[go: up one dir, main page]

CN108883405A - 三-(金刚烷基)膦及其应用 - Google Patents

三-(金刚烷基)膦及其应用 Download PDF

Info

Publication number
CN108883405A
CN108883405A CN201680076918.1A CN201680076918A CN108883405A CN 108883405 A CN108883405 A CN 108883405A CN 201680076918 A CN201680076918 A CN 201680076918A CN 108883405 A CN108883405 A CN 108883405A
Authority
CN
China
Prior art keywords
pad
group
method described
mmol
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680076918.1A
Other languages
English (en)
Other versions
CN108883405B (zh
Inventor
布拉德·P·卡罗
陈立业
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton University
Original Assignee
Princeton University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Princeton University filed Critical Princeton University
Publication of CN108883405A publication Critical patent/CN108883405A/zh
Application granted granted Critical
Publication of CN108883405B publication Critical patent/CN108883405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5018Cycloaliphatic phosphines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2461Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as ring members in the condensed ring system or in a further ring
    • B01J31/248Bridged ring systems, e.g. 9-phosphabicyclononane
    • B01J31/2485Tricyclic systems, e.g. phosphaadamantanes and hetero analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/505Preparation; Separation; Purification; Stabilisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides or epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • B01J2231/4227Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group with Y= Cl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4233Kumada-type, i.e. RY + R'MgZ, in which Ris optionally substituted alkyl, alkenyl, aryl, Y is the leaving group and Z is halide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4272C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type via enolates or aza-analogues, added as such or made in-situ, e.g. ArY + R2C=C(OM)Z -> ArR2C-C(O)Z, in which R is H or alkyl, M is Na, K or SiMe3, Y is the leaving group, Z is Ar or OR' and R' is alkyl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0286Complexes comprising ligands or other components characterized by their function
    • B01J2531/0288Sterically demanding or shielding ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • B01J2540/44Non-coordinating groups comprising nitrogen being derivatives of carboxylic or carbonic acids, e.g. amide (RC(=O)-NR2, RC(=O)-NR-C(=O)R), nitrile, urea (R2N-C(=O)-NR2), guanidino (R2N-C(=NR)-NR2) groups
    • B01J2540/442Amide groups or imidato groups (R-C=NR(OR))
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Quinoline Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)

Abstract

在一个方面中,本文描述了包含三个金刚烷基部分(PAd3)的膦化合物和相关合成路线。每个金刚烷基部分可以是相同或不同的。例如,连接到磷原子的每个金刚烷基部分(Ad)可以独立地选自由金刚烷、双金刚烷、三金刚烷和它们的衍生物。还提供了包含PAd3配体的过渡金属络合物以用于包含催化交叉偶联反应的催化合成。

Description

三-(金刚烷基)膦及其应用
相关申请数据
本发明申请根据35U.S.C.§119(e),主张2015年10月29日提交的美国临时专利申请序列号62/248,056的优先权,该专利申请以其全部内容作为参考并入本文。
技术领域
本发明涉及包含三个金刚烷基部分(PAd3)的膦化合物,并且具体地,涉及引入PAd3配体用于交叉偶联催化的过渡金属络合物。
背景技术
使用均相过渡金属催化的当代合成有机方法极其得益于膦改变金属催化剂活性、选择性和稳定性的能力。据此,可以通过调整支持配体,如膦的立体和电子性能来调控金属催化剂的行为。因此,具有使用现有磷-基辅助配体可达到的以外的立体和/或电子性能的新型膦结构的发现是所期望的。膦对有机催化、受阻路易斯酸碱对(FLP)催化、双正交反应和纳米材料的较新应用也应受益于新的膦性质的实现。
发明内容
在一个方面中,本文描述了包含三个金刚烷基部分(PAd3)的膦化合物和相关合成路线。每个金刚烷基部分可以是相同或不同的。例如,连接到磷原子的每个金刚烷基部分(Ad)可以独立地选自由金刚烷、双金刚烷、三金刚烷和它们的衍生物组成的组。因此,考虑了一系列PAd3化合物。在另一个方面中,合成PAd3化合物的方法包括提供包含二-(金刚烷基)膦(PAd2)和取代的金刚烷基部分的反应混合物并通过SN1途径将PAd2与取代的金刚烷基部分反应以提供PAd3。在其它实施方式中,合成PAd3化合物的方法包括提供包含二-(金刚烷基)磷化物和取代的金刚烷基部分的反应混合物并通过SN1途径将二-(金刚烷基)磷化物与取代的金刚烷基部分反应以提供PAd3
在另一个方面中,提供了金属络合物。金属络合物包含至少一种过渡金属以及与所述过渡金属配位的本文所述的一个或多个PAd3配体。在一些实施方式中,金属络合物如式(PAd3)mM(L)n所示,其中M为过渡金属,L为配体,m和n分别为1至3的整数。
在另一个方面中,本文描述了催化方法,包括催化交叉偶联反应(cross-couplingreaction)。在一些实施方式中,交叉偶联方法包括提供反应混合物,其包括底物、偶联配合物(偶联配偶体、偶联配对物,coupling partner)和包含PAd3配体的过渡金属络合物,和将所述底物和偶联配合物在存在过渡金属络合物或它们的衍生物的情况下反应以提供交叉偶联反应产物。在一些实施方式中,所述底物可以选自取代的芳香族化合物或取代的不饱和脂肪族化合物。此外,偶联配合物可以包含多种物质,其包括(但不限于)有机硼化合物、有机锂化合物、有机锌化合物、有机硅化合物、格利雅试剂(格氏试剂,Grignard reagent)和/或具有不稳定的C-H键的化合物。
在以下详细描述中将进一步描述这些及其它实施方式。
附图说明
图1(a)显示了根据一些实施方式的多种PAd3化合物。
图1(b)显示了根据一些实施方式的图1(a)的PAd3化合物的多种盐形式。
图2显示了本文所述的PAd3化合物的一个实施方式的合成。
图3显示了根据一些实施方式引入PAd3配体的一些过渡金属络合物。
图4显示了根据一些实施方式引入PAd3配体的一些过渡金属络合物。
图5(a)显示了根据一些实施方式的芳基底物的多种苯酚离去基团。
图5(b)显示了根据一些实施方式的芳基底物的多种苯硫酚离去基团。
图6显示了根据一些实施方式使用本文所述的过渡金属络合物的Suzuki-Miyaura偶联。
图7显示了根据一些实施方式具有反应性C-H键的偶联配合物化合物(R'-H)。
图8显示了根据一些实施方式使用本文所述的过渡金属络合物的Suzuki-Miyaura聚合反应。
图9显示了根据一些实施方式使用本文所述的过渡金属络合物的Kumada-Tamao-Corriu偶联。
图10显示了根据一些实施方式使用本文所述的过渡金属络合物的Buchwald-Hartwig胺化。
图11显示了根据一些实施方式使用本文所述的过渡金属络合物的α-芳基化。
图12显示了根据一些实施方式使用本文所述的过渡金属络合物的交叉偶联。
图13显示了本文所述的过渡金属催化剂的一个实施方式。
具体实施方式
参考以下详细说明和实施例以及它们上述和随后的描述,可以更容易地理解本文所述的实施方式。然而,本文所述的元件、装置和方法不局限于详细说明和实施例中所提供的具体实施方式。应认识到这些实施方式仅是本发明原理的说明。在不背离本发明的精神和范围的情况下,多种修改和改变将对本领域技术人员来说是显而易见的。
定义
如本文所使用的术语“烷基”单独或组合表示任选地被一个或多个取代基取代的直链或支链饱和烃基。例如,烷基可以是C1-C30
如本文所使用的术语“烯基”单独或组合表示具有至少一个碳-碳双键的直链或支链烃基。
如本文所使用的术语“芳基”或“芳烃”单独或组合表示任选地被一个或多个环取代基取代的芳香族单环或多环环系统。
如本文所使用的术语“杂芳基”或“杂芳烃”单独或组合表示芳香族单环或多环环系统,其中所述环原子中的一个或多个为碳以外的元素,如氮、氧和/或硫。
如本文所使用的术语“烷氧基”单独或组合表示部分RO-,其中R为以上定义的烷基、烯基或芳基。
如本文所使用的术语“氟代烷基”是指其中一个或多个氢原子被氟原子取代的以上定义的烷基。
I.PAd3化合物
在一个方面中,本文描述了包含三个金刚烷基部分(PAd3)的膦化合物和相关合成路线。每个金刚烷基部分可以是相同或不同的。例如,连接到磷原子的每个金刚烷基部分(Ad)可以独立地选自金刚烷、双金刚烷、三金刚烷和它们的衍生物。在一些实施方式中,例如,全部金刚烷基部分(Ad)可以是相同的。在其它实施方式中,全部金刚烷基部分(Ad)可以是不同的。在其它实施方式中,两个金刚烷基部分(Ad)可以是相同的,而第三金刚烷基部分(Ad)是不同的。因此,对于PAd3化合物的金刚烷基部分的常规缩写Ad的使用不应视为在三个金刚烷基部分之间赋予任何结构相似性或差异。
图1(a)显示了根据本文所述的一些实施方式的多种PAd3化合物。如图1所示,R1、R2和R3可以独立地选自一些金刚烷基部分(Ad)以提供一系列具有不同结构的PAd3化合物。在一些实施方式中,在一个或多个位置取代PAd3化合物的金刚烷基部分(Ad)。例如,金刚烷基部分可以包含一个或多个酰基-、芳基-、烷基-、烷氧基-、烷基-胺和/或醇取代基。如图1(b)所示,PAd3化合物还可以以盐的形式存在。
本文还描述了PAd3化合物的合成路线。在一个方面中,合成PAd3化合物的方法包括提供包含二-(金刚烷基)膦(PAd2)和取代的金刚烷基部分的反应混合物并通过SN1途径将PAd2与取代的金刚烷基部分反应以提供PAd3。PAd2的金刚烷基部分可以独立地选自金刚烷、双金刚烷、三金刚烷及它们的衍生物。类似地,取代的金刚烷基部分可以具有金刚烷、双金刚烷或三金刚烷结构。在一个非限制性实施方式中,根据上述方法合成下式(I)的结构中所示的PAd3化合物。
提供了包含二-1-金刚烷基膦和取代的金刚烷的反应混合物。通过SN1途径使二-1-金刚烷基膦和取代的金刚烷反应以提供三(1-金刚烷基)膦。在一些实施方式中,所述取代的金刚烷如式(II)所示
其中X是在SN1途径下对于解离为阴离子可操作的部分。例如,在一些实施方式中,X选自乙酸酯基(乙酸根,acetate)、三氟甲磺酸酯基(三氟甲磺酸根,triflate)、甲苯磺酸酯基(甲苯磺酸根,tosylate)和羟基(hydroxyl)。图2提供了根据一个实施方式,用于合成式(I)所示的PAd3化合物的SN1途径的具体反应条件。还可以用离去基团官能化双金刚烷和三金刚烷部分以提供用于通过SN1途径与PAd2反应的取代的金刚烷。这些高级金刚烷结构的离去基团还可以选自乙酸酯基、三氟甲磺酸酯基、甲苯磺酸酯基和羟基。
在其它实施方式中,合成本文所述的PAd3化合物的方法包括提供包含二-(金刚烷基)磷化物和取代的金刚烷基部分的反应混合物并通过SN1途径将二-(金刚烷基)磷化物与取代的金刚烷基部分反应以提供PAd3。适合的取代的金刚烷基部分可以包含如上所述的离去基团X。此外,在一些实施方式中,所述磷化物适合的反离子为用于使PAd2去除质子化的碱的阳离子,并且可以包含碱性离子、MgCl+和ZnBr+。此外,可以将胺共轭酸的pKa(H2O)对其大于约10的强胺碱用作反离子。这些物质可以包括叔铵离子。
特别注意本发明公开所述的PAd3化合物对氧化显示出显著的动力学稳定性,借此允许在具有可忽略的氧化的空气下储存。另外,本文所述的合成方法可以提供产率超过50%或60%的PAd3化合物。
II.金属络合物
在另一个方面中,提供了金属络合物。金属络合物包含至少一种过渡金属以及作为与所述过渡金属配位的配体的以上部分I中所述的一个或多个PAd3化合物。任何对于和膦配体配位可操作的过渡金属可以用于提供本文所述的金属络合物。在一些实施方式中,所述过渡金属选自元素周期表中的VIIIA、IB或IIB族。根据CAS命名,鉴别本文所述的元素周期表的族。此外,所述过渡金属可以是贵金属,其包括(但不限于)钯、铑、银和金。在一些实施方式中,所述金属络合物包含两个过渡金属,其中PAd3配体与过渡金属中的一个或每一个配位。桥连过渡金属中心的非PAd3配体可以包含卤素、η3-烯丙基、η3-丁烯基、η3-肉桂基和η3-茚基。
此外,所述金属络合物可以如式(PAd3)mM(L)n所示,其中M为过渡金属,L为配体,m和n分别为1至3的整数。L通常可以包含满足PAd3配体所设置的空间要求的任何物质。在一些实施方式中,例如,L可以选自烷基、芳基、卤素、CO、氰基、羟基、乙酸酯基(乙酸根,acetate)、取代的苯甲酸酯基(substituted benzoate,取代的苯甲酸根)、三氟醋酸酯基(三氟醋酸根,trifluoroacetate)(TFA)、甲苯磺酸酯基(甲苯磺酸根,tosylate)(OTs)、甲磺酸酯基(甲磺酸根,mesylate)(OMs)、三氟甲磺酸酯基(三氟甲磺酸根,triflate)(OTf)、η3-烯丙基、η3-丁烯基、η3-肉桂基和η3-茚基。在其中n大于1的实施方式中,L配体的化学特性(chemical identity)可以是相同或不同的。图3和4显示了使用本文所述的PAd3配体的金属络合物的非限制性实例。图3和4中所示的金属络合物的金刚烷基部分(Ad)为金刚烷。考虑金刚烷、双金刚烷和/或三金刚烷部分的任意组合可以存在于金属络合物的PAd3配体中。
III.催化交叉偶联
在另一个方面中,本文描述了催化方法,包括催化交叉偶联反应。在一些实施方式中,交叉偶联方法包括提供反应混合物,其包括底物、偶联配合物(coupling partner)和包含PAd3配体的过渡金属络合物,和将所述底物和偶联配合物在存在过渡金属络合物或它们的衍生物的情况下反应以提供交叉偶联反应产物。所述过渡金属络合物可以具有以上部分II中所述的任何组成和/或性质。
所述底物通常可以选自取代的芳香族化合物或取代的不饱和脂肪族化合物。适合的取代的芳香族化合物可以包括单环和多环环系统,如稠合和非稠合多环环系统。取代的芳基化合物还可以包含杂芳基物质,包括单环和多环杂芳基系统。多环杂芳基系统可以包含稠合和非稠合环结构,如稠合或非稠合杂芳基环以及稠合或非稠合至芳基环的杂芳基环。所述反应混合物的取代的芳香族化合物包含离去基团。可以使用对于经历本文所述的交叉偶联机制途径可操作的任何离去基团。在一些实施方式中,离去基团选自卤素(halo)、甲苯磺酸酯基(甲苯磺酸根,tosylate)(OTs)、甲磺酸酯基(甲磺酸根,mesylate)(OMs)、硝基苯磺酸酯基(硝基苯磺酸根,nosylate)(ONs)、N2 +X-、N2NR1R2和NMe3 +,其中X-为卤化物并且R1和R2为烷基。在其它实施方式中,离去基团可以基于芳香族化合物的苯酚衍生物,其包括(但不限于)氨基甲酸酯基(氨基甲酸根,carbamate)、膦酸酯基膦酸(膦酸根,phosphonate)、碳酸酯基(碳酸根,carbonate)、硫酸酯基(硫酸根,sulfate)、羧酸酯基(羧酸根,carboxylate)和氨基磺酸酯基(氨基磺酸根,sulfamate)。图5(a)显示了根据一些实施方式的多种苯酚衍生物离去基团。图5(a)的实施方式中的R1和R2可以是烷基或其它适合的脂肪族或取代的脂肪族基。图5(b)显示了苯硫酚衍生物离去基团,其中R可以是烷基或其它适合的脂肪族或取代的脂肪族基。
芳香族底物还可以包含除离去基团之外的一个或多个环取代基。如以下图6和实施例的非限制性实施方式中所示,芳香族底物可以包含一个或多个环取代基,其选自由烷基、环烷基、烷氧基、酰基、硝基、腈、羟基和酰胺组成的组。
本文所述的交叉偶联反应的底物还包含取代的不饱和脂肪族化合物。取代的不饱和脂肪族化合物可以显示出单点不饱和,如在乙烯基或烯丙基化合物中。在其它实施方式中,取代的不饱和脂肪族化合物可以具有不止一点的不饱和。如芳香族底物一样,取代的脂肪族化合物包含离去基团。例如,取代的不饱和脂肪族化合物可以包含以上对取代的芳香族化合物所述的任何离去基团。在一些实施方式中,离去基团连接至烯丙基或乙烯基部分以提供取代的不饱和脂肪族底物。在这些实施方式中,所述乙烯基或烯丙基可以包含除离去基团之外的一个或多个取代基,其包括烷基和/或酰基取代基。
所述反应混合物的偶联配合物可以包含多种物质,其包括(但不限于)有机硼化合物、有机锂化合物、有机锌化合物、有机硅化合物和格利雅试剂。这些有机金属化合物的有机部分可以包括芳香族部分和脂肪族部分。适合的芳基部分可以包括单环和多环环系统,如稠合和非稠合多环环系统。芳基部分还可以包含杂芳基物质,其包括单环和多环杂芳基系统。多环杂芳基系统可以包含稠合和非稠合环结构,如稠合或非稠合杂芳基环以及稠合或非稠合至芳基环的杂芳基环。在一些实施方式中,芳香族部分包括一个或多个环取代基,其选自烷基、环烷基、氟代烷基和卤素。
适合的有机金属偶联配合物的脂肪族部分包括不饱和部分,如乙烯基或烯丙基,以及饱和部分。例如,在一些实施方式中,不饱和碳连接至有机金属化合物的金属或类金属。在其它实施方式中,饱和脂肪族部分的分支点碳连接至有机金属化合物的金属或类金属。可替换地,饱和脂肪族部分的非分枝点碳可以连接至有机金属化合物的金属或类金属。
在其它实施方式中,偶联配合物包含具有不稳定C-H键的化合物。在一些实施方式中,具有反应性C-H键的化合物包括胺、膦、膦酸盐、脂肪族羧酸和酯、脂肪族二羧酸和酯、酮、腈、硝基烷、不饱和脂肪族化合物和芳香族化合物,包括芳基和杂芳基化合物。当一个或两个电负性原子接近所述不稳定C-H键时,杂芳烃可以是特别有反应性的。图7显示了包含反应性C-H键的偶联配合物化合物的多个非限制性实施方式。
当使用有机硼偶联配合物时,可以通过Suzuki-Miyaura偶联或Suzuki-Miyaura缩聚进行本文所述的交叉偶联反应。图6显示了使用本文所述的过渡金属络合物作为催化剂的一些Suzuki-Miyaura偶联。在以下实施例中进一步详细讨论了图6中所示的交叉偶联。表I列出了使用本文所述的过渡金属催化剂的其它催化方案和相关的图。
表I-交叉偶联反应
过渡金属络合物可以以和本发明的目标不一致的任何量存在于所述反应混合物中。通常,过渡金属络合物可以以0.005-5mol%的量存在。过渡金属络合物还可以以选自表II的量存在于所述反应混合物中。
表II-过渡金属络合物载量(mol.%)
0.01-3
0.01-1
0.01-0.5
0.01-0.25
0.01-0.1
≤0.5
≤0.1
在一些实施方式中,在加入至所述反应混合物中之前形成了本文所述的过渡金属络合物。可替换地,将PAd3配体和过渡金属络合物前体加入至所述反应混合物以用于原位形成催化过渡金属络合物或它们的衍生物。例如,图9和12显示了向所述反应混合物中加入PAd3配体和过渡金属络合物前体以用于底物和偶联配合物的催化交叉偶联。
本文所述的交叉偶联方法可以显示出大于50%的产物产率。在一些实施方式中,产物产率在60-99%的范围内。本文所述的交叉偶联方法还可以显示出选自表III的产物产率。
表III-产物产率(%)
70-99
75-99
80-99
90-99
95-99
>90
此外,本文所述的过渡金属络合物可以显示出高转换数(TON)和高转换频率(TOF)。例如,在一些实施方式中,过渡金属络合物显示出至少1.5×104的TON和至少1×105h-1的TOF。
通过以下非限制性实施例进一步说明了这些及其它实施方式。
通用方法
除非另作说明,否则所有反应均在干氮填充的手套箱内或使用标准Schlenk技术进行。溶剂购自Aldrich或Fisher,并在氮气正压下通过中性氧化铝渗漉在溶剂纯化系统中纯化。除非另作说明,否则所有化学试剂如从Aldrich、Combi-Blocks和TCI处接收时一样使用。根据在真空烘箱中在65℃干燥10h后的质量损失测量,购自Fisher的磷酸钾粒状粉末标称地确定为约K3PO4·5H2O,尽管这可能是已知的水合物K3PO4·3H2O和K3PO4·7H2O的混合物。一水合磷酸钾购自Aldrich,并在使用前用研钵和研棒磨碎。氢氧化钾购自EMDMillipore,并在使用前用研钵和研棒磨碎。根据文献程序制备双-{2-[(乙酰基-κO)氨基]苯基-κC}双[μ-(P-甲苯磺酸盐)]二钯。
在Teledyne预装硅胶柱上,通过强制流动色谱纯化所有产物。在二氯甲烷溶液中,在Thermo Nicolet分光光度计上获得了Rh(acac)(CO)(L)络合物的红外光谱(FT-IR)。在Bruker 300MHz或500MHz分光光度计上获得了1H、13C{1H}、31P{1H}核磁共振谱(NMR),并对CHCl3、CHDCl2等做参比,将值报告为ppm(δ)。将自旋间耦合常数称为单峰(s)、二重峰(d)、三重峰(t)、四重峰(q)、五重峰(quint)、宽峰(br)或多重峰(m),并且耦合常数(J)以Hz表示。使用Agilent 6210高分辨电喷雾TOF-MS获得高分辨质谱(HR-MS)数据。
实施例1-三(1-金刚烷基)膦的制备
在手套箱中,向配备有磁力搅拌棒的烘干的100ml圆底烧瓶中加入二-1-金刚烷基膦(2.35g,7.77mmol,1.0当量)和1-金刚烷基乙酸酯(1.66g,8.54mmol,1.1当量)。加入二氯甲烷(40ml)以溶解全部固体。用橡胶隔片对烧瓶加盖,并从手套箱中取出。通过注射器加入Me3SiOTf(1.69ml,9.32mmol,1.2当量),并将反应混合物在室温下搅拌24h。然后,加入三乙胺(5.4ml,39mmol,5.0当量),并将反应在室温下再搅拌0.5h。随后,从溶液中沉淀出中和的PAd3,并通过在一次性过滤漏斗上简单过滤,并随后用乙醇(50ml)漂洗来进行分离。在吸气0.5h后,作为纯白色粉末获得了2.2g(63%)的1。尽管PAd3的溶液在空气下易于氧化,但是固态材料可以在实验工作台上储存至少3个月而不会明显分解。注意,即使在惰性气氛下,仍观察到了在氯化溶剂(二氯甲烷、氯仿)中的缓慢分解,但是所述化合物在N2下在THF、苯和甲苯溶液中表现稳定。
1H NMR(501MHZ,CD2Cl2)δ2.13(br,18H),1.84(br,9H),1.74-1.58(m,18H)。
13C NMR(126MHz,CD2Cl2)δ42.68(br),41.10(d,J=34.3Hz),37.0,29.5(d,J=7.2Hz)。
31P NMR(121MHz,C6D6)δ59.35。
对于C30H46PO(M+17),HRMS(ESI)m/z的理论值为453.3286,实验值为453.3289。
实施例2-Rh(acac)(CO)(PAdV)的制备
在手套箱内,将PAd3(22m g,50μmol,1当量)和Rh(acac)(CO)2(12.9m g,50μmol,1当量)溶于THF(2ml)和搅拌12h。在蒸发溶剂,通过快速色谱法(90%己烷,10%乙酸乙酯)纯化残余物并在真空下干燥所得固体后,作为黄色粉末获得了10.5mg(32%)的金属络合物。
1H NMR(300MHz,CDCl3)δ5.52(s,1H),2.62(br,18H),2.08(s,3H),2.08-1.98(br,9H),1.94(s,3H),1.90-1.62(m,18H)。
13C{1H}NMR(126MHz,CDCl3)δ192.9(dd,J=76.8,19.3Hz),188.1,184.0,100.9(d,J=2.5Hz),48.2(d,J=7.3Hz),42.3(br),36.8(br),29.6(d,J=7.6Hz),27.7(d,J=4.6Hz),27.1.
31P{1H}NMR(121MHz,CDCl3)δ90.6(d,J=174.6Hz).
实施例3-催化剂{2-[(乙酰基-κO)氨基)苯基-κC](三-1-金刚烷基膦)钯}+(p-甲 苯磺酸盐)-的制备
称量三(1-金刚烷基)膦(44mg,0.1mmol,1当量)和双-{2-[(乙酰基-κO)氨基]苯基-κC}双[μ-(4-甲基苯磺酸酯)]二钯(41mg,0.05mmol,0.5当量)至具有磁力搅拌棒的20ml闪烁管中并放入手套箱。将THF(4ml)加入至所述固体。将反应混合物在室温下搅拌20分钟,然后浓缩至约1ml并用二乙醚(15ml)稀释。通过过滤分离所形成的所得固体,然后真空干燥以作为黄色粉末提供75mg(88%)催化剂。图13中显示了催化剂结构。在室温下,从THF溶液中长出适合于单晶X射线衍射的晶体。
1H NMR(501MHz,CD2Cl2)δ12.32(s,1H),7.80(d,J=7.8Hz,2H),7.52-7.41(m,2H),2.35-2.31(m,1H),7.18(m,3H),6.89-6.82(m,1H),2.49(s,3H),2.45(br,18H),2.40(s,3H),2.11(br,9H),1.84(br,18H)。
31P NMR(203MHz,CD2Cl2)δ47.24。
13C NMR(126MHz,CD2Cl2)δ169.73(d,J=2.3Hz),144.09,142.19(d,J=10.0Hz),139.32,132.65(d,J=1.6Hz),128.53,127.43,125.84,123.40(d,J=5.6Hz),120.77,117.77(d,J=6.6Hz),48.36(d,J=6.2Hz),41.56,36.08,29.04(d,J=7.7Hz),21.04(d,J=3.5Hz),20.99。
实施例4-Pd(PAd3)(Ph)(κ2-OAc)的制备
将根据Grushin的规程6制备的Pd(py)2(Ph)(I)(28mg,0.060mmol,1当量)和乙酸银(10mg,0.060mmol,1当量)在甲苯(0.5ml)中搅拌。1.5h后,将混合物通过硅藻土塞过滤并浓缩至1ml。然后,将PAd3(20mg,0.046mmol,1当量)加入所述溶液并搅拌10min。将所得混合物蒸发,在甲苯(0.5ml)中再溶解,并用乙醚(10ml)稀释。在超声处理后,通过过滤收集所得固体并吸气0.5h,从而作为黄色粉末获得23mg(57%)的金属络合物。
1H NMR(501MHz,CD2Cl2)δ7.30(d,J=7.9Hz,2H),6.82(t,J=7.3Hz,2H),6.77(t,J=7.1Hz,1H),2.42(br,18H),1.86(br,9H),1.79(s,3H),1.72-1.52(m,18H)。
13C{1H}NMR(126MHz,CD2Cl2)δ186.9,141.0,135.8(d,J=3.0Hz),126.9,123.5,49.1(d,J=6.8Hz),42.3,36.4,29.4(d,J=7.9Hz),23.6。
31Ρ{1H}NMR(203MHz,CD2Cl2)δ68.2。
对于Pd(PAd3)(Ph)(MeCN)阳离子C38H53NPPd,HRMS(ESI)m/z的理论值为660.2950,实验值为660.2944。
实施例5-SePAd3的制备
在手套箱内,将PAd3(11mg,25μmol,1当量)和硒(9mg,95μmol,3.8当量)溶于THF(2ml)并搅拌1h。通过倾倒除去过量的硒后,真空蒸发母液以作为白色粉末获得13mg(99%)的SePAd3
1H NMR(501MHz,CDCl3)δ2.41(br,18H),1.97(br,9H),1.79-1.33(m,18H)。
13C{1H}NMR(126MHz,CDCl3)δ48.15(d,J=19.6Hz),40.14(br),36.53(br),29.17(d,J=8.5Hz)。
31P{1H}NMR(203MHz,CDCl3)δ79.69(s,1JP-Se=669.9Hz)。
实施例6-44:Suzuki-Miyaura偶联和产物表征
使用PAd3金属催化剂,通过Suzuki-Miyaura反应制备以下产物。如以下程序所述,通过添加双-{2-[(乙酰基-κO)氨基]苯基-κC}双[u-(p-甲苯磺酸盐)二钯(3)的THF储液和PAd3配体原位产生PAd3金属催化剂。在实施例3中描述和表征并在图13中显示了原位形成的催化剂。
向4-氯苯甲醚(62μL,0.50mmol,1当量)、1-萘基硼酸(94mg,0.55mmol,1.1当量)和K3ΡO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加甲苯(800μL)、3和PAd3的THF储液(100μL,0.25μmol,Pd/PAd3)并且在室温下搅拌该混合物5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了104mg的6(89%)。NMR光谱数据与文献值一致。
将2-氯苄腈(69mg,0.50mmol,1当量)、4-甲苯基硼酸(75mg,0.55mmol,1.1当量)、THF(100μL)的混合物搅拌成浆液,添加K3PO4·5H2O(0.33g,1.1mmol,2.2当量),然后添加3和PAd3的THF储液(10μL,0.025μmol Pd/PAd3)。将反应小瓶加盖,然后从手套箱中取出至预设在100℃的油浴中放置10min。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色结晶固体获得92mg(95%)的7。NMR光谱数据与文献值一致。
将1-氯-2-硝基苯(79mg,0.50mmol,1当量)、4-氯苯基硼酸(80mg,0.51mmol,1.02当量)和THF(100μL)的混合物搅拌成浆液。然后,加入K3PO4·5H2O(0.33g,1.1mmol,2.2当量),接着加入3和PAd3的THF储液(10μL,在THF中,0.025μmol的Pd/PAd3)。将反应小瓶加盖,然后从手套箱中取出至预设在100℃的油浴中放置10min。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为淡黄色油获得了114mg(97%)的8。NMR光谱数据与文献值一致。
将2-氯吡啶(47μL,0.50mmol,1当量)、(4-异丁氧基苯基)硼酸(107mg,0.55mmol,1.1当量)和正丁醇(200μL)的混合物搅拌成浆液。然后,添加K3PO4·5H2O(0.33g,1.1mmol,2.2当量),接着添加3和PAd3的THF储液(10μL,0.025μmol Pd/PAd3)。将反应小瓶加盖,然后从手套箱中取出至预设在100℃的油浴中放置1h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了84mg(74%)的9。
1H NMR(501MHz,CDCl3)δ8.67(ddd,J=4.9,1.8,1.0Hz,1H),8.00-7.92(m,2H),7.77-7.66(m,2H),7.19(ddd,J=7.2,4.9,1.4Hz,1H),7.05-6.98(m,2H),3.80(d,J=6.5Hz,2H),2.14(dp,J=13.3,6.7Hz,1H),1.07(d,J=6.7Hz,6H)。
13C{1H}NMR(126MHZ,CDCI3)δ160.2,157.2,149.5,136.6,131.8,128.1,121.3,119.8,114.7,74.5,28.3,19.3。
对于C15H17NO(M+1),HRMS(ESI)m/z的理论值为228.1383,实验值为228.1392。
将2-氯-4,6-二甲氧基嘧啶(87mg,0.50mmol,1当量)、2-萘基硼酸(95mg,0.55mmol,1.1当量)、THF(150μL)的混合物搅拌成浆液。然后,添加K3PO4·5H2O(0.33g,1.1mmol,2.2当量),接着添加3和PAd3的THF储液(10μL,0.025μmol Pd/PAd3)。将反应小瓶加盖,然后从手套箱中取出至预设在100℃的油浴中放置5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了106mg(80%)的10。
1H NMR(501MHz,CDCl3)δ8.99-8.92(m,1H),8.22(ddt,J=7.0,2.7,1.4Hz,1H),7.97(ddt,J=23.5,8.1,1.4Hz,2H),7.64-7.51(m,3H),6.14-6.09(m,1H),4.11-4.06(m,6H)。
13C{1H}{1H}NMR(126MHz,CDCl3)δ171.3,165.7,135.5,134.2,131.1,130.6,129.4,128.5,126.5,126.3,125.7,125.1,88.0,54.2。
对于C16H14N2O2(M+1),HRMS(ESI)m/z的理论值为267.1128,实验值为267.1123。
向2-氯-4,6-二甲氧-1,3,5-三嗪(88mg,0.50mmol,1当量),2,6-二氟苯基硼酸(118mg,0.75mmol,1.5当量)和K2CO3·1.5H2O(0.25g,1.5mmol,3当量)的混合物中加入THF(300μL),然后加入3和PAd3的THF储液(200μL,在THF中,0.5μmol),并将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了118mg(93%)的11。
1H NMR(501MHz,CDCl3)δ7.39(tt,J=8.4,6.2Hz,1H),7.02-6.93(m,2H),4.07(s,6H)。
13C{1H}{1H}NMR(126MHz,CDCl3)δ172.5,170.6(t,J=1.6Hz),160.6(dd,J=255.1,6.0Hz),131.9(t,J=11.3Hz),115.4(t,J=16.4Hz),111.9(dd,J=20.2,5.0Hz),55.5。
对于C11H9F2N3O2(M+1),HRMS(ESI)m/z的理论值为254.0736,实验值为254.0722。
向2,4-二-叔-丁基-6-(5-氯-2H-苯并三唑-2-基)苯酚(179mg,0.50mmol,1当量),4-三氟甲基苯基硼酸(114mg,0.60mmol,1.2当量)、K3PO4·5H2O(0.36g,1.2mmol,2.4当量)和KOtBu(56mg,0.50mmol,1当量)的混合物中加入3和PAd3的THF储液(2ml,在THF中,5μmol的Pd/PAd3)。在70℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了224mg(96%)的12。
1H NMR(500MHz,CDCl3)δ11.63(s,1H),8.22(d,J=2.4Hz,1H),8.01(t,J=1.2Hz,1H),7.91(dd,J=8.9,0.9Hz,1H),7.71-7.58(m,5H),7.37(d,J=2.4Hz,1H),1.44(s,9H),1.32(s,9H)。
13C{1H}{1H}NMR(126MHz,CDCl3)δ145.7,143.0,142.0,141.3,140.7,138.1,137.6,128.8(q,J=32.6Hz),126.7,126.7,125.0(q,J=3.7Hz),124.4,124.1,123.1(q,J=272.2Hz),117.1,115.1,114.6,34.7,33.6,30.5,28.5。
对于C27H28F3N3O(M+1),HRMS(ESI)m/z的理论值为468.2257,实验值为468.2257。
向氟哌啶醇(94mg,0.25mmol,1当量)、呋喃-3-基硼酸(42mg,0.38mmol,1.5当量)、作为内标的1,3,5-三甲氧基苯(42mg,0.25mmol,1当量)和K3PO4·H2O(0.17g,0.75mmol,3当量)的混合物中添加THF(400μL)和3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3),并将混合物在100℃搅拌12h。根据内标确定的13的NMR产率为80%。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法和制备HPLC纯化粗产物。干燥后,作为白色固体获得了56mg(55%)的13。
1H NMR(501MHz,CDCl3)δ8.09-8.01(m,2H),7.75(t,J=1.2Hz,1H),7.49(d,J=3.5Hz,5H),7.21-7.12(m,2H),6.72(dd,J=1.8,0.9Hz,1H),3.02(t,J=7.1Hz,2H),2.83(d,J=11.2Hz,2H),2.56-2.44(m,4H),2.04(td,J=16.6,14.3,9.7Hz,4H),1.79-1.72(m,2H)。
13C{1H}NMR(126MHz,CDCl3)δ198.4,165.6(d,J=254.3Hz),143.7,138.5,131.2,130.7,130.7,126.0,125.8,125.0,115.7,115.5,108.8,71.3,57.9,49.4,38.4,36.3,22.0.
对于C25H27FNO3(M+1),HRMS(ESI)m/z的理论值为408.1969,实验值为408.1960。
向孟鲁司特钠(152mg,0.25mmol,1当量)、3,4,5-三氟苯基硼酸(53mg,0.30mmol,1.2当量)和K3PO4·5H2O(0.18g,0.60mmol,2.4当量)的混合物中添加THF(2ml),然后添加3和PAd3的THF储液(1ml,2.5μmol Pd/PAd3)。在100℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用饱和氯化铵,接着用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为黄色固体获得了152mg(89%)的14。
1H NMR(500MHz,CDCl3)δ8.18(d,J=1.8Hz,1H),8.10(d,J=8.5Hz,1H),7.82(d,J=8.4Hz,1H),7.74(d,J=1.9Hz,1H),7.67(d,J=8.6Hz,1H),7.62(dd,J=5.0,1.8Hz,1H),7.59(d,J=17.1Hz,1H),7.48(d,J=17.1Hz,1H),7.40(m,1H),7.37-7.28(m,5H),7.18-7.13(m,2H),7.10(ddd,J=7.6,5.8,3.0Hz,1H),5.29(s,1H),4.01(t,J=7.2Hz,1H),3.17(ddd,J=13.5,11.2,5.1Hz,1H),2.90(ddd,J=13.5,11.2,5.4Hz,1H),2.65(d,J=13.1Hz,1H),2.57(d,J=16.2Hz,1H),2.45(d,J=13.1Hz,1H),2.38(d,J=16.1Hz,1H),2.28-2.09(m,2H),1.60(d,J=4.9Hz,6H),0.71-0.24(m,4H)。
13C{1H}NMR(126MHZ,CDCl3)δ176.3,156.9,151.5(ddd,J=249.9,10.0,4.2Hz),147.7,145.2,143.6,140.2,139.7(dt,J=253.3,15.4Hz),139.4,136.5,136.4,136.3(m),135.4,131.5,129.0,128.6,128.5,128.4,127.1,126.9,126.5,126.5,126.4,125.6,125.4,125.0,119.4,111.4(dd,J=12.6,5.0Hz),73.8,50.3,40.3,40.0,38.9,32.3,31.8,16.8,12.7,12.4。
对于C41H38F3NO3S(M+1),HRMS(ESI)m/z的理论值为682.2597,实验值为682.2598。
向非诺贝特(90mg,0.25mmol,1当量)、环丙基硼酸(32mg,0.38mmol,1.5当量)和K3PO4·H2O(0.18g,0.75mmol,3当量)的混合物中加入甲苯(400μL),然后加入3和PAd3的THF储液(50μL,0.125μmolPd/PAd3)。在100℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了84mg(92%)的15。
1H NMR(501MHz,CDCl3)δ7.80-7.72(m,2H),7.72-7.66(m,2H),7.19-7.12(m,2H),6.91-6.84(m,2H),5.11(hept,J=6.3Hz,1H),1.99(tt,J=8.4,5.0Hz,1H),1.68(s,6H),1.23(d,J=6.3Hz,6H),1.13-1.05(m,2H),0.85-0.78(m,2H)。
13C{1H}NMR(126MHz,CDCl3)δ195.2,173.2,159.3,149.2,135.2,131.9,131.0,130.1,125.2,117.1,79.3,69.3,25.4,21.5,15.7,10.3。
对于C23H26O4(M+1),HRMS(ESI)m/z的理论值为367.1904,实验值为367.1888。
向格列本脲(247mg,0.50mmol,1当量)、N-Boc-吡咯硼酸(127mg,0.60mmol,1.2当量)、作为内标的1,3,5-三甲氧基苯(84mg,0.50mmol,1当量)和K3PO4·5H2O(0.36g,1.2mmol,2.4当量)的混合物中添加3和PAd3的THF储液(2ml,在THF中,5μmol Pd/PAd3)。在100℃,将混合物搅拌5h。相对于内标,粗NMR产率为65%。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法和制备HPLC纯化粗产物。干燥后,作为白色固体获得了116mg(37%)的16。
1H NMR(501MHz,CDCl3)δ8.13(d,J=2.4Hz,1H),7.83(t,J=5.8Hz,1H),7.78(d,J=8.3Hz,2H),7.43-7.31(m,3H),7.26(dd,J=3.3,1.8Hz,1H),6.86(d,J=8.5Hz,1H),6.37(d,J=7.9Hz,1H),6.14(t,J=3.3Hz,1H),6.11(dd,J=3.3,1.8Hz,1H),3.75(s,3H),3.69(q,J=6.6Hz,2H),3.56-3.47(m,1H),2.96(t,J=6.9Hz,2H),1.80-1.72(m,2H),1.64-1.46(m,4H),1.34(s,9H),1.30-1.03(m,4H)。
13C{1H}NMR(126MHz,CDCl3)5 165.2,156.6,150.1,149.2,146.3,137.7,133.8,133.6,133.0,129.9,127.7,127.2,122.6,120.3,114.7,110.6,110.6,83.7,56.0,49.2,40.5,35.7,33.0,27.8,25.4,24.6。
对于C32H40N4O7S(M+l),HRMS(ESI)m/z的理论值为625.2691,实验值为625.2700。
向5-R-利伐沙班(55mg,0.13mmol,1当量)、3,5-双(三氟甲基)苯基硼酸(35mg,0.14mmol,1.1当量)、作为内标的1,3,5-三甲氧基苯(21mg,0.13mmol,1当量)和K3PO4·5H2O(82mg,0.28mmol,2.2当量)的混合物中加入3和PAd3的THF储液(2.5ml,6.25μmol Pd/PAd3)。在100℃,将混合物搅拌5h。相对于内标,粗NMR产率为83%。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法和制备HPLC纯化粗产物。干燥后,作为白色固体获得了43mg(56%)的17。
1H NMR(501MHz,CDCl3)δ7.94(s,2H),7.76(s,1H),7.55-7.45(m,3H),7.33(d,J=3.9Hz,1H),7.30-7.23(m,2H),6.90(s,1H),4.82(dd,J=6.0,3.0Hz,1H),4.26(s,2H),4.04(t,J=8.9Hz,1H),3.99-3.93(m,2H),3.88-3.77(m,2H),3.76-3.63(m,3H)。
13C{1H}NMR(126MHz,CDCl3)δ166.9,162.1,154.4,145.6,139.0,137.4,136.6,135.5,132.3(q,J=34.0Hz),127.6(q,J=476.3Hz),126.3,126.0,124.1,121.9,119.2,71.9,68.6,64.1,49.7,47.7,42.4。
对于C27H21F6N3O5S(M+l),HRMS(ESI)m/z的理论值为614.1179,实验值为614.1196。
向4-氯苯甲醚(62μL,0.50mmol,1当量)、苯基硼酸(67mg,0.55mmol,1.1当量)和K3PO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加甲苯(800μL),然后添加3和PAd3的THF储液(100μL,0.25μmolPd/PAd3)。将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了75mg(81%)的18。NMR光谱数据与文献值一致。
向4-氯苯甲醚(62μL,0.50mmol,1当量)、3,5-双(三氟甲基)苯基硼酸(142mg,0.55mmol,1.1当量)和K3PO4·5H2O(0.33g,1.1mmol,2.2当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了146mg(91%)的19。NMR光谱数据与文献值一致。
向2-氯-1,3-二甲苯(66μL,0.50mmol,1当量)、1-萘基硼酸(129mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了93mg(80%)的20。NMR光谱数据与文献值一致。
向2-氯甲苯(59μL,0.50mmol,1当量)、2,6-二甲氧基苯基硼酸(136mg,0.75mmol,1.5当量)和K3PO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的催化剂储液(100μL,0.25μmol Pd/PAd3)。在50℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了79mg(70%)的21。NMR光谱数据与文献值一致。
向2-氯甲苯(59μL,0.50mmol,1当量)、2,6-二甲基苯基硼酸(112mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌9h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了69mg(70%)的22。NMR光谱数据与文献值一致。
向1-溴-2,4-二甲氧苯(72μL,0.50mmol,1当量)、环丙基硼酸(64mg,0.75mmol,1.5当量)和K3PO4·H2O(0.35mg,1.5mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)并且将混合物在100℃搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了80mg(90%)的23。NMR光谱数据与文献值一致。
向3-氯吡啶(48μL,0.50mmol,1当量)、1-萘基硼酸(95mg,0.55mmol,1.1当量)和K3PO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol)。在90℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了70mg(68%)的24。NMR光谱数据与文献值一致。
向3-氯吡啶(48μL,0.50mmol,1当量)、4-甲苯基硼酸(75mg,0.55mmol,1.1当量)和K3PO4·H20(0.35g,1.5mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在90℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了53mg(63%)的25。NMR光谱数据与文献值一致。
向3-氯吡啶(48μL,0.50mmol,1当量)、3,5-双(三氟甲基)苯基硼酸(142mg,0.55mmol,1.1当量)和K3PO4·H2O(0.35mg,1.5mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在90℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了143mg(98%)的26。NMR光谱数据与文献值一致。
向3-氯吡啶(48μL,0.50mmol,1当量)、(4-异丁氧基苯基)硼酸(107mg,0.55mmol,1.1当量)和K3PO4·5H2O(0.33g,1.1mmol,2.2当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌12h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了96mg(84%)的27。
1H NMR(501MHz,CDCl3)δ8.85-8.80(m,1H),8.57-8.51(m,1H),7.80(dt,J=8.2,1.9Hz,1H),7.53-7.46(m,2H),7.31(dd,J=7.9,5Hz,1H),7.04-6.97(m,2H),3.76(d,J=6.6Hz,2H),2.11(dq,J=13.3,6.7Hz,1H),1.05(d,J=6.9Hz,6H)。
13C{1H}NMR(126MHz,CDCI3)δ159.5,148.0,147.8,136.3,133.8,129.9,128.1,123.5,115.1,74.5,28.3,19.3。
对于C15H17NO(M+l),HRMS(ESI)m/z的理论值为228.1383,实验值为228.1377。
向2,6-二氯吡嗪(37mg,0.25mmol,1当量)、3,5-双(三氟甲基)苯基硼酸(142mg,0.55mmol,2.2当量)和K3PO4·5H2O(0.33g,1.1mmol,4.4当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在70℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了110mg(87%)的28。
1H NMR(501MHz,CDCl3)δ9.20(s,2H),8.62-8.58(m,4H),8.07(s,2H)。
13C{1H}NMR(126MHz,CDCl3)δ149.2,141.5,137.9,132.8(q,J=33.7Hz),127.1,123.9,123.1(q,J=273.4Hz)。
对于C20H8F12N2(M+l),HRMS(ESI)m/z的理论值为505.0569,实验值为505.0563。
向2-氯甲苯(59μL,0.50mmol,1当量)、N-Boc-2-吡咯硼酸(158mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了124mg(96%)的29。NMR光谱数据与文献值一致。
向2-氯-3-甲基喹喔啉(89mg,0.50mmol,1当量)、N-Boc-2-吡咯硼酸(158mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在70℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了148mg(96%)的30。
1H NMR(501MHz,CDCl3)δ8.09-7.98(m,2H),7.74-7.63(m,2H),7.43(dd,J=3.4,1.7Hz,1H),6.44(dd,J=3.3,1.7Hz,1H),6.33(t,J=3.4Hz,1H),2.56(s,3H),1.17(s,9H)。
13C{1H}NMR(126MHz,CDCl3)δ154.5,149.6,148.6,141.2,140.3,130.7,129.8,129.1,129.0,128.3,122.5,115.6,111.4,84.2,27.4,23.0。
对于C18H19N3O2(M+l),HRMS(ESI)m/z的理论值为310.1550,实验值为310.1552。
向2-氯吡嗪(44μL,0.50mmol,1当量)、3,4,5-三氟苯基-硼酸(132mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在70℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了77mg(73%)的31。
1H NMR(501MHz,CDCl3)δ8.98(d,J=1.6Hz,1H),8.66-8.62(m,1H),8.57(d,J=2.5Hz,1H),7.75-7.65(m,2H)。
13C{1H}NMR(126MHz,CDCl3)δ151.7(ddd,J=250.7,10.2,4.0Hz),149.4(dt,J=1.3,2.5Hz),144.3,144.0,141.6,140.9(dt,J=255.8,15.4Hz),132.3(dt,J=5.0,7.6Hz),111.0(dd,J=17.1,5.5Hz)。
对于C10H5F3N2(M+l),HRMS(ESI)m/z的理论值为211.0478,实验值为211.0471。
向2-氯吡嗪(44μL,0.50mmol,1当量)、(6-甲氧基吡啶-3-基)硼酸(115mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3.0当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在70℃搅拌5h;用乙酸乙酯稀释反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了77mg(82%)的32。
1H NMR(501MHz,CDCl3)δ8.89(d,J=1.6Hz,1H),8.72(d,J=2.6Hz,1H),8.54-8.49(m 1H),8.41(d,J=2.6Hz,1H),8.15(dd,J=8.7,2.5Hz,1H),6.79(d,J=8.7Hz,1H),3.92(s 3H)。
13C{1H}NMR(126MHz,CDCl3)δ165.2,150.6,145.7,144.2,142.8,141.3,137.1,125.6,111.4,53.8。
对于C10H9N3O(M+l),HRMS(ESI)m/z的理论值为118.0818,实验值为118.0814。
向2-氯-4,6-二甲氧基嘧啶(87mg,0.50mmol,1当量)、N-Boc-2-吡咯硼酸(116mg,0.55mmol,1.1当量)和K3PO4·5H2O(0.33g,1.1mmol,2.2当量)的混合物中添加正丁醇(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了147mg(96%)的33。
1H NMR(501MHz,CDCl3)δ7.33(dd,J=3.1,1.7Hz,1H),6.77(dd,J=3.4,1.7Hz,1H),6.26(t,J=3.3Hz,1H),5.95(s,1H),3.97(s,6H),1.48(s,9H)。
13C{1H}NMR(126MHZ,CDCl3)δ171.0,159.4,149.0,133.0,124.8,117.9,110.5,87.6,83.6,54.0,27.7。
对于C15H19N3O4(M+l),HRMS(ESI)m/z的理论值为306.1448,实验值为306.1431。
向2-氯苄腈(69mg,0.50mmol,1当量)、(3,5-二甲基异恶唑-4-基)硼酸(106mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌9h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了78mg(79%)的34。NMR光谱数据与文献值一致。
向2-氯吡啶(47μL,0.50mmol,1当量)、呋喃-3-基硼酸(84mg,0.75mmol,1.5当量)和K3PO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌12h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了80mg(92%)的35。NMR光谱数据与文献值一致。
向2-氯吡啶(47μL,0.50mmol,1当量)、喹啉-3-基硼酸(130mg,0.75mmol,1.5当量)和K3PO4·H2O(0.35g,1.5mmol,3当量)的混合物中添加正丁醇(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在100℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了83mg(80%)的36。NMR光谱数据与文献值一致。
向2-氯吡啶(47μL,0.50mmol,1当量)、2,4-二氟苯基硼酸(118mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45mg,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在70℃,将混合物搅拌4h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了89mg(93%)的37。NMR光谱数据与文献值一致。
向2-氯-4,6-二甲氧-1,3,5-三嗪(88mg,0.50mmol,1当量)、呋喃-2-基硼酸(84mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45mg,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌1.5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了93mg(90%)的38。
1H NMR(501MHz,CDCl3)δ7.64-7.59(m,1H),7.44(d,J=3.5Hz,1H),6.53(dd,J=3.4,1.7Hz,1H),4.03(s,6H)。
13C{1H}NMR(126MHz,CDCl3)δ172.6,166.5,150.1,146.6,117.4,112.5,55.2。
对于C9H9N3O3(M+l),HRMS(ESI)m/z的理论值为208.0717,实验值为208.0706。
向2-氯-4,6-二甲氧-1,3,5-三嗪(88mg,0.50mmol,1当量)、噻吩-2-基硼酸(96mg,0.75mmol,1.5当量)和K3PO4·5H2O(0.45mg,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为白色固体获得了104mg(93%)的39。NMR光谱数据与文献值一致。
向4,7-二溴苯并[c][1,2,5]噻二唑(147mg,0.50mmol,1当量)、噻吩-2-基硼酸(192mg,1.50mmol,3当量)和K3PO4·5H2O(0.90g,3.0mmol,6当量)的混合物中添加THF(900μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌1h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为橙黄色固体获得了143mg(95%)的40。NMR光谱数据与文献值一致。
向2-氯-1,3-二甲苯(66μL,0.50mmol,1当量)、甲基硼酸(45mg,0.75mmol,1.5当量)、作为内标的1,3,5-三甲氧基苯(84mg,0.50mmol,1当量)和K3PO4·5H2O(0.45g,1.5mmol,3当量)的混合物中添加THF(400μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。在50℃,将混合物搅拌5h。相对于内标,粗NMR产率为90%。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了30mg(50%)的41。
向非诺贝特(90mg,0.25mmol,1当量)、甲基硼酸(30mg,0.50mmol,2当量)、作为内标的1,3,5-三甲氧基苯(42mg,0.25mmol,1当量)和K3PO4·H2O(0.18g,0.75mmol,3当量)的混合物中添加甲苯(400μL),然后添加3和PAd3的THF储液(50μL,0.125μmol Pd/PAd3)。在100℃,将混合物搅拌5h。相对于内标,粗NMR产率为88%。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法和制备HPLC纯化粗产物。干燥后,作为白色固体获得了65mg(76%)的42。
1H NMR(501MHz,CDCl3)δ7.80-7.73(m,2H),7.71-7.65(m,2H),7.28(d,J=7.9Hz,2H),6.92-6.84(m,2H),5.10(hept,J=6.3Hz,1H),2.44(s,3H),1.67(s,6H),1.22(d,J=6.3Hz,6H)。
13C{1H}NMR(126MHz,CDCl3)δ195.3,173.2,159.3,142.7,135.4,131.9,130.9,130.0,128.9,117.1,79.3,69.3,25.4,21.6,21.5。
对于C21H24O4(M+l),HRMS(ESI)m/z的理论值为341.1747,实验值为341.1749。
向4,7-双(5-溴噻吩-2-基)苯并[c][1,2,5]噻二唑(115mg,0.25mmol,1当量)、(9,9-二甲基-9H-芴-2-基)硼酸(131mg,0.55mmol,2.2当量)和K3PO4·5H2O(0.33g,1.1mmol,4.4当量)的混合物中添加THF(900μL),然后添加3和PAd3的THF储液(100μL,0.25μmol Pd/PAd3)。将混合物在室温下搅拌1h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为暗红色固体获得了152mg(89%)的43。
1H NMR(501MHz,CDCl3)δ8.19(d,J=3.9Hz,2H),7.97(s,2H),7.82-7.72(m,8H),7.54-7.46(m,4H),7.38(pd,J=7.4,1.5Hz,4H),1.59(s,12H)。
13C{1H}NMR(126MHz,CDCl3)δ154.4,153.9,152.7,146.3,139.2,138.7,138.4,133.2,128.6,127.5,127.1,125.8,125.3,125.0,124.0,122.7,120.5,120.1,120.1,47.0,27.2。
对于C44H33N2S3(M+l),HRMS(ESI)m/z的理论值为685.1800,实验值为685.1782。
向4-氯苯甲醚(62μL,0.50mmol,1当量)、异丙基硼酸(66mg,0.75mmol,1.5当量)和K3PO4·H2O(0.35mg,1.5mmol,3当量)的混合物中添加3和PAd3的甲苯储液(2ml,5μmol Pd/PAd3)。在100℃,将混合物搅拌5h。用乙酸乙酯稀释所述反应混合物,然后用水萃取。蒸发合并的有机层,并通过快速色谱法纯化粗产物。干燥后,作为无色油获得了53mg(70%)的44。NMR光谱数据与文献值一致。
已在本发明多个目标的完成中描述了本发明的多个实施方式。应认识到这些实施方式仅是本发明原理的说明。在不背离本发明的精神和范围的情况下,其多种修改和改变将对本领域技术人员来说是显而易见的。

Claims (26)

1.一种合成三-(金刚烷基)膦化合物PAd3的方法,包括:
提供包含二-(金刚烷基)膦(PAd2)和取代的金刚烷基部分的反应混合物并通过SN1途径使所述PAd2与取代的金刚烷基部分反应以提供所述PAd3
2.根据权利要求1所述的方法,其中所述PAd3的金刚烷基部分(Ad)独立地选自由金刚烷、双金刚烷、三金刚烷和它们的衍生物组成的组。
3.根据权利要求1所述的方法,其中所述取代的金刚烷基部分包含离去基团。
4.根据权利要求3所述的方法,其中所述离去基团选自由乙酸酯基、三氟甲磺酸酯基、甲苯磺酸酯基和羟基组成的组。
5.根据权利要求1所述的方法,其中所述PAd3的产率大于50%。
6.根据权利要求1所述的方法,其中所述PAd3的产率大于60%。
7.一种交叉偶联的方法,包括:
提供反应混合物,所述反应混合物包含底物、偶联配合物和含有PAd3配体的过渡金属络合物;和
在存在所述过渡金属络合物或其衍生物的情况下使所述底物与偶联配合物反应以提供交叉偶联的反应产物。
8.根据权利要求7所述的方法,其中所述过渡金属络合物包含选自元素周期表的VIIIA族、IB族或IIB族的一种或多种金属。
9.根据权利要求7所述的方法,其中所述过渡金属络合物包含钯。
10.根据权利要求7所述的方法,其中所述底物是取代的芳香族化合物。
11.根据权利要求10所述的方法,其中所述取代的芳香族化合物是芳基化合物或杂芳基化合物。
12.根据权利要求10所述的方法,其中所述取代的芳香族化合物包含离去基团。
13.根据权利要求12所述的方法,其中所述离去基团选自由卤素、甲苯磺酸酯基(OTs)、甲磺酸酯基(OMs)和硝基苯磺酸酯基(ONs)组成的组。
14.根据权利要求7所述的方法,其中所述底物是取代的不饱和脂肪族化合物。
15.根据权利要求14所述的方法,其中所述取代的不饱和脂肪族化合物包含乙烯基部分。
16.根据权利要求14所述的方法,其中所述取代的不饱和脂肪族化合物包含烯丙基部分。
17.根据权利要求7所述的方法,其中所述偶联配合物包含有机金属化合物。
18.根据权利要求17所述的方法,其中所述有机金属化合物选自由有机硼化合物、有机锂化合物、有机锌化合物、有机硅化合物和格利雅试剂组成的组。
19.根据权利要求18所述的方法,其中所述有机金属化合物的有机部分包含芳香族部分。
20.根据权利要求18所述的方法,其中所述有机金属化合物的有机部分包含不饱和脂肪族部分。
21.根据权利要求18所述的方法,其中所述有机金属化合物的有机部分包含饱和脂肪族部分。
22.根据权利要求7所述的方法,其中所述过渡金属络合物具有式(PAd3)mM(L)n,其中M为过渡金属,L为配体,并且m和n各自为1至3的整数。
23.根据权利要求7所述的方法,其中所述过渡金属络合物以小于0.5mol.%的量存在于所述反应混合物中。
24.根据权利要求7所述的方法,其中所述过渡金属络合物以小于0.1mol.%的量存在于所述反应混合物中。
25.根据权利要求24所述的方法,其中交叉偶联反应产物的产率大于60%。
26.根据权利要求24所述的方法,其中交叉偶联反应产物的产率大于80%。
CN201680076918.1A 2015-10-29 2016-10-31 三-(金刚烷基)膦及其应用 Active CN108883405B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562248056P 2015-10-29 2015-10-29
US62/248,056 2015-10-29
PCT/US2016/059698 WO2017075581A1 (en) 2015-10-29 2016-10-31 Tri-(adamantyl)phosphines and applications thereof

Publications (2)

Publication Number Publication Date
CN108883405A true CN108883405A (zh) 2018-11-23
CN108883405B CN108883405B (zh) 2021-07-13

Family

ID=58630859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680076918.1A Active CN108883405B (zh) 2015-10-29 2016-10-31 三-(金刚烷基)膦及其应用

Country Status (6)

Country Link
US (4) US10981157B2 (zh)
EP (2) EP4286051A3 (zh)
JP (1) JP6991584B2 (zh)
KR (1) KR102726018B1 (zh)
CN (1) CN108883405B (zh)
WO (1) WO2017075581A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124732A (zh) * 2019-04-13 2019-08-16 复旦大学 用于金属催化偶联反应的高分子催化剂及其制备方法
CN117062822A (zh) * 2021-03-25 2023-11-14 西格马-奥尔德里奇有限责任公司 带有庞大二(金刚烷基)膦基基序的新型基于二茂铁的不对称配体及其金属催化剂

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051473B (zh) * 2017-10-02 2023-08-01 捷恩智株式会社 液晶组合物及液晶显示元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628122A (zh) * 2002-02-04 2005-06-15 北兴化学工业株式会社 制备具有大体积烃基团的叔膦的方法
CN101195641A (zh) * 2007-09-30 2008-06-11 埃沃尼克德古萨有限责任公司 新颖的膦配体、它们的制备和它们在催化反应中的用途
US20110130562A1 (en) * 2009-12-01 2011-06-02 MyCell Holdings Limited Surfactant-Enabled Transition Metal-Catalyzed Chemistry

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10037961A1 (de) 2000-07-27 2002-02-07 Aventis Res & Tech Gmbh & Co Neue Phosphanliganden, deren Herstellung und ihre Verwendung in katalytischen Reaktionen
JP4271454B2 (ja) 2002-02-04 2009-06-03 北興化学工業株式会社 嵩高い炭化水素基の結合した第3級ホスフィンの製造方法
JP4271455B2 (ja) 2002-02-19 2009-06-03 北興化学工業株式会社 嵩高い炭化水素基の結合した第3級ホスフィンの製造方法
US7449601B2 (en) * 2004-12-16 2008-11-11 E. I. Du Pont De Nemours And Company Catalysts useful for catalyzing the coupling of arylhalides with arylboronic acids
US7205414B2 (en) * 2005-01-12 2007-04-17 Honeywell International Inc. Process for the Kumada coupling reaction
JP2009280529A (ja) 2008-05-23 2009-12-03 Osaka Univ エステル化合物の製造方法
JP5562069B2 (ja) 2009-03-05 2014-07-30 国立大学法人大阪大学 有機フッ素化合物の合成方法
CA2782203C (en) 2009-12-01 2020-08-04 MyCell Holdings Limited Surfactant-enabled transition metal-catalyzed chemistry
JP5864447B2 (ja) 2010-03-01 2016-02-17 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 多面体オリゴマーシルセスキオキサン(poss)結合リガンド
WO2012116942A1 (de) 2011-03-02 2012-09-07 Bayer Cropscience Ag Verfahren zur herstellung von aryl- und heteroarylessigsäure-derivaten
WO2013159229A1 (en) 2012-04-24 2013-10-31 Dalhousie University Silanyloxyaryl phosphine ligand and uses thereof in c-n cross-coupling
KR101434020B1 (ko) 2012-07-04 2014-08-25 삼성전기주식회사 스핀들 모터
WO2014147188A1 (en) 2013-03-21 2014-09-25 Evonik Industries Ag Temperature-responsive catalysts
EP3035800B1 (en) 2013-08-22 2019-10-09 Merck Sharp & Dohme Corp. Compounds inhibiting leucine-rich repeat kinase enzyme activity
JP2018501229A (ja) * 2014-12-10 2018-01-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア リン配位子およびその使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628122A (zh) * 2002-02-04 2005-06-15 北兴化学工业株式会社 制备具有大体积烃基团的叔膦的方法
CN101195641A (zh) * 2007-09-30 2008-06-11 埃沃尼克德古萨有限责任公司 新颖的膦配体、它们的制备和它们在催化反应中的用途
US20110130562A1 (en) * 2009-12-01 2011-06-02 MyCell Holdings Limited Surfactant-Enabled Transition Metal-Catalyzed Chemistry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATTILA ARANYOS ET AL.: "Novel Electron-Rich Bulky Phosphine Ligands Facilitate the Palladium-Catalyzed Preparation of Diaryl Ethers", 《J. AM. CHEM. SOC.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124732A (zh) * 2019-04-13 2019-08-16 复旦大学 用于金属催化偶联反应的高分子催化剂及其制备方法
CN117062822A (zh) * 2021-03-25 2023-11-14 西格马-奥尔德里奇有限责任公司 带有庞大二(金刚烷基)膦基基序的新型基于二茂铁的不对称配体及其金属催化剂

Also Published As

Publication number Publication date
KR102726018B1 (ko) 2024-11-06
US20240001353A1 (en) 2024-01-04
EP4286051A2 (en) 2023-12-06
EP3377221A4 (en) 2019-07-17
US10981157B2 (en) 2021-04-20
US20230158480A1 (en) 2023-05-25
US20210162389A1 (en) 2021-06-03
JP6991584B2 (ja) 2022-02-03
US11794180B2 (en) 2023-10-24
WO2017075581A1 (en) 2017-05-04
JP2019501212A (ja) 2019-01-17
US20180304248A1 (en) 2018-10-25
CN108883405B (zh) 2021-07-13
US11583844B2 (en) 2023-02-21
EP3377221A1 (en) 2018-09-26
EP4286051A3 (en) 2025-01-22
EP3377221B1 (en) 2023-07-26
KR20180101330A (ko) 2018-09-12

Similar Documents

Publication Publication Date Title
US20240001353A1 (en) Tri-(adamantyl)phosphines and applications thereof
JP7318871B2 (ja) アンモニアの製造方法、モリブデン錯体及びベンゾイミダゾール化合物
Zhou et al. A palladium chelating complex of ionic water-soluble nitrogen-containing ligand: the efficient precatalyst for Suzuki–Miyaura reaction in water
JP5229441B2 (ja) 光学活性チタンサラレン化合物の製造方法
JP2016530237A (ja) シリレンリガンドを有する新規な触媒
Solano-Prado et al. Group 10 phosphinite POCOP pincer complexes derived from 4-n-dodecylresorcinol: An alternative way to produce non-symmetric pincer compounds
EA032533B1 (ru) Новые лиганды карбонилирования и их применение в карбонилировании этиленненасыщенных соединений
KR20180041679A (ko) 방향족 또는 비닐계 화합물을 붕소-함유 화합물에 커플링하는 방법
Chen et al. The rational design and synthesis of water-soluble thiourea ligands for recoverable Pd-catalyzed aerobic aqueous Suzuki–Miyaura reactions at room temperature
JP6399555B2 (ja) 自己ドーピング機能を持つポリアニリンの製造方法およびその方法により製造されたポリアニリンを含む帯電防止剤。
CN104001449B (zh) 含有联苯基团的季铵盐型Gemini表面活性剂及其制备方法
CN106831862A (zh) 一类手性桥连的轴手性单膦配体及其制备方法
JP5008063B2 (ja) ジホスフィンコア型両親媒性デンドリマー、その製造方法、二座ホスフィン配位子及びその配位構造を有する含パラジウム錯体化合物
CN116675617B (zh) 一种非环状三级酰胺的合成方法
JP6286755B2 (ja) 新規なジアミン化合物および金属錯体、並びに光学活性化合物の製造方法
JP4822410B2 (ja) ホスフィン内包型両親媒性デンドリマー、その製造方法、ホスフィン配位子及びその配位構造を有する含パラジウム錯体触媒
JP5568976B2 (ja) 多置換ホスフィン化合物及び該ホスフィン化合物を含む触媒
JP5635443B2 (ja) 新規化合物とその錯体並びに錯体の製造方法
DE102011012334A1 (de) Cyclopropenyl-yliden stabilisierte Phospheniumkationen
CN114773253A (zh) 一种多取代芳胺类化合物的制备方法
Consiglio et al. Easy synthetic approach to p-aminophenoxy derivatives bearing phosphonic or carboxylic ethyl ester groups
CN118812589A (zh) 一种三烷基氧膦化合物衍生物及其制备方法
JP5741676B2 (ja) シラノール基含有オレフィン化合物の製造方法
KR20240022471A (ko) 공정
CN117777198A (zh) 一种基于磷杂芴结构的三芳基膦化合物及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant