CN108881663B - A method for image region duplication detection supporting privacy protection - Google Patents
A method for image region duplication detection supporting privacy protection Download PDFInfo
- Publication number
- CN108881663B CN108881663B CN201810634217.6A CN201810634217A CN108881663B CN 108881663 B CN108881663 B CN 108881663B CN 201810634217 A CN201810634217 A CN 201810634217A CN 108881663 B CN108881663 B CN 108881663B
- Authority
- CN
- China
- Prior art keywords
- calculation
- ciphertext
- calculate
- image
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 119
- 230000003993 interaction Effects 0.000 claims abstract description 11
- 230000002452 interceptive effect Effects 0.000 claims description 51
- 239000011159 matrix material Substances 0.000 claims description 43
- 230000008569 process Effects 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- XOXHILFPRYWFOD-UHFFFAOYSA-N sulfachloropyridazine Chemical compound C1=CC(N)=CC=C1S(=O)(=O)NC1=CC=C(Cl)N=N1 XOXHILFPRYWFOD-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000012946 outsourcing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/32—Circuits or arrangements for control or supervision between transmitter and receiver or between image input and image output device, e.g. between a still-image camera and its memory or between a still-image camera and a printer device
- H04N1/32101—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title
- H04N1/32144—Display, printing, storage or transmission of additional information, e.g. ID code, date and time or title embedded in the image data, i.e. enclosed or integrated in the image, e.g. watermark, super-imposed logo or stamp
- H04N1/32149—Methods relating to embedding, encoding, decoding, detection or retrieval operations
- H04N1/32267—Methods relating to embedding, encoding, decoding, detection or retrieval operations combined with processing of the image
- H04N1/32272—Encryption or ciphering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/10—Protocols in which an application is distributed across nodes in the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/44—Secrecy systems
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Networks & Wireless Communication (AREA)
- Storage Device Security (AREA)
Abstract
本发明公开了一种支持隐私保护功能的图像区域复制检测方法,包括:用户端,N个相互独立的云服务端,其中部分服务端用于密文存储,部分服务端用于密文计算;用户端利用图像加密算法将图像分拆为多个密文,分别交给用于密文存储的服务端,由这些服务端和用于密文计算的服务端通过交互和计算完成密文空间下对图像区域复制篡改操作的检测和定位;最后每个用于密文存储的服务端均获得疑似篡改区域,用于密文存储的服务端将结果发送给用户端。云服务端在不知晓图像内容的前提下,提供有效的区域复制取证服务,实现对篡改操作的检测和定位,相比于传统区域复制取证工具或服务,本发明可以提供用户图像内容的隐私保护。
The invention discloses an image region duplication detection method supporting a privacy protection function, comprising: a user end, N mutually independent cloud service ends, wherein some of the server ends are used for ciphertext storage, and some of the server ends are used for ciphertext calculation; The client uses the image encryption algorithm to split the image into multiple ciphertexts, which are sent to the server for ciphertext storage, and these servers and the server for ciphertext calculation complete the ciphertext space through interaction and calculation. Detect and locate the copying and tampering operation of the image area; finally, each server used for ciphertext storage obtains the suspected tampered area, and the server used for ciphertext storage sends the result to the client. The cloud server provides effective area copy forensics services without knowing the image content, and realizes the detection and positioning of tampering operations. Compared with traditional area copy forensics tools or services, the present invention can provide privacy protection for user image content .
Description
技术领域technical field
本发明涉及数字图像取证领域,特别涉及一种支持隐私保护功能的图像区域复制检测方法。The invention relates to the field of digital image forensics, in particular to an image region duplication detection method supporting a privacy protection function.
背景技术Background technique
区域复制是将图像中一部分拷贝到其他位置,以达到掩盖图像中某些物体,或是强调某些内容的目的,是最常见的图像篡改技术。对该类图像篡改的取证通常需要在图像中找到多个高度相似的区域,这些区域的相似度将明显超过正常自然图像,以此作为篡改的证据,并定位篡改区域。将区域复制取证外包给云,由云服务器来提供取证服务是一种经济有效的解决方案,但随之也带来了隐私泄露的风险。用户需要取证的图像数据经常包含敏感内容,而且用户和图像内容也经常存在着利益关系。这些信息通常用户不希望泄露给数字取证云服务提供方。另一方面,云平台的计算资源共享更加剧了数据外泄的安全隐患。而现有的图像区域复制篡改取证操作只能在明文下进行,因此面临图像内容泄漏的风险。如何在区域复制取证外包服务中保护图像数据的安全和隐私,成为了决定图像取证外包能否实际应用的一个重要因素。Area copying is to copy a part of an image to another location to cover up certain objects in the image or to emphasize certain content. It is the most common image tampering technique. The forensics of this type of image tampering usually needs to find multiple highly similar regions in the image, the similarity of these regions will be significantly higher than that of normal natural images, as evidence of tampering, and locate the tampered region. It is a cost-effective solution to outsource regional replication forensics to the cloud, and the cloud server provides forensics services, but it also brings the risk of privacy leakage. The image data that users need to obtain evidence often contains sensitive content, and there is often an interest relationship between users and image content. Usually users do not want this information to be disclosed to digital forensics cloud service providers. On the other hand, the sharing of computing resources on the cloud platform exacerbates the security risks of data leakage. However, the existing forensics operations of copying and tampering of image areas can only be carried out in plain text, so it faces the risk of image content leakage. How to protect the security and privacy of image data in regional copy forensics outsourcing services has become an important factor in determining whether image forensics outsourcing can be practically applied.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种支持隐私保护功能的图像区域复制检测方法,用户端可以将密文形式的图像发送给云服务端,云服务端在不知晓图像内容的前提下,提供有效的区域复制取证服务,实现对篡改操作的检测和定位。相比于传统区域复制取证工具或服务,本发明可以提供用户图像内容的隐私保护。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a method for detecting duplication of an image area that supports privacy protection. On the premise of content, provide effective regional copy forensics services to realize the detection and positioning of tampering operations. Compared with traditional area copy forensics tools or services, the present invention can provide privacy protection of user image content.
本发明的目的通过以下的技术方案实现:一种支持隐私保护功能的图像区域复制检测方法,包括:用户端,N个相互独立的云服务端,其中部分服务端用于密文存储,部分服务端用于密文计算;用户端利用图像加密算法将图像分拆为多个密文,分别交给用于密文存储的服务端,由这些服务端和用于密文计算的服务端通过交互和计算完成密文空间下对图像区域复制篡改操作的检测和定位;最后每个用于密文存储的服务端均获得疑似篡改区域,用于密文存储的服务端将结果发送给用户端。The purpose of the present invention is achieved through the following technical solutions: a method for detecting duplication of an image area supporting a privacy protection function, comprising: a user end, N mutually independent cloud service ends, wherein some of the server ends are used for ciphertext storage, and some of the service ends The end is used for ciphertext calculation; the client uses the image encryption algorithm to split the image into multiple ciphertexts, which are respectively handed over to the server for ciphertext storage, and these servers interact with the server for ciphertext calculation. and calculation to complete the detection and location of copying and tampering operations in the image area in the ciphertext space; finally, each server for ciphertext storage obtains the suspected tampered area, and the server for ciphertext storage sends the result to the client.
优选的,包括1个用户端3个相互独立的云服务端,其中2个服务端,和用于密文存储,1个服务端用于密文计算;利用图像加密算法将图像分拆为两个密文,分别交给和由这两个服务端和通过交互和计算完成密文空间下对图像区域复制篡改操作的检测和定位;最后和均获得疑似篡改区域,和将结果发送给 Preferably, including 1 client 3 independent cloud servers, 2 of which are and For ciphertext storage, 1 server For ciphertext calculation; Use the image encryption algorithm to split the image into two ciphertexts, and send them to and by these two servers and The detection and location of copying and tampering operations in the image area in the ciphertext space are completed through interaction and calculation; finally and Both obtained the suspected tampered area, and send the result to
具体的,检测方法包括以下步骤:Specifically, the detection method includes the following steps:
S1、用户端图像密文生成步骤;S1, client Image ciphertext generation step;
S2、云服务端和的密文空间下篡改区域检测与定位步骤;S2, cloud server and The tampering area detection and location steps in the ciphertext space;
S2-1、计算Harris角点;S2-1. Calculating Harris corner points;
S2-2、提取兴趣点描述子;S2-2. Extracting interest point descriptors;
S2-3、兴趣点匹配;S2-3. Interest point matching;
S2-4、篡改区域定位;S2-4. Tampering with area positioning;
S3、用户端获得检测结果和疑似篡改区域。S3, client Obtain detection results and areas of suspected tampering.
优选的,步骤S1,用户端图像密文生成步骤包括:Preferably, in step S1, the client The image ciphertext generation steps include:
计算前,拥有一lm×lm大小的待检测图像X;before calculation, Have an image X to be detected with a size of 1 m × 1 m ;
步骤S1-1:选择一lm×lm大小的随机数矩阵R,其每个元素为0~210之间的随机数;生成2份图像密文:Step S1-1: Select a random number matrix R of size 1 m × 1 m , each element of which is a random number between 0 and 2 10 ; generate 2 copies of image ciphertext:
I(1)=X+R,I(2)=RI (1) =X+R,I (2) =R
步骤S1-2:将I(1)通过安全信道发送给将I(2)通过安全信道发送给 Step S1-2: Send I (1) over a secure channel to Send I (2) over a secure channel to
计算后,拥有密文I(1),拥有密文I(2)。After calculation, has ciphertext I (1) , has ciphertext I (2) .
优选的,步骤S2-1,计算Harris角点具体包括:Preferably, step S2-1, calculating the Harris corner specifically includes:
计算前,拥有图像密文I(1),拥有图像密文I(2),和共享密钥集 before calculation, With image ciphertext I (1) , With image ciphertext I (2) , and shared key set
步骤S2-1-1:计算 Step S2-1-1: calculate
计算 calculate
步骤S2-1-2:和交互计算计算后拥有 拥有 Step S2-1-2: and interactive computing after calculation have have
步骤S2-1-3:和交互计算计算后拥有 拥有 Step S2-1-3: and interactive computing after calculation have have
步骤S2-1-4:和交互计算计算后拥有 拥有 Step S2-1-4: and interactive computing after calculation have have
步骤S2-1-5:和交互计算计算后拥有 拥有 Step S2-1-5: and interactive computing after calculation have have
步骤S2-1-6:计算 其中h为Gaussian滤波核;Step S2-1-6: calculate where h is the Gaussian filter kernel;
计算 calculate
步骤S2-1-7:和交互计算计算后拥有 拥有 Step S2-1-7: and interactive computing after calculation have have
步骤S2-1-8:和交互计算计算后拥有 拥有 Step S2-1-8: and interactive computing after calculation have have
步骤S2-1-9:和交互计算计算后拥有 拥有 Step S2-1-9: and interactive computing after calculation have have
步骤S2-1-10:和交互计算计算后拥有 拥有 Step S2-1-10: and interactive computing after calculation have have
步骤S2-1-11:和交互计算计算后拥有A(1),拥有A(2);Step S2-1-11: and interactive computing after calculation owns A (1) , has A (2) ;
步骤S2-1-12:计算 其中t为Harris角点检查常数;Step S2-1-12: calculate Where t is the Harris corner check constant;
计算 calculate
步骤S2-1-13:和各生成一个lm×lm大小的全零矩阵H,用于存放Harris角点;对所有的i和j,密文形式下计算系数块U(1)(8i+1:8i+8,8j+1:8j+8)和U(2)(8i+1:8i+8,8j+1:8j+8)对应的明文U(8i+1:8i+8,8j+1:8j+8)的局部最小值,方法为:Step S2-1-13: and Each generates an all-zero matrix H of size l m × l m , which is used to store Harris corner points; for all i and j, Calculate coefficient blocks U (1) (8i+1:8i+8,8j+1:8j+8) and U (2) (8i+1:8i+8,8j+1:8j+8) in ciphertext form The local minimum value of the corresponding plaintext U(8i+1:8i+8,8j+1:8j+8), the method is:
步骤S2-1-13-1:和均令θm=8i+1,θn=8j+1;Step S2-1-13-1: and Let θ m =8i+1, θ n =8j+1;
步骤S2-1-13-2:对所有的8i+1<m≤8i+8,8j+1<n≤8j+8,和交互计算b=SCP(U(1)(θm,θn)-U(1)(m,n),U(2)(θm,θn)-U(2)(m,n)),计算后和均拥有b;若b=0,和均令θm=m,θn=n;Step S2-1-13-2: For all 8i+1<m≤8i+8, 8j+1<n≤8j+8, and Interactive calculation b=SCP(U (1) (θ m ,θ n )-U (1) (m,n),U (2) (θ m ,θ n )-U (2) (m,n)) , after calculating and Both have b; if b=0, and Let θ m = m, θ n = n;
步骤S2-1-13-3:和均令H(θm,θn)=1;Step S2-1-13-3: and Let H(θ m ,θ n )=1;
计算后,和均拥有检测到的Harris角点H。After calculation, and Both have the detected Harris corner H.
优选的,步骤S2-2,提取兴趣点描述子具体包括:Preferably, step S2-2, extracting the interest point descriptor specifically includes:
计算前,拥有图像密文I(1),检测到的Harris角点H,拥有图像密文I(2),检测到的Harris角点Hbefore calculation, With the image ciphertext I (1) , the detected Harris corner H, With the image ciphertext I (2) , the detected Harris corner H
步骤S2-2-1:生成一个lm×lm×49大小的三维全零矩阵D(1),生成一同样大小的三维全零矩阵D(2),均用来存放兴趣点描述子;Step S2-2-1: Generate a three-dimensional all-zero matrix D (1) of size l m ×l m ×49, Generate a three-dimensional all-zero matrix D (2) of the same size, both of which are used to store interest point descriptors;
步骤S2-2-2:对于所有的满足H(i,j)=1的i和j,密文形式下计算兴趣点描述子,方法为:Step S2-2-2: For all i and j satisfying H(i,j)=1, calculate the interest point descriptor in ciphertext form, the method is:
步骤S2-2-2-1:计算其中FFT()表示快速Fourier变换,LPM()表示log-polar映射,表示I(1)中以(i,j)为中心的7×7的像素块;Step S2-2-2-1: calculate Among them, FFT () means fast Fourier transform, LPM () means log-polar mapping, Represents a 7×7 pixel block centered on (i, j) in I (1) ;
计算其中表示I(2)中以(i,j)为中心的7×7的像素块; calculate in Represents a 7×7 pixel block centered on (i, j) in I (2) ;
步骤S2-2-2-2:令D(1)(i,j,:)=[F(1)(1,1),...,F(1)(1,7),...,F(1)(7,1),...,F(1)(7,7)];Step S2-2-2-2: Let D (1) (i,j,:)=[F (1) (1,1),...,F (1) (1,7),...,F (1) (7,1 ),...,F (1) (7,7)];
令D(2)(i,j,:)=[F(2)(1,1),...,F(2)(1,7),...,F(2)(7,1),...,F(2)(7,7)]。 Let D (2) (i,j,:)=[F (2) (1,1),...,F (2) (1,7),...,F (2) (7,1 ),...,F (2) (7,7)].
计算后,拥有密文形式的兴趣点描述子D(1),拥有密文形式的兴趣点描述子D(2)。After calculation, Possess interest point descriptor D (1) in ciphertext form, PoI descriptor D (2) in ciphertext form.
优选的,步骤S2-3,兴趣点匹配具体包括:Preferably, in step S2-3, the interest point matching specifically includes:
计算前,拥有密文形式的兴趣点描述子D(1),拥有密文形式的兴趣点描述子D(2),和均拥有控制参数α和β,共享密钥集 before calculation, Possess interest point descriptor D (1) in ciphertext form, Possess interest point descriptor D (2) in ciphertext form, and Both have control parameters α and β, share key set
步骤S2-3-1:生成一个lD×6大小的矩阵T(1),其中lD是D(1)(i,j,:)≠0的所有(i,j)的个数,生成一个同样大小的矩阵T(2),注意D(1)(i,j,:)≠0的(i,j)一定同时满足D(2)(i,j,:)≠0;Step S2-3-1: Generate a matrix T (1) of size l D ×6, where l D is the number of all (i, j) of D (1) (i, j,:)≠0, Generate a matrix T (2) of the same size, note that D (1) (i,j,:)≠0 (i,j) must satisfy D (2) (i,j,:)≠0 at the same time;
步骤S2-3-2:用p表示当前匹配的特征点的索引,和均从第一个特征点开始匹配,即令p=1,找到满足D(1)(i,j,:)≠0的最小的i和对应的j;Step S2-3-2: use p to represent the index of the currently matched feature point, and Both start matching from the first feature point, that is, let p=1, find the smallest i and corresponding j that satisfy D (1) (i,j,:)≠0;
步骤S2-3-3:密文形式下寻找与(i,j)处描述子最近临的描述子及其位置,方法为:Step S2-3-3: Find the descriptor closest to the descriptor at (i, j) and its position in ciphertext form, the method is:
步骤S2-3-3-1:令T(1)(p,1)=i,T(1)(p,2)=j,若存在q<p满足T(1)(q,3)=i,T(1)(q,4)=j,则令T(1)(p,3)=T(1)(q,1),T(1)(p,4)=T(1)(q,2),T(1)(p,5)=T(1)(q,5),否则令T(1)(p,5)=inf;Step S2-3-3-1: Let T (1) (p,1)=i,T (1) (p,2)=j, if q<p exists T (1) (q,3)=i,T (1) (q, 4)=j, then let T (1) (p,3)=T (1) (q,1),T (1) (p,4)=T (1) (q,2),T (1 ) (p,5)=T (1) (q,5), otherwise let T (1) (p,5)=inf;
令T(2)(p,1)=i,T(2)(p,2)=j,若存在q<p满足T(2)(q,3)=i,T(2)(q,4)=j,则令T(2)(p,3)=T(2)(q,1),T(2)(p,4)=T(2)(q,2),T(2)(p,5)=T(2)(q,5),否则令T(1)(p,5)=0; Let T (2) (p,1)=i,T (2) (p,2)=j, if there exists q<p and satisfy T (2) (q,3)=i,T (2) (q, 4)=j, then let T (2) (p,3)=T (2) (q,1),T (2) (p,4)=T (2) (q,2),T (2 ) (p,5)=T (2) (q,5), otherwise let T (1) (p,5)=0;
步骤S2-3-3-2:对于任意(i′,j′),如果满足D(1)(i′,j′,:)≠0&&(i′>i||j′>j)&&((i′-i)2+(j′-j)2)>α,密文形式下判断该位置处描述子是否和(i,j)处描述子最近,方法为:Step S2-3-3-2: For any (i′,j′), if D (1) (i′,j′,:)≠0&&(i′>i||j′>j)&&( (i′-i) 2 +(j′-j) 2 )>α, in the ciphertext form, judge whether the descriptor at this position is closest to the descriptor at (i,j), the method is:
步骤S2-3-3-2-1:和交互计算计算后拥有 拥有 Step S2-3-3-2-1: and interactive computing after calculation have have
步骤S2-3-3-2-2:和交互计算计算后拥有 拥有 Step S2-3-3-2-2: and interactive computing after calculation have have
步骤S2-3-3-2-3:和交互计算计算后拥有 拥有 Step S2-3-3-2-3: and interactive computing after calculation have have
步骤S2-3-3-2-4:和交互计算计算后拥有 拥有 Step S2-3-3-2-4: and interactive computing after calculation have have
步骤S2-3-3-2-5:计算 Step S2-3-3-2-5: calculate
计算 calculate
步骤S2-3-3-2-6:计算u(1)=(U(1)(1)+…+U(1)(49));Step S2-3-3-2-6: Calculate u (1) = (U (1) (1) + ... + U (1) (49));
计算u(2)=(U(2)(1)+…+U(2)(49)); Calculate u (2) = (U (2) (1)+...+U (2) (49));
步骤S2-3-3-2-7:和交互计算b=SCP(T(1)(p,5)-u(1),T(2)(p,5)-u(2)),计算后和均拥有b;Step S2-3-3-2-7: and Interactive calculation b=SCP(T (1) (p,5)-u (1) ,T (2) (p,5)-u (2) ), after calculation and both have b;
步骤S2-3-3-2-8:如果b=1,令T(1)(p,3)=,T(1)(p,4)=j′,T(1)(p,6)=T(1)(p,5),T(1)(p,5)=u(1),令T(2)(p,3)=i′,T(2)(p,4)=j′,T(2)(p,6)=T(2)(p,5),T(2)(p,5)=u(2)。Step S2-3-3-2-8: If b=1, Let T (1) (p,3)=, T (1) (p,4)=j′, T (1) (p,6)=T (1) (p,5), T (1) ( p,5)=u (1) , Let T (2) (p,3)=i′, T (2) (p,4)=j′, T (2) (p,6)=T (2) (p,5), T (2 ) (p,5)=u (2) .
步骤S2-3-3-3:和交互计算b=SCP(T(1)(p,5)×β-T(1)(p,6),T(2)(p,5)×β-T(2)(p,6)),计算后和均拥有b;Step S2-3-3-3: and Interactive calculation b=SCP(T (1) (p,5)×β-T (1) (p,6),T (2) (p,5)×β-T (2) (p,6)) , after calculating and both have b;
步骤S2-3-3-4:如果b=1,令T(1)(p,3)=0,T(1)(p,4)=0,T(1)(p,5)=inf,Step S2-3-3-4: If b=1, Let T (1) (p,3)=0,T (1) (p,4)=0,T (1) (p,5)=inf,
令T(2)(p,3)=0,T(2)(p,4)=0,T(2)(p,5)=0; Let T (2) (p,3)=0, T (2) (p,4)=0, T (2) (p,5)=0;
步骤S2-3-4:寻找满足D(1)(i′,j′,:)≠0&&(i′>i||j′>j)的最小的i′和对应的j′,若存在,和均令p=p+1,i=i′,j=j′,返回步骤S2-3-3重新执行,否则转至步骤S2-3-5;Step S2-3-4: Find the smallest i' and corresponding j' that satisfy D (1) (i′,j′,:)≠0&&(i′>i||j′>j), if it exists, and Make p=p+1, i=i', j=j', return to step S2-3-3 and re-execute, otherwise go to step S2-3-5;
步骤S2-3-5:密文形式下对T(1)和T(2)对应的明文T按照T(:,5)的大小重排序;Step S2-3-5: Reorder the plaintext T corresponding to T (1) and T (2) according to the size of T(:,5) in ciphertext form;
步骤S2-3-6:对于所有lD≥i>1,如果(T(1)(i,1)>T(1)(i,3)||T(1)(i,2)>T(1)(i,4)),则交互T(1)(i,1)和T(1)(i,3),T(1)(i,2)和T(1)(i,4);Step S2-3-6: For all l D ≥ i>1, if (T (1) (i,1)>T (1) (i,3)||T (1) (i,2)>T (1) (i,4)), then Interaction T (1) (i,1) and T (1) (i,3), T (1) (i,2) and T (1) (i,4);
如果(T(2)(i,1)>T(2)(i,3)||T(2)(i,2)>T(2)(i,4)),则交互T(2)(i,1)和T(2)(i,3),T(2)(i,2)和T(2)(i,4);If (T (2) (i,1)>T (2) (i,3)||T (2) (i,2)>T (2) (i,4)), then Interaction T (2) (i,1) and T (2) (i,3), T (2) (i,2) and T (2) (i,4);
步骤S2-3-7:如果存在lD≥i>j满足T(1)(i,:)=T(1)(j,:),则删去T(1)(i,:);Step S2-3-7: If l D ≥ i>j satisfies T (1) (i,:)=T (1) (j,:), then Delete T (1) (i,:);
如果存在lD≥i>j满足T(2)(i,:)=T(2)(j,:),则删去T(2)(i,:);If there exists l D ≥ i>j satisfying T (2) (i,:)=T (2) (j,:), then Delete T (2) (i,:);
计算后,拥有密文形式的排序好的p个匹配特征点T(1),拥有密文形式的排序好的p个匹配特征点T(2)。After calculation, There are p matching feature points T (1) sorted in ciphertext form, Have p sorted matching feature points T (2) in ciphertext form.
优选的,密文形式下对T(1)和T(2)对应的明文T按照T(:,5)的大小重排序,方法为:Preferably, in the ciphertext form, the plaintext T corresponding to T (1) and T (2) is reordered according to the size of T (:, 5), the method is:
步骤S2-3-5-1:和均令i=1;Step S2-3-5-1: and All let i=1;
步骤S2-3-5-2:密文形式下求得T(i:lD,5)的最小值的位置,方法为:Step S2-3-5-2: obtain the position of the minimum value of T(i:l D , 5) in ciphertext form, the method is:
步骤S2-3-5-2-1:和均令θ=i;Step S2-3-5-2-1: and All let θ=i;
步骤S2-3-5-2-2:对于所有的lD≥i′>i,和交互计算b=SCP(T(1)(θ,5)-T(1)(i′,5),T(2)(θ,5)-T(2)(i′,5)),计算后和均拥有b;若b=1,和均令θ=i′;Step S2-3-5-2-2: For all l D ≥ i′>i, and Interactive calculation b=SCP(T (1) (θ,5)-T (1) (i′,5),T (2) (θ,5)-T (2) (i′,5)), calculate back and Both have b; if b=1, and All let θ=i';
步骤S2-3-5-3:交换T(1)(θ,:)和T(1)(i,:);交换T(2)(θ,:)和T(2)(i,:);Step S2-3-5-3: Exchange T (1) (θ,:) and T (1) (i,:); Swap T (2) (θ,:) and T (2) (i,:);
步骤S2-3-5-4:和均令i=i+1,若i≤lD,返回步骤S2-3-5-2重新执行,否则转至步骤S2-3-6。Step S2-3-5-4: and Let i=i+1, if i≤l D , return to step S2-3-5-2 and execute again, otherwise go to step S2-3-6.
优选的,步骤S2-4,篡改区域定位具体包括:Preferably, in step S2-4, locating the tampering area specifically includes:
计算前,p=1,2,拥有密文形式的排序好的匹配特征点T(1),拥有控制参数γ和δ;before calculation, p=1,2, has the sorted matching feature points T (1) in ciphertext form, have control parameters γ and δ;
步骤S2-4-1:生成lm×lm大小的全零矩阵E,并令i=1;Step S2-4-1: Generate an all-zero matrix E of size l m ×l m , and let i=1;
步骤S2-4-2:寻找与T(1)(i,:)位置满足距离小于γ的点的个数,方法为:Step S2-4-2: Find the number of points whose distance from T (1) (i,:) is less than γ, the method is:
步骤S2-4-2-1:令n=0,j=i+1,集合ε={i};Step S2-4-2-1: Let n=0, j=i+1, set ε={i};
步骤S2-4-2-2:计算a=(T(1)(i,1)-T(1)(j,1))2+(T(1)(i,2)-T(1)(j,2))2,b=(T(1)(i,3)-T(1)(j,3))2+(T(1)(i,4)-T(1)(j,4))2;Step S2-4-2-2: Calculate a=(T (1) (i,1)-T (1) (j,1)) 2 +(T (1) (i,2)-T (1) (j,2)) 2 ,b =(T (1) (i,3)-T (1) (j,3)) 2 +(T (1) (i,4)-T (1) (j,4)) 2 ;
步骤S2-4-2-3:若满足a<γ&&b>a/2&&b<2a,则令n=n+1,ε=ε+{j};Step S2-4-2-3: If a<γ&&b>a/2&&b<2a is satisfied, then Let n=n+1,ε=ε+{j};
步骤S2-4-2-4:令j=j+1,若j≤lD,返回步骤S2-4-2-2重新执行,否则转至步骤S2-4-3;Step S2-4-2-4: set j=j+1, if j≤l D , return to step S2-4-2-2 and execute again, otherwise go to step S2-4-3;
步骤S2-4-3:若n≥δ,则对于所有的j∈ε,令E(T(1)(j,1),T(1)(j,2))=i,E(T(1)(j,3),T(1)(j,4))=-i;Step S2-4-3: If n≥δ, then for all j∈ε, Let E(T (1) (j,1),T (1) (j,2))=i, E(T (1) (j,3),T (1) (j,4))=- i;
步骤S2-4-4:寻找将所有E(j,k)=i的点(j,k)包含起来的最小圆形,并获得所有位于圆形内部的点(j′,k′),令E(j′,k′)=i;Step S2-4-4: Find the smallest circle that includes all points (j,k) where E(j,k)=i, and get all points (j′,k′) inside the circle, Let E(j',k')=i;
步骤S2-4-5:寻找将所有E(j,k)=-i的点(j,k)包含起来的最小圆形,并获得所有位于圆形内部的点(j′,k′),令E(j′,k′)=-i;Step S2-4-5: Find the smallest circle that includes all the points (j,k) of E(j,k)=-i, and get all the points (j′,k′) inside the circle, Let E(j',k')=-i;
步骤S2-4-6:令i=i+1,若i≤5,返回步骤S2-4-2-3重新执行,否则结束执行;Step S2-4-6: set i=i+1, if i≤5, return to step S2-4-2-3 and execute again, otherwise end the execution;
计算后,p=1,2,拥有疑似篡改区域E。After calculation, p = 1, 2, has a suspected tampering area E.
优选的,步骤S3,用户端获得检测结果和疑似篡改区域具体包括:Preferably, in step S3, the client Obtaining detection results and suspected tampering areas specifically include:
计算前,拥有疑似篡改区域E,拼接的两个区域分布被标注为i和-i,i∈{1,...,5};before calculation, Possess a suspected tampering area E, and the spliced two area distributions are marked as i and -i, i∈{1,...,5};
步骤S3-1:将E通过安全信道发送给 Step S3-1: Send E over a secure channel to
计算后,拥有疑似篡改区域E。After calculation, Possesses suspected tampered area E.
本发明与现有技术相比,具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
1、本发明提供了具有隐私保护能力的图像区域复制取证方法,服务端可以在不知晓图像内容的前提下实现对图像区域复制操作的检测和疑似篡改区域的定位,该效果是本发明使用的图像加密技术和提出的基于多方安全计算的取证算法带来的。1. The present invention provides an image area copy forensics method with privacy protection capability. The server can realize the detection of the copy operation of the image area and the location of the suspected tampered area without knowing the content of the image. This effect is used in the present invention Image encryption technology and the proposed forensic algorithm based on multi-party secure computing.
2、本发明提供的取证方法具有较高的计算效率和较好的精确度,该效果是本发明提出的计算量较低的图像取证流程、安全多方乘法协议、安全多方比较协议带来的。由于在区域定位操作同时定位了多个区域,本发明可用于检测具有多个复制区域的篡改图像。2. The forensics method provided by the present invention has higher calculation efficiency and better accuracy, and this effect is brought about by the image forensics process with low calculation amount, secure multi-party multiplication protocol, and secure multi-party comparison protocol proposed by the present invention. Since multiple regions are located simultaneously in the region location operation, the present invention can be used to detect tampered images with multiple replicated regions.
附图说明Description of drawings
图1是实施例方法整体流程图。Fig. 1 is the overall flowchart of the embodiment method.
图2是拼接区域篡改定位计算流程图。Fig. 2 is a flow chart of the location calculation of tampering in the stitching area.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
本发明结合多方安全计算、图像兴趣点描述子提取和最近邻搜索技术,以在保护图像内容隐私的前提下,实现图像区域复制的检测和定位。为了实现图像内容的保密,本发明使用图像加密将图像分拆为两个图像密文。为了在满足隐私保护的前提下实现图像取证,本发明设计基于安全多方计算的取证算法,通过3个服务端的交互,来实现在不知晓对方密文的前提下,提取兴趣点描述子,并寻找最匹配描述子。为了保证算法执行的效率和准确率,本发明设计了简单的图像取证流程和安全多方计算协议。The invention combines multi-party security calculation, image interest point descriptor extraction and nearest neighbor search technology to realize the detection and positioning of image region duplication under the premise of protecting the privacy of image content. In order to realize the confidentiality of the image content, the present invention uses image encryption to split the image into two image ciphertexts. In order to realize image forensics on the premise of satisfying privacy protection, the present invention designs a forensics algorithm based on secure multi-party computing, and through the interaction of three servers, it is possible to extract interest point descriptors without knowing the ciphertext of the other party, and find best matching descriptor. In order to ensure the efficiency and accuracy of algorithm execution, the present invention designs a simple image forensics process and a secure multi-party computing protocol.
本实施例中存在4个个体:1个用户端3个相互独立的云服务端,其中2个服务端,和用于密文存储,1个服务端,用于密文计算,如图1所示。利用图像加密算法将图像分拆为两个密文,分别交给和由这两个服务端和通过交互和计算完成密文空间下对图像区域复制篡改操作的检测和定位。最后和均获得疑似篡改区域,和将结果发送给 In this embodiment, there are 4 individuals: 1 client 3 independent cloud servers, 2 of which are and For ciphertext storage, 1 server, It is used for ciphertext calculation, as shown in Figure 1. Use the image encryption algorithm to split the image into two ciphertexts, and send them to and by these two servers and The detection and location of copying and tampering operations in the image area in the ciphertext space are completed through interaction and calculation. at last and Both obtained the suspected tampered area, and send the result to
本实施方案中,用大写字母(如I,J)表示矩阵,用粗体小写字母(如i,j)表示向量,用斜体小写字母(如i,j)表示数,所有的乘法均是按元素乘,如有C=AB,则C中每个元素C(i,j)=A(i,j)×B(i,j)。A*B表示A和B的卷积。具体实施流程如下:In this embodiment, capital letters (such as I, J) are used to represent matrices, bold lowercase letters (such as i, j) are used to represent vectors, and italic small letters (such as i, j) are used to represent numbers, and all multiplications are performed according to Element multiplication, if C=AB, then each element C(i,j)=A(i,j)×B(i,j) in C. A*B means the convolution of A and B. The specific implementation process is as follows:
一、用户端图像密文生成流程1. Client Image ciphertext generation process
计算前,拥有一lm×lm大小的待检测图像X。before calculation, There is an image X to be detected with a size of 1 m × 1 m .
步骤1:选择一lm×lm大小的随机数矩阵R,其每个元素为0~210之间的随机数。生成2份图像密文:step 1: Choose a random number matrix R with a size of 1 m × 1 m , each element of which is a random number between 0 and 210. Generate 2 image ciphertexts:
I(1)=X+R,I(2)=RI (1) =X+R,I (2) =R
步骤2:将I(1)通过安全信道发送给将I(2)通过安全信道发送给 Step 2: Send I (1) over a secure channel to Send I (2) over a secure channel to
计算后,拥有密文I(1),拥有密文I(2)。After calculation, has ciphertext I (1) , has ciphertext I (2) .
二、云服务端和的密文空间下篡改区域检测与定位流程2. Cloud server and The process of tampering area detection and location in the ciphertext space
(1)计算Harris角点:(1) Calculate the Harris corner:
计算前,拥有图像密文I(1),拥有图像密文I(2),和共享密钥集 before calculation, With image ciphertext I (1) , With image ciphertext I (2) , and shared key set
步骤1:计算 step 1: calculate
计算 calculate
步骤2:和交互计算计算后拥有 拥有 Step 2: and interactive computing after calculation have have
步骤3:和交互计算计算后拥有 拥有 Step 3: and interactive computing after calculation have have
步骤4:和交互计算计算后拥有 拥有 Step 4: and interactive computing after calculation have have
步骤5:和交互计算计算后拥有 拥有 Step 5: and interactive computing after calculation have have
步骤6:计算 其中h为Gaussian滤波核;Step 6: calculate where h is the Gaussian filter kernel;
计算 calculate
步骤7:和交互计算计算后拥有 拥有 Step 7: and interactive computing after calculation have have
步骤8:和交互计算计算后拥有 拥有 Step 8: and interactive computing after calculation have have
步骤9:和交互计算计算后拥有 拥有 Step 9: and interactive computing after calculation have have
步骤10:和交互计算计算后拥有 拥有 Step 10: and interactive computing after calculation have have
步骤11:和交互计算计算后拥有A(1),拥有A(2);Step 11: and interactive computing after calculation owns A (1) , has A (2) ;
步骤12:计算 其中t为Harris角点检查常数,一般取在0.04-0.06间;Step 12: calculate Where t is the Harris corner check constant, generally taken between 0.04-0.06;
计算 calculate
步骤13:和各生成一个lm×lm大小的全零矩阵H,用于存放Harris角点。对所有的i和j,密文形式下计算系数块U(1)(8i+1:8i+8,8j+1:8j+8)和U(2)(8i+1:8i+8,8j+1:8j+8)对应的明文U(8i+1:8i+8,8j+1:8j+8)的局部最小值,方法为:Step 13: and Each generates an all-zero matrix H of size l m ×l m , which is used to store Harris corner points. For all i and j, Calculate coefficient blocks U (1) (8i+1:8i+8,8j+1:8j+8) and U (2) (8i+1:8i+8,8j+1:8j+8) in ciphertext form The local minimum value of the corresponding plaintext U(8i+1:8i+8,8j+1:8j+8), the method is:
步骤13-1:和均令θm=8i+1,θn=8j+1;Step 13-1: and Let θ m =8i+1, θ n =8j+1;
步骤13-2:对所有的8i+1<m≤8i+8,8j+1<n≤8j+8,和交互计算b=SCP(U(1)(θm,θn)-U(1)(m,n),U(2)(θm,θn)-U(2)(m,n)),计算后和均拥有b;若b=0,和均令θm=m,θn=n;Step 13-2: For all 8i+1<m≤8i+8, 8j+1<n≤8j+8, and Interactive calculation b=SCP(U (1) (θ m ,θ n )-U (1) (m,n),U (2) (θ m ,θ n )-U (2) (m,n)) , after calculating and Both have b; if b=0, and Let θ m = m, θ n = n;
步骤13-3:和均令H(θm,θn)=1。Step 13-3: and All let H(θ m ,θ n )=1.
计算后,和均拥有检测到的Harris角点H。After calculation, and Both have the detected Harris corner H.
(2)提取兴趣点描述子:(2) Extract interest point descriptors:
计算前,拥有图像密文I(1),检测到的Harris角点H,拥有图像密文I(2),检测到的Harris角点H。before calculation, With the image ciphertext I (1) , the detected Harris corner H, With the image ciphertext I (2) , the detected Harris corner H.
步骤1:生成一个lm×lm×49大小的三维全零矩阵D(1),生成一同样大小的三维全零矩阵D(2),均用来存放兴趣点描述子;step 1: Generate a three-dimensional all-zero matrix D (1) of size l m ×l m ×49, Generate a three-dimensional all-zero matrix D (2) of the same size, both of which are used to store interest point descriptors;
步骤2:对于所有的满足H(i,j)=1的i和j,密文形式下计算兴趣点描述子。方法为:Step 2: For all i and j satisfying H(i,j)=1, calculate interest point descriptors in ciphertext form. The method is:
步骤2-1:计算其中FFT()表示快速Fourier变换,LPM()表示log-polar映射,表示I(1)中以(i,j)为中心的7×7的像素块;Step 2-1: calculate Among them, FFT () means fast Fourier transform, LPM () means log-polar mapping, Represents a 7×7 pixel block centered on (i, j) in I (1) ;
计算其中表示I(2)中以(i,j)为中心的7×7的像素块; calculate in Represents a 7×7 pixel block centered on (i, j) in I (2) ;
步骤2-2:令D(1)(i,j,:)=[F(1)(1,1),...,F(1)(1,7),...,F(1)(7,1),...,F(1)(7,7)];Step 2-2: Let D (1) (i,j,:)=[F (1) (1,1),...,F (1) (1,7),...,F (1) (7,1 ),...,F (1) (7,7)];
令D(2)(i,j,:)=[F(2)(1,1),...,F(2)(1,7),...,F(2)(7,1),...,F(2)(7,7)]。 Let D (2) (i,j,:)=[F (2) (1,1),...,F (2) (1,7),...,F (2) (7,1 ),...,F (2) (7,7)].
计算后,拥有密文形式的兴趣点描述子D(1),拥有密文形式的兴趣点描述子D(2)。After calculation, Possess interest point descriptor D (1) in ciphertext form, PoI descriptor D (2) in ciphertext form.
(3)兴趣点匹配:(3) Interest point matching:
计算前,拥有密文形式的兴趣点描述子D(1),拥有密文形式的兴趣点描述子D(2),和均拥有控制参数α和β,共享密钥集 before calculation, Possess interest point descriptor D (1) in ciphertext form, Possess interest point descriptor D (2) in ciphertext form, and Both have control parameters α and β, share key set
步骤1:生成一个lD×6大小的矩阵T(1),其中lD是D(1)(i,j,:)≠0的所有(i,j)的个数,生成一个同样大小的矩阵T(2),注意D(1)(i,j,:)≠0的(i,j)一定同时满足D(2)(i,j,:)≠0;step 1: Generate a matrix T (1) of size l D ×6, where l D is the number of all (i, j) of D (1) (i, j,:)≠0, Generate a matrix T (2) of the same size, note that D (1) (i,j,:)≠0 (i,j) must satisfy D (2) (i,j,:)≠0 at the same time;
步骤2:用p表示当前匹配的特征点的索引,和均从第一个特征点开始匹配,即令p=1,找到满足D(1)(i,j,:)≠0的最小的i和对应的j;Step 2: Use p to represent the index of the currently matched feature point, and Both start matching from the first feature point, that is, let p=1, find the smallest i and corresponding j that satisfy D (1) (i,j,:)≠0;
步骤3:密文形式下寻找与(i,j)处描述子最近临的描述子及其位置,方法为:Step 3: Find the closest descriptor and its position to the descriptor at (i, j) in ciphertext form, the method is:
步骤3-1:令T(1)(p,1)=i,T(1)(p,2)=j,若存在q<p满足T(1)(q,3)=i,T(1)(q,4)=j,则令T(1)(p,3)=T(1)(q,1),T(1)(p,4)=T(1)(q,2),T(1)(p,5)=T(1)(q,5),否则令T(1)(p,5)=inf;Step 3-1: Let T (1) (p,1)=i,T (1) (p,2)=j, if q<p exists T (1) (q,3)=i,T (1) (q, 4)=j, then let T (1) (p,3)=T (1) (q,1),T (1) (p,4)=T (1) (q,2),T (1 ) (p,5)=T (1) (q,5), otherwise let T (1) (p,5)=inf;
令T(2)(p,1)=i,T(2)(p,2)=j,若存在q<p满足T(2)(q,3)=i,T(2)(q,4)=j,则令T(2)(p,3)=T(2)(q,1),T(2)(p,4)=T(2)(q,2),T(2)(p,5)=T(2)(q,5),否则令T(1)(p,5)=0; Let T (2) (p,1)=i,T (2) (p,2)=j, if there exists q<p and satisfy T (2) (q,3)=i,T (2) (q, 4)=j, then let T (2) (p,3)=T (2) (q,1),T (2) (p,4)=T (2) (q,2),T (2 ) (p,5)=T (2) (q,5), otherwise let T (1) (p,5)=0;
步骤3-2:对于任意(i′,j′),如果满足D(1)(i′,j′,:)≠0&&(i′>i||j′>j)&&((i′-i)2+(j′-j)2)>α,密文形式下判断该位置处描述子是否和(i,j)处描述子最近,方法为:Step 3-2: For any (i′,j′), if D (1) (i′,j′,:)≠0&&(i′>i||j′>j)&&((i′- i) 2 +(j′-j) 2 )>α, in ciphertext form, judge whether the descriptor at this position is closest to the descriptor at (i,j), the method is:
步骤3-2-1:和交互计算计算后拥有 拥有 Step 3-2-1: and interactive computing after calculation have have
步骤3-2-2:和交互计算计算后拥有 拥有 Step 3-2-2: and interactive computing after calculation have have
步骤3-2-3:和交互计算计算后拥有 拥有 Step 3-2-3: and interactive computing after calculation have have
步骤3-2-4:和交互计算计算后拥有 拥有 Step 3-2-4: and interactive computing after calculation have have
步骤3-2-5:计算 Step 3-2-5: calculate
计算 calculate
步骤3-2-6:计算u(1)=(U(1)(1)+…+U(1)(49));Step 3-2-6: Calculate u (1) = (U (1) (1) + ... + U (1) (49));
计算u(2)=(U(2)(1)+…+U(2)(49)); Calculate u (2) = (U (2) (1)+...+U (2) (49));
步骤3-2-7:和交互计算b=SCP(T(1)(p,5)-u(1),T(2)(p,5)-u(2)),计算后和均拥有b;Step 3-2-7: and Interactive calculation b=SCP(T (1) (p,5)-u (1) ,T (2) (p,5)-u (2) ), after calculation and both have b;
步骤3-2-8:如果b=1,令T(1)(p,3)=,T(1)(p,4)=j′,T(1)(p,6)=T(1)(p,5),T(1)(p,5)=u(1),令T(2)(p,3)=i′,T(2)(p,4)=j′,T(2)(p,6)=T(2)(p,5),T(2)(p,5)=u(2)。Step 3-2-8: If b=1, Let T (1) (p,3)=, T (1) (p,4)=j′, T (1) (p,6)=T (1) (p,5), T (1) ( p,5)=u (1) , Let T (2) (p,3)=i′, T (2) (p,4)=j′, T (2) (p,6)=T (2) (p,5), T (2 ) (p,5)=u (2) .
步骤3-3:和交互计算b=SCP(T(1)(p,5)×β-T(1)(p,6),T(2)(p,5)×β-T(2)(p,6)),计算后和均拥有b;Step 3-3: and Interactive calculation b=SCP(T (1) (p,5)×β-T (1) (p,6),T (2) (p,5)×β-T (2) (p,6)) , after calculating and both have b;
步骤3-4:如果b=1,令T(1)(p,3)=0,T(1)(p,4)=0,T(1)(p,5)=inf,Step 3-4: If b=1, Let T (1) (p,3)=0,T (1) (p,4)=0,T (1) (p,5)=inf,
令T(2)(p,3)=0,T(2)(p,4)=0,T(2)(p,5)=0。 Let T (2) (p,3)=0, T (2) (p,4)=0, T (2) (p,5)=0.
步骤4:寻找满足D(1)(i′,j′,:)≠0&&(i′>i||j′>j)的最小的i′和对应的j′,若存在,和均令p=p+1,i=i′,j=j′,返回步骤3重新执行,否则转至步骤5;Step 4: Find the smallest i' and corresponding j' that satisfy D (1) (i′,j′,:)≠0&&(i′>i||j′>j), if it exists, and All set p=p+1, i=i′, j=j′, return to step 3 and execute again, otherwise go to step 5;
步骤5:密文形式下对T(1)和T(2)对应的明文T按照T(:,5)的大小重排序,方法为:Step 5: In the ciphertext form, reorder the plaintext T corresponding to T (1) and T (2) according to the size of T(:,5), the method is:
步骤5-1:和均令i=1;Step 5-1: and All let i=1;
步骤5-2:密文形式下求得T(i:lD,5)的最小值的位置,方法为:Step 5-2: Find the position of the minimum value of T(i:l D ,5) in the form of ciphertext, the method is:
步骤5-2-1:和均令θ=i;Step 5-2-1: and All let θ=i;
步骤5-2-2:对于所有的lD≥i′>i,和交互计算b=SCP(T(1)(θ,5)-T(1)(i′,5),T(2)(θ,5)-T(2)(i′,5)),计算后和均拥有b;若b=1,和均令θ=i′;Step 5-2-2: For all l D ≥ i′>i, and Interactive calculation b=SCP(T (1) (θ,5)-T (1) (i′,5),T (2) (θ,5)-T (2) (i′,5)), calculate back and Both have b; if b=1, and All let θ=i';
步骤5-3:交换T(1)(θ,:)和T(1)(i,:);交换T(2)(θ,:)和T(2)(i,:);Step 5-3: Exchange T (1) (θ,:) and T (1) (i,:); Swap T (2) (θ,:) and T (2) (i,:);
步骤5-4:和均令i=i+1,若i≤lD,返回步骤5-2重新执行,否则转至步骤6;Step 5-4: and All make i=i+1, if i≤l D , return to step 5-2 and execute again, otherwise go to step 6;
步骤6:对于所有lD≥i>1,如果(T(1)(i,1)>T(1)(i,3)||T(1)(i,2)>T(1)(i,4)),则交互T(1)(i,1)和T(1)(i,3),T(1)(i,2)和T(1)(i,4);Step 6: For all l D ≥ i>1, if (T (1) (i,1)>T (1) (i,3)||T (1) (i,2)>T (1) ( i,4)), then Interaction T (1) (i,1) and T (1) (i,3), T (1) (i,2) and T (1) (i,4);
如果(T(2)(i,1)>T(2)(i,3)||T(2)(i,2)>T(2)(i,4)),则交互T(2)(i,1)和T(2)(i,3),T(2)(i,2)和T(2)(i,4);If (T (2) (i,1)>T (2) (i,3)||T (2) (i,2)>T (2) (i,4)), then Interaction T (2) (i,1) and T (2) (i,3), T (2) (i,2) and T (2) (i,4);
步骤7:如果存在lD≥i>j满足T(1)(i,:)=T(1)(j,:),则删去T(1)(i,:);Step 7: If l D ≥ i>j satisfies T (1) (i,:)=T (1) (j,:), then Delete T (1) (i,:);
如果存在lD≥i>j满足T(2)(i,:)=T(2)(j,:),则删去T(2)(i,:)。If there exists l D ≥ i>j satisfying T (2) (i,:)=T (2) (j,:), then Delete T (2) (i,:).
计算后,拥有密文形式的排序好的p个匹配特征点T(1),拥有密文形式的排序好的p个匹配特征点T(2)。After calculation, There are p matching feature points T (1) sorted in ciphertext form, Have p sorted matching feature points T (2) in ciphertext form.
(4)篡改区域定位:(4) Tampering area positioning:
计算前,p=1,2,拥有密文形式的排序好的匹配特征点T(1)。拥有控制参数γ和δ。before calculation, p=1, 2, has the sorted matching feature points T (1) in ciphertext form. Has control parameters γ and δ.
步骤1:生成lm×lm大小的全零矩阵E,并令i=1;step 1: Generate an all-zero matrix E of size l m ×l m , and let i=1;
步骤2:寻找与T(1)(i,:)位置满足距离小于γ的点的个数,方法为:Step 2: Find the number of points whose distance from T (1) (i,:) is less than γ, the method is:
步骤2-1:令n=0,j=i+1,集合ε={i};Step 2-1: Let n=0, j=i+1, set ε={i};
步骤2-2:计算a=(T(1)(i,1)-T(1)(j,1))2+(T(1)(i,2)-T(1)(j,2))2,b=(T(1)(i,3)-T(1)(j,3))2+(T(1)(i,4)-T(1)(j,4))2;Step 2-2: Calculate a=(T (1) (i,1)-T (1) (j,1)) 2 +(T (1) (i,2)-T (1) (j,2)) 2 ,b =(T (1) (i,3)-T (1) (j,3)) 2 +(T (1) (i,4)-T (1) (j,4)) 2 ;
步骤2-3:若满足a<γ&&b>a/2&&b<2a,则令n=n+1,ε=ε+{j};Step 2-3: If a<γ&&b>a/2&&b<2a is satisfied, then Let n=n+1,ε=ε+{j};
步骤2-4:令j=j+1,若j≤lD,返回步骤2-2重新执行,否则转至步骤3;Step 2-4: make j=j+1, if j≤l D , return to step 2-2 and execute again, otherwise go to step 3;
步骤3:若n≥δ,则对于所有的j∈ε,令E(T(1)(j,1),T(1)(j,2))=i,E(T(1)(j,3),T(1)(j,4))=-i;Step 3: If n≥δ, then for all j∈ε, Let E(T (1) (j,1),T (1) (j,2))=i, E(T (1) (j,3),T (1) (j,4))=- i;
步骤4:寻找将所有E(j,k)=i的点(j,k)包含起来的最小圆形,并获得所有位于圆形内部的点(j′,k′),令E(j′,k′)=i;Step 4: Find the smallest circle that includes all points (j,k) where E(j,k)=i, and get all points (j′,k′) inside the circle, Let E(j',k')=i;
步骤5:寻找将所有E(j,k)=-i的点(j,k)包含起来的最小圆形,并获得所有位于圆形内部的点(j′,k′),令E(j′,k′)=-i;Step 5: Find the smallest circle that includes all the points (j,k) of E(j,k)=-i, and get all the points (j′,k′) inside the circle, Let E(j',k')=-i;
步骤6:令i=i+1,若i≤5,返回步骤2-3重新执行,否则结束执行;Step 6: set i=i+1, if i≤5, return to step 2-3 and execute again, otherwise end the execution;
计算后,p=1,2,拥有疑似篡改区域E。After calculation, p = 1, 2, has a suspected tampering area E.
三、用户端获得检测结果和疑似篡改区域3. Client Obtain detection results and areas of suspected tampering
计算前,拥有疑似篡改区域E,拼接的两个区域分布被标注为i和-i,i∈{1,...,5}。before calculation, Possessing a suspected tampering region E, the concatenated two region distributions are labeled i and -i, i∈{1,...,5}.
步骤1:将E通过安全信道发送给 step 1: Send E over a secure channel to
计算后,拥有疑似篡改区域E。After calculation, Possesses suspected tampered area E.
在上述步骤中,安全多方乘法协议(Y(1),Y(2))=SMP(X1,X2)用于计算的密文矩阵X1和的密文矩阵X2的乘法,且计算过程中不会得知X2,不会得知X1,不会得知X1或X2,三个服务端均不会得知X1X2,协议流程为:In the above steps, the secure multi-party multiplication protocol (Y (1) , Y (2) )=SMP(X 1 ,X 2 ) is used to calculate The ciphertext matrix X 1 and The multiplication of the ciphertext matrix X 2 , and during the calculation will not learn about X 2 , will not learn about X 1 , It will not know X 1 or X 2 , and none of the three servers will know X 1 X 2 , the protocol flow is:
计算前,拥有密文矩阵X1,拥有密文矩阵X2,和共享密钥集 before calculation, With ciphertext matrix X 1 , With ciphertext matrix X 2 , and shared key set
步骤1:和按照预先协商选择和X1(或是X2)同样大小的两个密钥矩阵K1, step 1: and Select two key matrices K 1 with the same size as X 1 (or X 2 ) according to pre-negotiation,
步骤2:计算U1=(X1+K2)/K1,并将U1发送给 Step 2: Calculate U 1 =(X 1 +K 2 )/K 1 , and send U 1 to
计算U2=X2K1,并将U2发送给 Calculate U 2 =X 2 K 1 , and send U 2 to
步骤3:随机选择和U1同样大小的随机数矩阵R,其每个元素均在为0~210之间,并计算V=U1U2+R;Step 3: Randomly select a random number matrix R of the same size as U 1 , each element of which is between 0 and 2 10 , and calculate V=U 1 U 2 +R;
步骤4:将V发送给将R发送给 Step 4: Send V to Send R to
步骤5:令Y(1)=V;Step 5: Let Y (1) = V;
令Y(2)=X2K2+R; Let Y (2) = X 2 K 2 +R;
计算后,拥有密文矩阵Y(1),拥有密文矩阵Y(2),其满足Y(1)-Y(2)=X1X2。After calculation, Having a ciphertext matrix Y (1) , There is a ciphertext matrix Y (2) , which satisfies Y (1) −Y (2) =X 1 X 2 .
在上述步骤中,安全多方比较协议b=SCP(X1,X2)用于比较的密文矩阵X1和的密文矩阵X2的大小,且计算过程中不会得知X2,不会得知X1,不会得知X1或X2,协议流程为:In the above steps, the secure multi-party comparison protocol b=SCP(X 1 ,X 2 ) is used for comparison The ciphertext matrix X 1 and The size of the ciphertext matrix X 2 , and the calculation process will not learn about X 2 , will not learn about X 1 , No X 1 or X 2 will be known, the protocol flow is:
计算前,拥有密文矩阵X1,拥有密文矩阵X2,和共享密钥集 before calculation, With ciphertext matrix X 1 , With ciphertext matrix X 2 , and shared key set
步骤1:和按照预先协商选择和X1(或是X2)同样大小的两个密钥矩阵K1, step 1: and Select two key matrices K 1 with the same size as X 1 (or X 2 ) according to pre-negotiation,
步骤2:计算U1=(X1+K1)/K2,并将U1发送给 Step 2: Calculate U 1 =(X 1 +K 1 )/K 2 , and send U 1 to
计算U2=(X2+K1)/K2,并将U2发送给 Calculate U 2 =(X 2 +K 1 )/K 2 , and send U 2 to
步骤3:计算U1/U2,若结果大于1,令b=1,否则令b=0;Step 3: Calculate U 1 /U 2 , if the result is greater than 1, set b=1, otherwise set b=0;
步骤4:将b发送给和 Step 4: send b to and
计算后,和均拥有比较结果b,其满足若b=1,X1>X2,否则X1≤X2。After calculation, and All have a comparison result b, which satisfies that if b=1, X 1 >X 2 , otherwise X 1 ≤X 2 .
本方案选用的图像加密技术可以用类似技术实现,例如将加运算替换为减运算,以达到同样效果。The image encryption technology selected in this solution can be realized by similar technology, for example, the addition operation is replaced by the subtraction operation to achieve the same effect.
本方案选用的基于多方安全计算的乘法协议和比较协议可以选用其他各类多方安全协议实现以达到类似效果,只是计算效率,或使用的云服务端数量发生变化。The multiplication protocol and comparison protocol based on multi-party secure computing selected in this solution can be implemented by other types of multi-party security protocols to achieve similar effects, but the calculation efficiency or the number of cloud servers used will change.
本方案中的排序算法可以替换为其他任意排序算法以达到同样效果。The sorting algorithm in this solution can be replaced with any other sorting algorithm to achieve the same effect.
现有的图像区域复制取证方法只能在明文下进行,会泄漏图像内容。在本发明方法中,用户端可以将密文形式的图像发送给云服务端,云服务端在不知晓图像内容的前提下,提供有效的区域复制取证服务,实现对篡改操作的检测和定位。相比于传统区域复制取证工具或服务,本发明可以提供用户图像内容的隐私保护。Existing forensics methods for copying image regions can only be performed in plaintext, which will leak image content. In the method of the present invention, the user end can send the image in ciphertext form to the cloud server end, and the cloud server end provides an effective regional copy evidence collection service without knowing the content of the image, and realizes the detection and positioning of the tampering operation. Compared with traditional area copy forensics tools or services, the present invention can provide privacy protection of user image content.
本方法适用于图像数字取证云服务,为个人、企业、政府部门等提供安全、可靠的区域复制取证取证服务。该方案适用于不可靠的云服务环境。This method is applicable to image digital forensics cloud services, providing safe and reliable regional copy forensics and forensics services for individuals, enterprises, and government departments. This solution is suitable for unreliable cloud service environments.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (6)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810634217.6A CN108881663B (en) | 2018-06-20 | 2018-06-20 | A method for image region duplication detection supporting privacy protection |
PCT/CN2018/121122 WO2019242254A1 (en) | 2018-06-20 | 2018-12-14 | Image area copy detection method supporting privacy protection function |
AU2018402494A AU2018402494B2 (en) | 2018-06-20 | 2018-12-14 | Privacy-preserving image region duplication detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810634217.6A CN108881663B (en) | 2018-06-20 | 2018-06-20 | A method for image region duplication detection supporting privacy protection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108881663A CN108881663A (en) | 2018-11-23 |
CN108881663B true CN108881663B (en) | 2019-12-24 |
Family
ID=64339969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810634217.6A Active CN108881663B (en) | 2018-06-20 | 2018-06-20 | A method for image region duplication detection supporting privacy protection |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN108881663B (en) |
AU (1) | AU2018402494B2 (en) |
WO (1) | WO2019242254A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108881663B (en) * | 2018-06-20 | 2019-12-24 | 暨南大学 | A method for image region duplication detection supporting privacy protection |
CN112214777B (en) * | 2020-10-20 | 2021-05-11 | 豪符密码检测技术(成都)有限责任公司 | Data encryption protection and use detection method supporting ciphertext data calculation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090485A (en) * | 2006-06-15 | 2007-12-19 | 索尼株式会社 | Image monitoring system and object area tracking method |
CN102693522A (en) * | 2012-04-28 | 2012-09-26 | 中国矿业大学 | Method for detecting region duplication and forgery of color image |
CN104268825A (en) * | 2014-09-28 | 2015-01-07 | 西安交通大学 | Image encryption and ciphertext processing method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7680447B2 (en) * | 2005-11-15 | 2010-03-16 | International Business Machines Corporation | Method and apparatus for duplicating secure documents |
US9818315B2 (en) * | 2013-06-04 | 2017-11-14 | At&T Intellectual Property I, L.P. | Secure multi-party device pairing using sensor data |
US20160050468A1 (en) * | 2014-08-14 | 2016-02-18 | Nagravision S.A. | Mitigation of collusion attacks against watermarked content |
US20160300068A1 (en) * | 2015-04-07 | 2016-10-13 | Dell Products, Lp | System and Method to View Encrypted Information on a Security Enabled Display Device |
CN106059988B (en) * | 2015-12-16 | 2019-03-12 | 湖南科技大学 | Trajectory privacy protection method based on location service |
CN105681365B (en) * | 2016-04-18 | 2019-05-14 | 北京小米移动软件有限公司 | Method and apparatus for file transmission |
CN106096548B (en) * | 2016-06-12 | 2019-05-24 | 北京电子科技学院 | Multi-intelligent-terminal shared face secret recognition method based on cloud environment |
CN107968780A (en) * | 2017-11-20 | 2018-04-27 | 上海海事大学 | A kind of method for secret protection of mobile cloud storage shared data |
CN108182220A (en) * | 2017-12-25 | 2018-06-19 | 重庆邮电大学 | Image search method based on privacy of user protection in Cloud Server |
CN108881663B (en) * | 2018-06-20 | 2019-12-24 | 暨南大学 | A method for image region duplication detection supporting privacy protection |
-
2018
- 2018-06-20 CN CN201810634217.6A patent/CN108881663B/en active Active
- 2018-12-14 WO PCT/CN2018/121122 patent/WO2019242254A1/en active Application Filing
- 2018-12-14 AU AU2018402494A patent/AU2018402494B2/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090485A (en) * | 2006-06-15 | 2007-12-19 | 索尼株式会社 | Image monitoring system and object area tracking method |
CN102693522A (en) * | 2012-04-28 | 2012-09-26 | 中国矿业大学 | Method for detecting region duplication and forgery of color image |
CN104268825A (en) * | 2014-09-28 | 2015-01-07 | 西安交通大学 | Image encryption and ciphertext processing method |
Also Published As
Publication number | Publication date |
---|---|
AU2018402494A1 (en) | 2020-01-23 |
CN108881663A (en) | 2018-11-23 |
WO2019242254A1 (en) | 2019-12-26 |
AU2018402494B2 (en) | 2020-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xia et al. | Secure image LBP feature extraction in cloud-based smart campus | |
Ansari et al. | Pixel-based image forgery detection: A review | |
Lu et al. | Secure video processing: Problems and challenges | |
CN102067175A (en) | Automatic face detection and identity masking in images, and applications thereof | |
Lin et al. | Region duplication detection based on hybrid feature and evaluative clustering | |
JP6256624B2 (en) | Information processing apparatus and cooperative distributed storage system | |
CN108881663B (en) | A method for image region duplication detection supporting privacy protection | |
CN110413652A (en) | A Big Data Privacy Retrieval Method Based on Edge Computing | |
Da et al. | A novel hybrid information security scheme for 2D vector map | |
Wang et al. | A passive authentication scheme for copy-move forgery based on package clustering algorithm | |
Alruban et al. | Biometrically linking document leakage to the individuals responsible | |
Nandakumar et al. | Proving multimedia integrity using sanitizable signatures recorded on blockchain | |
CN106156349A (en) | Image search method based on information security | |
CN106790180B (en) | IP-related coordinate transformation location privacy protection method | |
Zhou et al. | A novel signature based on the combination of global and local signatures for image copy detection | |
Soman et al. | Block-based forgery detection using global and local features | |
Sinhal et al. | A source and ownership identification framework for mobile-based messenger applications | |
Raftopoulos et al. | Region-Based Watermarking for Images | |
Warbhe et al. | Digital image forensics: An affine transform robust copy-paste tampering detection | |
Khavare et al. | Robust image hashing algorithm for detecting and localizing image tamper in small region | |
Jiang et al. | Robust Fingerprint of Location Trajectories Under Differential Privacy | |
Wang et al. | A novel multiple watermarking algorithm based on correlation detection for vector geographic data | |
Rafiq et al. | Secure and dynamic model for book searching on cloud computing as mobile augmented reality | |
Pinapati et al. | Reversible data hiding using prior pixel pairs in two-dimensional histogram with tri-directional modification of difference histogram | |
Jiang et al. | Robust Fingerprint of Privacy-Preserving Location Trajectories |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |