CN108956223A - 一种弱胶结砂岩室内重塑方法 - Google Patents
一种弱胶结砂岩室内重塑方法 Download PDFInfo
- Publication number
- CN108956223A CN108956223A CN201810533972.5A CN201810533972A CN108956223A CN 108956223 A CN108956223 A CN 108956223A CN 201810533972 A CN201810533972 A CN 201810533972A CN 108956223 A CN108956223 A CN 108956223A
- Authority
- CN
- China
- Prior art keywords
- sandstone
- particle
- sintering
- remodeling
- weak cementing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/286—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/44—Sample treatment involving radiation, e.g. heat
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
Abstract
本发明公开了一种弱胶结砂岩室内重塑方法,在保证主要物质成分与原岩相同的前提下,实施粉碎、压制、烧结;通过高温烧结使得微米量级以下颗粒胶结强度控制性提高,毫米级颗粒存在增大重塑砂岩中孔隙率,以抵消高温烧结诱发的致密化,从而实现重塑砂岩具有与原岩类似的颗粒特征和孔隙特征;首先分别通过普通机械式和球磨机强化式破碎方法获得毫米量级和微米量级以下颗粒,然后按照一定比例将颗粒混合体、纯净水混合并压制成型,最后对成型的砂岩试样进行高温烧结,从而解决具有泥化、风化、松化、软化等物理力学特征的弱胶结砂岩现场取芯困难的技术瓶颈。
Description
技术领域
本发明涉及一种弱胶结砂岩室内重塑方法,具体为一种基于粉末烧结原理的弱胶结砂岩重塑方法。
背景技术
西部煤炭产量超过全国的70%。因此,西部在未来一段时间内将是我国煤炭开发和煤矿基本建设的主战场。白垩系是西部地区井筒穿越的主要地层。白垩系弱胶结砂岩物理、力学性质的定量化研究是该类地层中井筒建设新技术提出的重要依据。但是白垩系弱胶结砂岩具有遇水泥化、遇风风化、振动松化和原始软化等物理、力学特性,使得完整岩芯取得存在困难和挑战。
沉积砂岩的室内重塑是解决上述问题的根本途径。现有重塑技术中(1)针对黏土矿物含量低的原岩,主要通过砂颗粒与黏结剂(环氧树脂等有机胶或水泥、石膏或硅铝酸盐等无机胶)混合后压制成型的方法。该类方法适用于胶结强度偏高的砂岩,不适用于弱胶结砂岩;(2)针对黏土矿物含量高的原岩,现有重塑方法主要通过对机械破碎颗粒集合体与水混合压制成型的方法。该类方法适用于极弱胶结软岩,难以适应黏土矿物含量偏低的砂岩重塑制备。
发明内容
技术问题:本发明的目的是针对西部地区井筒穿越地层岩性的主要物理、力学特性研究受制于原状岩芯不足之处,提供一种方法简单、成本低、使用效果好的基于粉末烧结原理的弱胶结砂岩室内重塑方法。
技术方案:本发明的弱胶结砂岩室内重塑方法,在保证主要物质成分与原岩相同的前提下,实施粉碎、压制、烧结;通过高温烧结使得微米量级以下颗粒胶结强度控制性提高,毫米级颗粒存在增大重塑砂岩中孔隙率,以抵消高温烧结诱发的致密化,从而实现重塑砂岩具有与原岩类似的颗粒特征和孔隙特征;具体步骤如下:
步骤一、对取自目标地层的弱胶结岩芯进行普通机械式破碎,将破碎物筛分出毫米量级的砂颗粒;
步骤二、在球磨机上对取自目标地层的弱胶结砂岩进行强化破碎至颗粒粒径达到微米量级以下;
步骤三、将毫米量级砂颗粒、微米量级以下砂颗粒和纯净水按比例混合均匀,毫米量级砂颗粒与微米量级以下砂颗粒的质量比为0~1.5之间,纯净水与砂颗粒混合物的质量比为0.05~0.2;
步骤四、利用压力机对步骤三中不同粒级砂颗粒所得的混合物进行压制成型;
步骤五、将步骤四中所得成型砂岩送入高温炉内烧结10~24h,取出自然冷确,获得弱胶结砂岩试样;
步骤六、可对获得弱胶结砂岩试样进行物理、力学特性试验。
所述压力机最大压力为目标地层砂岩上覆压力的1.0~1.5倍。
所述高温炉内的烧结温度为600~1000℃。
有益效果:由于采用了上述技术方案,本发明首先分别通过普通机械式和球磨机强化式破碎方法获得毫米量级和微米量级以下颗粒,然后按照一定比例将颗粒混合体、纯净水混合并压制成型,最后对成型的砂岩试样进行高温烧结,从而解决具有泥化、风化、松化、软化等物理力学特征的弱胶结砂岩现场取芯困难的技术瓶颈。与现有技术相比具有如下优势:
(1)弱胶结砂岩的强度主要来自于颗粒间泥质胶结和晶体胶结,本发明分别通过机械压实和高温烧结重塑两类胶结力,同时保留了原岩的主要物质成分,而主要矿物熔点以下的控制烧结不改变物质成分;
(2)利用本发明极易获得与原岩具有相同力学特性的重塑砂岩,同时还最大限度保留了与原岩相似的物理特征,从而为研究冻结凿井过程中弱胶结砂岩物性定量演化规律奠定基础。
具体实施方式:
本发明的弱胶结砂岩室内重塑方法,在保证主要物质成分与原岩相同的前提下,实施粉碎、压制、烧结。高温烧结使得微米量级以下颗粒胶结强度控制性提高,毫米级别颗粒存在增大重塑砂岩中孔隙率,以抵消高温烧结诱发的致密化,从而实现重塑砂岩具有与原岩类似的颗粒特征和孔隙特征;具体步骤如下:
第一步:对取自目标地层的弱胶结岩芯进行普通机械式破碎,并筛分出毫米量级的砂颗粒;
第二步:在球磨机上对取自目标地层的弱胶结砂岩进行强化破碎至颗粒粒径达到微米量级以下;
第三步:将毫米量级颗粒,微米量级以下颗粒,纯净水按比例混合均匀,毫米量级颗粒与微米量级以下颗粒质量比为0~1.5之间,纯净水与颗粒混合物的质量比为0.05~0.2;
第四步:在压力机上对第三步中所得混合物进行压制成型,最大压力为目标地层砂岩上覆压力的1.0~1.5倍。
第五步:将第四步中所得砂岩试样在高温炉内烧结10~24h,烧结温度600~1000℃。
第六步:按照第五步中所得砂岩试样进行物理、力学特性试验。
Claims (3)
1.一种弱胶结砂岩室内重塑方法,其特征在于:在保证主要物质成分与原岩相同的前提下,实施粉碎、压制、烧结;通过高温烧结使得微米量级以下颗粒胶结强度控制性提高,毫米级别颗粒存在增大重塑砂岩中孔隙率,以抵消高温烧结诱发的致密化,从而实现重塑砂岩具有与原岩类似的颗粒特征和孔隙特征;具体步骤如下:
步骤一、对取自目标地层的弱胶结岩芯进行普通机械式破碎,将破碎物筛分出毫米量级的砂颗粒;
步骤二、在球磨机上对取自目标地层的弱胶结砂岩进行强化破碎至颗粒粒径达到微米量级以下;
步骤三、将毫米量级砂颗粒、微米量级以下砂颗粒和纯净水按比例混合均匀,毫米量级砂颗粒与微米量级以下砂颗粒的质量比为0~1.5之间,纯净水与砂颗粒混合物的质量比为0.05~0.2;
步骤四、利用压力机对步骤三中不同粒级砂颗粒所得的混合物进行压制成型;
步骤五、将步骤四中所得成型砂岩送入高温炉内烧结10~24h,取出自然冷确,获得弱胶结砂岩试样;
步骤六、可对获得弱胶结砂岩试样进行物理、力学特性试验。
2.根据权利要求1所述的一种弱胶结砂岩室内重塑方法,其特征在于:所述压力机最大压力为目标地层砂岩上覆压力的1.0~1.5倍。
3.根据权利要求1所述的一种弱胶结砂岩室内重塑方法,其特征在于:所述高温炉内的烧结温度为600~1000℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810533972.5A CN108956223B (zh) | 2018-05-29 | 2018-05-29 | 一种弱胶结砂岩室内重塑方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810533972.5A CN108956223B (zh) | 2018-05-29 | 2018-05-29 | 一种弱胶结砂岩室内重塑方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108956223A true CN108956223A (zh) | 2018-12-07 |
CN108956223B CN108956223B (zh) | 2020-10-27 |
Family
ID=64492742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810533972.5A Active CN108956223B (zh) | 2018-05-29 | 2018-05-29 | 一种弱胶结砂岩室内重塑方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108956223B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304722A (zh) * | 2020-10-20 | 2021-02-02 | 中国矿业大学 | 一种含泥质弱胶结砂岩重塑方法 |
CN114047040A (zh) * | 2021-10-22 | 2022-02-15 | 北京中煤矿山工程有限公司 | 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1800085A (zh) * | 2006-01-10 | 2006-07-12 | 山东大学 | 用于裂隙岩石试验的类岩石陶瓷材料及其试件制备方法 |
US20070290085A1 (en) * | 2004-02-12 | 2007-12-20 | Basf Catalysts Llc | Process and products of chinese kaolin |
KR101205166B1 (ko) * | 2011-08-30 | 2012-11-27 | 현대제철 주식회사 | 소결용 연료의 동결성 시험 방법 |
CN103616715A (zh) * | 2013-12-04 | 2014-03-05 | 中国石油天然气集团公司 | 一种人工砂岩物理模型及其制作方法与应用 |
CN204439439U (zh) * | 2015-03-12 | 2015-07-01 | 中国海洋石油总公司 | 一种制作极弱胶结、弱胶结疏松砂岩岩心的工具 |
KR101662167B1 (ko) * | 2016-05-16 | 2016-10-04 | (주)우진이앤씨 | 개량 지반 시료 채취기 및 이를 이용한 개량 지반의 시공 품질 확인 방법 |
CN106338422A (zh) * | 2016-11-22 | 2017-01-18 | 河南理工大学 | 岩石弱胶结岩石试件加工工艺 |
CN106556687A (zh) * | 2016-11-21 | 2017-04-05 | 中国石油大学(华东) | 弱胶结未成岩水合物声学和饱和度同步测试装置及方法 |
-
2018
- 2018-05-29 CN CN201810533972.5A patent/CN108956223B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070290085A1 (en) * | 2004-02-12 | 2007-12-20 | Basf Catalysts Llc | Process and products of chinese kaolin |
CN1800085A (zh) * | 2006-01-10 | 2006-07-12 | 山东大学 | 用于裂隙岩石试验的类岩石陶瓷材料及其试件制备方法 |
KR101205166B1 (ko) * | 2011-08-30 | 2012-11-27 | 현대제철 주식회사 | 소결용 연료의 동결성 시험 방법 |
CN103616715A (zh) * | 2013-12-04 | 2014-03-05 | 中国石油天然气集团公司 | 一种人工砂岩物理模型及其制作方法与应用 |
CN204439439U (zh) * | 2015-03-12 | 2015-07-01 | 中国海洋石油总公司 | 一种制作极弱胶结、弱胶结疏松砂岩岩心的工具 |
KR101662167B1 (ko) * | 2016-05-16 | 2016-10-04 | (주)우진이앤씨 | 개량 지반 시료 채취기 및 이를 이용한 개량 지반의 시공 품질 확인 방법 |
CN106556687A (zh) * | 2016-11-21 | 2017-04-05 | 中国石油大学(华东) | 弱胶结未成岩水合物声学和饱和度同步测试装置及方法 |
CN106338422A (zh) * | 2016-11-22 | 2017-01-18 | 河南理工大学 | 岩石弱胶结岩石试件加工工艺 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304722A (zh) * | 2020-10-20 | 2021-02-02 | 中国矿业大学 | 一种含泥质弱胶结砂岩重塑方法 |
CN112304722B (zh) * | 2020-10-20 | 2021-09-21 | 中国矿业大学 | 一种含泥质弱胶结砂岩重塑方法 |
CN114047040A (zh) * | 2021-10-22 | 2022-02-15 | 北京中煤矿山工程有限公司 | 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法 |
CN114047040B (zh) * | 2021-10-22 | 2024-03-26 | 北京中煤矿山工程有限公司 | 一种钻井法凿井滚刀破碎弱胶结岩石试验重塑大体积岩样的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108956223B (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110104998B (zh) | 一种微细粒高硅尾矿注浆材料 | |
Zhang et al. | Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression | |
Gao et al. | Effect of curing temperature on the mechanical properties and pore structure of cemented backfill materials with waste rock-tailings | |
CN110357645A (zh) | 一种利用白云石质磷尾矿制备镁钙质耐火材料的制备方法 | |
CN101638924A (zh) | 一种石灰石尾矿砖及其制备方法 | |
CN104876477B (zh) | 基于灰浆含量控制的石灰粉煤灰碎石基层回收料水泥稳定再生方法 | |
CN108956223A (zh) | 一种弱胶结砂岩室内重塑方法 | |
CN102503196A (zh) | 用废弃混凝土制备水泥熟料的方法 | |
CN103274648B (zh) | 掺花岗岩石粉的高强混凝土管桩及其生产方法 | |
Bruno et al. | Chemical–physical and mineralogical investigation on ancient mortars from the archaeological site of Monte Sannace (Bari—Southern Italy) | |
CN109437822A (zh) | 一种基于建筑垃圾的透水砖及其制备方法 | |
CN103319123A (zh) | 粉煤灰基胶结充填材料及其制备方法 | |
CN107796679B (zh) | 基于相似材料的非标准煤或非标准岩石试件制作方法 | |
Xu | Research on application of iron tailings on road base | |
CN108503313A (zh) | 一种镍铁渣粉与矿粉复掺的水泥土材料及其制备方法 | |
CN112779016A (zh) | 一种高强度固土岩粉状材料、制备方法及应用 | |
CN103351107A (zh) | 一种废弃混凝土低温分离的方法 | |
Liu et al. | The mechanical properties of cement reinforced loess and pore microstructure characteristics | |
CN105801049B (zh) | 橡胶沥青混凝土的制备方法 | |
CN112304722B (zh) | 一种含泥质弱胶结砂岩重塑方法 | |
Wang et al. | The materialization characteristics and ratio of a new soil paste filling material | |
CN111320446B (zh) | 一种高强度自防水磷石膏路基材料及其制备方法 | |
KR100681272B1 (ko) | 고화촉진제의 제조방법 및 그 방법에 의해 조성된고화촉진제를 이용한 지반개량재의 제조방법 | |
CN103450862A (zh) | 抗钾盐高密度固井水泥浆及其制备方法 | |
Zhang et al. | Assessing Workability of Ready-Mixed Soils Derived from Excess Spoil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |