放电至0.005V。静置5s以0.1C充电至1V截止,后续循环为0.5C放电至0.005V,0.2C放电至0.005V,0.05C放电至0.005V,0.02C放电至0.005V,静置5s后以0.5C充电至1V截止。The electrochemical test mode is 0.1C discharge to 0.005V, 0.05C discharge to 0.005V, and 0.02C discharge to 0.005V in the first week. Stand still for 5s, charge at 0.1C to 1V, then discharge at 0.5C to 0.005V, 0.2C to 0.005V, 0.05C to 0.005V, 0.02C to 0.005V, then charge at 0.5C after standing for 5s to 1V cutoff.
测试倍率的程序为前三周0.2C放电至0.005V,0.05C放电至0.005V,0.02C放电至0.005V,静置5s后以0.5C充电至1V截止。之后保持放电倍率不变,依次改变充电倍率为0.5C、1C、2C、3C、5C、10C。之后保持充电倍率为0.2C不变,依次改变放电倍率为0.5C、1C、2C放电至0.005V。上述每种倍率均循环五周,取五周的平均值评价其倍率性能,结果见表1。The procedure for testing the rate is to discharge 0.2C to 0.005V for the first three weeks, discharge 0.05C to 0.005V, discharge 0.02C to 0.005V, and charge at 0.5C to 1V after standing for 5s. After that, keep the discharge rate unchanged, and change the charge rate to 0.5C, 1C, 2C, 3C, 5C, and 10C in turn. After that, keep the charge rate constant at 0.2C, and then change the discharge rate to 0.5C, 1C, and 2C to discharge to 0.005V. Each of the above magnifications was cycled for five weeks, and the average value of the five weeks was taken to evaluate the rate performance. The results are shown in Table 1.
本发明所述XRD实验在Bruke D8Advance(购自Bruke公司)上进行,使用Cu-Kα辐射,扫描2θ角度范围为10-90度。下同。The XRD experiment of the present invention is carried out on a Bruke D8 Advance (purchased from Bruke Company), using Cu-Kα radiation, and the scanning 2θ angle range is 10-90 degrees. The same below.
本实施例所得材料的XRD图谱见图1,在28.5度有硅的特征峰,在27.8度有氧化硼的特征峰。The XRD spectrum of the material obtained in this example is shown in Fig. 1, there is a characteristic peak of silicon at 28.5 degrees, and a characteristic peak of boron oxide at 27.8 degrees.
从XRD图谱中通过精修,拟合后可以推出本发明所述的硅基复合材料中金属相的尺寸约为5nm,金属相的含量约为所述硅基复合材料总质量的35%,金属氧化物相的含量约为所述硅基复合材料总质量的65%。From the XRD collection of spectra, by refinement, after fitting, it can be deduced that the size of the metal phase in the silicon-based composite material of the present invention is about 5nm, and the content of the metal phase is about 35% of the total mass of the silicon-based composite material. The content of the oxide phase is about 65% of the total mass of the silicon-based composite material.
本实施例所得材料的循环图及倍率图见图2、图3。可见本实施例得到材料的循环性能良好,倍率性能良好。The cycle diagram and magnification diagram of the material obtained in this embodiment are shown in Fig. 2 and Fig. 3 . It can be seen that the cycle performance of the material obtained in this example is good, and the rate performance is good.
实施例2Example 2
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅粉,氧化钛粉末,二氧化硅粉末按照摩尔比2:1:1混合后进入电阻加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度,在低温衬底区收集气体,衬底温度为500度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到本发明的化学式为SiTi0.33O1.33的硅基复合材料。(1) Metal silicon powder, titanium oxide powder, and silicon dioxide powder are mixed according to the molar ratio of 2:1:1 and put into a resistance-heated vacuum furnace. Gas is collected in the bottom area, and the substrate temperature is 500 degrees. After the reaction is finished, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill one by one to a powder with a median particle size of 3 microns, and the silicon-based composite compound with the chemical formula SiTi 0.33 O 1.33 of the present invention is obtained. Material.
(2)将上述复合材料与沥青以95:5质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The above-mentioned composite material and asphalt are uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material is mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例所得材料的XRD图谱见图4,图中清晰可见材料由硅(主峰位于28.5度),氧化硅(主峰位于21.76度),钛硅合金(主峰位于40.8度)组成,其中钛硅合金为Ti5Si3。The XRD spectrum of the material obtained in this example is shown in Figure 4, in which it can be clearly seen that the material is composed of silicon (the main peak is at 28.5 degrees), silicon oxide (the main peak is at 21.76 degrees), titanium-silicon alloy (the main peak is at 40.8 degrees), and the titanium-silicon alloy It is Ti 5 Si 3 .
从XRD图谱中通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为20nm,金属相的含量约为所述硅基复合材料总质量的40%,金属氧化物相的含量约为所述硅基复合材料总质量的60%。From the XRD collection of spectra, through refinement, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 20nm, and the content of the metal phase is about 40% of the total mass of the silicon-based composite material. The content of the phase is about 60% of the total mass of the silicon-based composite material.
实施例3Example 3
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅粉,氧化铝粉末,氧化硅粉末按照摩尔比2:1:1混合后进入感应加热的真空炉内,首先抽真空至100Pa,随后开始升温至1700度,在低温衬底区收集气体,衬底温度为500度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到本发明的化学式为SiAl0.67O1.67的硅基复合材料。(1) Mix metal silicon powder, alumina powder, and silicon oxide powder according to the molar ratio of 2:1:1 and enter the induction heating vacuum furnace. First, vacuumize to 100Pa, then start to heat up to 1700 degrees. The gas is collected in the zone, and the substrate temperature is 500 degrees. After the reaction is over, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill one by one to a powder with a median particle size of 3 microns, and the silicon-based composite compound with the chemical formula of SiAl 0.67 O 1.67 of the present invention is obtained. Material.
(2)将上述复合材料与沥青以95:5质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The above-mentioned composite material and asphalt are uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material is mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例所得材料的XRD图谱见图5,图中清晰可见材料由硅(主峰位于28.5度),氧化硅(位于20度非晶包),氧化铝(主峰位于42.7度),硅酸铝(主峰位于26.6度)组成。The XRD spectrum of the material obtained in the present embodiment is shown in Fig. 5, and it can be clearly seen that the material is composed of silicon (the main peak is at 28.5 degrees), silicon oxide (the amorphous package is at 20 degrees), aluminum oxide (the main peak is at 42.7 degrees), aluminum silicate ( The main peak is located at 26.6 degrees) composition.
从XRD图谱中通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为15nm,金属相的含量约为所述硅基复合材料总质量的30%,金属氧化物相和的含量约为所述硅基复合材料总质量的30%,复合氧化物相的含量为所述硅基复合材料总质量的40%Through refinement from the XRD spectrum, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 15nm, and the content of the metal phase is about 30% of the total mass of the silicon-based composite material. The content of phase and phase is about 30% of the total mass of the silicon-based composite material, and the content of the composite oxide phase is 40% of the total mass of the silicon-based composite material
实施例4Example 4
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅粉、铜硅合金粉末、氧化硅按照摩尔比2:2:1混合后经电子束轰击后在温度为200度的衬底上沉积。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到本发明的化学式为SiCu1.25O0.4的硅基复合材料。(1) Metal silicon powder, copper-silicon alloy powder, and silicon oxide are mixed according to a molar ratio of 2:2:1, bombarded by an electron beam, and deposited on a substrate at a temperature of 200 degrees. After the reaction is over, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill one by one to a powder with a median particle size of 3 microns, and the silicon-based composite compound with the chemical formula of SiCu 1.25 O 0.4 of the present invention is obtained. Material.
(2)将上述复合材料与酚醛树脂以95:5质量比均匀混合后进行热处理,得到的材料与天然石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The above-mentioned composite material and phenolic resin are uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material is mixed with natural graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例所得材料的XRD图谱见图6,图中清晰可见材料由硅(主峰位于28.5度),氧化硅(位于20度非晶包),铜硅合金(Cu3Si,位于44.5度的次强峰与45.0的最强峰)组成。The XRD spectrum of the material obtained in this embodiment is shown in Fig. 6. It can be clearly seen that the material is composed of silicon (main peak at 28.5 degrees), silicon oxide (at 20 degrees amorphous), copper-silicon alloy (Cu 3 Si, at 44.5 degrees). Strong peak and the strongest peak at 45.0).
从XRD图谱中通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为40nm,金属相的含量约为所述硅基复合材料总质量的80%,金属氧化物相的含量约为所述硅基复合材料总质量的20%。Through refinement from the XRD spectrum, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 40nm, and the content of the metal phase is about 80% of the total mass of the silicon-based composite material. The content of the phase is about 20% of the total mass of the silicon-based composite material.
实施例5Example 5
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅与氧化硅按照摩尔比1.5:1混合后进入感应加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度后保温,在低温衬底区收集气体,衬底温度为500度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到氧化亚硅粉末;(1) Metal silicon and silicon oxide are mixed according to the molar ratio of 1.5:1 and put into an induction heating vacuum furnace. First, the vacuum is evacuated to 100Pa, and then the temperature is raised to 1400 degrees and then kept warm. The gas is collected in the low-temperature substrate area, and the substrate The temperature is 500 degrees. After the reaction is finished, process the obtained block through a jaw crusher, a coarse crusher, and a jet mill one by one to a powder with a median particle size of 3 microns to obtain silicon oxide powder;
(2)将得到的氧化亚硅粉末按照摩尔比1:1.5与氧化铜混合后在900℃下热处理6h,得到本发明的化学式为SiCuO1.67的硅基复合材料。(2) The silicon oxide powder obtained was mixed with copper oxide at a molar ratio of 1:1.5, and then heat-treated at 900° C. for 6 hours to obtain the silicon-based composite material with the chemical formula SiCuO 1.67 of the present invention.
(3)将上述复合材料与葡萄糖以90:10质量比均匀混合后进行热处理,得到的材料与石墨化中间相碳微球以质量比1:5的比例混合,得到本发明所述负极材料。(3) The composite material and glucose were uniformly mixed at a mass ratio of 90:10 and then heat-treated, and the obtained material was mixed with graphitized mesocarbon microspheres at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例得到的硅基复合材料的XRD见图7。可见其基本特征与上述实施例5相同,只是氧化硅量明显提高,铜硅合金相含量明显更少。The XRD of the silicon-based composite material obtained in this embodiment is shown in FIG. 7 . It can be seen that its basic characteristics are the same as those of Example 5 above, except that the amount of silicon oxide is significantly increased, and the content of copper-silicon alloy phase is significantly less.
通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为25nm,金属相的含量约为所述硅基复合材料总质量的60%,金属氧化物相的含量约为所述硅基复合材料总质量的40%。Through refinement, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 25nm, the content of the metal phase is about 60% of the total mass of the silicon-based composite material, and the content of the metal oxide phase It is about 40% of the total mass of the silicon-based composite material.
实施例6Example 6
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅与氧化硅按照摩尔比1.05:1混合后进入感应加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度后保温,在低温衬底区收集气体,衬底温度为400度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到氧化亚硅粉末;(1) Metal silicon and silicon oxide are mixed according to the molar ratio of 1.05:1 and put into an induction heating vacuum furnace. First, the vacuum is evacuated to 100 Pa, and then the temperature is raised to 1400 degrees and then kept warm. Gas is collected in the low-temperature substrate area, and the substrate The temperature is 400 degrees. After the reaction is finished, process the obtained block through a jaw crusher, a coarse crusher, and a jet mill one by one to a powder with a median particle size of 3 microns to obtain silicon oxide powder;
(2)将得到的氧化亚硅粉末按照摩尔比2:1与金属钛混合后在1100℃下热处理12h,得到本发明的化学式为SiTi0.5O硅基复合材料。(2) The silicon oxide powder obtained was mixed with metal titanium at a molar ratio of 2:1, and then heat-treated at 1100° C. for 12 hours to obtain the silicon-based composite material with the chemical formula SiTi 0.5 O of the present invention.
(3)将上述复合材料与石油沥青以95:5质量比均匀混合后进行热处理,得到的材料与石墨化中间相碳微球以质量比1:5的比例混合,得到本发明所述负极材料。(3) heat treatment is carried out after the above-mentioned composite material and petroleum pitch are uniformly mixed with a mass ratio of 95:5, and the obtained material is mixed with a ratio of 1:5 by a mass ratio of graphitized mesocarbon microspheres to obtain the negative electrode material of the present invention .
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本发明所述的硅基材料中金属相的尺寸约为20nm,金属相的含量约为所述硅基复合材料总质量的55%,金属氧化物相的含量约为所述硅基复合材料总质量的45%。The size of the metal phase in the silicon-based material of the present invention is about 20nm, the content of the metal phase is about 55% of the total mass of the silicon-based composite material, and the content of the metal oxide phase is about 55% of the total mass of the silicon-based composite material. 45% of the mass.
实施例7Example 7
本实施例提供了一种具体的硅负极材料的制备方法,包括:This embodiment provides a specific method for preparing a silicon negative electrode material, including:
(1)将金属硅、氧化硅、氧化锡按照摩尔比1:0.9:0.1混合后进入电阻加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度后保温,在低温衬底区收集气体,衬底温度为400度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到本发明的化学式为SiSn0.1O的硅基复合材料。(1) Metal silicon, silicon oxide, and tin oxide are mixed according to the molar ratio of 1:0.9:0.1 and then put into a resistance-heated vacuum furnace. First, the vacuum is evacuated to 100Pa, and then the temperature is raised to 1400 degrees and then kept warm. In the low-temperature substrate area The gas is collected and the substrate temperature is 400 degrees. After the reaction is finished, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill to a powder with a median particle size of 3 microns, and the silicon-based composite material having a chemical formula of SiSn 0.1 O of the present invention is obtained. .
(2)将上述复合材料与沥青以95:5质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The above-mentioned composite material and asphalt are uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material is mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例所得硅基复合材料的XRD图谱见图8,图谱中清晰可见材料由硅(主峰位于28.5度),氧化硅(位于20度非晶包),金属锡(主峰位于30.6度)组成。The XRD pattern of the silicon-based composite material obtained in this example is shown in Figure 8. It can be clearly seen that the material is composed of silicon (the main peak is at 28.5 degrees), silicon oxide (the amorphous package is at 20 degrees), and metal tin (the main peak is at 30.6 degrees).
通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为30nm,金属相的含量约为所述硅基复合材料总质量的45%,金属氧化物相的含量约为所述硅基复合材料总质量的55%。Through refinement, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 30nm, the content of the metal phase is about 45% of the total mass of the silicon-based composite material, and the content of the metal oxide phase It is about 55% of the total mass of the silicon-based composite material.
实施例8Example 8
本实施例提供了一种改变金属锡含量的对比,包括:The present embodiment provides a kind of contrast of changing metallic tin content, comprises:
(1)将金属硅、氧化硅、氧化锡按照摩尔比1:0.5:0.5混合后进入电阻加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度后保温,在低温衬底区收集气体,衬底温度为400度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到本发明的化学式为SiSn0.5O的硅基复合材料。(1) Metal silicon, silicon oxide and tin oxide are mixed according to the molar ratio of 1:0.5:0.5 and then put into a resistance-heated vacuum furnace. First, the vacuum is evacuated to 100Pa, and then the temperature is raised to 1400 degrees and then kept warm. In the low-temperature substrate area The gas is collected and the substrate temperature is 400 degrees. After the reaction is over, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill to a powder with a median particle size of 3 microns, and the silicon-based composite material with the chemical formula of SiSn 0.5 O of the present invention is obtained. .
(2)将上述复合材料与沥青以95:5质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本发明所述负极材料。(2) The above-mentioned composite material and asphalt are uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material is mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material of the present invention.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本实施例所得硅基复合材料的XRD图谱见图9,图谱中清晰可见材料由硅(主峰位于28.5度),氧化硅(位于20度非晶包),金属锡(主峰位于30.6度)组成。金属锡的含量进一步提升。The XRD spectrum of the silicon-based composite material obtained in this example is shown in Figure 9. It can be clearly seen in the spectrum that the material is composed of silicon (the main peak is at 28.5 degrees), silicon oxide (the amorphous package is at 20 degrees), and metal tin (the main peak is at 30.6 degrees). The content of metallic tin is further increased.
通过精修,拟合后可以推出本发明所述的硅基材料中金属相的尺寸约为35nm,金属相的含量约为所述硅基复合材料总质量的70%,金属氧化物相的含量约为所述硅基复合材料总质量的30%。Through refinement, after fitting, it can be deduced that the size of the metal phase in the silicon-based material of the present invention is about 35nm, the content of the metal phase is about 70% of the total mass of the silicon-based composite material, and the content of the metal oxide phase It is about 30% of the total mass of the silicon-based composite material.
对比例1Comparative example 1
本对比例提供了一种现有技术下的高倍率硅基复合材料的制备方法,包括:This comparative example provides a method for preparing a high-magnification silicon-based composite material in the prior art, including:
(1)将金属硅与氧化硅按照摩尔比1:1混合后进入电阻加热的真空炉内,首先抽真空至100Pa,随后开始升温至1400度后保温,在低温衬底区收集气体,衬底温度为400度。反应结束后,将得到的块体经过鄂式粉碎机,粗碎机,气流粉碎机逐道加工至中位粒径为3微米的粉末,得到化学式为SiO的氧化亚硅粉末;(1) Mix metal silicon and silicon oxide according to the molar ratio of 1:1 and enter into a resistance-heated vacuum furnace, first evacuate to 100Pa, then start to heat up to 1400 degrees and keep warm, collect gas in the low-temperature substrate area, the substrate The temperature is 400 degrees. After the reaction, the obtained block is processed through a jaw crusher, a coarse crusher, and a jet mill to a powder with a median particle size of 3 microns to obtain a silicon oxide powder with a chemical formula of SiO;
(2)将上述氧化亚硅粉末与石油沥青以95:5质量比均匀混合后进行热处理,得到的材料与人造石墨以质量比1:5的比例混合,得到本对比例所述负极材料。(2) The above-mentioned silica powder and petroleum pitch were uniformly mixed at a mass ratio of 95:5 and then heat-treated, and the obtained material was mixed with artificial graphite at a mass ratio of 1:5 to obtain the negative electrode material described in this comparative example.
得到的负极材料按照实施例1所述步骤测试其电化学性能,结果见表1。The electrochemical performance of the obtained negative electrode material was tested according to the steps described in Example 1, and the results are shown in Table 1.
本对比例得到的氧化亚硅材料的XRD图谱见图10,可见图中除硅(主峰位于28.5度),氧化硅(位于20度非晶包)外不含任何其它物相。The XRD spectrum of the silicon oxide material obtained in this comparative example is shown in Fig. 10, and it can be seen that the figure does not contain any other phases except silicon (the main peak is located at 28.5 degrees) and silicon oxide (located in the amorphous package of 20 degrees).
图11、12是本对比例得到的负极材料的循环、倍率图。与对比例相比,本发明得到的硅基复合材料具有首效高,循环稳定,倍率优异的特点。Figures 11 and 12 are the cycle and rate diagrams of the negative electrode materials obtained in this comparative example. Compared with the comparative example, the silicon-based composite material obtained in the present invention has the characteristics of high first effect, stable cycle and excellent multiplier.
实施例1-8以及对比例1中制得的硅基复合材料进行电化学性能对比结果见表1。Table 1 shows the electrochemical performance comparison results of the silicon-based composite materials prepared in Examples 1-8 and Comparative Example 1.
表1Table 1
由表1中的结果可以看出,本发明通过物相结构进行调控,得到所述硅基复合材料相比对比例中的普通氧化亚硅普遍具有首效高,循环好,倍率性能优异的特点。另外,通过调节复合相的比例,可以进一步调节材料在首效和循环性能中侧重点。It can be seen from the results in Table 1 that the present invention regulates through the phase structure, and the silicon-based composite material generally has the characteristics of high first effect, good cycle and excellent rate performance compared with the ordinary silicon oxide in the comparative example. . In addition, by adjusting the ratio of the composite phase, the focus of the material on the first effect and cycle performance can be further adjusted.
此外,发明人在本发明的范围内进行了大量实验,通过改变材料中的元素的种类和含量等,分别制备出本发明的通式为SiAxOy,其中A为B、Al、Na、Mg、Ca、Ba、Ti、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ge、Sn中的一种或多种,其中x大于0.001且小于10,y大于0.1且小于10的硅基复合材料。In addition, the inventor has carried out a large number of experiments within the scope of the present invention, and prepared the general formula of the present invention as SiA x O y respectively by changing the types and contents of elements in the material, wherein A is B, Al, Na, One or more of Mg, Ca, Ba, Ti, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ge, Sn, where x is greater than 0.001 and less than 10, and y is greater than 0.1 and less than 10 Silicon-based composites.
在某些实施方案中,本发明的硅基复合材料中,B元素在材料中以氧化硼、硼硅合金或者与其它元素复合方式存在,所述氧化硼对应的XRD衍射峰的最强峰位于27.8度处,所述硼硅合金对应的XRD衍射峰的最强峰位于33.4度处。In some embodiments, in the silicon-based composite material of the present invention, the B element exists in the material as boron oxide, borosilicate alloy or in a composite form with other elements, and the strongest peak of the XRD diffraction peak corresponding to the boron oxide is located at At 27.8 degrees, the strongest peak of the XRD diffraction peak corresponding to the borosilicate alloy is located at 33.4 degrees.
在某些实施方案中,本发明的硅基复合材料中,Al元素在材料中以氧化铝、硅酸铝或者与其它元素复合方式存在,所述氧化铝对应的XRD衍射峰的最强峰位于42.7度处,所述硅酸铝对应的XRD衍射峰的最强峰位于26.6度和/或26.2度处。In certain embodiments, in the silicon-based composite material of the present invention, the Al element exists in the material in the form of alumina, aluminum silicate, or composited with other elements, and the strongest peak of the XRD diffraction peak corresponding to the alumina is located at At 42.7 degrees, the strongest peak of the XRD diffraction peak corresponding to the aluminum silicate is located at 26.6 degrees and/or 26.2 degrees.
在某些实施方案中,本发明的硅基复合材料中,Na元素在材料中以硅酸钠或者与其它元素复合方式存在,所述硅酸钠为Na2(Si3O7)、Na2(Si2O5)和Na(SiO3)中的一种或多种混合。In some embodiments, in the silicon-based composite material of the present invention, the Na element exists in the material as sodium silicate or in a composite form with other elements, and the sodium silicate is Na 2 (Si 3 O 7 ), Na 2 One or more of (Si 2 O 5 ) and Na(SiO 3 ) are mixed.
在某些实施方案中,本发明的硅基复合材料中,Mg元素在材料中以氧化镁、硅酸镁或者与其它元素复合方式存在,所述氧化镁对应的XRD衍射峰的最强峰位于42.9度处,所述硅酸镁为MgSiO3、Mg2SiO4和Mg2Si2O6中的一种或多种混合,其中Mg2SiO4对应的XRD在37.3度和38.4度处有一对特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Mg element exists in the material as magnesium oxide, magnesium silicate or in a composite form with other elements, and the strongest peak of the XRD diffraction peak corresponding to the magnesium oxide is located at At 42.9 degrees, the magnesium silicate is a mixture of one or more of MgSiO 3 , Mg 2 SiO 4 and Mg 2 Si 2 O 6 , where the XRD corresponding to Mg 2 SiO 4 has a pair of Characteristic peaks.
在某些实施方案中,本发明的硅基复合材料中,Ca元素在材料中以氧化钙、硅酸钙或者与其它元素复合方式存在,所述氧化钙对应的XRD衍射峰的最强峰位于37.4度处,所述硅酸钙为CaSiO3、CaSi2O5、Ca2SiO4和Ca3Si3O9中的一种或多种混合。In certain embodiments, in the silicon-based composite material of the present invention, the Ca element exists in the material as calcium oxide, calcium silicate or in a composite form with other elements, and the strongest peak of the XRD diffraction peak corresponding to the calcium oxide is located at At 37.4 degrees, the calcium silicate is a mixture of one or more of CaSiO 3 , CaSi 2 O 5 , Ca 2 SiO 4 and Ca 3 Si 3 O 9 .
在某些实施方案中,本发明的硅基复合材料中,Ba元素在材料中以氧化钡、硅酸钡或者与其它元素复合方式存在,所述氧化钡对应的XRD衍射峰的最强峰位于28.1度处,所述硅酸钡为BaSiO3、BaSi2O5、Ba2SiO4、Ba4Si6O16和Ba6Si10O26中的一种或多种混合。In certain embodiments, in the silicon-based composite material of the present invention, the Ba element exists in the material as barium oxide, barium silicate or in a composite form with other elements, and the strongest peak of the XRD diffraction peak corresponding to the barium oxide is located at At 28.1 degrees, the barium silicate is a mixture of one or more of BaSiO 3 , BaSi 2 O 5 , Ba 2 SiO 4 , Ba 4 Si 6 O 16 and Ba 6 Si 10 O 26 .
在某些实施方案中,本发明的硅基复合材料中,Ti元素在材料中以氧化钛、钛硅合金或者与其它元素复合方式存在,所述氧化钛为TiO2、Ti2O3和Ti3O5等一种或几种的混合物,所述钛硅合金为TiSi2、Ti5Si4、Ti5Si3和TiSi中的一种或几种的组合,其对应XRD分别在40.4、37.2、40.8和36.9度处有特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Ti element exists in the material as titanium oxide, titanium-silicon alloy, or in a composite form with other elements, and the titanium oxide is TiO 2 , Ti 2 O 3 and Ti 3 O 5 and other mixtures of one or more of them. The titanium silicon alloy is a combination of one or more of TiSi 2 , Ti 5 Si 4 , Ti 5 Si 3 and TiSi. The corresponding XRD values are 40.4, 37.2 , There are characteristic peaks at 40.8 and 36.9 degrees.
在某些实施方案中,本发明的硅基复合材料中,Mn元素在材料中以氧化锰、锰硅合金、硅酸锰或者与其它元素复合方式存在,所述氧化锰为MnO2、Mn3O4和Mn2O3中的一种或几种的混合,所述锰硅合金为Mn3Si、MnSi和Mn5Si2中的一种或几种的混合,其对应XRD分别在44.8、44.4和43.1度处有特征峰,所述硅酸锰为MnSiO3,其对应XRD在32.5度处有特征峰。In certain embodiments, in the silicon-based composite material of the present invention, the Mn element exists in the material in the form of manganese oxide, manganese-silicon alloy, manganese silicate, or in a composite form with other elements, and the manganese oxide is MnO 2 , Mn 3 A mixture of one or more of O 4 and Mn 2 O 3 , the manganese-silicon alloy is a mixture of one or more of Mn 3 Si, MnSi and Mn 5 Si 2 , and the corresponding XRD values are 44.8, There are characteristic peaks at 44.4 and 43.1 degrees, and the manganese silicate is MnSiO 3 , which corresponds to a characteristic peak at 32.5 degrees in XRD.
在某些实施方案中,本发明的硅基复合材料中,Fe元素在材料中以氧化铁、铁硅合金、硅酸铁或者与其它元素复合方式存在,所述氧化铁为Fe2O3,对应XRD在33.2度处有特征峰,所述铁硅合金为FeSi2和/或FeSi,对应的XRD分别在17.3、45.0度处有特征峰,所述硅酸铁为FeSiO3和/或Fe2SiO4。In some embodiments, in the silicon-based composite material of the present invention, the Fe element exists in the material as iron oxide, iron-silicon alloy, iron silicate or in a composite form with other elements, and the iron oxide is Fe 2 O 3 , Corresponding XRD has a characteristic peak at 33.2 degrees, the iron-silicon alloy is FeSi 2 and/or FeSi, and the corresponding XRD has characteristic peaks at 17.3 and 45.0 degrees respectively, and the iron silicate is FeSiO 3 and/or Fe 2 SiO 4 .
在某些实施方案中,本发明的硅基复合材料中,Co元素在材料中以氧化钴、钴硅合金、硅酸钴或者与其它元素复合方式存在,所述氧化钴为Co3O4和/或CoO,对应的XRD分别在36.8、42.4度处有特征峰,所述钴硅合金为CoSi、Co2Si和CoSi2中的一种或几种的混合,对应的XRD分别在45.7、45.3和47.9度处有特征峰,所述硅酸钴为CoSiO3和/或Co2SiO4。In some embodiments, in the silicon-based composite material of the present invention, the Co element exists in the material as cobalt oxide, cobalt-silicon alloy, cobalt silicate or in a composite form with other elements, and the cobalt oxide is Co 3 O 4 and / or CoO, the corresponding XRD has characteristic peaks at 36.8 and 42.4 degrees, respectively, and the cobalt-silicon alloy is a mixture of one or more of CoSi, Co 2 Si and CoSi 2 , and the corresponding XRDs are at 45.7 and 45.3 And there are characteristic peaks at 47.9 degrees, the cobalt silicate is CoSiO 3 and/or Co 2 SiO 4 .
在某些实施方案中,本发明的硅基复合材料中,Ni元素在材料中以氧化镍、镍硅合金、硅酸镍或者与其它元素复合方式存在,所述氧化镍为NiO和/或NiO2,对应的XRD分别在43.3、18.6度处有特征峰,所述镍硅合金为NiSi、Ni2Si、Ni3Si2和Ni3Si中的一种或者几种的混合,对应的XRD分别在47.2、46.2、45.0和44.7度处有特征峰,所述硅酸镍为Ni2SiO4。In some embodiments, in the silicon-based composite material of the present invention, the Ni element exists in the material as nickel oxide, nickel-silicon alloy, nickel silicate or in a composite form with other elements, and the nickel oxide is NiO and/or NiO 2. The corresponding XRD has characteristic peaks at 43.3 and 18.6 degrees respectively. The nickel-silicon alloy is one or a mixture of NiSi, Ni 2 Si, Ni 3 Si 2 and Ni 3 Si. The corresponding XRD There are characteristic peaks at 47.2, 46.2, 45.0 and 44.7 degrees, and the nickel silicate is Ni 2 SiO 4 .
在某些实施方案中,本发明的硅基复合材料中,Cu元素在材料中以铜硅合金、硅酸酮或者与其它元素复合方式存在,所述铜硅合金为Cu9Si、Cu5Si、Cu6.6Si、Cu15Si4和Cu3Si中的一种或者几种的混合,对应的XRD分别在43.3,43.7,43.2,44.1,45.0度处有特征峰,所述硅酸酮为CuSiO3,对应的XRD在28.0度处有特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Cu element exists in the material in the form of copper-silicon alloy, ketone silicic acid or composited with other elements, and the copper-silicon alloy is Cu 9 Si, Cu 5 Si , Cu 6.6 Si, Cu 15 Si 4 and Cu 3 Si, the corresponding XRD has characteristic peaks at 43.3, 43.7, 43.2, 44.1, and 45.0 degrees respectively, and the ketone silicate is CuSiO 3 , the corresponding XRD has a characteristic peak at 28.0 degrees.
在某些实施方案中,本发明的硅基复合材料中,Zn元素在材料中以氧化锌、硅酸锌或者与其它元素复合方式存在,所述氧化锌为ZnO和/或ZnO2,对应的XRD分别在42.3、37.0度处有特征峰;所述硅酸锌为ZnSiO3和/或Zn2SiO4。In some embodiments, in the silicon-based composite material of the present invention, the Zn element exists in the material as zinc oxide, zinc silicate or in a composite form with other elements, and the zinc oxide is ZnO and/or ZnO 2 , corresponding to XRD has characteristic peaks at 42.3 and 37.0 degrees respectively; the zinc silicate is ZnSiO 3 and/or Zn 2 SiO 4 .
在某些实施方案中,本发明的硅基复合材料中,Zr元素在材料中以锆硅合金、硅酸锆或者与其它元素复合方式存在,所述锆硅合金为Zr2Si、Zr5Si3、ZrSi2、Zr5Si4和Zr3Si2中一种或几种的混合,所述硅酸锆为ZrSiO4,其XRD在27.0度处有特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Zr element exists in the material in the form of zirconium-silicon alloy, zirconium silicate or composited with other elements, and the zirconium-silicon alloy is Zr 2 Si, Zr 5 Si 3. A mixture of one or more of ZrSi 2 , Zr 5 Si 4 and Zr 3 Si 2 , the zirconium silicate is ZrSiO 4 , and its XRD has a characteristic peak at 27.0 degrees.
在某些实施方案中,本发明的硅基复合材料中,Mo元素在材料中以钼硅合金或者与其它元素复合方式存在,所述钼硅合金为MoSi2、Mo5Si3和Mo3Si中的一种或混合。In some embodiments, in the silicon-based composite material of the present invention, the Mo element exists in the material as a molybdenum-silicon alloy or in a composite form with other elements, and the molybdenum-silicon alloy is MoSi 2 , Mo 5 Si 3 and Mo 3 Si one or a combination of them.
在某些实施方案中,本发明的硅基复合材料中,Ge元素在材料中以任意比例的GeSi合金、氧化锗或者与其它元素复合方式存在,所述氧化锗为GeO2,其XRD在26.4度处有特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Ge element exists in the material in any proportion of GeSi alloy, germanium oxide or in a composite form with other elements, the germanium oxide is GeO 2 , and its XRD is at 26.4 have characteristic peaks.
在某些实施方案中,本发明的硅基复合材料中,Sn元素在材料中以氧化锡、金属锡、或者与其它元素复合方式存在,所述氧化锡为SnO2和/或SnO,对应XRD分别在26.5度、29.9度处有特征峰;所述金属锡为单质Sn,对应XRD在30.6度处有特征峰。In some embodiments, in the silicon-based composite material of the present invention, the Sn element exists in the material as tin oxide, metal tin, or in a composite form with other elements, and the tin oxide is SnO 2 and/or SnO, corresponding to XRD There are characteristic peaks at 26.5 degrees and 29.9 degrees respectively; the metal tin is simple Sn, corresponding to XRD there is a characteristic peak at 30.6 degrees.
本发明的硅基复合材料普遍具有首效高,循环好,倍率性能优异的特点。The silicon-based composite material of the invention generally has the characteristics of high first effect, good cycle and excellent rate performance.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710350431.4A CN108963194A (en) | 2017-05-18 | 2017-05-18 | A kind of silicon based composite material and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710350431.4A CN108963194A (en) | 2017-05-18 | 2017-05-18 | A kind of silicon based composite material and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108963194A true CN108963194A (en) | 2018-12-07 |
Family
ID=64461768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710350431.4A Pending CN108963194A (en) | 2017-05-18 | 2017-05-18 | A kind of silicon based composite material and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108963194A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110474037A (en) * | 2019-08-30 | 2019-11-19 | 石家庄尚太科技有限公司 | A kind of preparation method of porous silicon-carbon composite cathode material |
CN111063874A (en) * | 2019-12-18 | 2020-04-24 | 宁波禾木纳米科技有限公司 | Preparation method and application of hard carbon nano material for ion battery |
CN111164803A (en) * | 2019-12-30 | 2020-05-15 | 上海杉杉科技有限公司 | Silicon-based negative electrode material for secondary battery and preparation method thereof, secondary battery |
CN111342020A (en) * | 2020-03-11 | 2020-06-26 | 中国科学院宁波材料技术与工程研究所 | A silicon-based negative electrode material, a preparation method thereof, and a lithium ion battery |
JP2020202068A (en) * | 2019-06-10 | 2020-12-17 | 昭和電工マテリアルズ株式会社 | Negative electrode active material for lithium ion secondary batteries, lithium ion secondary battery and method for manufacturing negative electrode active material for lithium ion secondary batteries |
CN112289993A (en) * | 2020-10-26 | 2021-01-29 | 合肥国轩高科动力能源有限公司 | Carbon-coated core-shell structure silicon monoxide/silicon composite material and preparation method thereof |
WO2021017972A1 (en) * | 2019-07-29 | 2021-02-04 | 宁德时代新能源科技股份有限公司 | Silicon oxygen compound, and secondary battery using same and related battery module, battery pack and device thereof |
CN112391567A (en) * | 2019-10-09 | 2021-02-23 | 湖北中烟工业有限责任公司 | A kind of Ni-based composite material heating element and preparation method thereof |
WO2021056981A1 (en) * | 2019-09-24 | 2021-04-01 | 中国科学院化学研究所 | Preparation method for silicon-based composite negative electrode material for lithium battery |
CN112823883A (en) * | 2019-11-20 | 2021-05-21 | 万华化学集团股份有限公司 | Alpha, alpha-dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof |
WO2022062319A1 (en) * | 2020-09-27 | 2022-03-31 | 溧阳天目先导电池材料科技有限公司 | Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery |
CN114373915A (en) * | 2022-01-12 | 2022-04-19 | 万华化学集团股份有限公司 | Silicon monoxide negative electrode material and preparation method thereof |
CN115275142A (en) * | 2022-07-28 | 2022-11-01 | 合肥国轩高科动力能源有限公司 | Silicon protoxide material, preparation method thereof and application thereof in lithium ion battery |
CN115385342A (en) * | 2022-07-20 | 2022-11-25 | 长沙矿冶研究院有限责任公司 | Silicon protoxide material, preparation method, application and device thereof |
CN117525427A (en) * | 2024-01-05 | 2024-02-06 | 贝特瑞新材料集团股份有限公司 | Negative electrode material, preparation method thereof and battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1667855A (en) * | 2004-03-08 | 2005-09-14 | 三星Sdi株式会社 | Negative electrode active material of rechargeable lithium battery, its preparation method and rechargeable lithium battery containing it |
CN100395906C (en) * | 2004-02-25 | 2008-06-18 | 三星Sdi株式会社 | Negative electrode active material for rechargeable lithium battery, preparation method thereof, and rechargeable lithium battery containing it |
CN106654194A (en) * | 2016-11-07 | 2017-05-10 | 中国科学院化学研究所 | A kind of element-doped SiOx negative electrode composite material and its preparation method and application |
-
2017
- 2017-05-18 CN CN201710350431.4A patent/CN108963194A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100395906C (en) * | 2004-02-25 | 2008-06-18 | 三星Sdi株式会社 | Negative electrode active material for rechargeable lithium battery, preparation method thereof, and rechargeable lithium battery containing it |
CN1667855A (en) * | 2004-03-08 | 2005-09-14 | 三星Sdi株式会社 | Negative electrode active material of rechargeable lithium battery, its preparation method and rechargeable lithium battery containing it |
CN106654194A (en) * | 2016-11-07 | 2017-05-10 | 中国科学院化学研究所 | A kind of element-doped SiOx negative electrode composite material and its preparation method and application |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020202068A (en) * | 2019-06-10 | 2020-12-17 | 昭和電工マテリアルズ株式会社 | Negative electrode active material for lithium ion secondary batteries, lithium ion secondary battery and method for manufacturing negative electrode active material for lithium ion secondary batteries |
US11522181B2 (en) | 2019-07-29 | 2022-12-06 | Contemporary Amperex Technology Co., Limited | Silicon-oxygen compound, secondary battery using it, and related battery module, battery pack and device |
WO2021017972A1 (en) * | 2019-07-29 | 2021-02-04 | 宁德时代新能源科技股份有限公司 | Silicon oxygen compound, and secondary battery using same and related battery module, battery pack and device thereof |
CN110474037A (en) * | 2019-08-30 | 2019-11-19 | 石家庄尚太科技有限公司 | A kind of preparation method of porous silicon-carbon composite cathode material |
CN110474037B (en) * | 2019-08-30 | 2021-08-31 | 石家庄尚太科技股份有限公司 | Preparation method of porous silicon-carbon composite negative electrode material |
WO2021056981A1 (en) * | 2019-09-24 | 2021-04-01 | 中国科学院化学研究所 | Preparation method for silicon-based composite negative electrode material for lithium battery |
US11637273B2 (en) | 2019-09-24 | 2023-04-25 | Beijing Iametal New Energy Technology Co., Ltd | Preparation method of silicon-based composite negative electrode material for lithium battery |
CN112391567B (en) * | 2019-10-09 | 2022-02-08 | 湖北中烟工业有限责任公司 | A kind of Si-based composite material heating element and preparation method thereof |
CN112391567A (en) * | 2019-10-09 | 2021-02-23 | 湖北中烟工业有限责任公司 | A kind of Ni-based composite material heating element and preparation method thereof |
CN112823883B (en) * | 2019-11-20 | 2022-07-12 | 万华化学集团股份有限公司 | Alpha, alpha-dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof |
CN112823883A (en) * | 2019-11-20 | 2021-05-21 | 万华化学集团股份有限公司 | Alpha, alpha-dimethyl benzyl alcohol hydrogenolysis catalyst and preparation method and application thereof |
CN111063874A (en) * | 2019-12-18 | 2020-04-24 | 宁波禾木纳米科技有限公司 | Preparation method and application of hard carbon nano material for ion battery |
CN111063874B (en) * | 2019-12-18 | 2020-08-18 | 宁波禾木纳米科技有限公司 | Preparation method and application of hard carbon nano material for ion battery |
CN111164803A (en) * | 2019-12-30 | 2020-05-15 | 上海杉杉科技有限公司 | Silicon-based negative electrode material for secondary battery and preparation method thereof, secondary battery |
CN111164803B (en) * | 2019-12-30 | 2021-09-17 | 上海杉杉科技有限公司 | Silicon-based negative electrode material for secondary battery, preparation method of silicon-based negative electrode material and secondary battery |
US11876220B2 (en) | 2019-12-30 | 2024-01-16 | Shanghai Shanshan Tech Co., Ltd. | Silicon-based anode material for secondary battery and preparation method thereof, secondary battery |
WO2021134199A1 (en) * | 2019-12-30 | 2021-07-08 | 上海杉杉科技有限公司 | Silicon-based negative electrode material for secondary battery, preparation method therefor, and secondary battery |
CN111342020A (en) * | 2020-03-11 | 2020-06-26 | 中国科学院宁波材料技术与工程研究所 | A silicon-based negative electrode material, a preparation method thereof, and a lithium ion battery |
WO2022062319A1 (en) * | 2020-09-27 | 2022-03-31 | 溧阳天目先导电池材料科技有限公司 | Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery |
CN112289993A (en) * | 2020-10-26 | 2021-01-29 | 合肥国轩高科动力能源有限公司 | Carbon-coated core-shell structure silicon monoxide/silicon composite material and preparation method thereof |
CN112289993B (en) * | 2020-10-26 | 2022-03-11 | 合肥国轩高科动力能源有限公司 | Carbon-coated core-shell structure silicon monoxide/silicon composite material and preparation method thereof |
CN114373915A (en) * | 2022-01-12 | 2022-04-19 | 万华化学集团股份有限公司 | Silicon monoxide negative electrode material and preparation method thereof |
CN114373915B (en) * | 2022-01-12 | 2024-02-02 | 万华化学集团股份有限公司 | Silicon oxide negative electrode material and preparation method thereof |
CN115385342A (en) * | 2022-07-20 | 2022-11-25 | 长沙矿冶研究院有限责任公司 | Silicon protoxide material, preparation method, application and device thereof |
CN115275142A (en) * | 2022-07-28 | 2022-11-01 | 合肥国轩高科动力能源有限公司 | Silicon protoxide material, preparation method thereof and application thereof in lithium ion battery |
CN117525427A (en) * | 2024-01-05 | 2024-02-06 | 贝特瑞新材料集团股份有限公司 | Negative electrode material, preparation method thereof and battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108963194A (en) | A kind of silicon based composite material and its preparation method and application | |
JP7288059B2 (en) | Silicon-oxygen composite negative electrode material, its preparation method and lithium ion battery | |
Pan et al. | MoS 2-covered SnS nanosheets as anode material for lithium-ion batteries with high capacity and long cycle life | |
JP7237167B2 (en) | Silicon composite negative electrode material, its preparation method and lithium ion battery | |
CN110400926B (en) | Nitrogen-doped carbon-coated two-phase staggered nickel-cobalt bimetallic selenide electrode material and preparation method thereof | |
WO2022001880A1 (en) | Silicon-oxygen composite negative electrode material, negative electrode, lithium ion battery and preparation method therefor | |
CN102916167B (en) | Mesoporous silicon compound as lithium ion battery negative material and preparation method thereof | |
JP5411781B2 (en) | Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery | |
CN102958835B (en) | Submicron sized silicon powder with low oxygen content | |
CN101533904B (en) | Method for preparing lithium iron phosphate/nanometer carbon composite anode material | |
CN111048770B (en) | Ternary doped silicon-based composite material, preparation method and application thereof | |
WO2016008455A2 (en) | Multiple-element composite material for negative electrodes, preparation method therefor, and lithium-ion battery having same | |
CN105047888B (en) | A kind of lithium ion battery negative material and preparation method thereof | |
CN100434362C (en) | A method for preparing silicon/lithium-rich phase composite negative electrode materials for lithium secondary batteries by high-energy ball milling | |
KR20190116011A (en) | Silicon-Silicon Oxide-Carbon composite and manufacturing method for Silicon- Silicon Oxide-Carbon composite | |
WO2022002057A1 (en) | Silicon-oxygen composite negative electrode material, negative electrode, lithium-ion battery, and preparation methods therefor | |
CN108346788A (en) | A kind of preparation method of carbon coating Antaciron composite negative pole material | |
CN111653759A (en) | A kind of silicon-based composite material and preparation method thereof | |
CN109449421B (en) | Silicon-based alloy composite negative electrode material of lithium ion battery and preparation method thereof | |
CN111477849A (en) | A kind of preparation method of porous Si/SiC/C material and negative electrode material | |
WO2021136376A1 (en) | Silicon-based negative electrode material and preparation method therefor, battery, and terminal | |
Tao et al. | Antimony doped tin oxide-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode materials with enhanced electrochemical performance for lithium-ion batteries | |
JP2023524189A (en) | Composite material and its preparation method, negative electrode material and lithium ion battery | |
WO2022236985A1 (en) | Uniformly modified silicon monoxide negative electrode material, and preparation method therefor and use thereof | |
JP6001095B2 (en) | Glass of V2O5-LiBO2, V2O5-NiO-LiBO2 obtained by mixing nitrogen doped as cathode active material and reduced graphite oxide, and composites thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181207 |