CN108899951A - Super capacitor two close cycles buck charging control circuit based on pressure stabilizing output type - Google Patents
Super capacitor two close cycles buck charging control circuit based on pressure stabilizing output type Download PDFInfo
- Publication number
- CN108899951A CN108899951A CN201810796757.4A CN201810796757A CN108899951A CN 108899951 A CN108899951 A CN 108899951A CN 201810796757 A CN201810796757 A CN 201810796757A CN 108899951 A CN108899951 A CN 108899951A
- Authority
- CN
- China
- Prior art keywords
- resistor
- terminal
- voltage
- current
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 119
- 238000007600 charging Methods 0.000 title claims abstract description 34
- 230000000087 stabilizing effect Effects 0.000 title claims description 8
- 238000001514 detection method Methods 0.000 claims abstract description 55
- 238000005259 measurement Methods 0.000 claims abstract description 8
- 101100489713 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND1 gene Proteins 0.000 claims description 27
- 101100489717 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GND2 gene Proteins 0.000 claims description 9
- 230000033228 biological regulation Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- 230000009977 dual effect Effects 0.000 claims description 2
- 238000010277 constant-current charging Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910000896 Manganin Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2207/00—Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J2207/20—Charging or discharging characterised by the power electronics converter
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路。本发明包括电源与升降压主电路、测控电路,具体包括超级电容、MOS管、芯片、电压运放、电流运放、检测运放、电源稳压管、给定稳压管、驱动稳压管、二极管、滤波电感、变压电感、电源电容、给定电容、驱动电容、变压电容、反馈电容、电压正端电容、电压负端电容、电流负端电容、电流正端电容、检测电容等。本发明具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的稳压充电与稳压控制,本发明电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。
The invention relates to a supercapacitor double-closed-loop buck-boost charging control circuit based on a voltage-stabilizing output type. The present invention includes a main circuit for power supply and buck-boost, and a measurement and control circuit, specifically including a super capacitor, a MOS tube, a chip, a voltage op amp, a current op amp, a detection op amp, a power supply regulator tube, a given voltage regulator tube, and a drive regulator Tubes, diodes, filter inductors, transformer inductors, power supply capacitors, given capacitors, drive capacitors, transformer capacitors, feedback capacitors, voltage positive capacitors, voltage negative capacitors, current negative capacitors, current positive capacitors, detection capacitors Wait. The present invention has control functions of dynamic constant current charging and steady-state steady-state charging, so as to ensure safe, reliable and fast steady-voltage charging and steady-voltage control of supercapacitors under wide charging power supply voltage conditions. The circuit of the present invention is simple and low cost. Low cost, high reliability, good versatility, easy to modularize and serialize products.
Description
技术领域technical field
本发明属于工业测控领域,涉及一种电路,特别涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路,适用于使用超级电容储能、供电与续航控制的应用场合。The invention belongs to the field of industrial measurement and control, and relates to a circuit, in particular to a supercapacitor double-closed-loop buck-boost charging control circuit based on a voltage-stabilizing output type, which is suitable for applications where supercapacitors are used for energy storage, power supply and battery life control.
背景技术Background technique
超级电容在现代新能源储能、各类军民设备续航供电与控制方面,得到日益广泛的应用。超级电容应用技术中的一个重要问题之一就是在电源电压宽广范围内,根据超级电容的额定电压约束要求,进行稳压快速充电控制问题,目前常用的稳压式充电方法存在的不足之处在于:一是初始充电电流冲击大无法控制,且过渡过程时间长;二是基于专用恒流稳压充电芯片的方案适用的超级电容储能容量小,且现有方案中的电路较复杂,成本较高。因此,如何设计一种在超级电容额定电压约束下,在宽广的充电电源供电电压条件进行高效、快速、安全的超级电容充电控制方案,特别是能适于新能源电力转换中的高压大容量储能应用场合,是本发明的出发点。Supercapacitors are increasingly used in modern new energy storage, power supply and control of various military and civilian equipment. One of the important issues in the supercapacitor application technology is to control the voltage regulation and fast charging according to the rated voltage constraint requirements of the supercapacitor within a wide range of power supply voltage. The disadvantage of the commonly used voltage regulation charging method is : First, the initial charging current impact is large and uncontrollable, and the transition process takes a long time; second, the supercapacitor energy storage capacity suitable for the solution based on the dedicated constant current voltage regulator charging chip is small, and the circuit in the existing solution is more complicated and the cost is relatively high. high. Therefore, how to design an efficient, fast, and safe supercapacitor charging control scheme under the constraints of the rated voltage of the supercapacitor under a wide range of charging power supply voltage conditions, especially suitable for high-voltage large-capacity storage in new energy power conversion Applicable occasions are the starting point of the present invention.
发明内容Contents of the invention
本发明的目的是针对现有技术存在的不足,提出一种基于稳压输出式的超级电容双闭环升降压充电控制电路。该电路以运行于PWM控制方式的大功率MOS管为充电过程的高效功率控制元件,以PWM电源芯片作为大功率MOS管的栅极驱动电路,充电主电路采用同极性输出式的升降压型DC/DC变换电路,并以满幅运放(rail to rail运放)为双闭环控制电路,具有动态恒流充电、稳态稳压充电的控制能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制。The object of the present invention is to propose a double-closed-loop buck-boost charging control circuit for a supercapacitor based on a voltage-stabilized output type in view of the deficiencies in the prior art. The circuit uses a high-power MOS tube operating in the PWM control mode as the high-efficiency power control element in the charging process, and uses a PWM power chip as the gate drive circuit of the high-power MOS tube. Type DC/DC conversion circuit, and a full-scale op amp (rail to rail op amp) as a double closed-loop control circuit, with dynamic constant current charging, steady-state voltage regulation and control functions to ensure that the super capacitor can be charged in a wide range of charging power Safe, reliable and fast charging and voltage regulation control under low voltage conditions.
本发明电路包括电源与升降压主电路、测控电路。The circuit of the present invention includes a power supply, a buck-boost main circuit, and a measurement and control circuit.
电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接。The power supply and buck-boost main circuit includes supercapacitor SC1, PWM chip IC1, MOS tube VT1, power regulator DW1, given regulator DW2, driving regulator DW3, diode D1, power capacitor C1, and given capacitor C2 , driving capacitor C3, variable voltage capacitor C4, feedback capacitor C5, filter inductor L1, variable voltage inductor L2, current limiting resistor R1, voltage stabilizing resistor R2, driving resistor R3, gate resistor R4, upper output resistor R5, lower output resistor R6, the current sensing resistor Rs, the circuit supply voltage terminal + Us terminal is connected to one terminal of the current limiting resistor R1, one terminal of the driving resistor R3, and the drain terminal D of the MOS tube VT1, and the other terminal of the current limiting resistor R1 is connected to the auxiliary power supply voltage Terminal +Vcc terminal, the cathode of the power supply regulator DW1, one end of the power supply capacitor C1, and the voltage regulator R2 are connected, and the anode of the power supply regulator DW1 and the other end of the power supply capacitor C1 are connected to the input ground terminal GND1 to stabilize the voltage. The other end of the resistor R2 is connected to one end of the given capacitor C2, the cathode of the given voltage regulator tube DW2, and the reference voltage terminal Vref, and the other end of the given capacitor C2 and the anode of the given voltage regulator tube DW2 are connected to the input ground terminal GND1 is connected, the other end of the driving resistor R3 is connected to the power supply input terminal IN of the PWM chip IC1, the cathode of the driving regulator DW3, and one end of the driving capacitor C3, and the anode of the driving regulator DW3 is connected to the other end of the driving capacitor C3 Both are connected to the input ground terminal GND1, the enabling terminal/ON terminal and the ground terminal GND terminal of the PWM chip IC1 are connected to the input ground terminal GND1, and the output terminal OUT of the PWM chip IC1 is connected to one end of the gate resistor R4. The other end of one end of the gate resistor R4 is connected to the gate G end of the MOS transistor VT1, the feedback end FB end of the PWM chip IC1 is connected to the output end OUT end of the current operational amplifier IC3, and one end of the current negative end resistor R13, and the MOS transistor The source terminal S of VT1 is connected to one end of the transformer inductor L2 and one end of the transformer capacitor C4, and the other end of the transformer capacitor C4 is connected to the cathode of the diode D1 and one end of the filter inductor L1, and the anode of the diode D1, the current sensor One end of the resistor Rs is connected to the input ground terminal GND1, the other end of the transformer inductor L2 is connected to the output ground terminal GND2, the other end of the filter inductor L1 is connected to one end of the upper output resistor R5, the positive terminal + terminal of the supercapacitor SC1, and the circuit The output voltage terminal + Uout is connected, the other end of the upper output resistor R5 is connected to one end of the lower output resistor R6, one end of the feedback capacitor C5, and one end of the voltage feedback resistor R9, the negative end of the supercapacitor SC1 is connected to the lower output resistor R6 The other end of , the other end of the feedback capacitor C5 , and the other end of the current sensing resistor Rs are all connected to the output ground terminal GND2 .
测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C10C10、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C10C10的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C10C10的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。The measurement and control circuit includes voltage operational amplifier IC2, current operational amplifier IC3, detection operational amplifier IC4, feedback capacitor C5, voltage positive terminal capacitor C6, voltage negative terminal capacitor C7, current negative terminal capacitor C8, current positive terminal capacitor C9, detection capacitor C10C10, Voltage input resistor R7, voltage positive terminal resistor R8, voltage feedback resistor R9, voltage negative terminal resistor R10, current input resistor R11, current feedback resistor R12, current negative terminal resistor R13, current positive terminal resistor R14, negative terminal detection resistor R15, Amplifying resistor R16, positive detection resistor R17, one end of voltage input resistor R7 is connected to reference voltage terminal Vref, the other end of voltage input resistor R7 is connected to positive input terminal IN+ of voltage operational amplifier IC2, and one end of voltage positive terminal capacitor C6 Connection, the other end of the voltage positive terminal capacitor C6 is connected to one end of the voltage positive terminal resistor R8, the other end of the voltage positive terminal resistor R8 is connected to the input ground terminal GND1, the negative input terminal IN- of the voltage operational amplifier IC2 is connected to the voltage negative terminal One end of terminal capacitor C7 is connected to the other end of voltage feedback resistor R9, the other end of voltage negative terminal capacitor C7 is connected to one end of voltage negative terminal resistor R10, the other end of voltage negative terminal resistor R10 is connected to the output terminal OUT terminal of voltage operational amplifier IC2, One end of the current input resistor R11 is connected, the positive power supply terminal +V of the voltage operational amplifier IC2 is connected to the auxiliary power supply voltage terminal +Vcc, the ground terminal GND of the voltage operational amplifier IC2 is connected to the input ground terminal GND1, and the current input resistor R11 The other end is connected to the negative input terminal IN- of the current operational amplifier IC3 and one end of the current negative terminal capacitor C8, the other end of the current negative terminal capacitor C8 is connected to the other end of the current negative terminal resistor R13, and the positive input of the current operational amplifier IC3 The terminal IN+ is connected to one end of the current feedback resistor R12 and one end of the current positive terminal capacitor C9, the other end of the current positive terminal capacitor C9 is connected to one end of the current positive terminal resistor R14, the other end of the current positive terminal resistor R14 is connected to the current op amp The ground terminal GND of IC3 is connected to the input ground terminal GND1, the other end of the current feedback resistor R12 is connected to the output terminal OUT of the detection operational amplifier IC4, and one end of the amplifying resistor R16, and the other end of the amplifying resistor R16 is connected to the negative terminal for detection One end of the resistor R15 is connected to the negative input terminal IN- of the detection operational amplifier IC4, and the other end of the negative detection resistor R15, one end of the detection capacitor C10C10, and the ground terminal GND of the detection operational amplifier IC4 are connected to the input ground terminal GND1 , the positive power supply terminal +V terminal of the detection operational amplifier IC4 is connected to the auxiliary power supply voltage terminal +Vcc, the positive input terminal IN+ terminal of the detection operational amplifier IC4 is connected to the other terminal of the detection capacitor C10C10, and one end of the positive detection resistor R17, and the positive terminal The other end of the detection resistor R17 is connected to the output ground end GND2.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明以功率MOS管、PWM芯片、运算放大器等为主的简单电路方案,具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制,该电路方案电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。The simple circuit scheme based on power MOS tubes, PWM chips, and operational amplifiers in the present invention has the control functions of dynamic constant current charging and steady-state voltage-stabilizing charging, so as to ensure that supercapacitors can be safely and efficiently charged under a wide range of charging power supply voltage conditions. Reliable and fast charging and voltage stabilization control, the circuit scheme has simple circuit, low cost, high reliability, good versatility, easy modularization and product serialization.
附图说明Description of drawings
图1为本发明的电路图。Fig. 1 is the circuit diagram of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
如图1所示,一种基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路。As shown in Figure 1, a supercapacitor dual closed-loop buck-boost charging control circuit based on a voltage-regulated output type includes a power supply, a buck-boost main circuit, and a measurement and control circuit.
电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接。The power supply and buck-boost main circuit includes supercapacitor SC1, PWM chip IC1, MOS tube VT1, power regulator DW1, given regulator DW2, driving regulator DW3, diode D1, power capacitor C1, and given capacitor C2 , driving capacitor C3, variable voltage capacitor C4, feedback capacitor C5, filter inductor L1, variable voltage inductor L2, current limiting resistor R1, voltage stabilizing resistor R2, driving resistor R3, gate resistor R4, upper output resistor R5, lower output resistor R6, the current sensing resistor Rs, the circuit supply voltage terminal + Us terminal is connected to one terminal of the current limiting resistor R1, one terminal of the driving resistor R3, and the drain terminal D of the MOS tube VT1, and the other terminal of the current limiting resistor R1 is connected to the auxiliary power supply voltage Terminal +Vcc terminal, the cathode of the power supply regulator DW1, one end of the power supply capacitor C1, and the voltage regulator R2 are connected, and the anode of the power supply regulator DW1 and the other end of the power supply capacitor C1 are connected to the input ground terminal GND1 to stabilize the voltage. The other end of the resistor R2 is connected to one end of the given capacitor C2, the cathode of the given voltage regulator tube DW2, and the reference voltage terminal Vref, and the other end of the given capacitor C2 and the anode of the given voltage regulator tube DW2 are connected to the input ground terminal GND1 is connected, the other end of the driving resistor R3 is connected to the power supply input terminal IN of the PWM chip IC1, the cathode of the driving regulator DW3, and one end of the driving capacitor C3, and the anode of the driving regulator DW3 is connected to the other end of the driving capacitor C3 Both are connected to the input ground terminal GND1, the enabling terminal/ON terminal and the ground terminal GND terminal of the PWM chip IC1 are connected to the input ground terminal GND1, and the output terminal OUT of the PWM chip IC1 is connected to one end of the gate resistor R4. The other end of one end of the gate resistor R4 is connected to the gate G end of the MOS transistor VT1, the feedback end FB end of the PWM chip IC1 is connected to the output end OUT end of the current operational amplifier IC3, and one end of the current negative end resistor R13, and the MOS transistor The source terminal S of VT1 is connected to one end of the transformer inductor L2 and one end of the transformer capacitor C4, and the other end of the transformer capacitor C4 is connected to the cathode of the diode D1 and one end of the filter inductor L1, and the anode of the diode D1, the current sensor One end of the resistor Rs is connected to the input ground terminal GND1, the other end of the transformer inductor L2 is connected to the output ground terminal GND2, the other end of the filter inductor L1 is connected to one end of the upper output resistor R5, the positive terminal + terminal of the supercapacitor SC1, and the circuit The output voltage terminal + Uout is connected, the other end of the upper output resistor R5 is connected to one end of the lower output resistor R6, one end of the feedback capacitor C5, and one end of the voltage feedback resistor R9, the negative end of the supercapacitor SC1 is connected to the lower output resistor R6 The other end of , the other end of the feedback capacitor C5 , and the other end of the current sensing resistor Rs are all connected to the output ground terminal GND2 .
测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C10、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C10的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C10的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。The measurement and control circuit includes voltage operational amplifier IC2, current operational amplifier IC3, detection operational amplifier IC4, feedback capacitor C5, voltage positive terminal capacitor C6, voltage negative terminal capacitor C7, current negative terminal capacitor C8, current positive terminal capacitor C9, detection capacitor C10, Voltage input resistor R7, voltage positive terminal resistor R8, voltage feedback resistor R9, voltage negative terminal resistor R10, current input resistor R11, current feedback resistor R12, current negative terminal resistor R13, current positive terminal resistor R14, negative terminal detection resistor R15, Amplifying resistor R16, positive detection resistor R17, one end of voltage input resistor R7 is connected to reference voltage terminal Vref, the other end of voltage input resistor R7 is connected to positive input terminal IN+ of voltage operational amplifier IC2, and one end of voltage positive terminal capacitor C6 Connection, the other end of the voltage positive terminal capacitor C6 is connected to one end of the voltage positive terminal resistor R8, the other end of the voltage positive terminal resistor R8 is connected to the input ground terminal GND1, the negative input terminal IN- of the voltage operational amplifier IC2 is connected to the voltage negative terminal One end of terminal capacitor C7 is connected to the other end of voltage feedback resistor R9, the other end of voltage negative terminal capacitor C7 is connected to one end of voltage negative terminal resistor R10, the other end of voltage negative terminal resistor R10 is connected to the output terminal OUT terminal of voltage operational amplifier IC2, One end of the current input resistor R11 is connected, the positive power supply terminal +V of the voltage operational amplifier IC2 is connected to the auxiliary power supply voltage terminal +Vcc, the ground terminal GND of the voltage operational amplifier IC2 is connected to the input ground terminal GND1, and the current input resistor R11 The other end is connected to the negative input terminal IN- of the current operational amplifier IC3 and one end of the current negative terminal capacitor C8, the other end of the current negative terminal capacitor C8 is connected to the other end of the current negative terminal resistor R13, and the positive input of the current operational amplifier IC3 The terminal IN+ is connected to one end of the current feedback resistor R12 and one end of the current positive terminal capacitor C9, the other end of the current positive terminal capacitor C9 is connected to one end of the current positive terminal resistor R14, the other end of the current positive terminal resistor R14 is connected to the current op amp The ground terminal GND of IC3 is connected to the input ground terminal GND1, the other end of the current feedback resistor R12 is connected to the output terminal OUT of the detection operational amplifier IC4, and one end of the amplifying resistor R16, and the other end of the amplifying resistor R16 is connected to the negative terminal for detection One end of the resistor R15 is connected to the negative input terminal IN- of the detection operational amplifier IC4, and the other end of the negative detection resistor R15, one end of the detection capacitor C10, and the ground terminal GND of the detection operational amplifier IC4 are connected to the input ground terminal GND1 , the positive power supply terminal +V terminal of the detection operational amplifier IC4 is connected to the auxiliary power supply voltage terminal +Vcc, the positive input terminal IN+ terminal of the detection operational amplifier IC4 is connected to the other end of the detection capacitor C10, and one end of the positive detection resistor R17. The other end of the detection resistor R17 is connected to the output ground end GND2.
本发明所使用的包括MOS管VT1、PWM芯片IC1、电压运放IC2、电流运放IC3、检测运放IC4、电流传感电阻Rs等在内的所有器件均采用现有的成熟产品,可以通过市场取得。例如:MOS管采用IRF系列MOSFET管,PWM芯片采用LM2575ADJ,电压运放、电流运放、检测运放均采用TLC2264,电流传感电阻采用LRA型锰铜电阻等。All devices including MOS transistor VT1, PWM chip IC1, voltage op amp IC2, current op amp IC3, detection op amp IC4, current sensing resistor Rs, etc. used in the present invention adopt existing mature products, which can be passed market obtained. For example: MOS tube adopts IRF series MOSFET tube, PWM chip adopts LM2575ADJ, voltage op amp, current op amp, detection op amp all adopt TLC2264, current sensing resistor adopts LRA type manganin resistor, etc.
本发明中的主要电路参数配合关系如下:The main circuit parameter coordination relation among the present invention is as follows:
设:电路供电电压为Us(单位:V),电路辅助电源电压为Vcc(单位:V),充电给定电压为Vref(单位:V),超级电容的额定电压为UscN(单位:V),超级电容的最大充电电流为Iscm(单位:A),MOS管栅源极驱动电压阈值为Ugsth(单位:V),限压稳压管DW2的稳压值为Udw2(单位:V),R2、R3、R5、R6分别为稳压电阻R2、分压电阻R3、驱动电阻R4、上输出电阻R5、下输出电阻R6的阻值(单位:Ω),R7、R8、R9、R10分别为电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10的阻值(单位:Ω),R11、R12、R13、R14分别为电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14的阻值(单位:Ω),R15、R16分别为负端检测电阻R15、放大电阻R16的阻值(单位:Ω),C6、C7、C8、C9分别为电电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9的电容值(单位:F),电压运放IC2、电流运放IC3、检测运放IC4均为满幅运放(Rail to Rail运放)。则,电路的参数配合关系如下:Suppose: the circuit power supply voltage is U s (unit: V), the circuit auxiliary power supply voltage is V cc (unit: V), the charging given voltage is V ref (unit: V), and the rated voltage of the supercapacitor is U scN (unit: V) : V), the maximum charging current of the supercapacitor is I scm (unit: A), the gate-source driving voltage threshold of the MOS tube is U gsth (unit: V), and the voltage regulation value of the voltage limiting regulator DW2 is U dw2 ( Unit: V), R 2 , R 3 , R 5 , and R 6 are the resistance values of the voltage stabilizing resistor R2, the voltage dividing resistor R3, the driving resistor R4, the upper output resistor R5, and the lower output resistor R6 respectively (unit: Ω), R 7 , R 8 , R 9 , and R 10 are the resistance values of voltage input resistor R7, voltage positive terminal resistor R8, voltage feedback resistor R9, and voltage negative terminal resistor R10 (unit: Ω), R 11 , R 12 , and R 13 and R 14 are the resistance values of current input resistor R11, current feedback resistor R12, current negative terminal resistor R13, and current positive terminal resistor R14 (unit: Ω), R 15 and R 16 are negative terminal detection resistor R15, amplification The resistance value of the resistor R16 (unit: Ω), C 6 , C 7 , C 8 , and C 9 are the capacitances of the positive voltage terminal capacitor C6, the voltage negative terminal capacitor C7, the current negative terminal capacitor C8, and the current positive terminal capacitor C9. Value (unit: F), voltage op amp IC2, current op amp IC3, and detection op amp IC4 are rail to rail op amps. Then, the parameter matching relationship of the circuit is as follows:
R7=R9 (1)R 7 =R 9 (1)
R8=R10 (2)R 8 =R 10 (2)
R11=R12 (3)R 11 =R 12 (3)
R13=R14 (4)R 13 =R 14 (4)
C6=C7 (5)C 6 =C 7 (5)
C8=C9 (6)C 8 =C 9 (6)
Ugsth<Us (7)U gsth < U s (7)
本发明工作过程如下:The working process of the present invention is as follows:
(1)辅助电源电压的产生:由限流电阻R1、电源电容C1、电源稳压管DW1构成稳压电路,其稳压值即为辅助电源电压Vcc(单位:V),作为控制电路的电源。(1) Generation of auxiliary power supply voltage: a voltage stabilizing circuit is composed of current limiting resistor R1, power supply capacitor C1, and power supply regulator DW1. The voltage stabilization value is the auxiliary power supply voltage V cc (unit: V). power supply.
(2)充电电压的给定电压信号Vref的产生:由稳压电阻R2、给定电容C2、给定稳压管DW2等产生。(2) Generation of the given voltage signal V ref of the charging voltage: generated by the voltage stabilizing resistor R2 , the given capacitor C2 , the given voltage stabilizing tube DW2 and the like.
(3)电路工作过程:在本发明电路中,电压运放IC2及其外围RC元件组成PI型充电电压闭环调节器,电压反馈信号取自上输出电阻R5、下输出电阻R6、反馈电容C5构成的电压检测电路,电压运放IC2的输出值作为以电流运放IC2及其外围RC元件组成PI型充电电流闭环调节器的给定值,而电流反馈信号取自电流传感电阻Rs与检测运放IC4及其外围电路等构成的电流放大电路,其中的参数配合关系如式(9)所示。因在充电的动态过程中,电压运放IC2输出饱和,使充电电流保持最大以实现快速充电,稳态时,使超级电容充电电压保持在其额定电压。此外,电流运放IC2的输出信号作为PWM芯片的指令信号以驱动MOS管VT1,并经以MOS管VT1、二极管D1、滤波电感L1、变压电感L2、变压电容C4、超级电容SC1等组成的升降压型DC/DC变换电路进行自动充电控制。(3) Circuit working process: In the circuit of the present invention, the voltage operational amplifier IC2 and its peripheral RC components form a PI type charging voltage closed-loop regulator, and the voltage feedback signal is obtained from the upper output resistor R5, the lower output resistor R6, and the feedback capacitor C5. The voltage detection circuit, the output value of the voltage operational amplifier IC2 is used as the given value of the PI type charging current closed-loop regulator composed of the current operational amplifier IC2 and its peripheral RC components, and the current feedback signal is taken from the current sensing resistor Rs and the detection operation Put the current amplification circuit composed of IC4 and its peripheral circuits, etc., and the parameter coordination relationship among them is shown in formula (9). Because in the dynamic process of charging, the output of the voltage operational amplifier IC2 is saturated, so that the charging current is kept at the maximum to realize fast charging, and in the steady state, the charging voltage of the supercapacitor is kept at its rated voltage. In addition, the output signal of the current operational amplifier IC2 is used as the command signal of the PWM chip to drive the MOS transistor VT1, and is composed of the MOS transistor VT1, diode D1, filter inductor L1, transformer inductor L2, transformer capacitor C4, super capacitor SC1, etc. The buck-boost DC/DC conversion circuit performs automatic charging control.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810796757.4A CN108899951B (en) | 2018-07-19 | 2018-07-19 | Super capacitor double closed-loop buck-boost charging control circuit based on voltage stabilization output type |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810796757.4A CN108899951B (en) | 2018-07-19 | 2018-07-19 | Super capacitor double closed-loop buck-boost charging control circuit based on voltage stabilization output type |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108899951A true CN108899951A (en) | 2018-11-27 |
CN108899951B CN108899951B (en) | 2020-08-04 |
Family
ID=64351081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810796757.4A Active CN108899951B (en) | 2018-07-19 | 2018-07-19 | Super capacitor double closed-loop buck-boost charging control circuit based on voltage stabilization output type |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108899951B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110445236A (en) * | 2019-07-30 | 2019-11-12 | 成都信息工程大学 | A kind of energy conversion device and its working method |
CN113727264A (en) * | 2020-09-09 | 2021-11-30 | 深圳市汇顶科技股份有限公司 | Driver circuit arrangement for high capacitive loads |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1821386A2 (en) * | 2006-02-17 | 2007-08-22 | Power Systems Co., Ltd. | Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source |
US20090091300A1 (en) * | 2007-10-04 | 2009-04-09 | Broadcom Corporation | Collapsing Adaptor Battery Charger |
CN202258818U (en) * | 2011-10-09 | 2012-05-30 | 黄淮学院 | Super capacitor voltage balancing circuit, single-stage super capacitor module and two-stage super capacitor module |
CN103956708A (en) * | 2014-04-21 | 2014-07-30 | 杭州电子科技大学 | Overload measurement and control circuit for low-voltage direct current load |
CN105406542A (en) * | 2015-12-11 | 2016-03-16 | 上海空间电源研究所 | Voltage-controlled current-limiting charging circuit for supercapacitor bank |
CN106410919A (en) * | 2016-11-28 | 2017-02-15 | 丽水学院 | Control method of super-capacitor module charging power supply |
CN106740153A (en) * | 2016-12-29 | 2017-05-31 | 西安电子科技大学 | A kind of intelligent power power-supply system for pure electric vehicle |
CN107196341A (en) * | 2017-07-10 | 2017-09-22 | 华北电力大学(保定) | The two-stage type of Variable power point tracking is without energy storage photovoltaic virtual synchronous machine control method |
-
2018
- 2018-07-19 CN CN201810796757.4A patent/CN108899951B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1821386A2 (en) * | 2006-02-17 | 2007-08-22 | Power Systems Co., Ltd. | Charging apparatus for capacitor storage type power source and discharging apparatus for capacitor storage type power source |
US20090091300A1 (en) * | 2007-10-04 | 2009-04-09 | Broadcom Corporation | Collapsing Adaptor Battery Charger |
CN202258818U (en) * | 2011-10-09 | 2012-05-30 | 黄淮学院 | Super capacitor voltage balancing circuit, single-stage super capacitor module and two-stage super capacitor module |
CN103956708A (en) * | 2014-04-21 | 2014-07-30 | 杭州电子科技大学 | Overload measurement and control circuit for low-voltage direct current load |
CN105406542A (en) * | 2015-12-11 | 2016-03-16 | 上海空间电源研究所 | Voltage-controlled current-limiting charging circuit for supercapacitor bank |
CN106410919A (en) * | 2016-11-28 | 2017-02-15 | 丽水学院 | Control method of super-capacitor module charging power supply |
CN106740153A (en) * | 2016-12-29 | 2017-05-31 | 西安电子科技大学 | A kind of intelligent power power-supply system for pure electric vehicle |
CN107196341A (en) * | 2017-07-10 | 2017-09-22 | 华北电力大学(保定) | The two-stage type of Variable power point tracking is without energy storage photovoltaic virtual synchronous machine control method |
Non-Patent Citations (1)
Title |
---|
宋凯等: "变负载无线充电系统的恒流充电技术", 《电工技术学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110445236A (en) * | 2019-07-30 | 2019-11-12 | 成都信息工程大学 | A kind of energy conversion device and its working method |
CN110445236B (en) * | 2019-07-30 | 2024-04-30 | 成都信息工程大学 | Energy conversion device and working method thereof |
CN113727264A (en) * | 2020-09-09 | 2021-11-30 | 深圳市汇顶科技股份有限公司 | Driver circuit arrangement for high capacitive loads |
CN113727264B (en) * | 2020-09-09 | 2023-10-27 | 深圳市汇顶科技股份有限公司 | Driver circuit arrangement for high capacitive loads |
US12155359B2 (en) | 2020-09-09 | 2024-11-26 | Shenzhen GOODIX Technology Co., Ltd. | Driver circuit arrangement for driving load and differential drive arrangement thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108899951B (en) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105743343B (en) | A kind of high efficiency dc-to-dc type boost converter | |
CN103747561B (en) | Adjustment of load compensated switching power supply | |
CN204068745U (en) | A kind of transformer leakage inductance Energy harvesting type flyback sourse system | |
CN110708820A (en) | LED constant current driving circuit controlled through LLC resonance | |
CN107659160B (en) | A kind of DC-DC constant-current circuit | |
CN108880213A (en) | A kind of super capacitor discharge protection circuit based on MOSFET observing and controlling | |
CN108899951B (en) | Super capacitor double closed-loop buck-boost charging control circuit based on voltage stabilization output type | |
CN201352323Y (en) | High-efficient synchronous rectification depressurization-type voltage stabilizer | |
CN202178715U (en) | AC-DC power conversion chip and power conversion circuit | |
CN207218539U (en) | A double-transistor forward constant current power supply | |
CN105897015A (en) | PSR constant-current constant-voltage AC/DC chip | |
CN114679065A (en) | A high-efficiency and low-cross-regulation multi-output power supply | |
CN106953402B (en) | Magnetic powder brake driving and undervoltage protection circuit based on super capacitor endurance | |
CN202178706U (en) | AC-DC power conversion chip and power conversion circuit | |
CN110474545A (en) | The direct current output control system of friction nanometer power generator with exchange output control system | |
CN101976946B (en) | Circuit and method for transforming negative voltage between direct currents | |
CN109066946B (en) | Super capacitor double-closed-loop voltage reduction charging control circuit based on voltage limiting tracking | |
CN203405753U (en) | Chip structure integrated with temperature compensation negative feedback | |
CN201830141U (en) | DC-DC negative voltage conversion circuit | |
CN212343642U (en) | PFC auxiliary power supply circuit, switching power supply device and air conditioner | |
CN211152285U (en) | L ED constant current drive circuit through LL C resonance control | |
CN202818127U (en) | Switch power supply with high-precision over-current protection circuit | |
CN203554763U (en) | LED power supply with BOOST and FLYBACK integrated therein | |
CN102437747B (en) | Digital-type hysteresis control current source | |
CN206775224U (en) | Direct current supply and protection circuit based on the continuous electricity operation of super capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220217 Address after: Room 2242, No. 3, Xuanhua Road, Changning District, Shanghai 200050 Patentee after: CHINA ELECTRONIC SYSTEMS TECHNOLOGY Co.,Ltd. Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang Patentee before: HANGZHOU DIANZI University |