[go: up one dir, main page]

CN108898622A - A kind of the representation of athletic method, apparatus and computer readable storage medium of heart - Google Patents

A kind of the representation of athletic method, apparatus and computer readable storage medium of heart Download PDF

Info

Publication number
CN108898622A
CN108898622A CN201810730181.1A CN201810730181A CN108898622A CN 108898622 A CN108898622 A CN 108898622A CN 201810730181 A CN201810730181 A CN 201810730181A CN 108898622 A CN108898622 A CN 108898622A
Authority
CN
China
Prior art keywords
phase
cardiogram
heart
vertices
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810730181.1A
Other languages
Chinese (zh)
Inventor
杨烜
张正瑞
郭伟
裴继红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201810730181.1A priority Critical patent/CN108898622A/en
Publication of CN108898622A publication Critical patent/CN108898622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The invention discloses the representation of athletic method, apparatus and computer readable storage medium of a kind of heart, and the MR image by extracting first phase, second phase is handled and constructs to obtain first phase heart graph structure A and second phase heart graph structure Bi, convex objective function is matched using two heart graph structure solution figures and obtains the vertex set with corresponding relationship, deformation function is constructed based on the vertex set with corresponding relationship, and using it to BiIt carries out deformation and obtains new second phase heart graph structure Bi+1, calculate BiWith Bi+1Changing value and judge whether changing value is greater than preset threshold, if then enabling i=i+1 and recycling step of the present invention, if otherwise using deformation function characterization heart movement.This method constructs to obtain after deformation function by the way of circulation, deformation also is carried out to original image structure using the deformation function that building obtains, the whether accurate of deformation function is further verified according to deformation changing value, therefore this method can more accurately characterize the movement of heart.

Description

一种心脏的运动表征方法、装置及计算机可读存储介质A heart motion characterization method, device, and computer-readable storage medium

技术领域technical field

本发明涉及计算机技术领域,更具体地说,涉及一种心脏的运动表征方法、装置及计算机可读存储介质。The present invention relates to the field of computer technology, and more specifically, to a heart motion characterization method, device and computer-readable storage medium.

背景技术Background technique

利用心脏影像分析追踪心脏解剖结构及心脏病变组织的运动变化,即分析心脏运动,是心脏疾病诊断与制定治疗方案的重要手段,现有的基于B样条自由形变的配准方法、光流法和基于形状结构的方法都不能精确的表征心脏的运动,因此如何利用心肌层的结构特点更为精确的表征心脏的运动是个亟待解决的。The use of cardiac image analysis to track the anatomical structure of the heart and the movement changes of heart lesion tissue, that is, to analyze the heart movement, is an important means for the diagnosis of heart disease and the formulation of treatment plans. The existing registration method based on B-spline free deformation and optical flow method Neither the method nor the shape-based structure can accurately characterize the motion of the heart, so how to use the structural characteristics of the myocardium to characterize the motion of the heart more accurately is an urgent problem to be solved.

发明内容Contents of the invention

本发明的主要目的在于提供一种心脏的运动表征方法,旨在解决现有技术无法精确表征心脏运动的技术问题。The main purpose of the present invention is to provide a heart motion characterization method, aiming at solving the technical problem that the prior art cannot accurately characterize the heart motion.

为实现上述目的,本发明提供一种心脏的运动表征方法,该方法包括:In order to achieve the above object, the present invention provides a method for characterizing the motion of the heart, the method comprising:

步骤1、提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割第一相位MR图像、第二相位MR图像,得到左心室的心内膜轮廓和心外膜轮廓,并在心内膜轮廓和心外膜轮廓上进行采样,得到若干个心脏图顶点;Step 1. Extract the first phase magnetic resonance MR image and the second phase MR image of the heart, and use the fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the endocardial contour and cardiac Epicardial contour, and sampling on the endocardial contour and epicardial contour to obtain several cardiogram vertices;

步骤2、连接第一相位MR图像中心外膜轮廓的中心与第一相位MR图像上的心脏图顶点,得到第一相位心脏图结构A;连接第二相位MR图像中心外膜轮廓的中心与第二相位MR图像上的心脏图顶点,得到第二相位心脏图结构Bi;i的初始值为1;Step 2. Connect the center of the epicardium contour in the center of the first phase MR image with the apex of the cardiogram on the first phase MR image to obtain the structure A of the first phase cardiogram; connect the center of the epicardium contour in the center of the second phase MR image with the The vertex of the cardiogram on the two-phase MR image, to obtain the second phase cardiogram structure B i ; the initial value of i is 1;

步骤3、利用第一相位心脏图结构A与第二相位心脏图结构Bi求解图匹配凸目标函数,得到第一相位心脏图结构A的顶点与第二相位心脏图结构Bi中具有对应关系的顶点集合;Step 3, use the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function, and obtain the corresponding relationship between the vertices of the first phase cardiogram structure A and the second phase cardiogram structure B i set of vertices;

步骤4、基于所述具有对应关系的顶点集合构建形变函数,并利用形变函数对第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1Step 4, constructing a deformation function based on the set of vertices with the corresponding relationship, and using the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 ;

步骤5、计算第二相位心脏图结构Bi与新的第二相位心脏图结构Bi+1的变化值,当变化值大于预设阈值时,令i=i+1,返回执行步骤3;否则,采用形变函数表征心脏的运动。Step 5. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 . When the change value is greater than the preset threshold, set i=i+1 and return to step 3; Otherwise, the deformation function is used to characterize the motion of the heart.

可选的,该第一相位心脏图结构A、第二相位心脏图结构Bi分别采用四元组{P1、E1、G1、H1}、{P2、E2、G2、H2}表示;Optionally, the first phase cardiogram structure A and the second phase cardiogram structure Bi are represented by quadruples {P1, E1, G1, H1}, {P2, E2, G2, H2} respectively;

为第一相位心脏图结构A中n1个dp维的心脏图顶点的点特征集合; In the first phase cardiogram structure A, it is a set of point features of n1 dp - dimensional cardiogram vertices;

为第一相位心脏图结构A中m1个de维的边特征集合; In the first phase cardiogram structure A , m1 d e -dimensional edge feature set;

G1和H1分别为第一相位心脏图结构A中构成边的心脏图起点和终点的集合,顶点集合由心内膜顶点和心外膜顶点组成。。G 1 and H 1 are the collections of the starting point and end point of the cardiogram constituting a side in the first phase cardiogram structure A respectively, The vertex set consists of endocardial vertices and epicardial vertices. .

为第一相位心脏图结构A中n2个dp维的心脏图顶点的点特征集合; In the first phase cardiogram structure A, it is a set of point features of n 2 dp -dimensional cardiogram vertices;

为第一相位心脏图结构A中m2个de维的边特征集合; In the first phase cardiogram structure A, m 2 d e -dimensional edge feature sets;

G2和H2分别为第二相位心脏图结构Bi中构成边的心脏图起点和终点的集合, G 2 and H 2 are the collections of the starting point and end point of the cardiogram constituting a side in the second phase cardiogram structure B i respectively,

可选的,步骤1中,在心内膜轮廓和心外膜轮廓上进行采样,分别得到若干个的心内膜顶点和心外膜顶点,则步骤3中的图匹配凸目标函数包括:Optionally, in step 1, sampling is performed on the endocardial contour and epicardial contour to obtain several endocardial vertices and epicardial vertices respectively, then the graph matching convex objective function in step 3 includes:

其中,Ax-b=0; in, Ax-b=0;

x=vec(Kp),y=vec(Y),p2=vec(P2),e2=vec(E2),vec是向量化算子;x=vec(K p ), y=vec(Y), p 2 =vec(P 2 ), e 2 =vec(E 2 ), vec is a vectorization operator;

为哈达马积,为克罗内克积,λ、γ为常数; for Hadama, is the Kronecker product, λ, γ are constants;

1m×n是元素全为1的m×n矩阵,In是n×n的单位矩阵;1 m×n is an m×n matrix whose elements are all 1, I n is an n×n identity matrix;

n1、n2分别为第一相位心脏图结构A与第二相位心脏图结构Bi中心内膜顶点和心外膜顶点的个数;n 1 and n 2 are the numbers of the central endocardial vertices and epicardial vertices of the first phase cardiogram structure A and the second phase cardiogram structure Bi, respectively;

可选的,具有对应关系的顶点集合包括所述第一相位心脏图结构A的顶点集U={ui,i=1,...K}和所述第二相位心脏图结构Bi的顶点集V={vi,i=1,...,K};所述点特征集合包括所述心脏图顶点的顶点位置,则步骤4包括:Optionally, the set of vertices with corresponding relationship includes the set of vertices U={u i , i=1,...K} of the first phase cardiogram structure A and the set of vertices of the second phase cardiogram structure B i Vertex set V={v i , i=1,...,K}; the point feature set includes the vertex positions of the heart map vertices, and step 4 includes:

利用迭代阈值收缩算法求解目标函数得到仿射形变系数和弹性变换系数,目标函数为:The iterative threshold shrinkage algorithm is used to solve the objective function to obtain the affine deformation coefficient and the elastic transformation coefficient. The objective function is:

φ为径向基函数,||*||2为欧式距离,z=[α1,...αK012]T,弹性变换系数为α=[α1,...αK]T,仿射形变系数为β=[β012]T,Dc=[0,1,1]T,λ1和λ2为常数,R为实数域;φ is the radial basis function, ||*|| 2 is the Euclidean distance, z=[α 1 ,...α K012 ] T , the elastic transformation coefficient is α=[α 1 , ...α K ] T , the affine deformation coefficient is β=[β 012 ] T , D c =[0,1,1] T , λ 1 and λ 2 are constants, R is the field of real numbers;

利用仿射形变系数、弹性变换系数及所述径向基函数构建得到形变函数:Using the affine deformation coefficient, the elastic transformation coefficient and the radial basis function to construct the deformation function:

利用所述形变函数对所述第二相位心脏图结构Bi的点特征集合P2中的顶点位置进行映射得到新的顶点,并连接所述第二相位MR图像中所述心外膜轮廓的中心与所述新的顶点,得到新的第二相位心脏图结构Bi+1Use the deformation function to map the vertex positions in the point feature set P2 of the second phase cardiogram structure Bi to obtain a new vertex, and connect the points of the epicardial contour in the second phase MR image Centering with the new vertex, a new second phase cardiogram structure B i+1 is obtained.

可选的,步骤5中,变化值为映射前后点位置之间的变化值。Optionally, in step 5, the change value is the change value between the point positions before and after the mapping.

进一步地,本发明还提供了一种心脏的运动表征装置,该装置包括处理器、存储器及通信总线;Further, the present invention also provides a cardiac motion characterization device, which includes a processor, a memory, and a communication bus;

通信总线用于实现处理器和存储器之间的连接通信;The communication bus is used to realize the connection communication between the processor and the memory;

处理器用于执行存储器中存储的一个或者多个程序,以实现如下步骤:The processor is used to execute one or more programs stored in the memory to achieve the following steps:

步骤1、提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割第一相位MR图像、第二相位MR图像,得到左心室的心内膜轮廓和心外膜轮廓,并在心内膜轮廓和心外膜轮廓上进行采样,得到若干个心脏图顶点;Step 1. Extract the first phase magnetic resonance MR image and the second phase MR image of the heart, and use the fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the endocardial contour and cardiac Epicardial contour, and sampling on the endocardial contour and epicardial contour to obtain several cardiogram vertices;

步骤2、连接第一相位MR图像中心外膜轮廓的中心与第一相位MR图像上的心脏图顶点,得到第一相位心脏图结构A;连接第二相位MR图像中心外膜轮廓的中心与第二相位MR图像上的心脏图顶点,得到第二相位心脏图结构Bi;i的初始值为1;Step 2. Connect the center of the epicardium contour in the center of the first phase MR image with the apex of the cardiogram on the first phase MR image to obtain the structure A of the first phase cardiogram; connect the center of the epicardium contour in the center of the second phase MR image with the The vertex of the cardiogram on the two-phase MR image, to obtain the second phase cardiogram structure B i ; the initial value of i is 1;

步骤3、利用第一相位心脏图结构A与第二相位心脏图结构Bi求解图匹配凸目标函数,得到所述第一相位心脏图结构A的顶点与所述第二相位心脏图结构Bi中具有对应关系的顶点集合;Step 3. Using the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function, and obtain the vertices of the first phase cardiogram structure A and the second phase cardiogram structure B i The set of vertices with corresponding relationship in ;

步骤4、基于顶点集合构建形变函数,并利用形变函数对第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1Step 4. Construct a deformation function based on the vertex set, and use the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 ;

步骤5、计算第二相位心脏图结构Bi与新的第二相位心脏图结构Bi+1的变化值,当变化值大于预设阈值时,令i=i+1,返回执行步骤3;否则,采用形变函数表征心脏的运动。Step 5. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 . When the change value is greater than the preset threshold, set i=i+1 and return to step 3; Otherwise, the deformation function is used to characterize the motion of the heart.

可选的,处理器用于执行存储器中存储的一个或者多个程序,以实现:采用四元组{P1、E1、G1、H1}、{P2、E2、G2、H2}表示第一相位心脏图结构A、第二相位心脏图结构BiOptionally, the processor is used to execute one or more programs stored in the memory, so as to realize: using the quaternion {P 1 , E 1 , G 1 , H 1 }, {P 2 , E 2 , G 2 , H 2 } represents the first phase cardiogram structure A and the second phase cardiogram structure B i ;

为第一相位心脏图结构A中n1个dp维的心脏图顶点的点特征集合; In the first phase cardiogram structure A, it is a set of point features of n1 dp - dimensional cardiogram vertices;

为第一相位心脏图结构A中m1个de维的边特征集合; In the first phase cardiogram structure A , m1 d e -dimensional edge feature set;

G1和H1分别为第一相位心脏图结构A中构成边的心脏图起点和终点的集合,顶点集合由心内膜顶点和心外膜顶点组成。。G 1 and H 1 are the collections of the starting point and end point of the cardiogram constituting a side in the first phase cardiogram structure A respectively, The vertex set consists of endocardial vertices and epicardial vertices. .

为第二相位心脏图结构Bi中n2个dp维的心脏图顶点的点特征集合; Be the point feature collection of the cardiogram vertices of n 2 dp dimensions in the second phase cardiogram structure B i ;

为第二相位心脏图结构Bi中m2个de维的边特征集合; Be the edge feature set of m 2 d e dimensions in the second phase cardiogram structure B i ;

G2和H2分别为第二相位心脏图结构Bi中构成边的心脏图起点和终点的集合, G 2 and H 2 are the collections of the starting point and end point of the cardiogram constituting a side in the second phase cardiogram structure B i respectively,

可选的,步骤1中,在心内膜轮廓和心外膜轮廓上进行采样,分别得到若干个的心内膜顶点和心外膜顶点,则步骤3中的图匹配凸目标函数包括:Optionally, in step 1, sampling is performed on the endocardial contour and epicardial contour to obtain several endocardial vertices and epicardial vertices respectively, then the graph matching convex objective function in step 3 includes:

其中,Ax-b=0; in, Ax-b=0;

x=vec(Kp),y=vec(Y),p2=vec(P2),e2=vec(E2),vec是向量化算子;x=vec(K p ), y=vec(Y), p 2 =vec(P 2 ), e 2 =vec(E 2 ), vec is a vectorization operator;

为哈达马积,为克罗内克积,λ、γ为常数; for Hadama, is the Kronecker product, λ, γ are constants;

1m×n是元素全为1的m×n矩阵,In是n×n的单位矩阵;1 m×n is an m×n matrix whose elements are all 1, I n is an n×n identity matrix;

n1、n2分别为第一相位心脏图结构A与第二相位心脏图结构Bi中心内膜顶点和心外膜顶点的个数;n 1 and n 2 are the numbers of the central endocardial vertices and epicardial vertices of the first phase cardiogram structure A and the second phase cardiogram structure Bi, respectively;

可选的,所述具有对应关系的顶点集合包括所述第一相位心脏图结构A的顶点集U={ui,i=1,...K}和所述第二相位心脏图结构Bi的顶点集V={vi,i=1,...,K};所述点特征集合包括所述心脏图顶点的顶点位置;Optionally, the corresponding set of vertices includes the vertex set U={u i , i=1,...K} of the first phase cardiogram structure A and the second phase cardiogram structure B i 's vertex set V={v i , i=1,...,K}; the point feature set includes the vertex position of the heart map vertex;

处理器用于执行存储器中存储的一个或者多个程序,以实现步骤4:The processor is used to execute one or more programs stored in the memory to achieve step 4:

利用迭代阈值收缩算法求解目标函数得到仿射形变系数和弹性变换系数,目标函数为:The iterative threshold shrinkage algorithm is used to solve the objective function to obtain the affine deformation coefficient and the elastic transformation coefficient. The objective function is:

φ为径向基函数,||*||2为欧式距离,z=[α1,...αK012]T,弹性变换系数为α=[α1,...αK]T,仿射形变系数为β=[β012]T,Dc=[0,1,1]T,λ1和λ2为常数,R为实数域;φ is the radial basis function, ||*|| 2 is the Euclidean distance, z=[α 1 ,...α K012 ] T , the elastic transformation coefficient is α=[α 1 , ...α K ] T , the affine deformation coefficient is β=[β 012 ] T , D c =[0,1,1] T , λ 1 and λ 2 are constants, R is the field of real numbers;

利用仿射形变系数、弹性变换系数及所述径向基函数构建得到形变函数:Using the affine deformation coefficient, the elastic transformation coefficient and the radial basis function to construct the deformation function:

利用形变函数对第二相位心脏图结构Bi的点特征集合P2中的顶点位置进行映射得到新的顶点,并连接第二相位MR图像中心外膜轮廓的中心与新的顶点,得到新的第二相位心脏图结构Bi+1 Use the deformation function to map the vertex positions in the point feature set P2 of the second phase cardiogram structure Bi to obtain a new vertex, and connect the center of the epicardial contour of the second phase MR image with the new vertex to obtain a new vertex Second Phase Cardiogram Structure B i+1

进一步地,本发明还提供了一种计算机可读存储介质,计算机可读存储介质储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如上的心脏的运动表征方法的步骤。Further, the present invention also provides a computer-readable storage medium. The computer-readable storage medium stores one or more programs, and one or more programs can be executed by one or more processors to realize the above heart Steps of the motion characterization method.

有益效果Beneficial effect

本发明提供一种心脏的运动表征方法、装置及计算机可读存储介质,通过以下步骤可实现对心脏运动的表征:The present invention provides a heart motion characterization method, device and computer-readable storage medium, which can realize the characterization of heart motion through the following steps:

步骤1、提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割第一相位MR图像、第二相位MR图像,得到左心室的心内膜轮廓和心外膜轮廓,并在心内膜轮廓和心外膜轮廓上进行采样,得到若干个的心内膜顶点和心外膜顶点;Step 1. Extract the first phase magnetic resonance MR image and the second phase MR image of the heart, and use the fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the endocardial contour and cardiac Epicardial contour, and sampling on the endocardial contour and epicardial contour to obtain several endocardial vertices and epicardial vertices;

步骤2、连接第一相位MR图像中心外膜轮廓的中心与心内膜顶点和心外膜顶点,得到第一相位心脏图结构A;连接第二相位MR图像中心外膜轮廓的中心与心内膜顶点和心外膜顶点,得到第二相位心脏图结构Bi;i的初始值为1;Step 2. Connect the center of the epicardial contour in the center of the first phase MR image with the endocardial apex and the epicardial apex to obtain the first phase cardiogram structure A; connect the center of the epicardial contour in the second phase MR image with the endocardium Membrane vertex and epicardium vertex to obtain the second phase cardiogram structure B i ; the initial value of i is 1;

步骤3、利用第一相位心脏图结构A与第二相位心脏图结构Bi求解图匹配凸目标函数,得到第一相位心脏图结构A的顶点与第二相位心脏图结构Bi中具有对应关系的顶点集合;Step 3, use the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function, and obtain the corresponding relationship between the vertices of the first phase cardiogram structure A and the second phase cardiogram structure B i set of vertices;

步骤4、基于具有对应关系的顶点集合构建形变函数,并利用形变函数对第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1Step 4. Construct a deformation function based on the corresponding vertex set, and use the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 ;

步骤5、计算第二相位心脏图结构Bi与新的第二相位心脏图结构Bi+1的变化值,当变化值大于预设阈值时,令i=i+1,返回执行步骤3;否则,采用形变函数表征心脏的运动。Step 5. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 . When the change value is greater than the preset threshold, set i=i+1 and return to step 3; Otherwise, the deformation function is used to characterize the motion of the heart.

该心脏的运动表征方法采用循环的方式构建得到形变函数之后,还利用构建得到的形变函数对上一次得到的心脏图结构进行形变,计算形变前后的心脏图结构的变化值进而校验形变函数的是否精确,以得到能够表征心脏的运动的形变函数,该方法相对于现有技术能更精确的表征心脏的运动。After the heart motion characterization method uses a cyclic method to construct the deformation function, it also uses the constructed deformation function to deform the heart map structure obtained last time, calculates the change value of the heart map structure before and after deformation, and then verifies the deformation function. Whether it is accurate, so as to obtain a deformation function that can characterize the motion of the heart, this method can more accurately characterize the motion of the heart compared with the prior art.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without creative work.

图1为本发明实施例提供的心脏的运动表征方法的基本流程图;FIG. 1 is a basic flowchart of a heart motion characterization method provided by an embodiment of the present invention;

图2为现有Delaunay三角剖分算法剖分得到的心脏图结构;Fig. 2 is the heart graph structure that existing Delaunay triangulation algorithm divides into pieces;

图3为本发明实施例构造的心脏图结构;Fig. 3 is the structure of the cardiograph of the embodiment of the present invention;

图4为本发明实施例提供的心脏的运动表征装置的结构示意图。Fig. 4 is a schematic structural diagram of a heart motion characterization device provided by an embodiment of the present invention.

具体实施方式Detailed ways

为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described The embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.

请参阅图1,图1为本实施例提供的心脏的运动表征方法的基本流程图,该方法包括:Please refer to Fig. 1, Fig. 1 is the basic flowchart of the motion characterization method of the heart provided by this embodiment, the method includes:

S101、提取第一相位MR图像和第二相位MR图像,并分别对其进行分割及采样,得到若干个心脏图顶点。S101. Extract the first phase MR image and the second phase MR image, and segment and sample them respectively to obtain a number of cardiogram vertices.

具体的,该S101步骤包括:提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割第一相位MR图像、第二相位MR图像,得到第一相位MR图像的左心室的心内膜轮廓和心外膜轮廓,及第二相位MR图像的左心室内膜轮廓和心外膜轮廓,并在分别在第一相位MR图像、第二相位MR图像的心内膜轮廓和心外膜轮廓上进行采样,得到对应相位MR图像上的若干个心脏图顶点。Specifically, the step S101 includes: extracting the first phase magnetic resonance MR image and the second phase MR image of the heart, and using a fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the first phase MR image. The endocardial contour and epicardial contour of the left ventricle of the image, and the left ventricle endocardial contour and epicardial contour of the second phase MR image, and in the first phase MR image, the second phase MR image of the cardiac Sampling is performed on the endocardial contour and the epicardial contour to obtain several cardiogram vertices on the corresponding phase MR image.

需要理解的是,该S101步骤的全卷积神经网络是采取带有人工标注结果的大量心脏图像数据对全卷积神经网络进行训练得到的,目前可选的心脏图像数据包括加拿大多伦多儿童医院影像诊断部提供的33个心脏短轴MR图像,该数据集提供了左心室在20个相位的分割结果,可提供约5千余个训练数据;另一个训练集是加拿大多伦多大学的心脏图像数据,该数据共有45个病人数据,每个数据提供了收缩末期和舒张末期的左心室分割结果,可以提供大约5百余个训练数据。通过训练得到的全卷积神经网络对MR图像进行分割得到左心室的心内膜轮廓和心外膜轮廓,在另外的一些示例中为了进一步提高分割精度,解决全卷积网络分割存在的过分割的情况,采用椭圆检测则实现提高分割精度。It should be understood that the fully convolutional neural network in step S101 is obtained by training the fully convolutional neural network with a large amount of cardiac image data with manual labeling results. Currently, the available cardiac image data include images from Toronto Children's Hospital The 33 cardiac short-axis MR images provided by the diagnostic department, this data set provides the segmentation results of the left ventricle in 20 phases, and can provide about 5,000 training data; another training set is the heart image data of the University of Toronto, Canada, The data has a total of 45 patient data, each of which provides the segmentation results of the left ventricle at the end of systole and end of diastole, and can provide about 500 training data. Segment the MR image by training the fully convolutional neural network to obtain the endocardial and epicardial contours of the left ventricle. In some other examples, in order to further improve the segmentation accuracy, solve the over-segmentation of the full convolutional network segmentation. In the case of ellipse detection, the segmentation accuracy can be improved.

S102、连接相同MR图像上的心外膜轮廓的中心与心脏图顶点,分别得到第一相位心脏图结构A和第二相位心脏图结构BiS102. Connect the center of the epicardial contour on the same MR image with the apex of the cardiogram to obtain a first phase cardiogram structure A and a second phase cardiogram structure B i .

该S102步骤包括:连接第一相位MR图像中心外膜轮廓的中心与第一相位MR图像上的心脏图顶点,得到第一相位心脏图结构A;连接第二相位MR图像中心外膜轮廓的中心与第二相位MR图像上的心脏图顶点,得到第二相位心脏图结构Bi;i的初始值为1;The S102 step includes: connecting the center of the central epicardium contour of the first phase MR image with the apex of the cardiogram on the first phase MR image to obtain the first phase cardiogram structure A; connecting the center of the central epicardium contour of the second phase MR image and the cardiogram vertex on the second phase MR image to obtain the second phase cardiogram structure B i ; the initial value of i is 1;

参见图2所示,其为本发明实施例中的方法形成的心脏图结构,不同于图3所示的、由Delaunay三角剖分算法剖分得到的心脏图结构,通过本发明方法得到的心脏图结构描述了左心室的近圆结构,其连接边具有各向异性的方向性,而其长度又具有相似性,每条边都具有明确的几何解释,边的相似性度量对图相似性有明确的辅助意义,很适合描述左心室的解剖结构。Referring to Fig. 2, it is the heart diagram structure formed by the method in the embodiment of the present invention, which is different from the heart diagram structure obtained by the Delaunay triangulation algorithm as shown in Fig. The graph structure describes the near-circular structure of the left ventricle. Its connecting edges have anisotropic directionality, while their lengths are similar. Each edge has a clear geometric interpretation, and the edge similarity measure has an important influence on the graph similarity. With a clear auxiliary meaning, it is very suitable for describing the anatomy of the left ventricle.

在另外的一些示例中,第一相位心脏图结构A、第二相位心脏图结构Bi可分别采用四元组{P1、E1、G1、H1}、{P2、E2、G2、H2}表示;In some other examples, the first phase cardiogram structure A and the second phase cardiogram structure B i can respectively adopt the quadruple {P 1 , E 1 , G 1 , H 1 }, {P 2 , E 2 , G 2 , H 2 } represent;

为第一相位心脏图结构A中n1个dp维的心脏图顶点的点特征集合; In the first phase cardiogram structure A, it is a set of point features of n1 dp - dimensional cardiogram vertices;

为第一相位心脏图结构A中m1个de维的边特征集合; In the first phase cardiogram structure A , m1 d e -dimensional edge feature set;

G1和H1分别为第一相位心脏图结构A中构成边的心脏图起点和终点的集合,顶点集合由心内膜顶点和心外膜顶点组成。。G 1 and H 1 are the collections of the starting point and end point of the cardiogram constituting a side in the first phase cardiogram structure A respectively, The vertex set consists of endocardial vertices and epicardial vertices. .

为第二相位心脏图结构Bi中n2个dp维的心脏图顶点的点特征集合; Be the point feature collection of the cardiogram vertices of n 2 dp dimensions in the second phase cardiogram structure B i ;

为第二相位心脏图结构Bi中m2个de维的边特征集合; Be the edge feature set of m 2 d e dimensions in the second phase cardiogram structure B i ;

G2和H2分别为第二相位心脏图结构Bi中构成边的心脏图起点和终点的集合, G 2 and H 2 are the collections of the starting point and end point of the cardiogram constituting a side in the second phase cardiogram structure B i respectively,

需要理解的是,此处点特征集合是所有心脏图顶点的特征向量构成的集合;边特征集合即为所有边构成的集合,此处的边为连接心外膜轮廓的中心与心脏图顶点构成的边;G1和H1是两个矩阵,分别表示第一相位图结构上各条边两端顶点,G2和H2是两个矩阵,分别表示第二相位图结构上各条边两端顶点。It should be understood that the point feature set here is a set of feature vectors of all vertices of the heart map; the edge feature set is a set of all edges, where the edges are formed by connecting the center of the epicardial contour and the vertices of the heart map ; G 1 and H 1 are two matrices, respectively representing the vertices at both ends of each edge on the first phase graph structure, G 2 and H 2 are two matrices, respectively representing the two ends of each edge on the second phase graph structure end point.

S103、利用第一相位心脏图结构A与第二相位心脏图结构Bi求解图匹配凸目标函数,得到具有对应关系的顶点集合。S103 , using the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function to obtain a set of vertices with corresponding relationships.

具体的,S103包括利用第一相位心脏图结构A与第二相位心脏图结构Bi求解图匹配凸目标函数,得到第一相位心脏图结构A的顶点与第二相位心脏图结构Bi中具有对应关系的顶点集合。Specifically, S103 includes using the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function to obtain the vertex of the first phase cardiogram structure A and the second phase cardiogram structure B i The set of vertices corresponding to the relationship.

需要理解的是,在另外的示例中,步骤1得到的若干个心脏图顶点包括心内膜顶点和心外膜顶点,步骤3中的图匹配凸目标函数包括:It should be understood that, in another example, the several cardiac graph vertices obtained in step 1 include endocardial vertices and epicardial vertices, and the graph matching convex objective function in step 3 includes:

其中,Ax-b=0; in, Ax-b=0;

x=vec(Kp),y=vec(Y),p2=vec(P2),e2=vec(E2),vec是向量化算子;x=vec(K p ), y=vec(Y), p 2 =vec(P 2 ), e 2 =vec(E 2 ), vec is a vectorization operator;

为哈达马积,为克罗内克积,λ、γ为常数; for Hadama, is the Kronecker product, λ, γ are constants;

1m×n是元素全为1的m×n矩阵,In是n×n的单位矩阵;1 m×n is an m×n matrix whose elements are all 1, I n is an n×n identity matrix;

n1、n2分别为第一相位心脏图结构A与第二相位心脏图结构Bi中心内膜顶点和心外膜顶点的个数;n 1 and n 2 are respectively the number of intima vertices and epicardial vertices in the center of the first phase cardiogram structure A and the second phase cardiogram structure B i ;

需要理解的是,可利用子矩阵Kp和Kq分别表示第一相位心脏图结构A和第二相位心脏图结构Bi的顶点对应程度和边对应程度,第一相位心脏图结构A和第二相位心脏图结构Bi的点特征集合分别为P1和P2,点间对应关系矩阵Kp如果在满足置换矩阵的条件下,可采用函数||P2-P1Kp||2度量点集之间的偏离程度,类似地,同样可以采用两个图的边集合E1和E2以及边对应关系矩阵Kq度量边之间的偏离程度||E2-E1Kq||2,其中 It should be understood that the sub-matrices K p and K q can be used to represent the vertex correspondence degree and edge correspondence degree of the first phase cardiogram structure A and the second phase cardiogram structure B i respectively, and the first phase cardiogram structure A and the second phase cardiogram structure A The point feature sets of the biphasic cardiogram structure B i are respectively P 1 and P 2 , and the point-to-point correspondence matrix K p can use the function ||P 2 -P 1 K p || 2 under the condition of satisfying the permutation matrix To measure the degree of deviation between point sets, similarly, the edge sets E 1 and E 2 of two graphs and the edge correspondence matrix K q can also be used to measure the degree of deviation between edges ||E 2 -E 1 K q | | 2 , where

S104、基于具有对应关系的顶点集合构建形变函数,并利用形变函数对第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1S104. Construct a deformation function based on the corresponding vertex set, and use the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 .

在另外的示例中,具有对应关系的顶点集合包括第一相位心脏图结构A的顶点集U={ui,i=1,...K}和第二相位心脏图结构Bi的顶点集V={vi,i=1,...,K},此处的顶点集为点特征集合的子集,同时需要理解的是,点特征集合还包括心脏图顶点的顶点位置,此时,基于顶点集合构建形变函数,并利用形变函数对第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1的步骤包括:In another example, the set of vertices with corresponding relationship includes the set of vertices U={u i , i=1,...K} of the first phase cardiogram structure A and the set of vertices of the second phase cardiogram structure B i V={v i ,i=1,...,K}, the vertex set here is a subset of the point feature set, and it should be understood that the point feature set also includes the vertex position of the heart map vertex, at this time , construct a deformation function based on the vertex set, and use the deformation function to deform the second phase cardiogram structure Bi, and the steps of obtaining a new second phase cardiogram structure Bi+1 include:

S1041、利用迭代阈值收缩算法求解目标函数得到仿射形变系数和弹性变换系数,目标函数为:S1041, using the iterative threshold shrinkage algorithm to solve the objective function to obtain the affine deformation coefficient and the elastic transformation coefficient, the objective function is:

φ为径向基函数,||*||2为欧式距离,z=[α1,...αK012]T,弹性变换系数为α=[α1,...αK]T,仿射形变系数为β=[β012]T,Dc=[0,1,1]T,λ1和λ2为常数,R为实数域;φ is the radial basis function, ||*|| 2 is the Euclidean distance, z=[α 1 ,...α K012 ] T , the elastic transformation coefficient is α=[α 1 , ...α K ] T , the affine deformation coefficient is β=[β 012 ] T , D c =[0,1,1] T , λ 1 and λ 2 are constants, R is the field of real numbers;

S1042、利用仿射形变系数、弹性变换系数及径向基函数构建得到形变函数:S1042. Using the affine deformation coefficient, the elastic transformation coefficient and the radial basis function to construct the deformation function:

S1043、利用形变函数对第二相位心脏图结构Bi的点特征集合P2中的顶点位置进行映射得到新的顶点,并连接第二相位MR图像中心外膜轮廓的中心与新的顶点,得到新的第二相位心脏图结构Bi+1S1043. Use the deformation function to map the vertex positions in the point feature set P2 of the second phase cardiogram structure B i to obtain a new vertex, and connect the center of the epicardial contour of the second phase MR image with the new vertex to obtain New second phase cardiogram structure B i+1 .

需要理解的是,R是实数域,R2即表示二维平面;u表示二维平面上的点,u1表示第一维平面上的点,u2表示第二维平面上的点。What needs to be understood is that R is a field of real numbers, R 2 means a two-dimensional plane; u means a point on a two-dimensional plane, u1 means a point on a first-dimensional plane, and u2 means a point on a second-dimensional plane.

S105、计算第二相位心脏图结构Bi与新的第二相位心脏图结构Bi+1的变化值,并判断变化值是否大于预设阈值。S105. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 , and determine whether the change value is greater than a preset threshold.

具体的,当变化值大于预设阈值时,则令i=i+1,返回执行S103;若否,则执行S106:采用形变函数表征心脏的运动。Specifically, when the change value is greater than the preset threshold, set i=i+1, and return to S103; otherwise, perform S106: use a deformation function to characterize the motion of the heart.

在另外一些示例中,S106中的变化值为第二相位心脏图结构Bi与新的第二相位心脏图结构Bi+1心脏图顶点的位置的变化值。In some other examples, the change value in S106 is the change value between the positions of the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 of the apex of the cardiogram structure B i+1.

本实施例提供的心脏的运动表征方法采用循环的方式构建得到形变函数之后,还利用构建得到的形变函数对原图结构进行形变,根据形变变化值进一步校验形变函数的是否精确,因此该方法相对于现有技术能精确的表征心脏的运动。同时,该方法不但可以解决心脏运动模型估计问题,通过形变模型还可得到心脏图像的动态分割结果,以辅助心脏疾病诊断、心脏功能测量、分析等临床应用。The heart motion characterization method provided in this embodiment adopts a cyclic method to construct the deformation function, and then uses the constructed deformation function to deform the original image structure, and further checks whether the deformation function is accurate according to the deformation change value. Therefore, the method Compared with the prior art, the motion of the heart can be accurately characterized. At the same time, this method can not only solve the problem of cardiac motion model estimation, but also obtain the dynamic segmentation results of cardiac images through the deformation model, so as to assist clinical applications such as cardiac disease diagnosis, cardiac function measurement, and analysis.

本发明还提供了一种心脏的运动表征装置,参见图4所示,其包括处理器41、存储器42及通信总线43,其中:The present invention also provides a cardiac motion characterization device, as shown in FIG. 4 , which includes a processor 41, a memory 42 and a communication bus 43, wherein:

通信总线43用于实现处理器41和存储器42之间的连接通信;The communication bus 43 is used to realize connection and communication between the processor 41 and the memory 42;

处理器41用于执行存储器42中存储的程序,以实现上述心脏的运动表征方法的各步骤。The processor 41 is used to execute the programs stored in the memory 42, so as to realize each step of the above-mentioned cardiac motion characterization method.

本实施例还提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如上所述的心脏的运动表征方法的步骤。This embodiment also provides a computer-readable storage medium, which is characterized in that the computer-readable storage medium stores one or more programs, and one or more programs can be executed by one or more processors to achieve the above The steps of the described cardiac motion characterization method.

需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。It should be noted that, for the sake of simplicity of description, the aforementioned method embodiments are expressed as a series of action combinations, but those skilled in the art should know that the present invention is not limited by the described action sequence. Because of the present invention, certain steps may be performed in other orders or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification belong to preferred embodiments, and the actions and modules involved are not necessarily required by the present invention.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述,同时,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。In the above-mentioned embodiments, the descriptions of each embodiment have their own emphases. For the parts that are not described in detail in a certain embodiment, you can refer to the relevant descriptions of other embodiments. At the same time, the serial numbers of the above-mentioned embodiments of the present invention are for description only On behalf of the advantages and disadvantages of the embodiment, those of ordinary skill in the art can also make many forms under the enlightenment of the present invention without departing from the purpose of the present invention and the scope protected by the claims, and these all belong to the protection of the present invention within.

Claims (10)

1.一种心脏的运动表征方法,其特征在于,包括:1. A motion characterization method of the heart, comprising: 步骤1、提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割所述第一相位MR图像、第二相位MR图像,得到左心室的心内膜轮廓和心外膜轮廓,并在所述心内膜轮廓和心外膜轮廓上进行采样,得到若干个心脏图顶点;Step 1. Extract the first phase magnetic resonance MR image and the second phase MR image of the heart, and use a fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the endocardial contour of the left ventricle and epicardial contour, and sampling is performed on the endocardial contour and epicardial contour to obtain several cardiogram vertices; 步骤2、连接所述第一相位MR图像中所述心外膜轮廓的中心与所述第一相位MR图像上的所述心脏图顶点,得到第一相位心脏图结构A;连接所述第二相位MR图像中所述心外膜轮廓的中心与所述第二相位MR图像上的所述心脏图顶点,得到第二相位心脏图结构Bi;所述i的初始值为1;Step 2. Connect the center of the epicardial contour in the first phase MR image with the apex of the cardiogram on the first phase MR image to obtain a first phase cardiogram structure A; connect the second The center of the epicardial contour in the phase MR image and the apex of the cardiogram on the second phase MR image are obtained to obtain a second phase cardiogram structure B i ; the initial value of i is 1; 步骤3、利用所述第一相位心脏图结构A与所述第二相位心脏图结构Bi求解图匹配凸目标函数,得到所述第一相位心脏图结构A的顶点与所述第二相位心脏图结构Bi中具有对应关系的顶点集合;Step 3, use the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function, and obtain the vertices of the first phase cardiogram structure A and the second phase cardiogram structure B i A set of vertices with corresponding relationships in the graph structure B i ; 步骤4、基于所述具有对应关系的顶点集合构建形变函数,并利用所述形变函数对所述第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1Step 4. Constructing a deformation function based on the corresponding vertex set, and using the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 ; 步骤5、计算所述第二相位心脏图结构Bi与所述新的第二相位心脏图结构Bi+1的变化值,当所述变化值大于预设阈值时,令i=i+1,返回执行步骤3;否则,采用所述形变函数表征所述心脏的运动。Step 5. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 , and when the change value is greater than a preset threshold, let i=i+1 , return to step 3; otherwise, use the deformation function to characterize the motion of the heart. 2.如权利要求1所述的心脏的运动表征方法,其特征在于,所述第一相位心脏图结构A、第二相位心脏图结构Bi分别采用四元组{P1、E1、G1、H1}、{P2、E2、G2、H2}表示;2. The motion characterization method of the heart according to claim 1, wherein the first phase cardiogram structure A and the second phase cardiogram structure B i respectively adopt the quadruple {P 1 , E 1 , G 1 , H 1 }, {P 2 , E 2 , G 2 , H 2 } represent; 所述为所述第一相位心脏图结构A中n1个dp维的心脏图顶点的点特征集合;said In the first phase cardiogram structure A, it is a set of point features of n1 dp - dimensional cardiogram vertices; 所述为所述第一相位心脏图结构A中m1个de维的边特征集合;said In the first phase cardiogram structure A , m1 d e -dimensional edge feature sets; 所述G1和H1分别为所述第一相位心脏图结构A中构成边的心脏图起点和终点的集合,所述 Said G 1 and H 1 are respectively the collection of starting points and end points of cardiograms constituting sides in said first phase cardiogram structure A, said 所述为所述第二相位心脏图结构Bi中n2个dp维的心脏图顶点的点特征集合;said It is a point feature set of n 2 d p -dimensional cardiogram vertices in the second phase cardiogram structure B i ; 所述为所述第二相位心脏图结构Bi中m2个de维的边特征集合;said It is a set of side features of m 2 d e dimensions in the second phase cardiogram structure B i ; 所述G2和H2分别为所述第二相位心脏图结构Bi中构成边的心脏图起点和终点的集合,所述 Said G 2 and H 2 are respectively the set of starting points and end points of the cardiograms constituting edges in said second phase cardiogram structure B i , said 3.如权利要求2所述的心脏的运动表征方法,其特征在于,所述步骤1中的心脏图顶点包括心内膜顶点和心外膜顶点,则所述步骤3中的图匹配凸目标函数包括:3. The motion characterization method of the heart as claimed in claim 2, wherein the heart map vertex in the step 1 includes an endocardium vertex and an epicardium vertex, and the graph matching convex target in the step 3 Functions include: 其中,Ax-b=0; in, Ax-b=0; 所述x=vec(Kp),y=vec(Y),p2=vec(P2),e2=vec(E2),所述vec是向量化算子;The x=vec(K p ), y=vec(Y), p 2 =vec(P 2 ), e 2 =vec(E 2 ), the vec is a vectorization operator; 所述为哈达马积,所述为克罗内克积,所述λ、γ为常数;said For the Hadamard product, the is the Kronecker product, and the λ and γ are constants; 所述1m×n是元素全为1的m×n矩阵,所述In是n×n的单位矩阵;The 1 m×n is an m×n matrix whose elements are all 1, and the I n is an n×n identity matrix; 所述n1、n2分别为所述第一相位心脏图结构A与所述第二相位心脏图结构Bi中心内膜顶点和心外膜顶点的个数;The n 1 and n 2 are respectively the number of intima vertices and epicardial vertices in the centers of the first phase cardiogram structure A and the second phase cardiogram structure B i ; 所述所述 said said 4.如权利要求1-3任一项所述的心脏的运动表征方法,其特征在于,所述具有对应关系的顶点集合包括所述第一相位心脏图结构A的顶点集U={ui,i=1,...K}和所述第二相位心脏图结构Bi的顶点集V={vi,i=1,...,K};所述点特征集合包括所述心脏图顶点的顶点位置;4. The motion characterization method of the heart as claimed in any one of claims 1-3, wherein the set of vertices with corresponding relations comprises the set of vertices U={u i of the first phase cardiogram structure A ,i=1,...K} and the vertex set V={v i ,i=1,...,K} of the second phase cardiogram structure B i ; the point feature set includes the heart Vertex positions of graph vertices; 所述步骤4包括:Said step 4 includes: 利用迭代阈值收缩算法求解目标函数得到仿射形变系数和弹性变换系数,所述目标函数为:The iterative threshold shrinkage algorithm is used to solve the objective function to obtain the affine deformation coefficient and the elastic transformation coefficient, and the objective function is: 所述 said 所述φ为径向基函数,所述||*||2为欧式距离,所述z=[α1,...αK012]T,所述弹性变换系数为α=[α1,...αK]T,所述仿射形变系数为β=[β012]T,所述Dc=[0,1,1]T,所述λ1和λ2为常数,所述所述R为实数域;The φ is the radial basis function, the ||*|| 2 is the Euclidean distance, the z=[α 1 ,...α K012 ] T , the elastic transformation The coefficient is α=[α 1 ,...α K ] T , the affine deformation coefficient is β=[β 012 ] T , and the D c =[0,1,1] T , the λ 1 and λ 2 are constants, the The R is a real number field; 利用所述仿射形变系数、所述弹性变换系数及所述径向基函数构建得到形变函数:Using the affine deformation coefficient, the elastic transformation coefficient and the radial basis function to construct a deformation function: 利用所述形变函数对所述第二相位心脏图结构Bi的点特征集合P2中的顶点位置进行映射得到新的顶点,并连接所述第二相位MR图像中所述心外膜轮廓的中心与所述新的顶点,得到新的第二相位心脏图结构Bi+1Use the deformation function to map the vertex positions in the point feature set P2 of the second phase cardiogram structure Bi to obtain a new vertex, and connect the points of the epicardial contour in the second phase MR image Centering with the new vertex, a new second phase cardiogram structure B i+1 is obtained. 5.如权利要求4所述的心脏的运动表征方法,其特征在于,所述步骤5中,所述变化值为所述第二相位心脏图结构Bi与所述新的第二相位心脏图结构Bi+1心脏图顶点的位置的变化值。5. The motion characterization method of heart as claimed in claim 4, is characterized in that, in described step 5, described change value is described second phase cardiogram structure Bi and described new second phase cardiogram The change value of the position of the vertices of the cardiogram of structure B i+1 . 6.一种心脏的运动表征装置,其特征在于,所述装置包括处理器、存储器及通信总线;6. A heart motion characterization device, characterized in that the device comprises a processor, a memory and a communication bus; 所述通信总线用于实现处理器和存储器之间的连接通信;The communication bus is used to realize connection and communication between the processor and the memory; 所述处理器用于执行存储器中存储的一个或者多个程序,以实现如下步骤:The processor is used to execute one or more programs stored in the memory, so as to realize the following steps: 步骤1、提取心脏的第一相位磁共振MR图像和第二相位MR图像,采用全卷积神经网络分别分割所述第一相位MR图像、第二相位MR图像,得到左心室的心内膜轮廓和心外膜轮廓,并在所述心内膜轮廓和心外膜轮廓上进行采样,得到若干个心脏图顶点;Step 1. Extract the first phase magnetic resonance MR image and the second phase MR image of the heart, and use a fully convolutional neural network to segment the first phase MR image and the second phase MR image respectively to obtain the endocardial contour of the left ventricle and epicardial contour, and sampling is performed on the endocardial contour and epicardial contour to obtain several cardiogram vertices; 步骤2、连接所述第一相位MR图像中所述心外膜轮廓的中心与所述第一相位MR图像上的所述心脏图顶点,得到第一相位心脏图结构A;连接所述第二相位MR图像中所述心外膜轮廓的中心与所述第二相位MR图像上的所述心脏图顶点,得到第二相位心脏图结构Bi;所述i的初始值为1;Step 2. Connect the center of the epicardial contour in the first phase MR image with the apex of the cardiogram on the first phase MR image to obtain a first phase cardiogram structure A; connect the second The center of the epicardial contour in the phase MR image and the apex of the cardiogram on the second phase MR image are obtained to obtain a second phase cardiogram structure B i ; the initial value of i is 1; 步骤3、利用所述第一相位心脏图结构A与所述第二相位心脏图结构Bi求解图匹配凸目标函数,得到所述第一相位心脏图结构A的顶点与所述第二相位心脏图结构Bi中具有对应关系的顶点集合;Step 3, use the first phase cardiogram structure A and the second phase cardiogram structure B i to solve the graph matching convex objective function, and obtain the vertices of the first phase cardiogram structure A and the second phase cardiogram structure B i A set of vertices with corresponding relationships in the graph structure B i ; 步骤4、基于所述具有对应关系的顶点集合构建形变函数,并利用所述形变函数对所述第二相位心脏图结构Bi进行形变,得到新的第二相位心脏图结构Bi+1Step 4. Constructing a deformation function based on the corresponding vertex set, and using the deformation function to deform the second phase cardiogram structure B i to obtain a new second phase cardiogram structure B i+1 ; 步骤5、计算所述第二相位心脏图结构Bi与所述新的第二相位心脏图结构Bi+1的变化值,当所述变化值大于预设阈值时,令i=i+1,返回执行步骤3;否则,采用所述形变函数表征所述心脏的运动。Step 5. Calculate the change value between the second phase cardiogram structure B i and the new second phase cardiogram structure B i+1 , and when the change value is greater than a preset threshold, let i=i+1 , return to step 3; otherwise, use the deformation function to characterize the motion of the heart. 7.如权利要求6所述的心脏的运动表征装置,其特征在于,所述处理器用于执行存储器中存储的一个或者多个程序,以实现:采用四元组{P1、E1、G1、H1}、{P2、E2、G2、H2}表示所述第一相位心脏图结构A、第二相位心脏图结构Bi7. The cardiac motion characterization device according to claim 6, wherein the processor is used to execute one or more programs stored in the memory, so as to realize: using the quadruple {P 1 , E 1 , G 1 , H 1 }, {P 2 , E 2 , G 2 , H 2 } represent the first phase cardiogram structure A and the second phase cardiogram structure B i ; 所述为所述第一相位心脏图结构A中n1个dp维的心脏图顶点的点特征集合;said In the first phase cardiogram structure A, it is a set of point features of n1 dp - dimensional cardiogram vertices; 所述为所述第一相位心脏图结构A中m1个de维的边特征集合;said In the first phase cardiogram structure A , m1 d e -dimensional edge feature sets; 所述G1和H1分别为所述第一相位心脏图结构A中构成边的心脏图起点和终点的集合,所述 Said G 1 and H 1 are respectively the collection of starting points and end points of cardiograms constituting sides in said first phase cardiogram structure A, said 所述为所述第二相位心脏图结构Bi中n2个dp维的心脏图顶点的点特征集合;said It is a point feature set of n 2 d p -dimensional cardiogram vertices in the second phase cardiogram structure B i ; 所述为所述第二相位心脏图结构Bi中m2个de维的边特征集合;said It is a set of side features of m 2 d e dimensions in the second phase cardiogram structure B i ; 所述G2和H2分别为所述第二相位心脏图结构Bi中构成边的心脏图起点和终点的集合,所述 Said G 2 and H 2 are respectively the set of starting points and end points of the cardiograms constituting edges in said second phase cardiogram structure B i , said 8.如权利要求7所述的心脏的运动表征装置,其特征在于,所述步骤1中的心脏图顶点包括心内膜顶点和心外膜顶点,则所述步骤3中的图匹配凸目标函数包括:8. The motion characterization device of the heart as claimed in claim 7, wherein the heart graph vertex in the step 1 comprises an endocardium vertex and an epicardium vertex, and the graph matching convex object in the step 3 Functions include: 其中,Ax-b=0; in, Ax-b=0; 所述x=vec(Kp),y=vec(Y),p2=vec(P2),e2=vec(E2),所述vec是向量化算子;The x=vec(K p ), y=vec(Y), p 2 =vec(P 2 ), e 2 =vec(E 2 ), the vec is a vectorization operator; 所述为哈达马积,所述为克罗内克积,所述λ、γ为常数;said For the Hadamard product, the is the Kronecker product, and the λ and γ are constants; 所述1m×n是元素全为1的m×n矩阵,所述In是n×n的单位矩阵;The 1 m×n is an m×n matrix whose elements are all 1, and the I n is an n×n identity matrix; 所述n1、n2分别为所述第一相位心脏图结构A与所述第二相位心脏图结构Bi中心内膜顶点和心外膜顶点的个数;The n 1 and n 2 are respectively the number of intima and epicardium vertices in the centers of the first phase cardiogram structure A and the second phase cardiogram structure Bi; 所述所述 said said 9.如权利要求6-8任一项所述的心脏的运动表征装置,其特征在于,所述具有对应关系的顶点集合包括所述第一相位心脏图结构A的顶点集U={ui,i=1,...K}和所述第二相位心脏图结构Bi的顶点集V={vi,i=1,...,K};所述点特征集合包括所述心脏图顶点的顶点位置;9. The motion characterization device of the heart according to any one of claims 6-8, wherein the set of vertices with corresponding relationship comprises the set of vertices U={u i of the first phase cardiogram structure A ,i=1,...K} and the vertex set V={v i ,i=1,...,K} of the second phase cardiogram structure B i ; the point feature set includes the heart Vertex positions of graph vertices; 所述处理器用于执行存储器中存储的一个或者多个程序,以实现所述步骤4:The processor is used to execute one or more programs stored in the memory, so as to realize the step 4: 利用迭代阈值收缩算法求解目标函数得到仿射形变系数和弹性变换系数,所述目标函数为:The iterative threshold shrinkage algorithm is used to solve the objective function to obtain the affine deformation coefficient and the elastic transformation coefficient, and the objective function is: 所述 said 所述φ为径向基函数,所述||*||2为欧式距离,所述z=[α1,...αK012]T,所述弹性变换系数为α=[α1,...αK]T,所述仿射形变系数为β=[β012]T,所述Dc=[0,1,1]T,所述λ1和λ2为常数,所述所述R为实数域;The φ is the radial basis function, the ||*|| 2 is the Euclidean distance, the z=[α 1 ,...α K012 ] T , the elastic transformation The coefficient is α=[α 1 ,...α K ] T , the affine deformation coefficient is β=[β 012 ] T , and the D c =[0,1,1] T , the λ 1 and λ 2 are constants, the The R is a real number field; 利用所述仿射形变系数、所述弹性变换系数及所述径向基函数构建得到形变函数:Using the affine deformation coefficient, the elastic transformation coefficient and the radial basis function to construct a deformation function: 利用所述形变函数对所述第二相位心脏图结构Bi的点特征集合P2中的顶点位置进行映射得到新的顶点,并连接所述第二相位MR图像中所述心外膜轮廓的中心与所述新的顶点,得到新的第二相位心脏图结构Bi+1Use the deformation function to map the vertex positions in the point feature set P2 of the second phase cardiogram structure Bi to obtain a new vertex, and connect the points of the epicardial contour in the second phase MR image Centering with the new vertex, a new second phase cardiogram structure B i+1 is obtained. 10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至5中任一项所述的心脏的运动表征方法的步骤。10. A computer-readable storage medium, characterized in that the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to realize the The steps of the cardiac motion characterization method described in any one of 1 to 5 are required.
CN201810730181.1A 2018-07-05 2018-07-05 A kind of the representation of athletic method, apparatus and computer readable storage medium of heart Pending CN108898622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810730181.1A CN108898622A (en) 2018-07-05 2018-07-05 A kind of the representation of athletic method, apparatus and computer readable storage medium of heart

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810730181.1A CN108898622A (en) 2018-07-05 2018-07-05 A kind of the representation of athletic method, apparatus and computer readable storage medium of heart

Publications (1)

Publication Number Publication Date
CN108898622A true CN108898622A (en) 2018-11-27

Family

ID=64347729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810730181.1A Pending CN108898622A (en) 2018-07-05 2018-07-05 A kind of the representation of athletic method, apparatus and computer readable storage medium of heart

Country Status (1)

Country Link
CN (1) CN108898622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136111A (en) * 2019-05-14 2019-08-16 深圳大学 A heart motion estimation method, system and terminal equipment
CN110148150A (en) * 2019-06-20 2019-08-20 深圳大学 It is dense to connect asymmetric hierarchical network training method and heart movement field estimation method
CN110400298A (en) * 2019-07-23 2019-11-01 中山大学 Detection method, device, equipment and medium of cardiac clinical index
CN111784732A (en) * 2020-06-28 2020-10-16 深圳大学 Training cardiac motion field estimation model, method and system for cardiac motion field estimation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890824A (en) * 2011-07-19 2013-01-23 株式会社东芝 Method and device for tracking contour of motion object and method and device for analyzing myocardial motion
CN103761745A (en) * 2013-07-31 2014-04-30 深圳大学 Estimation method and system for lung motion model
CN104933716A (en) * 2015-06-16 2015-09-23 山东大学(威海) Non-rigid registration method applied to medical image
US20170140530A1 (en) * 2015-11-17 2017-05-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image processing in magnetic resonance imaging
CN108042154A (en) * 2017-12-08 2018-05-18 浙江中医药大学 Two dimensional echocardiogram formation center flesh shape, movement and deformation analysis method
CN108230342A (en) * 2017-12-29 2018-06-29 电子科技大学 A kind of left and right ventricles level-set segmentation methods based on cardiac anatomy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890824A (en) * 2011-07-19 2013-01-23 株式会社东芝 Method and device for tracking contour of motion object and method and device for analyzing myocardial motion
CN103761745A (en) * 2013-07-31 2014-04-30 深圳大学 Estimation method and system for lung motion model
CN104933716A (en) * 2015-06-16 2015-09-23 山东大学(威海) Non-rigid registration method applied to medical image
US20170140530A1 (en) * 2015-11-17 2017-05-18 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image processing in magnetic resonance imaging
CN108042154A (en) * 2017-12-08 2018-05-18 浙江中医药大学 Two dimensional echocardiogram formation center flesh shape, movement and deformation analysis method
CN108230342A (en) * 2017-12-29 2018-06-29 电子科技大学 A kind of left and right ventricles level-set segmentation methods based on cardiac anatomy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JONATHAN LONG等: "Fully Convolutional Networks for Semantic Segmentation", 《2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 *
WEI GUO等: "Left ventricle motion estimation for cardiac cine MRI using graph matching", 《2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)》 *
XUAN YANG等: "Robust landmark-based image registration using l1 and l2 norm regularizations", 《2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM)》 *
刁晨: "心电信号质量评估与心率变异性分析方法研究", 《中国优秀博士学位论文全文数据库 医药卫生科技辑(月刊)》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136111A (en) * 2019-05-14 2019-08-16 深圳大学 A heart motion estimation method, system and terminal equipment
CN110136111B (en) * 2019-05-14 2021-08-10 深圳大学 Heart motion estimation method, system and terminal equipment
CN110148150A (en) * 2019-06-20 2019-08-20 深圳大学 It is dense to connect asymmetric hierarchical network training method and heart movement field estimation method
CN110148150B (en) * 2019-06-20 2021-07-02 深圳大学 Densely connected asymmetric hierarchical network training method and cardiac motion field estimation method
CN110400298A (en) * 2019-07-23 2019-11-01 中山大学 Detection method, device, equipment and medium of cardiac clinical index
CN110400298B (en) * 2019-07-23 2023-10-31 中山大学 Detection methods, devices, equipment and media for cardiac clinical indicators
CN111784732A (en) * 2020-06-28 2020-10-16 深圳大学 Training cardiac motion field estimation model, method and system for cardiac motion field estimation
CN111784732B (en) * 2020-06-28 2023-07-28 深圳大学 Method and system for training heart motion field estimation model and heart motion field estimation

Similar Documents

Publication Publication Date Title
Bai et al. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion
CN108898626B (en) An automatic registration method for coronary arteries
Lombaert et al. Spectral log-demons: diffeomorphic image registration with very large deformations
US8494236B2 (en) System and method for cardiac segmentation in MR-cine data using inverse consistent non-rigid registration
Mahapatra Cardiac image segmentation from cine cardiac MRI using graph cuts and shape priors
Anh Ngo et al. Fully automated non-rigid segmentation with distance regularized level set evolution initialized and constrained by deep-structured inference
CN108898622A (en) A kind of the representation of athletic method, apparatus and computer readable storage medium of heart
Faghih Roohi et al. 4D statistical shape modeling of the left ventricle in cardiac MR images
CN105303547A (en) Multiphase CT image registration method based on grid matching Demons algorithm
CN110363800A (en) An Accurate Rigid Body Registration Method Based on Fusion of Point Set Data and Feature Information
Wang et al. FIRE: Unsupervised bi-directional inter-and intra-modality registration using deep networks
US20230377758A1 (en) Motion estimation method and apparatus for tumor, terminal device, and storage medium
El Berbari et al. An automated myocardial segmentation in cardiac MRI
EP2498222B1 (en) Method and system for regression-based 4D mitral valve segmentation from 2D+T magnetic resonance imaging slices
Oghli et al. A hybrid graph-based approach for right ventricle segmentation in cardiac MRI by long axis information transition
CN111724395B (en) Heart image four-dimensional context segmentation method, equipment, storage medium and device
WO2013161112A1 (en) Image processing device and image processing method
Alvén et al. Überatlas: fast and robust registration for multi-atlas segmentation
Koch et al. Towards deformable shape modeling of the left atrium using non-rigid coherent point drift registration
Wang et al. BrainMorph: A Foundational Keypoint Model for Robust and Flexible Brain MRI Registration
Du et al. Accurate non-rigid registration based on heuristic tree for registering point sets with large deformation
Upendra et al. Motion extraction of the right ventricle from 4D cardiac cine MRI using a deep learning-based deformable registration framework
Chandrashekara et al. Nonrigid image registration with subdivision lattices: Application to cardiac mr image analysis
Zhou et al. Automatic segmentation of liver from CT scans with CCP–TSPM algorithm
Goyal et al. MRI image based patient specific computational model reconstruction of the left ventricle cavity and myocardium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181127

RJ01 Rejection of invention patent application after publication