CN108896706B - 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 - Google Patents
大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 Download PDFInfo
- Publication number
- CN108896706B CN108896706B CN201810471708.3A CN201810471708A CN108896706B CN 108896706 B CN108896706 B CN 108896706B CN 201810471708 A CN201810471708 A CN 201810471708A CN 108896706 B CN108896706 B CN 108896706B
- Authority
- CN
- China
- Prior art keywords
- gas
- gas sensor
- sensor array
- odor
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 24
- 230000004044 response Effects 0.000 claims abstract description 104
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 102
- 238000012544 monitoring process Methods 0.000 claims abstract description 82
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 58
- 231100000719 pollutant Toxicity 0.000 claims abstract description 58
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000003205 fragrance Substances 0.000 claims abstract description 43
- 238000013528 artificial neural network Methods 0.000 claims abstract description 37
- 238000010801 machine learning Methods 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims description 272
- 235000019645 odor Nutrition 0.000 claims description 82
- 238000005070 sampling Methods 0.000 claims description 35
- 239000000523 sample Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 claims description 23
- 239000003570 air Substances 0.000 claims description 23
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 17
- 239000012080 ambient air Substances 0.000 claims description 16
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 16
- 238000007405 data analysis Methods 0.000 claims description 15
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 14
- WQOXQRCZOLPYPM-UHFFFAOYSA-N Dimethyl disulfide Natural products CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 claims description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 12
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 9
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 230000007774 longterm Effects 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 8
- 239000012855 volatile organic compound Substances 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 7
- 238000004887 air purification Methods 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 claims description 6
- QGJOPFRUJISHPQ-NJFSPNSNSA-N carbon disulfide-14c Chemical compound S=[14C]=S QGJOPFRUJISHPQ-NJFSPNSNSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 239000010865 sewage Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- ZIXLDMFVRPABBX-UHFFFAOYSA-N 2-methylcyclopentan-1-one Chemical compound CC1CCCC1=O ZIXLDMFVRPABBX-UHFFFAOYSA-N 0.000 claims description 4
- 238000012937 correction Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- XYHKNCXZYYTLRG-UHFFFAOYSA-N 1h-imidazole-2-carbaldehyde Chemical compound O=CC1=NC=CN1 XYHKNCXZYYTLRG-UHFFFAOYSA-N 0.000 claims description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-M 3-Methylbutanoic acid Natural products CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 claims description 3
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- TWADJGWUKGOPFG-UHFFFAOYSA-N 2-methoxy-5-methyl-1,3-diphenylbenzene Chemical compound COC1=C(C=2C=CC=CC=2)C=C(C)C=C1C1=CC=CC=C1 TWADJGWUKGOPFG-UHFFFAOYSA-N 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims description 2
- 239000000796 flavoring agent Substances 0.000 claims description 2
- 235000019634 flavors Nutrition 0.000 claims description 2
- 238000005086 pumping Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 claims 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims 2
- 125000004122 cyclic group Chemical group 0.000 claims 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims 1
- 238000009395 breeding Methods 0.000 claims 1
- 230000001488 breeding effect Effects 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 claims 1
- PHXATPHONSXBIL-JTQLQIEISA-N gamma-undecanolactone Chemical compound CCCCCCC[C@H]1CCC(=O)O1 PHXATPHONSXBIL-JTQLQIEISA-N 0.000 claims 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims 1
- 230000001276 controlling effect Effects 0.000 abstract description 21
- 238000007689 inspection Methods 0.000 abstract description 9
- 238000001819 mass spectrum Methods 0.000 abstract 1
- 238000007789 sealing Methods 0.000 abstract 1
- 230000035943 smell Effects 0.000 description 33
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 10
- 230000007613 environmental effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 241001062472 Stokellia anisodon Species 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000009965 odorless effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000013480 data collection Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000008786 sensory perception of smell Effects 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- PHXATPHONSXBIL-UHFFFAOYSA-N xi-gamma-Undecalactone Chemical compound CCCCCCCC1CCC(=O)O1 PHXATPHONSXBIL-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000012850 discrimination method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000019562 intensity of smell Nutrition 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
- G01N33/0034—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array comprising neural networks or related mathematical techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/38—Services specially adapted for particular environments, situations or purposes for collecting sensor information
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Combustion & Propulsion (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Signal Processing (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明涉及大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,恶臭大数据包括:恶臭标准样品和污染现场的气敏传感器阵列在线检测数据、实验室嗅辨数据、色/质谱等常规仪器离线检测数据,以及居民投诉数据;本发明将多种恶臭污染物浓度估计与预测问题先看成多个气敏传感器响应一一预测问题,再看成多种浓度值一一预测问题;机器学习模型由模块化卷积神经网络层和模块化深度神经网络层级联组成;卷积神经网络层在线学习气敏传感器阵列近期时间序列响应,并据此预测即将发生的响应;深度神经网络层离线学习恶臭大数据,负责预测多种恶臭污染物浓度。本发明的分析方法可实现多个监测点多种恶臭污染物浓度控制指标值的循环在线估计与预测。
Description
技术领域
本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,面向环境保护与管理部门的市场监管需求,面向工业园区、垃圾与污水处理区、养殖场、邻近居民生活区等恶臭污染区域的在线监测与分析需求,涉及环境保护、分析化学、计算机、人工智能、大数据等技术领域,主要解决恶臭电子鼻仪器对恶臭污染区域多种恶臭污染物的在线监测和多种浓度控制指标值的在线估计与预测问题。
背景技术
“恶臭”特指难闻的臭味,是一切刺激人的嗅觉感官,损害人类生活环境、令人难以忍受或不愉快的气味的通称,有时称“异味”。恶臭污染物特指一切恶臭气体物质,泛指一切散发恶臭气味的物质。恶臭污染物广泛存在于石油化工、垃圾与污水处理、制药、养殖等一切有废气排放的企业及邻近居民区,分布很广,影响范围很大。我国恶臭污染现状是,排放源众多,臭气成分复杂,国家标准滞后,居民投诉频发。
恶臭污染评价对象是恶臭气体,评价方法分为嗅辨法和仪器分析法。GB14554-93《恶臭污染物排放标准》规定,恶臭污染物排放控制指标包括1种定性的无量纲臭气浓度和8种定量的单一成分浓度,即三甲胺(C3H9N)、苯乙烯(C8H8)、硫化氢(H2S)、甲硫醇(CH4S)、甲硫醚(C2H6S)、二甲二硫(C2H6S2)、氨(NH3)、二硫化碳(CS2)。此外,GB/T18883-2002《室内空气质量标准》特别推荐了二氧化硫(SO2)和总挥发性有机化合物(Total volatile organiccompound,TVOC)浓度这2种定量控制指标。现阶段,恶臭污染评价指标体系主要由上述1种定性指标和10种定量指标构成。GB14554规定,测定臭气浓度用三点比较式臭袋法,测定C3H9N、C8H8、H2S、CH4S、C2H6S、C2H6S2浓度用气相色谱法,测定NH3和CS2浓度采用分光光度法;GB/T18883规定,测定TVOC浓度采用气相色谱法;GB/T15262-94规定,测定SO2采用分光光度法。
“臭气浓度”是指现场采集的臭气样品在实验室用无臭清洁空气连续稀释至嗅辨 员嗅觉阈值的稀释倍数,欧盟标准EN17325-2003用OU(odor unit)值度量。目前,臭气浓度的标准鉴别方法主要靠嗅辨员的鼻子!我国、欧美、日韩等国家和地区均是如此。实施已25年的国标GB/T14675-93《环境空气-恶臭的测定-三点比较式臭袋法》规范了嗅辨员选拔、恶臭气体样品采集和样品人工稀释与嗅辨测定等三个环节。欧美、澳大利亚、新西兰等国家用动态嗅觉仪稀释臭气样品。
GB/T14675和HJ905规定,恶臭气体样品先由工作人员在现场用采样瓶或无臭气袋(例如10L)采集,然后运回到嗅辨室,再用注射器按一定比例抽吸移至无臭气袋(例如3L)并用无臭清洁空气稀释,最后由嗅辨小组成员嗅辨。三点比较式臭袋法核心之一是:臭气样品稀释一次后,一个嗅辨员需嗅闻3只3L气袋,其中1只为稀释后的有臭气袋,另2只为无臭气袋,并能从中鉴别出有臭气袋。
“选对选错全靠嗅辨员嗅闻后的主观判断”。尽管GB/T14675已施行25年,但现状是,许多恶臭物质要么没有嗅阈值,要么不同国家或组织给出的嗅阈值差别很大。2015年,天津环科院国家环境保护恶臭污染控制重点实验室从更具有统计意义的期望出发,组织30名嗅辨员(男13人,女17人)对40种恶臭物质进行了嗅觉阈值测定。结果表明,NH3嗅觉阈值与日本相差5倍,H2S相差近3倍,三甲胺相差28.12倍,正戊酸相差65.67倍,等等。上述结果至少说明两个问题:(1)确定臭气浓度的嗅辨过程很复杂,嗅评一次代价很大;(2)各国各单位给出的恶臭物质嗅觉阈值本身不客观,不具备重复性。
GB/T14675规定的三点比较式臭袋法尽管可体现普通人感受,但可操作性极差,做一次嗅辨测试需要大量采样和嗅辨人员,成本很高,特别不适于低浓度和有毒物质的嗅辨。三点比较式臭袋法的嗅评结果好坏受①现场采样点选择;②采样装置;③实验室条件;④嗅辨员能力与状态;⑤臭气浓度与初始稀释倍数;⑥嗅辨时间与疲劳等诸多因素影响,其中的人工采样、人工稀释和人工嗅辨方法存在很多局限性。
由于嗅辨法和常规仪器分析法时效性差,代价高;还由于嗅辨法对人体有害,嗅辨结果不客观,嗅觉模拟—电子鼻技术与仪器因此特别引人注目。
电子鼻技术应用前景广阔,发展趋势之一是,发展高灵敏度、高选择性的气敏器件,以实现气味的定性定量检测与分析。令人鼓舞的是,SnO2半导体气敏器件灵敏度已达10-9V/V(ppb)数量级,对气味直接产生V级电压响应,不需二次放大,这对恶臭污染物的在线监测是很有吸引力的。电子鼻技术发展趋势之二是,以具有必要灵敏度的多个不同类型气敏元件组成阵列,着重利用数据分析方法来提高对检测对象的选择性,实现气味的识别、强度估计和关键成分预测。
电子鼻理论与应用研究相关检索结果如下:(1)文献。1990年以前仅60多篇,2000年前累计500多篇,现在累计已达6,000余篇,说明电子鼻研究近几年广泛展开。(2)专利。500余项国际发明专利和100余项国内发明专利大多是近5年公开和授权的,显示嗅觉模拟知识产权保护已受到重视。(3)技术标准。国际标准数据库HIS尚无与嗅觉模拟有关的产品技术标准。(4)应用。国内绝大多数工作以国外商品化电子鼻进行实验室研究。上述结果说明,嗅觉模拟—电子鼻理论与应用研究亟待深入。
ISI数据库查询结果表明,电子鼻方法应用于环境恶臭气体过程检测与分析的文献不多,仅130余篇,不到电子鼻文献总数的2%,且大多为室内空气、水、土气味的离线检测和实验室数据处理;尚未发现恶臭污染物现场电子鼻在线监测报道,尚无成熟的恶臭电子鼻仪器商品。
在我国政府环保管理部门主导下,国内一些化工园区、垃圾填埋场、污水处理厂等污染源排放单位通过招标采用了德国Airsense公司和法国alpha MOS公司的商品化电子鼻。这两款产品由4个金属氧化物半导体(Metal Oxide Semiconductor,MOS)、4个电化学(Electrochemical,EC)、1个光离子(Photoionization Detector,PID)气敏元件为阵列,是专门针对中国市场开发的,实际应用过程中存在监测标准不一致、分析模型不适用、稳定性与一致性差、设备和运行费用高昂等一系列问题。国内拓扑智鑫公司的恶臭监测系统用1个PID和8个EC气敏元件组成阵列,关注重点放在偏最小二乘(partial least squares,PLS)算法和数据云端传输,企图依据被测样品与标准样品的比较来做判断,没有考虑恶臭气体成分复杂性和环境多变性。
为了将电子鼻技术与仪器用于恶臭气体在线监测与分析,我们必须解决以下问题:
1,基于大数据和人工智能的臭气浓度及其关键成分浓度预测问题
人类社会处于大数据和人工智能时代,健康大数据、金融大数据、交通大数据、商业大数据、基因大数据等正在深刻地改变人们的生活和工作方式。在我国,环境大数据已提上议事日程,政府环保管理部门正在大力推动中。
由于恶臭气味复杂性和环境多变性,小数据和常规分析方法不足以有效建立估计和预测恶臭气体多种成分的数学模型。没有恶臭电子鼻仪器对大量恶臭污染现场测试产生的气敏传感器阵列响应数据,没有嗅辨人员对大量恶臭样品的实验室嗅辨数据,没有色质谱等常规仪器对大量恶臭样品的离线检测数据,企图单纯靠气敏传感器阵列和简单的数学模型来估计臭气浓度与多种污染物成分是不可能的。德、法电子鼻正是这样做的,由此产生的监测数据的作用十分有限,甚至可以说是不可信的。
我们应以气敏传感器阵列响应数据、嗅辨数据、色质谱与分光光度等常规仪器分析数据为基础,建立恶臭气体大数据,深入研究人工智能理论与算法,从恶臭大数据中挖掘出关键成分浓度等有用信息,以实现电子鼻仪器对上述10+1种主要恶臭污染物浓度控制指标的实时预测。
2,恶臭电子鼻仪器自动化与智能化问题
恶臭污染源众多,恶臭气体组成成分众多,环境变化多端,恶臭污染物排放形式众多。我们应摒弃“一点一鼻”的分散式监测方式,研究气敏传感器阵列优化与融合和多点集中式精密自动进样系统,发明和研制尺寸小、重量轻、操作简便的新型恶臭电子鼻仪器。理想情况是,一台恶臭电子鼻仪器能实现特定区域(例如,面积4km2以内)多个观测点的同时在线监测,即可固定点监测,也可移动点监测,当然是以月乃至年为单位的每天24小时连续监测;提出简单有效的机器学习模型与算法实现对前述10+1种恶臭污染物浓度的24小时连续估计和预测,并利用无线WIFI技术,实时把监控数据和分析结果传输到监控中心及各种终端,实现基于Internet网的恶臭污染远程控制。
发明内容
本发明是在现有发明专利《一种机器嗅觉装置及其嗅觉模拟测试方法》(参见专利申请号:02111046.8)、《一种基于模块化组合神经网络的机器嗅觉气味识别方法》(参见专利申请号:03141537.7)、《一种嗅觉模拟仪器与多种气味定性定量分析方法》(参见专利申请号:201010115026.2)、和《一种多通道集成嗅觉模拟仪器和生物发酵过程在线分析方法》(参见申请号:201310405315.X)的基础上,发明一种大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,以解决恶臭污染区域多个监测点的长期在线监测和多种恶臭气体浓度控制指标的在线预测问题。
为了实现上述目的,本发明的一种大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,包括恶臭电子鼻仪器、气体采样探头II、外置真空泵III、环境空气净化装置IV、洁净空气V、气体管道、电子温湿度计VI、中央控制室VII以及多个固定/移动终端,实现恶臭污染区域10个监测点的长期在线监测和多种恶臭污染物浓度控制指标值的在线估计与预测。
恶臭电子鼻仪器包括气敏传感器阵列恒温工作室、多点集中式恶臭气体自动进样系统、计算机控制与数据分析系统三大组成部分。具体组成单元包括:(a)气敏传感器阵列恒温工作室:气敏传感器阵列I-1,隔热层I-2,电阻加热丝I-3,风扇I-4,位于恶臭电子鼻仪器右上方;(b)多点集中式恶臭气体自动进样系统:控制净化环境空气通断的二位二通电磁阀I-5,控制10个监测点恶臭气体通断的10个二位二通电磁阀I-6-1~I-6-10,显示外置真空泵III工作状态的真空压力表I-7,控制恶臭气体流经气敏传感器阵列I-1的二位二通电磁阀I-8,气体缓冲室I-9,控制气敏传感器阵列I-1所处的环形工作腔内部气体流量转换的二位二通电磁阀I-10,节流阀I-11,流量表I-12,控制洁净空气通断的二位二通电磁阀I-13,内置微型真空泵I-14,位于恶臭电子鼻仪器右下方;(c)计算机控制与数据分析系统:计算机主板I-15,数据采集卡即A/D板I-16,显示器I-17,驱动与控制电路模块I-18,多路直流电源I-19,位于恶臭电子鼻仪器左侧。
恶臭电子鼻仪器对单个监测点恶臭气体采样周期为T0=180-300s,默认值T0=240s。气敏传感器阵列I-1对该监测点一次测量产生一个16维响应向量。计算机控制与数据分析系统依据这一响应向量,用机器学习级联模型对该监测点的臭气嗅感浓度、GB14554指定的氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯共8种化合物,GB/T18883指定的二氧化硫与总挥发性有机化合物共10+1项恶臭污染物浓度控制指标值进行实时分析和预测,并将监测数据和预测结果通过无线Internet网远程传送到中央控制室和指定的固定/移动终端。
恶臭电子鼻仪器用机器学习级联模型预测未来t+1、t+2和t+3时刻臭气嗅感浓度和10种恶臭污染物浓度控制指标值。机器学习级联模型第一级—卷积神经网络(Convolutional neural network,CNN)层负责预测t+1、t+2和t+3时刻气敏传感器阵列I-1对一个监测点恶臭气体的响应,依据的是当前时刻t和近期已发生的气敏传感器阵列I-1的响应时间序列。机器学习级联模型第二级—深度神经网络(Deep neural network,DNN)层进一步预测t+1、t+2和t+3时刻臭气嗅感浓度和10种恶臭污染物浓度控制指标值,依据的是长期积累的恶臭气体大数据和机器学习级联模型第一级—卷积神经网络层的预测值。
恶臭电子鼻仪器对恶臭污染区域10个监测点的长期在线监测和多种恶臭污染物浓度控制指标值的在线预测,包括以下步骤:
(1)开机:仪器预热30min;单击屏幕菜单的“空气净化器开”选项,环境空气净化装置IV开始净化恶臭电子鼻仪器所处的室内空气,长期持续工作直至操作人员单击“空气净化器关”选项为止。
在内置微型真空泵I-14的抽吸作用下,净化环境空气以6,500mL/min的流量依次流经二位二通电磁阀I-5、气敏传感器阵列I-1、二位二通电磁阀I-10,然后被排出到室外;气敏传感器阵列I-1所处的环形工作腔内温度从室温达到恒定的55±0.1℃。
单击屏幕菜单的“外置真空泵开”选项;外置真空泵III以250-280L/min的抽气流量和100-120mbar的极限真空度,通过内径φ10mm不锈钢管道在1min内将直线距离达2.5km的某个监测点恶臭气体抽吸到恶臭电子鼻仪器内,依次流过对应的二位二通电磁阀、真空压力表I-7和气体缓冲室I-8,然后直接排出到室外;外置真空泵III持续抽吸恶臭气体,直到操作人员单击屏幕菜单的“外置真空泵关”选项为止。
修改屏幕菜单的恶臭气体“单采样周期T0”设置,默认值T0=240s。10个监测点恶臭气体循环采样周期为T=10T0。
(2)恶臭气体循环采样周期开始:点击屏幕菜单的“开始检测”按钮,恶臭电子鼻仪器依次对10个监测点进行循环监测,计算机控制与数据分析系统在指定文件夹自动生成10个数据文件,以分别存储气敏传感器阵列I-1对10个监测点恶臭气体的响应数据。
(3)监测点k恶臭气体单采样周期开始,k=1,2,…,10。这里取T0=240s:
(3.1)气敏传感器阵列初步恢复:单周期T0第0-155s,在内置微型真空泵I-14的抽吸作用下,净化环境空气以6,500mL/min的流量依次流经二位二通电磁阀I-5、气敏传感器阵列I-1所处的环形工作腔、二位二通电磁阀I-10,然后被排出到室外。在6,500mL/min净化环境空气的作用下,气敏传感器阵列I-1所处的环形工作腔内积聚的热量被带走,粘附在气敏传感器敏感膜表面和管道内壁的恶臭气体分子被初步冲走,气敏传感器阵列I-1初步恢复到基准状态,历时155s。外置真空泵III持续抽吸;10个二位二通电磁阀I-6-1~I-6-10只有I-6-k导通,其余9个断开。外置真空泵III持续抽吸。
(3.2)洁净空气精确标定:在单周期T0第156-185s,二位二通电磁阀I-13导通,二位二通电磁阀I-5、I-8和I-10断开,二位二通电磁阀I-6-1~I-6-10保持步骤(3.1)的状态。在内置微型真空泵I-14的抽吸作用下,洁净空气以1,000ml/min的流量依次流经二位二通电磁阀I-13、气体管道、气敏传感器阵列I-1、节流阀I-11、流量计I-12、微型真空泵I-14,然后被排出到室外。洁净空气使气敏传感器阵列I-1精确恢复到基准状态;历时30s;外置真空泵III持续抽吸;
(3.3)平衡:在单周期T0第186-190s,二位二通电磁阀I-5、I-8、I-10、I-13断开,二位二通电磁阀I-6-1~I-6-10保持步骤(3.1)的状态。气敏传感器阵列I-1所处的环形工作腔内无气体流动;自单周期T0第186s即平衡状态开始之刻起,计算机控制与数据分析系统开始记录气敏传感器阵列I-1的实时响应数据,并存储在指定的临时文件“temp.txt”里;历时5s。外置真空泵III持续抽吸。
(3.4)监测点k恶臭气体顶空采样:在单周期T0第190-220s,二位二通电磁阀I-8导通,3个二位二通电磁阀I-5、I-13和I-10断开,二位二通电磁阀I-6-1~I-6-10保持步骤(3.1)的状态。在内置微型真空泵I-14抽吸作用下,气体缓冲室I-8内的恶臭气体以流量1,000ml/min依次流过气敏传感器阵列I-1所处的环形工作腔、节流阀I-11、流量计I-12、内置微型真空泵I-14,最后排出到室外。气敏传感器阵列I-1产生的敏感响应继续被记录在临时文件“temp.txt”里,历时30s。外置真空泵III持续抽吸。
(3.5)气敏传感器阵列冲洗:在单周期T0第221-240s,二位二通电磁阀I-5和I-10导通,二位二通电磁阀I-8和I-13断开,在内置微型真空泵I-14抽吸作用下,流量6,500ml/min的净化环境空气以依次流经二位二通电磁阀I-5、气敏传感器阵列I-1、二位二通电磁阀I-10,然后被排出到室外。与此同时,若k<10,则二位二通电磁阀I-6-k+1导通,10个二位二通电磁阀I-6-1~I-6-10的其余9个断开,外置真空泵转而抽吸监测点k+1的恶臭气体;若k=10,则令k+1=1,转入下一个恶臭气体循环采样周期,外置真空泵转而抽吸监测点k=1的恶臭气体。由于净化环境空气的作用,气敏传感器阵列I-1所处的环形工作腔内积聚的热量被带走,粘附在气敏传感器敏感膜表面和管道内壁的恶臭气体分子被初步冲走,气敏传感器阵列I-1逐步恢复到基准状态,历时20s。其中:
(a)在单周期T0第221-230s,气敏传感器阵列响应数据继续记录在临时文件“temp.txt”里,历时10s。至第230s末,计算机控制与数据分析系统停止记录气敏传感器阵列响应数据。
(b)在单周期T0第231-240s,计算机控制与数据分析系统依次进行以下三项操作:
(b1)特征提取:自第231s之刻起,从时长45s的临时文件“temp.txt”里提取各个气敏传感器的最大稳态响应值和最小稳态响应值,以最大稳态响应值与最小稳态响应值之差作为各个气敏传感器当前时刻t对监测点k恶臭气体的响应特征分量xi(t),i=1,2,…,16,并记录在对应的数据文件里。
(b2)气敏传感器阵列响应预测:机器学习级联模型第一级—16*3个卷积神经网络依据当前时刻t以前[t-18,t]、[t-19,t-1]和[t-20,t-2]时间段内已发生的气敏传感器阵列时间序列响应向量,实现在线自学习,并据此预测未来T、2T和3T时刻气敏传感器阵列I-1的响应。
(b3)恶臭气体浓度控制指标值预测:机器学习级联模型第二级—10+1个深度神经网络依据级联模型第一级的16*3个卷积神经网络预测的气敏传感器阵列I-1的响应值,进一步预测监测点k的10+1项恶臭污染物浓度控制指标值,通过显示器显示出来,并将监测和预测结果通过Internet网络传送到中央控制室VII和多个固定/移动终端。
(3.6)监测点k恶臭气体单采样周期结束:回到步骤(3.1),监测点k+1恶臭气体单采样周期开始;若k+1>10,则转入下一个恶臭气体循环采样周期的监测点k=1开始。
(4)重复步骤(3.1)~(3.6),恶臭电子鼻仪器实现对10个监测点恶臭气体的循环在线监测、识别和10+1项恶臭污染物控制指标值的预测。
恶臭气体大数据集包括:(1)气敏传感器阵列I-1对垃圾填埋场、污水处理厂、包括香精香料厂在内的化工园区、制药厂、养殖场、邻近居民区的大量恶臭污染物现场在线检测数据。(2)气敏传感器阵列I-1对大量恶臭标准样品顶空挥发气的实验室离线检测数据,其中包括GB/T14675指定的β-苯乙醇、异戊酸、甲基环戊酮、γ-十一烷酸内酯、β-甲基吲哚这5种标准臭液;GB14554指定的氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯与GB/T18883指定的二氧化硫共9种单一成分恶臭污染物配制的不同浓度的标准恶臭样品,还包括不同浓度多种单一化合物配制的混合成分标准恶臭样品。(3)GB/T14675和HJ905规定的真空瓶和臭气袋在大量恶臭污染物现场采样,并立即运回嗅辨室而得到的无量纲臭气浓度离线嗅辨数据。(4)GB/T18883规定的Tenax GC/TA吸附管恶臭污染物现场采样,气相色谱仪实验室离线检测得到的总挥发性有机化合物数据和分光光度仪实验室离线检测得到的二氧化硫数据。(5)GB/T14676-14680规定的恶臭污染物现场采样,8种恶臭成分的气相色谱仪、质谱仪和分光光度仪实验室离线检测数据。(6)恶臭污染源邻近区域居民投诉数据。
依据“分而治之”策略,机器学习级联模型第一级用16*3组单输出单隐层卷积神经网络一一预测t+1、t+2和t+3时刻各个气敏传感器的响应。对T0=240s而言,相当于从当前时刻t算起,预测未来第T、2T和3T时刻的响应。
以单周期T0=240s,3个单输出单隐层卷积神经网络分别预测t+1、t+2和t+3时刻气敏传感器i的响应为例:
(a)单输出单隐层卷积神经网络CNNi1预测t+1时刻气敏传感器i的响应:
设卷积神经网络CNNi1学习气敏传感器i在t时刻之前已发生的18个时刻响应时间序列,时延长度Δt=9,则输入节点数mi=9,取隐节点数hi=5,输出节点数ni=1。卷积神经网络CNNi1在线学习经预处理的气敏传感器i响应时间序列数据集Xi1为:
目标输出为:
di1=(xi(t) xi(t-1) xi(t-2) xi(t-3) xi(t-4) xi(t-5) xi(t-6) xi(t-7) xi(t-8) xi(t-9))T∈R10,
这种方式相当于卷积神经网络CNNi1学习气敏传感器i最近12小时已发生的1个18维响应时间序列,产生10个9维响应时间序列,即样本数为Ni1=10。卷积神经网络CNNi1的隐层和输出层活化函数为Sigmoid修正函数采用误差反传算法学习,学习因子为ηi=5/Ni1=0.2。数据集Xi1和目标输出di1均成比例变换到范围[0,3]。卷积神经网络CNNi1在10s内在线学习结束后,依据最近时间段的一个9维响应时间序列:
xi1=(xi(t-8) xi(t-7) xi(t-6) xi(t-5) xi(t-4) xi(t-3) xi(t-2) xi(t-1) xi(t))T∈R9
预测t+1时刻气敏传感器i的响应xi(t+1);当T0=240s时,相当于预测未来第40min气敏传感器i的响应。
(b)单输出单隐层卷积神经网络CNNi2与CNNi3预测t+2和t+3时刻气敏传感器i的响应:
卷积神经网络CNNi2和CNNi3结构仍为:mi=9,hi=5,ni=1;在线学习经预处理的数据集Xi2和Xi3分别为:
和
即Xi2和Xi3同样有10个9维响应时间序列,样本数均为Ni1=10;卷积神经网络CNNi2与CNNi3在学习阶段的目标输出和预测时依据的时间序列与CNNi1相同。当T0=240s时,相当于学习气敏传感器i在40min和80min之前的12小时已发生的响应,预测t+2和t+3时刻气敏传感器i的响应xi(t+2)和xi(t+3),分别相当于预测气敏传感器i未来第80min和120min的响应。
依据“分而治之”策略,氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯、二氧化硫、总挥发性有机化合物和臭气嗅感浓度共10+1项恶臭污染物浓度控制指标值整体预测问题被分解为11个单浓度值一一预测问题,机器学习级联模型第二级用10+1个单输出三隐层深度神经网络模块分别预测这10+1项恶臭污染物控制指标值。单输出深度神经网络训练集为恶臭电子鼻仪器的气敏传感器阵列(I-1)对标准臭液/气样品和大量污染现场在线检测得到的恶臭气体大数据,目标输出为臭气嗅辨值和色质谱与分光光度常规仪器离线测量值,以及居民投诉数据。
单个单输出三隐层深度神经网络DNNj采用自下而上的逐层离线学习方式;第一和第二隐层学习时采用单隐层对等神经网络结构,即单隐层对等神经网络的隐层—输出层权值直接等于其输入层—隐层权值,目标输出直接等于其输入,输入分量和输出分量依据特征分量大小成比例变换到范围[0,3]。单隐层对等神经网络的隐层活化函数为Sigmoid修正函数采用误差反传算法学习,学习因子为ηj=1/Nj,学习结束后丢弃隐层—输出层。
假设对t+1时刻浓度值yj(t+1)进行预测,第j个单输出深度神经网络DNNj依据的是16个卷积神经网络对t+1时刻气敏传感器阵列(I-1)的预测响应{x1(t+1),x2(t+1),…,x16(t+1)},预测yj(t+2)和yj(t+3)分别依据的是16个卷积神经网络对t+2和t+3时刻的预测响应(x1(t+2),x2(t+2),…,x16(t+2))T与(x1(t+3),x2(t+3),…,x16(t+3))T。
若实际输入是气敏传感器阵列当前响应向量(x1(t),x2(t),…,x16(t))T,必要时可再加上t时刻温湿度值,则深度神经网络DNNj的实际输出是对恶臭气体成分j当前浓度值yj(t)的估计。
附图说明
图1是本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—恶臭电子鼻仪器研制、机器学习级联模型与算法和恶臭污染物在线检测与预测三者之间的关系框图。
图2是本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—恶臭电子鼻仪器和恶臭污染区域多点集中式监测与分析系统工作原理示意图(顶空采样状态)。
图3是本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—卷积神经网络CNNi1预测t+1时刻(例如未来第40min)气敏传感器i响应xi(t+1)示意图。
图4是本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—确定深度神经网络DNNj第k层的对等神经网络结构与学习过程示意图。
图5是本发明—大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—机器学习级联模型预测t+1时刻(例如未来第40min)多种恶臭污染物浓度控制指标值示意图。
具体实施方式
下面结合附图对本发明作进一步的详细描述。
图1是本发明—一种大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法—恶臭电子鼻仪器研制、机器学习模型与算法和恶臭污染物在线检测与预测三者之间的关系框图。
本发明首先从化学、物理角度对恶臭污染物和气敏传感器的特点进行分析。恶臭气体组成成分众多且复杂,往往含有数十乃至数百种致臭成分,既有有机成分也有无机成分;有些恶臭成分对臭气浓度贡献大但真实浓度可能很低,气敏传感器响应因此很小;有些恶臭成分对臭气浓度贡献很小但真实浓度可能很高,气敏传感器因此很大;反之亦然。综合考虑灵敏度、选择性、响应速度、稳定性、商品化、小型化、寿命、成本等因素,本发明选择由MOS型、EC型和PID型气敏元件组成小型气敏传感器阵列模块。为避免监测区域室外的风吹日晒雨淋,本发明提出关键部件位于室内的恶臭气体多点集中式监测方式并据此研制恶臭电子鼻仪器。考虑到恶臭污染物成分复杂且监测现场环境变化多端等因素,本发明因此提出建立恶臭大数据,并提出新的机器学习级联模型来实现对多种恶臭污染物的在线监测与预测。
根据图1,恶臭气体大数据包括:(1)恶臭电子鼻仪器的气敏传感器阵列I-1对大量恶臭标准样品顶空挥发气的实验室离线检测数据,其中包括,β-苯乙醇、异戊酸、甲基环戊酮、γ-十一烷酸内酯、β-甲基吲哚等5种标准臭液和C3H9N、C8H8、H2S、CH4S、C2H6S、C2H6S2、NH3、CS2、SO2等9种恶臭化合物配制的不同浓度单一成分标准恶臭样品,还包括由不同浓度多种单一化合物配制的混合成分标准恶臭样品;(2)气敏传感器阵列I-1对大量恶臭污染物现场的在线检测数据;(3)大量恶臭污染物的臭气浓度实验室离线嗅辨数据;(4)大量恶臭污染物的气相色谱仪、质谱仪和分光光度仪实验室离线检测得到的TVOC和上述9种恶臭成分检测数据;(5)恶臭污染源邻近区域居民投诉数据。
图2是恶臭电子鼻仪器和恶臭污染区域多点集中式监测与分析系统工作原理示意图。恶臭污染区域多点集中式监测与分析系统包括恶臭电子鼻仪器、10个室外监测点II-1~II-1、外置真空泵III、环境空气净化装置IV、洁净空气V、电子温湿度计VI、中央控制室VII及其多个固定/移动终端,实现恶臭污染区域10个监测点的长期在线监测和恶臭气体多种浓度控制指标值的在线预测。此时的气路和电磁阀的位置为第一个监测点II-1恶臭气体被抽吸到恶臭电子鼻仪器,气敏传感器阵列I-1因此产生敏感响应的工作状态。
恶臭电子鼻仪器的组成单元包括:
(a)气敏传感器阵列恒温工作室:气敏传感器阵列I-1及其环形工作腔,隔热层I-2,电阻加热丝I-3,风扇I-4,位于恶臭电子鼻仪器右上方。
(b)多点集中式恶臭气体自动进样系统:控制净化环境空气通断的二位二通电磁阀I-5,控制10个监测点恶臭气体通断的10个二位二通电磁阀I-6-1~I-6-10,显示外置真空泵III工作状态的真空压力表I-7,控制恶臭气体流入气敏传感器阵列I-1及其环形工作腔内的二位二通电磁阀I-8,气体缓冲室I-9,控制气敏传感器阵列I-1的环形工作腔内恶臭气体和洁净空气6,500ml/min与1,000ml/min流量转换的二位二通电磁阀I-10,节流阀I-11,流量表I-12,控制洁净空气通断的二位二通电磁阀I-13,内置微型真空泵I-14,位于恶臭电子鼻仪器右下方。
(c)计算机控制与数据分析系统:计算机主板I-15,数据采集卡即A/D板I-16,显示器I-17,驱动与控制电路模块I-18,多路直流电源I-19,位于恶臭电子鼻仪器左侧。
在单采样周期T0时长45s的响应数据内,单个气敏传感器i响应曲线的稳态最大值Uimax(t)和最小值Uimin(t)之差值被提取为特征分量xi(t)=Uimax(t)-Uimin(t),气敏传感器阵列因此产生一个16维的响应向量x(t)=(x1(t),…,xi(t),…,x16(t))T∈R16。在数据记录结束后的10s内,即环境空气冲洗阶段后10s,计算机控制与数据分析系统的机器学习级联模型依据响应向量x(t)预测10+1项恶臭污染物浓度控制指标值。
依据“分而治之”策略,机器学习级联模型第一级—卷积神经网络(Convolutionalneural network,CNN)层采用多个单输出单隐层卷积神经网络一一预测各个气敏传感器的响应。图3为预测t+1时刻(例如未来
表1(a),卷积神经网络CNNi1的时间序列训练集Xi1
表1(b),卷积神经网络CNNi1预测t+1时刻气敏传感器阵列响应xi(t+1)的时间序列响应样本xi(t)
第40min)气敏传感器i响应xi(t+1)的卷积神经网络CNNi1结构示意图。表1(a)为CNNi1的时间序列训练集Xi1∈R10×9,共有10个样本,维数为9。训练集Xi1时间序列跨度为[t-18,t-1],在T0=240s且T=10T0的情况下,相当于CNNi1学习气敏传感器i从12小时前当前到当前时刻已发生的响应。根据表1(a),CNNi1的一个学习样本相当于气敏传感器i长度Δt=9的一个时间响应序列。表2(b)给出CNNi1预测时采用的时间序列响应样本x1=(xi(t-8),…,xi(t))T∈R9。
卷积神经网络CNNi1学习气敏传感器i在t时刻之前已发生的18个时刻的响应时间序列,时延长度Δt=9,则输入节点数mi=9,取隐节点数hi=5,输出节点数ni=1;卷积神经网络CNNi1在线学习气敏传感器i经预处理的响应时间序列数据集Xi1,如表1(a)所示。CNNi1隐节点和输出节点活化函数为sigmoid修正函数采用误差反传算法进行学习,学习因子为ηi1=5/Ni1=0.5,最大迭代次数10,000。表2(a)和2(b)的输入输出分量均成比例变换到范围[0,3]。
卷积神经网络CNNi1在气敏传感器阵列环境空气冲洗阶段后10s时间内完成在线学习,并依据表2(b)给出的时间序列响应样本xi(t)=(xi(t-8),…,xi(t))T来预测t+1时刻气敏传感器i的响应xi(t+1)。
本发明用卷积神经网络CNNi2和CNNi3分别预测气敏传感器i在t+2时刻(例如未来第80min)和t+3时刻(例如未来第120min)的响应xi(t+2)和xi(t+3)。CNNi2和CNNi3结构与学习参数与NNi1相同。表2和表3给出了这2个卷积神经网络的时间序列训练集Xi2∈R10×9和Xi3∈R10×9。这2个卷积神经网络仍采用如1(b)
表2,卷积神经网络CNNi2的时间序列训练集Xi2
表3,卷积神经网络CNNi3的时间序列训练集Xi3
所示的与CNNi1相同的时间序列响应样本xi(t)来预测t+2和t+3时刻气敏传感器i的响应xi(t+2)、xi(t+3)。与Xi1的时间跨度为[t-18,t-1]相比,Xi2和Xi3的时间跨度分别为[t-19,t-2]与[t-20,t-3],距t要远一些,所以,CNNi2和CNNi3的预测值可信度较CNNi1低。
CNNi1、CNNi2和CNNi3均在气敏传感器阵列环境空气冲洗阶段的后10s内完成在线学习和预测。因此,当对气敏传感器阵列所有16条响应曲线一一进行t+1、t+2和t+3时刻响应预测时,本发明采用了3*16卷积神经网络;若只预测t+1时刻响应,则只需要16单输出卷积神经网络即可。
本发明依据“分而治之”策略,将恶臭气体多个浓度值整体预测问题分解为多个单一浓度值一一预测问题,用机器学习级联模型第二级—多个单输出深度神经网络(Deepneural network,DNN)来一一预测多个单一浓度值,以有效降低机器学习模型与算法的复杂程度。单输出DNN数等于要预测的恶臭气体浓度控制指标数,一一对应。例如,若要预测无量纲臭气浓度OU值、NH3、H2S、CS2、C3H9N、CH4S、C2H6S、C2H6S2、C8H8、SO2等9种恶臭污染物浓度和TVOC浓度,则需要10+1个单输出DNNs。一个单输出DNN学习的是恶臭气体大数据,输入值为气敏传感器阵列检测数据与恶臭电子鼻仪器现场温湿度数据,目标输出为嗅辨值、色质谱等常规仪器离线测量值及居民投诉数据。恶臭气体大数据中有些样本只有气敏传感器阵列响应而没有嗅辨值、色质谱等离线测量值及居民投诉数据的,不参加学习。
一个单输出DNNj有3个隐层,隐层和输出层采用Sigmoid修正活化函数第一和第二隐层为特征变换(编码)层,从下向上逐层离线学习方式,结构和权值参数用单隐层对等神经网络确定。图4为确定DNNj的第k层—第k+1隐层权值与阈值的对等神经网络学习过程示意图。图4(a)表明,一个对等神经网络的输出节点数与输入节点数相等,均为线性活化函数,隐层—输出层的权值与阈值直接等于其输入层—隐层的,目标输出直接等于其实际输入。图4(b)表明,该对等神经网络学习结束后,单输出DNNj的第k+1层隐节点数等于该对等神经网络的隐节点数,第k层—第k+1隐层权值与阈值等于该对等神经网络输入层—隐层的。设DNNj的样本数为Nj,则对等神经网络学习因子η=2/Nj,最大迭代步数τmax=10 000。特征分量和目标输出均成比例变换到范围[0,3.0]。单输出DNNj的第三隐层为非线性映射层,与单个输出单元j一起拟合恶臭气体第j个浓度控制指标值。
图5为机器学习级联模型预测t+1时刻(例如未来第40min)多种恶臭污染物浓度示意图。根据图5,机器学习级联模型第一级用16*3组单输出单隐层卷积神经网络一一预测t+1、t+2和t+3时刻各个气敏传感器的响应。机器学习级联模型第二级用10+1个单输出三隐层深度神经网络分别预测这10+1项恶臭污染物控制指标值。
假设DNNj对t+1时刻一种恶臭气体浓度值yj(t+1)进行预测,则依据的是16个CNNi1(i=1,2,…,16)对气敏传感器阵列t+1时刻预测响应(x1(t+1),x2(t+1),…,x16(t+1))T和当前时刻温湿度值;DNNj预测yj(t+2)依据的是16个CNNi2对t+2时刻预测响应(x1(t+2),x2(t+2),…,x16(t+2))T和当前时刻温湿度值,等等。
若实际输入是气敏传感器阵列当前响应向量(x1(t),x2(t),…,x16(t))T,必要时可再加上t时刻温湿度值,则深度神经网络DNNj的实际输出是对恶臭气体成分j当前浓度值yj(t)的估计。
Claims (4)
1.一种大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,其特征是,包括恶臭电子鼻仪器、气体采样探头(II)、外置真空泵(III)、环境空气净化装置(IV)、洁净空气(V)、气体管道、电子温湿度计(VI)、中央控制室(VII)以及多个固定/移动终端,实现恶臭污染区域10个监测点的长期在线监测和多种恶臭污染物浓度控制指标值的在线估计与预测;
所述的恶臭电子鼻仪器包括气敏传感器阵列恒温工作室、多点集中式恶臭气体自动进样系统、计算机控制与数据分析系统三大组成部分;具体组成单元包括:(a)气敏传感器阵列恒温工作室:气敏传感器阵列(I-1),隔热层(I-2),电阻加热丝(I-3),风扇(I-4),位于恶臭电子鼻仪器右上方;(b)多点集中式恶臭气体自动进样系统:控制净化环境空气通断的第十一二位二通电磁阀(I-5),控制10个监测点恶臭气体通断的第一~第十共10个二位二通电磁阀(I-6-1)~(I-6-10),显示外置真空泵(III)工作状态的真空压力表(I-7),控制恶臭气体流经气敏传感器阵列(I-1)的第十二二位二通电磁阀(I-8),气体缓冲室(I-9),控制气敏传感器阵列(I-1)所处的环形工作腔内部气体流量转换的第十三二位二通电磁阀(I-10),节流阀(I-11),流量表(I-12),控制洁净空气通断的第十四二位二通电磁阀(I-13),内置微型真空泵(I-14),位于恶臭电子鼻仪器右下方;(c)计算机控制与数据分析系统:计算机主板(I-15),数据采集卡即A/D板(I-16),显示器(I-17),驱动与控制电路模块(I-18),多路直流电源(I-19),位于恶臭电子鼻仪器左侧;
所述的恶臭电子鼻仪器对单个监测点恶臭气体采样周期为T0=180-300s,默认值T0=240s,气敏传感器阵列(I-1)对该监测点一次测量产生一个16维响应向量;计算机控制与数据分析系统依据这一响应向量,用机器学习级联模型对该监测点的臭气嗅感浓度、GB14554指定的氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯共8种化合物,GB/T18883指定的二氧化硫与总挥发性有机化合物共10+1项恶臭污染物浓度控制指标值进行实时分析和预测,并将监测数据和预测结果通过无线Internet网远程传送到中央控制室和指定的固定/移动终端;
恶臭电子鼻仪器用机器学习级联模型预测未来t+1、t+2和t+3时刻臭气嗅感浓度和10种恶臭污染物浓度控制指标值;机器学习级联模型第一级—卷积神经网络(Convolutionalneural network,CNN)层负责预测t+1、t+2和t+3时刻气敏传感器阵列(I-1)对一个监测点恶臭气体的响应,依据的是当前时刻t和近期已发生的气敏传感器阵列(I-1)的响应时间序列;机器学习级联模型第二级—深度神经网络(Deep neural network,DNN)层进一步预测t+1、t+2和t+3时刻臭气嗅感浓度和10种恶臭污染物浓度控制指标值,依据的是长期积累的恶臭气体大数据和机器学习级联模型第一级—卷积神经网络层的预测值;
恶臭电子鼻仪器对恶臭污染区域10个监测点的长期在线监测和多种恶臭污染物浓度控制指标值的在线预测,包括以下步骤:
(1)开机:仪器预热30min;单击屏幕菜单的“环境空气净化装置开”选项,环境空气净化装置(IV)开始净化恶臭电子鼻仪器所处的室内空气,长期持续工作直至操作人员单击“环境空气净化装置关”选项为止;
在内置微型真空泵(I-14)的抽吸作用下,净化环境空气以6,500mL/min的流量依次流经第十一二位二通电磁阀(I-5)、气敏传感器阵列(I-1)、第十三二位二通电磁阀(I-10),然后被排出到室外;气敏传感器阵列(I-1)所处的环形工作腔内温度从室温达到恒定的55±0.1℃;
单击屏幕菜单的“外置真空泵开”选项;外置真空泵(III)以250-280L/min的抽气流量和100-120mbar的极限真空度,通过内径φ10mm不锈钢管道在1min内将直线距离达2.5km的某个监测点恶臭气体抽吸到恶臭电子鼻仪器内,依次流过对应的二位二通电磁阀、真空压力表(I-7)和气体缓冲室(I-9),然后直接排出到室外;外置真空泵(III)持续抽吸恶臭气体,直到操作人员单击屏幕菜单的“外置真空泵关”选项为止;
修改屏幕菜单的恶臭气体“单采样周期T0”设置,默认值T0=240s;10个监测点恶臭气体循环采样周期为T=10T0;
(2)恶臭气体循环采样周期开始:点击屏幕菜单的“开始检测”按钮,恶臭电子鼻仪器依次对10个监测点进行循环监测,计算机控制与数据分析系统在指定文件夹自动生成10个数据文件,以分别存储气敏传感器阵列(I-1)对10个监测点恶臭气体的响应数据;
(3)监测点k恶臭气体单采样周期开始,k=1,2,…,10;这里取T0=240s:
(3.1)气敏传感器阵列初步恢复:单周期T0第0-155s,在内置微型真空泵(I-14)的抽吸作用下,净化环境空气以6,500mL/min的流量依次流经第十一二位二通电磁阀(I-5)、气敏传感器阵列(I-1)所处的环形工作腔、第十三二位二通电磁阀(I-10),然后被排出到室外;在6,500mL/min净化环境空气的作用下,气敏传感器阵列(I-1)所处的环形工作腔内积聚的热量被带走,粘附在气敏传感器敏感膜表面和管道内壁的恶臭气体分子被初步冲走,气敏传感器阵列(I-1)初步恢复到基准状态,历时155s;外置真空泵(III)持续抽吸;
第一~第十这10个二位二通电磁阀(I-6-1)~(I-6-10)中只有(I-6-k)导通,其余9个断开;外置真空泵(III)持续抽吸;
(3.2)洁净空气精确标定:在单周期T0第156-185s,第十四二位二通电磁阀(I-13)导通,第十一二位二通电磁阀(I-5)、第十二二位二通电磁阀(I-8)和第十三二位二通电磁阀(I-10)断开,第一~第十二位二通电磁阀(I-6-1)~(I-6-10)保持步骤(3.1)的状态;在内置微型真空泵(I-14)的抽吸作用下,洁净空气以1,000ml/min的流量依次流经第十四二位二通电磁阀(I-13)、气体管道、气敏传感器阵列(I-1)、节流阀(I-11)、流量计(I-12)、微型真空泵(I-14),然后被排出到室外;洁净空气使气敏传感器阵列(I-1)精确恢复到基准状态;历时30s;外置真空泵(III)持续抽吸;
(3.3)平衡:在单周期T0第186-190s,第十一二位二通电磁阀(I-5)、第十二二位二通电磁阀(I-8)、第十三二位二通电磁阀(I-10)、第十四二位二通电磁阀(I-13)断开,第一~第十二位二通电磁阀(I-6-1)~(I-6-10)保持步骤(3.1)的状态;气敏传感器阵列(I-1)所处的环形工作腔内无气体流动;自单周期T0第186s即平衡状态开始之刻起,计算机控制与数据分析系统开始记录气敏传感器阵列(I-1)的实时响应数据,并存储在指定的临时文件“temp.txt”里;历时5s;外置真空泵(III)持续抽吸;
(3.4)监测点k恶臭气体顶空采样:在单周期T0第190-220s,第十二二位二通电磁阀(I-8)导通,第十一二位二通电磁阀(I-5)、第十四二位二通电磁阀(I-13)和第十三二位二通电磁阀(I-10)这3个断开,第一~第十二位二通电磁阀(I-6-1)~(I-6-10)保持步骤(3.1)的状态;在内置微型真空泵(I-14)抽吸作用下,气体缓冲室(I-9)内的恶臭气体以流量1,000ml/min依次流过气敏传感器阵列(I-1)所处的环形工作腔、节流阀(I-11)、流量计(I-12)、内置微型真空泵(I-14),最后排出到室外;气敏传感器阵列(I-1)产生的敏感响应继续被记录在临时文件“temp.txt”里,历时30s;外置真空泵(III)持续抽吸;
(3.5)气敏传感器阵列冲洗:在单周期T0第221-240s,第十一二位二通电磁阀(I-5)和第十三二位二通电磁阀(I-10)导通,第十二二位二通电磁阀(I-8)和第十四二位二通电磁阀(I-13)断开,在内置微型真空泵(I-14)抽吸作用下,流量6,500ml/min的净化环境空气以依次流经第十一二位二通电磁阀(I-5)、气敏传感器阵列(I-1)、第十三二位二通电磁阀(I-10),然后被排出到室外;与此同时,若k<10,则第k+1个二位二通电磁阀(I-6-k+1)导通,第一~第十这10个二位二通电磁阀(I-6-1)~(I-6-10)的其余9个断开,外置真空泵转而抽吸监测点k+1的恶臭气体;若k=10,则令k+1=1,转入下一个恶臭气体循环采样周期,外置真空泵转而抽吸监测点k=1的恶臭气体;由于净化环境空气的作用,气敏传感器阵列(I-1)所处的环形工作腔内积聚的热量被带走,粘附在气敏传感器敏感膜表面和管道内壁的恶臭气体分子被初步冲走,气敏传感器阵列(I-1)逐步恢复到基准状态;历时20s;其中:
(a)在单周期T0第221-230s,气敏传感器阵列响应数据继续记录在临时文件“temp.txt”里,历时10s;至第230s末,计算机控制与数据分析系统停止记录气敏传感器阵列响应数据;
(b)在单周期T0第231-240s,计算机控制与数据分析系统依次进行以下三项操作:
(b1)特征提取:自第231s之刻起,从时长45s的临时文件“temp.txt”里提取各个气敏传感器的最大稳态响应值和最小稳态响应值,以最大稳态响应值与最小稳态响应值之差作为各个气敏传感器当前时刻t对监测点k恶臭气体的响应特征分量xi(t),i=1,2,…,16,并记录在对应的数据文件里;
(b2)气敏传感器阵列响应预测:机器学习级联模型第一级—16*3个卷积神经网络依据当前时刻t以前[t-18,t]、[t-19,t-1]和[t-20,t-2]时间段内已发生的气敏传感器阵列时间序列响应向量,实现在线自学习,并据此预测未来T、2T和3T时刻气敏传感器阵列(I-1)的响应;
(b3)恶臭气体浓度控制指标值预测:机器学习级联模型第二级—10+1个深度神经网络依据级联模型第一级的16*3个卷积神经网络预测的气敏传感器阵列(I-1)的响应值,进一步预测监测点k的10+1项恶臭污染物浓度控制指标值,通过显示器显示出来,并将监测和预测结果通过Internet网络传送到中央控制室(VII)和多个固定/移动终端;
(3.6)监测点k恶臭气体单采样周期结束:回到步骤(3.1),监测点k+1恶臭气体单采样周期开始;若k+1>10,则转入下一个恶臭气体循环采样周期的监测点k=1开始;
(4)重复步骤(3.1)~(3.6),恶臭电子鼻仪器实现对10个监测点恶臭气体的循环在线监测、识别和10+1项恶臭污染物控制指标值的预测。
2.根据权利要求1所述的大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,其特征是,恶臭气体大数据集包括:(1)气敏传感器阵列(I-1)对垃圾填埋场、污水处理厂、包括香精香料厂在内的化工园区、制药厂、养殖场、邻近居民区的大量恶臭污染物现场在线检测数据;(2)气敏传感器阵列(I-1)对大量恶臭标准样品顶空挥发气的实验室离线检测数据,其中包括GB/T14675指定的β-苯乙醇、异戊酸、甲基环戊酮、γ-十一烷酸内酯、β-甲基吲哚这5种标准臭液;GB14554指定的氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯与GB/T18883指定的二氧化硫共9种单一成分恶臭污染物配制的不同浓度的标准恶臭样品,还包括不同浓度多种单一化合物配制的混合成分标准恶臭样品;(3)GB/T14675和HJ 905规定的真空瓶和臭气袋在大量恶臭污染物现场采样,并立即运回嗅辨室而得到的无量纲臭气浓度离线嗅辨数据;(4)GB/T18883规定的Tenax GC/TA吸附管恶臭污染物现场采样,气相色谱仪实验室离线检测得到的总挥发性有机化合物数据和分光光度仪实验室离线检测得到的二氧化硫数据;(5)GB/T14676-14680规定的恶臭污染物现场采样,8种恶臭成分的气相色谱仪、质谱仪和分光光度仪实验室离线检测数据;(6)恶臭污染源邻近区域居民投诉数据。
3.根据权利要求1所述的大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,其特征是,依据“分而治之”策略,机器学习级联模型第一级用16*3组单输出单隐层卷积神经网络一一预测t+1、t+2和t+3时刻各个气敏传感器的响应;对T0=240s而言,相当于从当前时刻t算起,预测未来第T、2T和3T时刻的响应;
以单周期T0=240s,3个单输出单隐层卷积神经网络分别预测t+1、t+2和t+3时刻气敏传感器i的响应为例:
a)单输出单隐层卷积神经网络CNNi1预测t+1时刻气敏传感器i的响应:
设卷积神经网络CNNi1学习气敏传感器i在t时刻之前已发生的18个时刻响应时间序列,时延长度Δt=9,则输入节点数mi=9,取隐节点数hi=5,输出节点数ni=1;卷积神经网络CNNi1在线学习经预处理的气敏传感器i响应时间序列数据集Xi1为:
目标输出为:
di1=(xi(t) xi(t-1) xi(t-2) xi(t-3) xi(t-4) xi(t-5) xi(t-6) xi(t-7) xi(t-8)xi(t-9))T∈R10,这种方式相当于卷积神经网络CNNi1学习气敏传感器i最近12小时已发生的1个18维响应时间序列,产生10个9维响应时间序列,即样本数为Ni1=10;卷积神经网络CNNi1的隐层和输出层活化函数为Sigmoid修正函数采用误差反传算法学习,学习因子为ηi=5/Ni1=0.2;数据集Xi1和目标输出di1均成比例变换到范围[0,3];卷积神经网络CNNi1在10s内在线学习结束后,依据最近时间段的一个9维响应时间序列:
xi1=(xi(t-8) xi(t-7) xi(t-6) xi(t-5) xi(t-4) xi(t-3) xi(t-2) xi(t-1) xi(t))T∈R9
预测t+1时刻气敏传感器i的响应xi(t+1);当T0=240s时,相当于预测未来第40min气敏传感器i的响应;
b)单输出单隐层卷积神经网络CNNi2与CNNi3预测t+2和t+3时刻气敏传感器i的响应:
卷积神经网络CNNi2和CNNi3结构仍为:mi=9,hi=5,ni=1;在线学习经预处理的数据集Xi2和Xi3分别为:
和
即Xi2和Xi3同样有10个9维响应时间序列,样本数均为Ni1=10;卷积神经网络CNNi2与CNNi3在学习阶段的目标输出和预测时依据的时间序列与CNNi1相同;当T0=240s时,相当于学习气敏传感器i在40min和80min之前的12小时已发生的响应,预测t+2和t+3时刻气敏传感器i的响应xi(t+2)和xi(t+3),分别相当于预测气敏传感器i未来第80min和120min的响应。
4.根据权利要求1所述的大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法,其特征是,依据“分而治之”策略,氨、硫化氢、二硫化碳、三甲胺、甲硫醇、甲硫醚、二甲二硫醚、苯乙烯、二氧化硫、总挥发性有机化合物和臭气嗅感浓度共10+1项恶臭污染物浓度控制指标值整体预测问题被分解为11个单浓度值一一预测问题,机器学习级联模型第二级用10+1个单输出三隐层深度神经网络模块分别预测这10+1项恶臭污染物控制指标值;单输出深度神经网络训练集为恶臭电子鼻仪器的气敏传感器阵列(I-1)对标准臭液/气样品和大量污染现场在线检测得到的恶臭气体大数据,目标输出为臭气嗅辨值和色质谱与分光光度常规仪器离线测量值,以及居民投诉数据;
单个单输出三隐层深度神经网络DNNj采用自下而上的逐层离线学习方式;第一和第二隐层学习时采用单隐层对等神经网络结构,即单隐层对等神经网络的隐层—输出层权值直接等于其输入层—隐层权值,目标输出直接等于其输入,输入分量和输出分量依据特征分量大小成比例变换到范围[0,3];单隐层对等神经网络的隐层活化函数为Sigmoid修正函数采用误差反传算法学习,学习因子为ηj=1/Nj,学习结束后丢弃隐层—输出层;
假设对t+1时刻浓度值yj(t+1)进行预测,第j个单输出深度神经网络DNNj依据的是16个卷积神经网络对t+1时刻气敏传感器阵列(I-1)的预测响应{x1(t+1),x2(t+1),…,x16(t+1)},预测yj(t+2)和yj(t+3)分别依据的是16个卷积神经网络对t+2和t+3时刻的预测响应(x1(t+2),x2(t+2),…,x16(t+2))T与(x1(t+3),x2(t+3),…,x16(t+3))T;
若实际输入是气敏传感器阵列当前响应向量(x1(t),x2(t),…,x16(t))T,必要时可再加上t时刻温湿度值,则深度神经网络DNNj的实际输出是对恶臭气体成分j当前浓度值yj(t)的估计。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810471708.3A CN108896706B (zh) | 2018-05-17 | 2018-05-17 | 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 |
US16/642,531 US10948467B2 (en) | 2018-05-17 | 2018-05-30 | Online centralized monitoring and analysis method for multi-point malodorous gases using electronic nose instrument |
PCT/CN2018/088913 WO2019218395A1 (zh) | 2018-05-17 | 2018-05-30 | 一种恶臭气体多点集中式电子鼻仪器在线监测与分析方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810471708.3A CN108896706B (zh) | 2018-05-17 | 2018-05-17 | 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108896706A CN108896706A (zh) | 2018-11-27 |
CN108896706B true CN108896706B (zh) | 2019-04-16 |
Family
ID=64342882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810471708.3A Active CN108896706B (zh) | 2018-05-17 | 2018-05-17 | 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108896706B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111443160A (zh) * | 2020-01-23 | 2020-07-24 | 华东理工大学 | 一种气敏-气相色谱信息融合和电子鼻仪器在线分析方法 |
US12158457B2 (en) | 2020-01-23 | 2024-12-03 | East China University Of Science And Technology | Gas-sensitive-gas-chromatographic electronic nose instrument and online analysis method of multiple state parameters of fermentation and malodorous pollutant processes |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111282006A (zh) * | 2018-12-07 | 2020-06-16 | 华东师范大学 | 一种植物除臭剂及其配合无人机除臭的方法 |
CN111443159B (zh) * | 2020-01-23 | 2021-02-12 | 湖州老恒和酿造有限公司 | 一种气敏-气相色谱多源感知和电子鼻仪器在线检测方法 |
CN111426801B (zh) * | 2020-05-09 | 2022-08-02 | 上海宁和环境科技发展有限公司 | 电子鼻学习驯化方法及其设备 |
CN111624314A (zh) * | 2020-06-30 | 2020-09-04 | 浙江三青环保科技有限公司 | 一种基于主成分分析与模式识别的恶臭气体的检测方法 |
CN112733876A (zh) * | 2020-10-28 | 2021-04-30 | 北京工业大学 | 基于模块化神经网络的城市固废焚烧过程氮氧化物软测量方法 |
CN112433028B (zh) * | 2020-11-09 | 2021-08-17 | 西南大学 | 基于忆阻细胞神经网络的电子鼻气体分类方法 |
CN113341066B (zh) * | 2021-05-24 | 2022-04-08 | 西南石油大学 | 基于多传感器融合技术的四氢噻吩浓度的在线检测方法及系统 |
CN113358702A (zh) * | 2021-06-08 | 2021-09-07 | 无锡时和安全设备有限公司 | 基于传感器阵列模块化的污染源监测系统 |
CN113295752A (zh) * | 2021-06-18 | 2021-08-24 | 广州云智理科技有限公司 | 一种恶臭气体检测方法及电子鼻 |
CN113495123A (zh) * | 2021-07-05 | 2021-10-12 | 北京雪域飞虹环保科技有限公司 | 一种基于多传感器阵列的硫醇类气体模式识别方法 |
CN114544868B (zh) * | 2022-01-20 | 2024-03-26 | 上海工程技术大学 | 一种消除干扰气体影响的气体检测方法与系统 |
CN116087427B (zh) * | 2023-02-08 | 2024-09-13 | 吉林大学 | 一种车载电子鼻酒驾检测装置 |
CN117035562B (zh) * | 2023-10-10 | 2024-01-30 | 云境商务智能研究院南京有限公司 | 基于电力大数据的环保智慧监测方法及数据分析设备 |
CN118711694B (zh) * | 2024-05-14 | 2025-06-27 | 广东省环境科学研究院 | 基于MIP与机器学习的土壤VOCs污染快速调查方法 |
CN119467067A (zh) * | 2025-01-06 | 2025-02-18 | 山东大学 | 一种基于柴油机后处理系统排放物的智能控制方法及系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1482453A (zh) * | 2003-07-11 | 2004-03-17 | 华东理工大学 | 一种基于模块化组合神经网络的机器嗅觉气味识别方法 |
CN101000357A (zh) * | 2007-01-08 | 2007-07-18 | 华东理工大学 | 一种小型自动化机器嗅觉仪器与气味分析方法 |
CN101101299A (zh) * | 2007-06-25 | 2008-01-09 | 华东理工大学 | 一种并-串联模式识别方法及其在机器嗅觉中的应用 |
CN102353798A (zh) * | 2011-07-01 | 2012-02-15 | 华东理工大学 | 一种面向生物发酵过程的嗅觉模拟仪器与在线分析方法 |
CN103472094A (zh) * | 2013-07-24 | 2013-12-25 | 华东理工大学 | 一种嗅觉模拟仪器和特定物质气(嗅)味等级现场分析方法 |
CN103808904A (zh) * | 2014-03-07 | 2014-05-21 | 北京拓扑智鑫科技有限公司 | 全局实时监控恶臭污染气体的方法 |
CN103824054A (zh) * | 2014-02-17 | 2014-05-28 | 北京旷视科技有限公司 | 一种基于级联深度神经网络的人脸属性识别方法 |
CN105259318A (zh) * | 2015-11-27 | 2016-01-20 | 北京拓扑智鑫环境科技股份有限公司 | 一种基于气象参数的恶臭ou值预测方法和系统 |
CN105486812A (zh) * | 2015-12-28 | 2016-04-13 | 周俊杰 | 连续环境空气质量监测中电子鼻恶臭等级赋值方法及应用 |
CN107843695A (zh) * | 2017-10-31 | 2018-03-27 | 华东理工大学 | 烟草与烟草制品感官质量的电子鼻仪器评价方法 |
-
2018
- 2018-05-17 CN CN201810471708.3A patent/CN108896706B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1482453A (zh) * | 2003-07-11 | 2004-03-17 | 华东理工大学 | 一种基于模块化组合神经网络的机器嗅觉气味识别方法 |
CN101000357A (zh) * | 2007-01-08 | 2007-07-18 | 华东理工大学 | 一种小型自动化机器嗅觉仪器与气味分析方法 |
CN101101299A (zh) * | 2007-06-25 | 2008-01-09 | 华东理工大学 | 一种并-串联模式识别方法及其在机器嗅觉中的应用 |
CN102353798A (zh) * | 2011-07-01 | 2012-02-15 | 华东理工大学 | 一种面向生物发酵过程的嗅觉模拟仪器与在线分析方法 |
CN103472094A (zh) * | 2013-07-24 | 2013-12-25 | 华东理工大学 | 一种嗅觉模拟仪器和特定物质气(嗅)味等级现场分析方法 |
CN103824054A (zh) * | 2014-02-17 | 2014-05-28 | 北京旷视科技有限公司 | 一种基于级联深度神经网络的人脸属性识别方法 |
CN103808904A (zh) * | 2014-03-07 | 2014-05-21 | 北京拓扑智鑫科技有限公司 | 全局实时监控恶臭污染气体的方法 |
CN105259318A (zh) * | 2015-11-27 | 2016-01-20 | 北京拓扑智鑫环境科技股份有限公司 | 一种基于气象参数的恶臭ou值预测方法和系统 |
CN105486812A (zh) * | 2015-12-28 | 2016-04-13 | 周俊杰 | 连续环境空气质量监测中电子鼻恶臭等级赋值方法及应用 |
CN107843695A (zh) * | 2017-10-31 | 2018-03-27 | 华东理工大学 | 烟草与烟草制品感官质量的电子鼻仪器评价方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111443160A (zh) * | 2020-01-23 | 2020-07-24 | 华东理工大学 | 一种气敏-气相色谱信息融合和电子鼻仪器在线分析方法 |
CN111443160B (zh) * | 2020-01-23 | 2021-02-12 | 湖州老恒和酿造有限公司 | 一种气敏-气相色谱信息融合和电子鼻仪器在线分析方法 |
US12158457B2 (en) | 2020-01-23 | 2024-12-03 | East China University Of Science And Technology | Gas-sensitive-gas-chromatographic electronic nose instrument and online analysis method of multiple state parameters of fermentation and malodorous pollutant processes |
Also Published As
Publication number | Publication date |
---|---|
CN108896706A (zh) | 2018-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108896706B (zh) | 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法 | |
WO2019218395A1 (zh) | 一种恶臭气体多点集中式电子鼻仪器在线监测与分析方法 | |
US12158457B2 (en) | Gas-sensitive-gas-chromatographic electronic nose instrument and online analysis method of multiple state parameters of fermentation and malodorous pollutant processes | |
US12259374B2 (en) | Method for multi-information fusion of gas sensitivity and chromatography and on-site detection and analysis of flavor substances based on electronic nose instrument | |
CN110057983B (zh) | 一种基于观测数据和化学机制的臭氧来源解析方法 | |
CN111443160B (zh) | 一种气敏-气相色谱信息融合和电子鼻仪器在线分析方法 | |
CN111443159B (zh) | 一种气敏-气相色谱多源感知和电子鼻仪器在线检测方法 | |
Pan et al. | Factor analysis of downwind odours from livestock farms | |
CN112304831B (zh) | 基于质量守恒的学生行为对教室内pm2.5浓度的计算方法 | |
CN111766337B (zh) | 基于多组分气体检测仪传感器阵列的臭气浓度ou值算法 | |
CN209841839U (zh) | 一种用于不同恶臭源厂家之间的厂界型监测仪 | |
CN109030737A (zh) | 一种污水恶臭气体检测系统及污水恶臭气体检测方法 | |
CN110187055A (zh) | 一种用于不同恶臭源厂家之间的厂界型监测仪 | |
Saini et al. | Indoor air quality monitoring with IoT: predicting PM10 for enhanced decision support | |
CN105973877B (zh) | 一种基于曲线拟合和毒理分析算法的水质远程在线监测方法 | |
Fuchs et al. | Evaluation of unpleasant odor with a portable electronic nose | |
Qu et al. | Rapid determination of chemical concentration and odor concentration of paint-emitted pollutants using an electronic nose | |
CN108775921A (zh) | 工业烟气在线连续监测装置 | |
CN114324781B (zh) | 一种智能嗅辨方法和系统 | |
Sun et al. | Prediction of phthalate in dust in children's bedroom based on gradient boosting regression tree | |
CN111118128A (zh) | 一种利用微生物群落图谱解析河流水体污染来源的方法 | |
Joo et al. | Field application of cost-effective sensors for the monitoring of NH3, H2S, and TVOC in environmental treatment facilities and the estimation of odor intensity | |
CN216747627U (zh) | 气体自动加标回收测试装置及监测系统 | |
Schwarzböck et al. | Market Review on Available Instruments for Odour Measurement | |
CN112707508A (zh) | 基于bp-ann的农污设施cod处理效果预测方法、装置、平台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |