CN108880563A - A kind of the improvement coding method and system of LDPC code - Google Patents
A kind of the improvement coding method and system of LDPC code Download PDFInfo
- Publication number
- CN108880563A CN108880563A CN201810612965.4A CN201810612965A CN108880563A CN 108880563 A CN108880563 A CN 108880563A CN 201810612965 A CN201810612965 A CN 201810612965A CN 108880563 A CN108880563 A CN 108880563A
- Authority
- CN
- China
- Prior art keywords
- packet data
- check bit
- vector
- data
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Detection And Correction Of Errors (AREA)
Abstract
本发明公开了一种LDPC码的改进编码方法及系统,本发明通过对IEEE802.16e标准中使用的LDPC码的串行和并行两种编码方法的研究,提出了一种改进的双向递归编码方法,分析表明新方法计算复杂度低,可以提高编码的并行度,硬件实现中运算更为简单。The invention discloses an improved encoding method and system of LDPC codes. The invention proposes an improved two-way recursive encoding method through the research of serial and parallel encoding methods of LDPC codes used in the IEEE802.16e standard , the analysis shows that the new method has low computational complexity, can improve the parallelism of encoding, and the calculation is simpler in hardware implementation.
Description
技术领域technical field
本发明涉及编码技术,尤其涉及一种802.16e标准中LDPC码的改进编码方法及系统。The invention relates to encoding technology, in particular to an improved encoding method and system for LDPC codes in the 802.16e standard.
背景技术Background technique
低密度奇偶检验码最早由Gallager于1963年提出,20世纪90年代后期,由于Turbo码的发现使得学者重新对LDPC码进行了研究。现在LDPC码从理论上已被证明是一类非常接近香农限的纠错码。Low-density parity-check codes were first proposed by Gallager in 1963. In the late 1990s, scholars re-researched LDPC codes due to the discovery of Turbo codes. Now LDPC codes have been proved theoretically to be a class of error-correcting codes that are very close to the Shannon limit.
LDPC码作为前向纠错码广泛地应用于通信和存储领域,并被IEEE 802.16e标准选择作为其信道编码技术。LDPC码在码长足够长的时候性能接近香浓极限,但是对LDPC码而言,一个需要面对的主要问题是其编码器的实现复杂度与码长成二次方递增。于是,怎样使得LDPC码可以在与码长成线性关系的时间内完成编码,就成了一个非常关键的问题。由于LDPC码也是一种线性分组码,其编码算法与其他线性分组码的编码算法基本类似。主要可以分为三类:基于生成矩阵G的高斯消元法、基于校验矩阵H的LU编码算法和专门针对近似下三角矩阵的简化Efficient编码算法。这几种算法各有优劣,在实现中主要根据所选的LDPC码码型来选定编码算法。LDPC codes are widely used as forward error correction codes in the fields of communication and storage, and are selected by the IEEE 802.16e standard as its channel coding technology. The performance of LDPC codes is close to the Shannon limit when the code length is long enough, but for LDPC codes, a major problem that needs to be faced is that the implementation complexity of the coder increases quadratically with the code length. Therefore, how to make the LDPC code complete the encoding within a time linearly related to the code length has become a very critical issue. Since the LDPC code is also a linear block code, its encoding algorithm is basically similar to that of other linear block codes. It can be mainly divided into three categories: Gaussian elimination method based on generator matrix G, LU encoding algorithm based on parity check matrix H, and simplified Efficient encoding algorithm for approximate lower triangular matrix. These several algorithms have their own advantages and disadvantages, and the encoding algorithm is selected mainly according to the selected LDPC code pattern in the realization.
IEEE 802.16e标准下的LDPC码有着特殊的结构,其校验矩阵是一个“准双对角线”矩阵,其传统的串行编码算法,编码效率不高,因此能够通过并行计算每个校验位来进行改进。虽然这种并行计算大大减少了编码延时,但在硬件实现时需要更大的存储量。The LDPC code under the IEEE 802.16e standard has a special structure, and its parity check matrix is a "quasi-bidiagonal" matrix. Its traditional serial coding algorithm has low coding efficiency, so each parity check can be calculated in parallel. bit to improve. Although this parallel computing greatly reduces the encoding delay, it requires a larger amount of storage when implemented in hardware.
发明内容Contents of the invention
发明目的:本发明针对现有技术存在的问题,提供一种802.16e标准中LDPC码的改进编码方法及系统,采用双向递归改进,硬件实现更容易,占用存储量更小。Purpose of the invention: The present invention aims at the problems existing in the prior art, and provides an improved encoding method and system of LDPC codes in the 802.16e standard, which adopts bidirectional recursive improvement, makes hardware implementation easier, and occupies less memory.
技术方案:本发明所述的LDPC码的改进编码方法,包括:Technical scheme: the improved coding method of LDPC code of the present invention comprises:
(1)选取扩展因子zf;(1) Select expansion factor z f ;
(2)将已知的信息位数据向量U每zf个比特划分为一组,得到kb组分组数据,将待求取的校验位数据向量V每zf个比特划分为一组,得到mb组分组数据,记为其中,mb+kb=n/zf,n为码长;(2) Divide every zf bits of the known information bit data vector U into one group, obtain k b groups of packet data, and divide every zf bits of the parity data vector V to be obtained into one group, Obtain m b group group data, denoted as Among them, m b +k b =n/z f , n is the code length;
(2)根据LDPC码基矩阵Hb和kb组分组数据按照以下公式计算得到ai:(2) According to the LDPC code base matrix H b and k b component data, a i is calculated according to the following formula:
式中,Pp(i,j)表示将zf×zf的单位阵循环右移p(i,j)位后得到的矩阵,p(i,j)表示基矩阵Hb中第i行第j列的元素;In the formula, P p(i, j) represents the matrix obtained by cyclically shifting the identity matrix of z f × z f to the right by p(i, j) bits, and p(i, j) represents the i-th row in the base matrix H b the element of column j;
(3)根据ai按照以下公式计算得到校验位分组数据v1:(3) According to a i , the check digit packet data v 1 is obtained by calculating according to the following formula:
式中,形如(·)(_*)表示将·循环左移*位后得到的向量,形如(·)(*)表示将·循环右移*位后得到的向量,lx表示基矩阵Hb中位于第x行的非零元素,2≤x≤mb-1;In the formula, the shape (·) (_*) represents the vector obtained by shifting the cycle to the left by * bit, and the shape such as (·) (*) represents the vector obtained by shifting the cycle to the right by * bit, and l x represents the basis The non-zero element in row x in matrix H b , 2≤x≤m b -1;
(4)根据校验位分组数据v1通过关系式Hb×[U,V]T=0采用双向递归计算得到校验位分组数据vi,i=1,..,mb;(4) According to the parity bit grouping data v 1 , the parity bit grouping data v i is obtained by using the relational expression H b ×[U,V] T = 0 through bidirectional recursive calculation, i=1,...,m b ;
(5)根据信息位数据向量U和校验位校验位数据向量得到编码后的LDPC码为C=[U,V]。(5) According to the information bit data vector U and the check bit check bit data vector The encoded LDPC code obtained is C=[U, V].
进一步的,所述步骤(4)具体包括:Further, the step (4) specifically includes:
(4-1)根据校验位分组数据v1通过关系式Hb×[U,V]T=0得到校验位分组数据v2和校验位分组数据 (4-1) According to the parity group data v 1 , the parity group data v 2 and the parity group data are obtained through the relational expression H b ×[U,V] T = 0
式中,形如*(·)表示*中的第·个比特,表示v1循环右移l位后的向量的第1个比特,l表示基矩阵Hb中位于1行或第mb行的非零元素,两个非零元素相同;In the formula, the form *(·) represents the bit in *, Represents the first bit of the vector after v 1 is cyclically shifted right by l, l represents the non-zero element in the 1st row or m b row in the base matrix H b , and the two non-zero elements are the same;
(4-2)根据v2和通过双向递归得到剩余的校验位分组数据vi,i=3,..,mb-1:(4-2) According to v 2 and Obtain the remaining check bit packet data v i through bidirectional recursion, i=3,...,m b -1:
进一步的,步骤(1)中根据802.16e标准选取扩展因子zf。Further, in step (1), the expansion factor z f is selected according to the 802.16e standard.
本发明所述的802.16e标准中LDPC码的改进编码系统包括:The improved coding system of LDPC code in the 802.16e standard of the present invention comprises:
扩展因子选取模块,用于选取扩展因子zf;The expansion factor selection module is used to select the expansion factor z f ;
数据分组模块,用于将已知的信息位数据向量U每zf个比特划分为一组,得到kb组分组数据,将待求取的校验位数据向量V每zf个比特划分为一组,得到mb组分组数据,记为其中,mb+kb=n/zf,n为码长;The data grouping module is used to divide every z f bits of the known information bit data vector U into a group to obtain k b groups of packet data, and divide every z f bits of the parity data vector V to be obtained into A group, get m b group group data, denoted as Among them, m b +k b =n/z f , n is the code length;
第一计算模块,用于根据LDPC码基矩阵Hb和kb组分组数据按照以下公式计算得到ai:The first calculation module is used to calculate and obtain a i according to the following formula according to the LDPC code base matrix H b and k b group group data:
式中,Pp(i,j)表示将zf×zf的单位阵循环右移p(i,j)位后得到的矩阵,p(i,j)表示基矩阵Hb中第i行第j列的元素;In the formula, P p(i, j) represents the matrix obtained by cyclically shifting the identity matrix of z f × z f to the right by p(i, j) bits, and p(i, j) represents the i-th row in the base matrix H b the element of column j;
第二计算模块,用于根据ai按照以下公式计算得到校验位分组数据v1:The second calculation module is used to calculate and obtain the check digit packet data v 1 according to the following formula according to a i :
式中,形如(·)(_*)表示将·循环左移*位后得到的向量,形如(·)(*)表示将·循环右移*位后得到的向量,lx表示基矩阵Hb中位于第x行的非零元素,2≤x≤mb-1;In the formula, the shape (·) (_*) represents the vector obtained by shifting the cycle to the left by * bit, and the shape such as (·) (*) represents the vector obtained by shifting the cycle to the right by * bit, and l x represents the basis The non-zero element in row x in matrix H b , 2≤x≤m b -1;
第三计算模块,用于根据校验位分组数据v1通过关系式Hb×[U,V]T=0双向递归计算得到校验位分组数据vi,i=1,..,mb;The third calculation module is used to obtain the check digit group data v i through the relational expression H b ×[U,V] T = 0 bidirectional recursive calculation according to the check digit group data v 1 , i =1,...,m b ;
编码合成模块,用于根据信息位数据向量U和校验位校验位数据向量得到编码后的LDPC码为C=[U,V]。Coding synthesis module, for according to information bit data vector U and check bit check bit data vector The encoded LDPC code obtained is C=[U, V].
进一步的,所述第三计算模块具体包括:Further, the third calculation module specifically includes:
第一计算单元,用于根据校验位分组数据v1通过递归得到校验位分组数据v2和校验位分组数据 The first calculation unit is used to obtain the check bit group data v 2 and the check bit group data by recursion according to the check bit group data v 1
式中,形如*(·)表示*中的第·个比特,表示v1循环右移l位后的向量的第1个比特,l表示基矩阵Hb中位于1行或第mb行的非零元素,两个非零元素相同;In the formula, the form *(·) represents the bit in *, Represents the first bit of the vector after v 1 is cyclically shifted right by l, l represents the non-zero element in the 1st row or m b row in the base matrix H b , and the two non-zero elements are the same;
第二计算单元,用于根据v2和通过双向递归得到剩余的校验位分组数据vi,i=3,..,mb-1:The second calculation unit is used to calculate according to v 2 and Obtain the remaining check bit packet data v i through bidirectional recursion, i=3,...,m b -1:
进一步的,所述扩展因子选取模块中根据802.16e标准选取扩展因子zf。Further, the expansion factor selection module selects the expansion factor z f according to the 802.16e standard.
有益效果:本发明与现有技术相比,其显著优点是:该方法通过对IEEE802.16e标准中使用的LDPC码的研究,在串行和并行两种编码方法上进行双向递归改进,分析表明新方法计算复杂度低,可以提高编码的并行度,硬件实现中运算更为简单。Beneficial effects: compared with the prior art, the present invention has the remarkable advantages that: the method carries out two-way recursive improvement on serial and parallel coding methods through the research on the LDPC code used in the IEEE802.16e standard, and the analysis shows that The new method has low computational complexity, can improve the parallelism of encoding, and the calculation is simpler in hardware implementation.
具体实施方式Detailed ways
本实施例提供了一种802.16e标准中LDPC码的改进编码方法,该方法包括:This embodiment provides an improved encoding method for LDPC codes in the 802.16e standard, the method comprising:
(1)根据802.16e标准选取扩展因子zf;(1) Select the expansion factor z f according to the 802.16e standard;
(2)将已知的信息位数据向量U每zf个比特划分为一组,得到kb组分组数据,将待求取的校验位数据向量V每zf个比特划分为一组,得到mb组分组数据,记为其中,ui=[ui(1),ui(1),...,ui(zf)],vi=[vi(1),vi(1),...,vi(zf)],形如*(·)表示*中的第·个比特,mb+kb=n/zf,n为码长;(2) Divide every zf bits of the known information bit data vector U into one group, obtain k b groups of packet data, and divide every zf bits of the parity data vector V to be obtained into one group, Obtain m b group group data, denoted as Among them, u i =[u i (1),u i (1),...,u i (z f )], v i =[v i (1),v i (1),..., v i (z f )], form such as * ( ) represents the bit in *, m b +k b =n/z f , n is the code length;
(2)根据LDPC码基矩阵Hb和kb组分组数据按照以下公式计算得到ai:(2) According to the LDPC code base matrix H b and k b component data, a i is calculated according to the following formula:
式中,Pp(i,j)表示将zf×zf的单位阵循环右移p(i,j)位后得到的矩阵,p(i,j)表示基矩阵Hb中第i行第j列的元素;In the formula, P p(i, j) represents the matrix obtained by cyclically shifting the identity matrix of z f × z f to the right by p(i, j) bits, and p(i, j) represents the i-th row in the base matrix H b the element of column j;
(3)根据ai按照以下公式计算得到校验位分组数据v1:(3) According to a i , the check digit packet data v 1 is obtained by calculating according to the following formula:
式中,形如(·)(_*)表示将·循环左移*位后得到的向量,形如(·)(*)表示将·循环右移*位后得到的向量,lx表示基矩阵Hb中位于第x行的非零元素,2≤x≤mb-1;In the formula, the shape (·) (_*) represents the vector obtained by shifting the cycle to the left by * bit, and the shape such as (·) (*) represents the vector obtained by shifting the cycle to the right by * bit, and l x represents the basis The non-zero element in row x in matrix H b , 2≤x≤m b -1;
(4)根据校验位分组数据v1通过关系式Hb×[U,V]T=0双向递归计算得到校验位分组数据vi,i=1,..,mb。(4) According to the check bit group data v 1 , the check bit group data v i is obtained through the relational expression H b ×[U,V] T =0 bidirectional recursive calculation, i=1,...,m b .
其中,根据关系式Hb×[U,V]T=0可以得到:Among them, according to the relational expression H b ×[U,V] T =0, it can be obtained:
ai+vi+vi+1=0(1≤i≤mb-2,i≠x)a i +v i +v i+1 =0(1≤i≤m b -2,i≠x)
通过上面公式可以知道分组数据vi的计算方法,即为:Through the above formula, we can know the calculation method of grouped data v i , which is:
根据校验位分组数据v1通过递归得到校验位分组数据v2和校验位分组数据 According to the parity grouping data v 1 , the parity grouping data v 2 and the parity grouping data are obtained by recursion
式中,形如*(·)表示*中的第·个比特,表示v1循环右移l位后的向量的第1个比特,l表示基矩阵Hb中位于1行或第mb行的非零元素,两个非零元素相同;In the formula, the form *(·) represents the bit in *, Represents the first bit of the vector after v 1 is cyclically shifted right by l, l represents the non-zero element in the 1st row or m b row in the base matrix H b , and the two non-zero elements are the same;
根据v2和通过双向递归得到剩余的校验位分组数据vi,i=3,..,mb-1:According to v 2 and Obtain the remaining check bit packet data v i through bidirectional recursion, i=3,...,m b -1:
(5)根据信息位数据向量U和校验位校验位数据向量得到编码后的LDPC码为C=[U,V]。(5) According to the information bit data vector U and the check bit check bit data vector The encoded LDPC code obtained is C=[U, V].
本实施例还提供了一种802.16e标准中LDPC码的改进编码系统,包括:This embodiment also provides an improved coding system for LDPC codes in the 802.16e standard, including:
扩展因子选取模块,用于选取扩展因子zf;The expansion factor selection module is used to select the expansion factor z f ;
数据分组模块,用于将已知的信息位数据向量U每zf个比特划分为一组,得到kb组分组数据,将待求取的校验位数据向量V每zf个比特划分为一组,得到mb组分组数据,记为其中,mb+kb=n/zf,n为码长;The data grouping module is used to divide every z f bits of the known information bit data vector U into a group to obtain k b groups of packet data, and divide every z f bits of the parity data vector V to be obtained into A group, get m b group group data, denoted as Among them, m b +k b =n/z f , n is the code length;
第一计算模块,用于根据LDPC码基矩阵Hb和kb组分组数据按照以下公式计算得到ai:The first calculation module is used to calculate and obtain a i according to the following formula according to the LDPC code base matrix H b and k b group group data:
式中,Pp(i,j)表示将zf×zf的单位阵循环右移p(i,j)位后得到的矩阵,p(i,j)表示基矩阵Hb中第i行第j列的元素;In the formula, P p(i, j) represents the matrix obtained by cyclically shifting the identity matrix of z f × z f to the right by p(i, j) bits, and p(i, j) represents the i-th row in the base matrix H b the element of column j;
第二计算模块,用于根据ai按照以下公式计算得到校验位分组数据v1:The second calculation module is used to calculate and obtain the check digit packet data v 1 according to the following formula according to a i :
式中,形如(·)(_*)表示将·循环左移*位后得到的向量,形如(·)(*)表示将·循环右移*位后得到的向量,lx表示基矩阵Hb中位于第x行的非零元素,2≤x≤mb-1;In the formula, the shape (·) (_*) represents the vector obtained by shifting the cycle to the left by * bit, and the shape such as (·) (*) represents the vector obtained by shifting the cycle to the right by * bit, and l x represents the basis The non-zero element in row x in matrix H b , 2≤x≤m b -1;
第三计算模块,用于根据校验位分组数据v1通过关系式Hb×[U,V]T=0双向递归计算得到校验位分组数据vi,i=1,..,mb;The third calculation module is used to obtain the check digit group data v i through the relational expression H b ×[U,V] T = 0 bidirectional recursive calculation according to the check digit group data v 1 , i =1,...,m b ;
编码合成模块,用于根据信息位数据向量U和校验位校验位数据向量得到编码后的LDPC码为C=[U,V]。Coding synthesis module, for according to information bit data vector U and check bit check bit data vector The encoded LDPC code obtained is C=[U, V].
进一步的,所述第三计算模块具体包括:Further, the third calculation module specifically includes:
第一计算单元,用于根据校验位分组数据v1通过递归得到校验位分组数据v2和校验位分组数据 The first calculation unit is used to obtain the check bit group data v 2 and the check bit group data by recursion according to the check bit group data v 1
式中,形如*(·)表示*中的第·个比特,表示v1循环右移l位后的向量的第1个比特,l表示基矩阵Hb中位于1行或第mb行的非零元素,两个非零元素相同;In the formula, the form *(·) represents the bit in *, Represents the first bit of the vector after v 1 is cyclically shifted right by l, l represents the non-zero element in the 1st row or m b row in the base matrix H b , and the two non-zero elements are the same;
第二计算单元,用于根据v2和通过双向递归得到剩余的校验位分组数据vi,i=3,..,mb-1:The second calculation unit is used to calculate according to v 2 and Obtain the remaining check bit packet data v i through bidirectional recursion, i=3,...,m b -1:
进一步的,所述扩展因子选取模块中根据802.16e标准选取扩展因子zf。Further, the expansion factor selection module selects the expansion factor z f according to the 802.16e standard.
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。What is disclosed above is only a preferred embodiment of the present invention, which cannot limit the scope of rights of the present invention. Therefore, equivalent changes made according to the claims of the present invention still fall within the scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810612965.4A CN108880563A (en) | 2018-06-14 | 2018-06-14 | A kind of the improvement coding method and system of LDPC code |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810612965.4A CN108880563A (en) | 2018-06-14 | 2018-06-14 | A kind of the improvement coding method and system of LDPC code |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108880563A true CN108880563A (en) | 2018-11-23 |
Family
ID=64338878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810612965.4A Pending CN108880563A (en) | 2018-06-14 | 2018-06-14 | A kind of the improvement coding method and system of LDPC code |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108880563A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1385270A2 (en) * | 2002-07-26 | 2004-01-28 | Hughes Electronics Corporation | Method and system for generating low density parity check (LDPC) codes |
WO2007030613A1 (en) * | 2005-09-08 | 2007-03-15 | The Directv Group, Inc. | Code design and implementation improvements for low density parity check codes for wireless routers using 802.11n protocol |
CN101395804A (en) * | 2004-09-17 | 2009-03-25 | Lg电子株式会社 | Method of encoding and decoding using ldpc code |
CN102035556A (en) * | 2009-10-05 | 2011-04-27 | 香港理工大学 | Method and system for encoding and decoding data |
CN104333390A (en) * | 2014-11-26 | 2015-02-04 | 西安烽火电子科技有限责任公司 | Construction method and encoding method for check matrix of LDPC code |
US9667272B1 (en) * | 2007-08-17 | 2017-05-30 | Marvell International Ltd. | Generic encoder for low-density parity-check (LDPC) codes |
CN107370490A (en) * | 2016-05-13 | 2017-11-21 | 中兴通讯股份有限公司 | Coding, interpretation method and the device of structured LDPC |
CN107547090A (en) * | 2017-08-03 | 2018-01-05 | 东南大学 | A kind of LDPC code interpretation method based on dynamic select |
-
2018
- 2018-06-14 CN CN201810612965.4A patent/CN108880563A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1385270A2 (en) * | 2002-07-26 | 2004-01-28 | Hughes Electronics Corporation | Method and system for generating low density parity check (LDPC) codes |
CN101395804A (en) * | 2004-09-17 | 2009-03-25 | Lg电子株式会社 | Method of encoding and decoding using ldpc code |
WO2007030613A1 (en) * | 2005-09-08 | 2007-03-15 | The Directv Group, Inc. | Code design and implementation improvements for low density parity check codes for wireless routers using 802.11n protocol |
US9667272B1 (en) * | 2007-08-17 | 2017-05-30 | Marvell International Ltd. | Generic encoder for low-density parity-check (LDPC) codes |
CN102035556A (en) * | 2009-10-05 | 2011-04-27 | 香港理工大学 | Method and system for encoding and decoding data |
CN104333390A (en) * | 2014-11-26 | 2015-02-04 | 西安烽火电子科技有限责任公司 | Construction method and encoding method for check matrix of LDPC code |
CN107370490A (en) * | 2016-05-13 | 2017-11-21 | 中兴通讯股份有限公司 | Coding, interpretation method and the device of structured LDPC |
CN107547090A (en) * | 2017-08-03 | 2018-01-05 | 东南大学 | A kind of LDPC code interpretation method based on dynamic select |
Non-Patent Citations (2)
Title |
---|
吉晋龙: "LDPC码的高速编译码器设计及FPGA实现", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
曾苗: "LDPC编译码及其FPGA实现", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102122966B (en) | Channel-polarization-based encoder for staggered structure duplication code, and encoding and decoding methods thereof | |
CN100364237C (en) | System code design method and communication system of irregular low-density parity-check code | |
CN103731160B (en) | Packet space coupling low density parity check coding method | |
CN100425000C (en) | Twin-turbo structure low-density parity-check code decoder and decoding method | |
CN104219019A (en) | Coding method and coding device | |
CN106992856B (en) | Data coordination method for large-scale continuous variable quantum key distribution based on GPU | |
CN101207386B (en) | A Construction Method of Binary Low Density Parity Check Code | |
CN102857324B (en) | Low density parity check (LDPC) serial coder in deep space communication and based on lookup table and coding method | |
CN101159435B (en) | Construction Method of Check Matrix of Low Density Check Code Based on Hierarchical Expansion of Shift Matrix | |
CN101075811B (en) | Quasi-circulation low-density code with tridiagonal structure and its construction | |
CN107786211A (en) | A kind of Algebraic Structure acquisition methods, coding method and the encoder of IRA QC LDPC codes | |
CN102088294B (en) | QC-LDPC (quasi-cyclic low-density parity-check codes) coder and coding method | |
CN103236900B (en) | A kind of Serial concatenated turbo codes interleaver parameter blind estimating method | |
CN110233628B (en) | Adaptive Belief Propagation List Decoding Method for Polar Codes | |
CN105553485A (en) | FPGA-based BCH encoding and decoding device and encoding and decoding method thereof | |
CN102843152B (en) | LDPC (Low-Density Parity-Check) encoder and encoding method based on parallel filtering in CMMB (China Mobile Multimedia Broadcasting) | |
CN104124980A (en) | High-speed secret negotiation method suitable for continuous variable quantum key distribution | |
CN107528596A (en) | A kind of Type II QC LDPC code building methods based on Fibonacci Lucas sequence | |
CN102857236A (en) | China mobile multimedia broadcasting (CMMB) low density parity check (LDPC) encoder based on summation array and coding method | |
CN102340320A (en) | Bidirectional Parallel Decoding Method for Convolutional Turbo Codes | |
CN101594152A (en) | LDPC code decoding method to realize horizontal operation and vertical operation at the same time | |
CN102882532A (en) | LDPC (low density parity check) encoder in CMMB (China mobile multimedia broadcasting) based on rotate right accumulation and encoding method | |
CN102064837B (en) | Partially parallel decoding method of quasi-cyclic low density parity check (QC-LDPC) code based on first in first out (FIFO) fragmentation | |
CN104601180A (en) | Method and device for encoding two-dimensional product codes on basis of extended hamming codes | |
CN105391455A (en) | Return-to-zero Turbo code starting point and depth blind identification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181123 |