CN108873327A - Head-mounted display device - Google Patents
Head-mounted display device Download PDFInfo
- Publication number
- CN108873327A CN108873327A CN201710343433.0A CN201710343433A CN108873327A CN 108873327 A CN108873327 A CN 108873327A CN 201710343433 A CN201710343433 A CN 201710343433A CN 108873327 A CN108873327 A CN 108873327A
- Authority
- CN
- China
- Prior art keywords
- light
- waveguide element
- image
- head
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种显示装置,且特别是有关于一种头戴式显示装置。The present invention relates to a display device, and in particular to a head-mounted display device.
背景技术Background technique
近眼显示器(Near Eye Display,NED)以及头戴式显示器(Head-mountedDisplay,HMD)是目前极具发产潜力的下一代杀手级产品。在近眼显示技术的相关应用上,目前可分为扩增实境(Augmented Reality,AR)技术以及虚拟实境(Virtual Reality,VR)技术。对扩增实境技术而言,相关开发人员目前致力于如何在轻薄的前提下提供最佳的影像品质。Near Eye Display (NED) and Head-mounted Display (HMD) are currently the next-generation killer products with great production potential. In terms of related applications of near-eye display technology, it can be divided into augmented reality (Augmented Reality, AR) technology and virtual reality (Virtual Reality, VR) technology. For augmented reality technology, relevant developers are currently working on how to provide the best image quality on the premise of being thin and light.
在头戴式显示器实现扩增实境的光学架构中,用以显示的影像光束由投影装置发出后,经由波导进入使用者的眼睛。来自光阀的影像以及外界的环境光束,经由波导进入使用者的眼睛,达到扩增实境的效果。在目前的头戴式显示器产品中,因为波导与光机机构的距离过于接近,而阻挡了环境光束进入眼睛的视野,破坏的沉浸感,对于扩增实境之效果大打折扣。In the optical structure of the head-mounted display to realize the augmented reality, the image beam used for display is sent out from the projection device, and enters the user's eyes through the waveguide. The image from the light valve and the external ambient light beam enter the user's eyes through the waveguide to achieve the effect of augmented reality. In the current head-mounted display products, because the distance between the waveguide and the optical-mechanical mechanism is too close, the ambient light beam is blocked from entering the field of view of the eyes, which destroys the sense of immersion and greatly reduces the effect of augmented reality.
现在对于头戴显示装置的要求,都会希望能越接近一般的近视眼镜或太阳眼镜的设计,因此如何将庞大的光机挪移至使用者的可视区之外,不阻挡使用者的视线,即是目前重要的课题之一。此外,头戴式显示器可提供的视角大小及其体积也是影响使用者体验的重要因素。Nowadays, the requirements for head-mounted display devices are expected to be closer to the design of general myopia glasses or sunglasses. Therefore, how to move the huge optical machine out of the user's visual area without blocking the user's line of sight, that is, is one of the most important issues at present. In addition, the viewing angle and volume that the head-mounted display can provide are also important factors that affect user experience.
“背景技术”段落只是用来帮助了解本发明内容,因此在“背景技术”段落所公开的内容可能包含一些没有构成本领域技术人员所知道的已知技术。在“背景技术”段落所公开的内容,不代表该内容或者本发明一个或多个实施例所要解决的问题,在本发明申请前已被本领域技术人员所知晓或认知。The paragraph "Background Technology" is only used to help understand the content of the present invention, so the content disclosed in the paragraph "Background Technology" may contain some known technologies that do not constitute the knowledge of those skilled in the art. The content disclosed in the "Background Technology" paragraph does not mean that the content or the problems to be solved by one or more embodiments of the present invention have been known or recognized by those skilled in the art before the application of the present invention.
发明内容Contents of the invention
本发明提供一种头戴式显示装置,其可提供大视角及良好的显示品质,并且体积小。The invention provides a head-mounted display device, which can provide a large viewing angle and good display quality, and has a small volume.
本发明的其他目的和优点可以从本发明所公开的技术特征中得到进一步的了解。Other purposes and advantages of the present invention can be further understood from the technical characteristics disclosed in the present invention.
为达上述之一或部分或全部目的或是其他目的,本发明的一实施例提出一种头戴式显示装置。头戴式显示装置包括显示器、第一波导元件以及第二波导元件。显示器用于提供影像光束。影像光束投射至投射目标。第一波导元件包括第一入光面、第一出光面以及多个第一分光元件。来自于显示器的影像光束经由第一入光面入射第一波导元件。影像光束在第一波导元件之内收敛至第一光栏。影像光束经由第一出光面离开第一波导元件。第一光栏位于第一波导元件之内。第二波导元件连接于第一波导元件。第二波导元件包括第二入光面、第二出光面以及多个第二分光元件。来自于第一波导元件的影像光束经由第二入光面入射第二波导元件。影像光束经由第二出光面离开第二波导元件并且影像光束在第二波导元件之外投射至第二光栏。第二光栏位于投射目标之处。In order to achieve one or part or all of the above objectives or other objectives, an embodiment of the present invention provides a head-mounted display device. The head-mounted display device includes a display, a first waveguide element and a second waveguide element. The display is used to provide an image beam. The image beam is projected to the projection target. The first waveguide element includes a first light incident surface, a first light exit surface and a plurality of first light splitting elements. The image light beam from the display enters the first waveguide element through the first incident surface. The image light beam converges to the first light bar within the first waveguide element. The image light beam leaves the first waveguide element through the first light exit surface. The first stop is located within the first waveguide element. The second waveguide element is connected to the first waveguide element. The second waveguide element includes a second light incident surface, a second light exit surface and a plurality of second light splitting elements. The image light beam from the first waveguide element enters the second waveguide element through the second incident surface. The image beam leaves the second waveguide element through the second light-emitting surface, and the image beam projects outside the second waveguide element to the second diaphragm. The second light barrier is located where the target is projected.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.
附图说明Description of drawings
图1绘示本发明一实施例的头戴式显示装置的立体示意图。FIG. 1 is a schematic perspective view of a head-mounted display device according to an embodiment of the present invention.
图2A绘示图1的头戴式显示装置的侧视示意图。FIG. 2A is a schematic side view of the head-mounted display device shown in FIG. 1 .
图2B绘示本发明图2A中实施例的头戴式显示装置的光路径侧视示意图。FIG. 2B is a schematic side view of the light path of the head-mounted display device of the embodiment shown in FIG. 2A of the present invention.
图2C绘示图1的另一头戴式显示装置的侧视示意图。FIG. 2C is a schematic side view of another head-mounted display device of FIG. 1 .
图3绘示本发明另一实施例的头戴式显示装置的立体示意图。FIG. 3 is a three-dimensional schematic diagram of a head-mounted display device according to another embodiment of the present invention.
图4绘示本发明另一实施例的头戴式显示装置的立体示意图。FIG. 4 is a schematic perspective view of a head-mounted display device according to another embodiment of the present invention.
图5A绘示本发明的头戴式显示装置的一实施例的示意图。FIG. 5A is a schematic diagram of an embodiment of the head-mounted display device of the present invention.
图5B绘示本发明的头戴式显示装置的一实施例的示意图。FIG. 5B is a schematic diagram of an embodiment of the head-mounted display device of the present invention.
图5C绘示本发明的头戴式显示装置的一实施例的示意图。FIG. 5C is a schematic diagram of an embodiment of the head-mounted display device of the present invention.
图6A绘示本发明另一实施例的头戴式显示装置的示意图。FIG. 6A is a schematic diagram of a head-mounted display device according to another embodiment of the present invention.
图6B绘示本发明另一实施例的头戴式显示装置的示意图。FIG. 6B is a schematic diagram of a head-mounted display device according to another embodiment of the present invention.
图7绘示图1的第二波导元件的俯视示意图。FIG. 7 is a schematic top view of the second waveguide element in FIG. 1 .
图8绘示本发明一实施例之扩散镀膜的反射率相对于影像光束的入射角的反射率分布曲线的概要示意图。FIG. 8 is a schematic diagram showing the reflectance distribution curve of the reflectance of the diffusion coating with respect to the incident angle of the image beam according to an embodiment of the present invention.
图9绘示图7实施例之影像光束在投射目标之处产生的影像画面的概要示意图。FIG. 9 is a schematic diagram of an image frame generated by the image beam projected on the target in the embodiment of FIG. 7 .
图10绘示图1的第一波导元件的侧视示意图。FIG. 10 is a schematic side view of the first waveguide element in FIG. 1 .
图11绘示图10实施例之影像光束在投射目标之处产生的影像画面的概要示意图。FIG. 11 is a schematic diagram of an image frame generated by the image beam projected on the target in the embodiment of FIG. 10 .
图12A绘示叠加图9与图11的影像光束在投射目标之处产生的影像画面的概要示意图。FIG. 12A is a schematic diagram of an image frame generated by superimposing the image beams in FIG. 9 and FIG. 11 at the projected target.
图12B绘示不同的第二分光元件将影像光束反射至投射目标的概要示意图。FIG. 12B is a schematic diagram of different second light splitting elements reflecting the image beam to the projection target.
图13绘示本发明一实施例之影像光束由入射第一分光元件入射至第二波导元件的概要示意图。FIG. 13 shows a schematic diagram of an image beam entering the second waveguide element from the first light splitting element according to an embodiment of the present invention.
图14A绘示本发明一实施例之影像光束入射第一分光元件的概要示意图。FIG. 14A is a schematic diagram of an image beam entering a first light splitting element according to an embodiment of the present invention.
图14B所绘示本发明另一实施例之影像光束入射第一分光元件的概要示意图。FIG. 14B is a schematic diagram of another embodiment of the present invention where the image beam enters the first light splitting element.
图15绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 15 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
图16绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 16 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
图17绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 17 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
图18绘示图17实施例的头戴式显示装置的部分元件的概要示意图。FIG. 18 is a schematic diagram of some components of the head-mounted display device in the embodiment of FIG. 17 .
图19绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 19 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
图20绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 20 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
图21绘示本发明一实施例的头戴式显示装置的概要示意图。FIG. 21 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention.
具体实施方式Detailed ways
有关本发明之前述及其他技术内容、特点与功效,在以下配合参考附图之一实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of an embodiment with reference to the accompanying drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only referring to the directions of the drawings. Accordingly, the directional terms are used to illustrate and not to limit the invention.
图1绘示本发明一实施例的头戴式显示装置的立体示意图。图2A绘示图1的头戴式显示装置的侧视示意图。请参考图1及图2A,本实施例的头戴式显示装置100包括第一波导元件110、第二波导元件120、显示器130以及透镜模块140。第二波导元件120连接于第一波导元件110。透镜模块140配置在显示器130与第一波导元件110之间。FIG. 1 is a schematic perspective view of a head-mounted display device according to an embodiment of the present invention. FIG. 2A is a schematic side view of the head-mounted display device shown in FIG. 1 . Please refer to FIG. 1 and FIG. 2A , the head-mounted display device 100 of this embodiment includes a first waveguide element 110 , a second waveguide element 120 , a display 130 and a lens module 140 . The second waveguide element 120 is connected to the first waveguide element 110 . The lens module 140 is disposed between the display 130 and the first waveguide element 110 .
在本实施例中,第一波导元件110包括第一入光面S11、第一出光面S12以及多个第一分光元件Y1、Y2、Y3、Y4。第一分光元件Y1、Y2、Y3、Y4沿第一方向Y排列。在本实施例中,第一入光面S11与第一出光面S12相对设置,但本发明并不限于此。在一实施例中,依据显示器130的设置位置的不同,第一入光面S11也可与第一出光面S12邻接。在本实施例中,影像光束ML在第一分光元件Y1、Y2、Y3、Y4的位置发生半穿透半反射的光学效应,第一分光元件Y1、Y2、Y3、Y4例如为半穿透半反射膜(See Through Mirror,STM)。在本实施例中,第二波导元件120包括第二入光面S21、第二出光面S22以及多个第二分光元件X1、X2、X3、X4、X5、X6,其中第二入光面S21、第二出光面S22属于同一表面,差异在于第二波导元件120的第二入光面S21是面对第一波导元件110的第一出光面S12。第二分光元件X1、X2、X3、X4、X5、X6沿第二方向X排列。在本实施例中,影像光束ML在第二分光元件X1、X2、X3、X4、X5、X6的位置发生半穿透半反射的光学效应。在本实施例中,各波导元件所包括的分光元件的数量及相邻分光元件的间距可依据不同产品需求来设计之,并不用以限定本发明。并且,第一分光元件的数量可与第二分光元件的数量相同或不相同,相邻分光元件的间距可相同或不相同。在本实施例中,显示器130用于将来自照明系统的照明光束转换为影像光束ML,以提供影像光束ML给透镜模块140,其中照明系统将于下面内容中详细描述。在本实施例中,显示器130例如包括数位光源处理(Digital Light ProcessingTM,简称DLPTM)投影系统、液晶显示(liquid-crystal display,简称LCD)投影系统或液晶覆硅(Liquid Crystal On Silicon,简称LCoS)投影系统等影像投影系统,惟本发明并不加以限制。在本实施例中,透镜模块140例如为一个或多个透镜,数量不限,依设计而定。透镜模块140具有光轴A1是在第三方向Z上延伸。影像光束ML在透镜模块140中沿着第三方向Z传递。来自于显示器130的影像光束ML通过透镜模块140,经由第一入光面S11入射第一波导元件110。在本实施例中,在第一波导元件110之内影像光束ML穿透第一分光元件Y1而沿着第一方向Y传递,并且影像光束ML经由第一分光元件Y1、Y2、Y3、Y4反射的作用之后,沿着第三方向Z的相反方向(-Z)经由第一出光面S12离开第一波导元件110,值得注意的是,第一分光元件Y1、Y2、Y3、Y4为半穿透半反射膜,也就是部分影像光束ML可被第一分光元件Y1、Y2、Y3、Y4反射,部分影像光束ML穿透于第一分光元件Y1、Y2、Y3、Y4,本实施例中,以主要影像光束ML的光路径为描述重点。In this embodiment, the first waveguide element 110 includes a first light incident surface S11 , a first light exit surface S12 and a plurality of first light splitting elements Y1 , Y2 , Y3 , and Y4 . The first light splitting elements Y1, Y2, Y3, Y4 are arranged along the first direction Y. In this embodiment, the first light-incident surface S11 is disposed opposite to the first light-exit surface S12 , but the present invention is not limited thereto. In an embodiment, according to different installation positions of the display 130 , the first light incident surface S11 may also be adjacent to the first light output surface S12 . In this embodiment, the image light beam ML has an optical effect of half-transmission and half-reflection at the positions of the first light-splitting elements Y1, Y2, Y3, and Y4. The first light-splitting elements Y1, Y2, Y3, and Y4 are, for example, half-transmission Reflective film (See Through Mirror, STM). In this embodiment, the second waveguide element 120 includes a second light incident surface S21, a second light exit surface S22 and a plurality of second light splitting elements X1, X2, X3, X4, X5, X6, wherein the second light incident surface S21 , The second light-emitting surface S22 belongs to the same surface, the difference is that the second light-incident surface S21 of the second waveguide element 120 faces the first light-emitting surface S12 of the first waveguide element 110 . The second light splitting elements X1, X2, X3, X4, X5, X6 are arranged along the second direction X. In this embodiment, the optical effect of semi-transmission and semi-reflection occurs at the positions of the second light splitting elements X1 , X2 , X3 , X4 , X5 , and X6 of the image light beam ML. In this embodiment, the number of light-splitting elements included in each waveguide element and the distance between adjacent light-splitting elements can be designed according to different product requirements, and are not intended to limit the present invention. Moreover, the number of the first light splitting elements may be the same as or different from that of the second light splitting elements, and the distance between adjacent light splitting elements may be the same or different. In this embodiment, the display 130 is used to convert the illumination beam from the illumination system into the image beam ML to provide the image beam ML to the lens module 140 , wherein the illumination system will be described in detail below. In this embodiment, the display 130 includes, for example, a digital light processing (Digital Light Processing TM , DLP TM for short) projection system, a liquid-crystal display (LCD for short) projection system, or a Liquid Crystal On Silicon (Liquid Crystal On Silicon for short) projection system. LCoS) projection system and other image projection systems, but the present invention is not limited. In this embodiment, the lens module 140 is, for example, one or more lenses, and the number is not limited, depending on the design. The lens module 140 has an optical axis A1 extending in the third direction Z. The image beam ML is transmitted along the third direction Z in the lens module 140 . The image light beam ML from the display 130 passes through the lens module 140 and enters the first waveguide element 110 through the first incident surface S11 . In this embodiment, the image light beam ML passes through the first light splitting element Y1 in the first waveguide element 110 and passes along the first direction Y, and the image light beam ML is reflected by the first light splitting elements Y1, Y2, Y3, and Y4. After the action of the third direction Z (-Z), it leaves the first waveguide element 110 through the first light-emitting surface S12. It is worth noting that the first light-splitting elements Y1, Y2, Y3, and Y4 are semi-transparent The semi-reflective film, that is, part of the image light beam ML can be reflected by the first light splitting elements Y1, Y2, Y3, and Y4, and part of the image light beam ML penetrates the first light splitting elements Y1, Y2, Y3, and Y4. In this embodiment, the The optical path of the main image light beam ML is the focus of description.
此外,来自于第一波导元件110的影像光束ML沿着第三方向Z的相反方向(-Z)经由第二入光面S21入射进第二波导元件120,并且经由第二波导元件120的反射面S23反射后朝向第二波导元件120的第二分光元件X1、X2、X3、X4、X5、X6传递。在本实施例中,在第二波导元件120之内的影像光束ML沿着第二方向X传递,影像光束ML经由第二分光元件X1、X2、X3、X4、X5、X6反射的作用之后,从第二出光面S22离开第二波导元件110,投射至投射目标P。因此,在本实施例中,第二入光面S21与第二出光面S22是第二波导元件120的同一表面,但第二出光面S22面对投射目标P。在本实施例中,投射目标P例如是光瞳是使用者的眼睛其中之一。在其他实施例中,投射目标P例如是接收影像光束ML的影像感测装置,例如感光耦合元件(Charge-coupled Device,CCD)或是互补金属氧化物半导体影像感测器(ComplementaryMetal-Oxide-Semiconductor image sensor,CMOS image sensor)。In addition, the image light beam ML from the first waveguide element 110 enters the second waveguide element 120 through the second incident surface S21 along the opposite direction (-Z) of the third direction Z, and is reflected by the second waveguide element 120 After being reflected by the surface S23 , it passes toward the second light splitting elements X1 , X2 , X3 , X4 , X5 , and X6 of the second waveguide element 120 . In this embodiment, the image beam ML inside the second waveguide element 120 is transmitted along the second direction X, after the image beam ML is reflected by the second light splitting elements X1, X2, X3, X4, X5, and X6, The second light emitting surface S22 exits the second waveguide element 110 and is projected to the projection target P. Therefore, in this embodiment, the second light incident surface S21 and the second light exit surface S22 are the same surface of the second waveguide element 120 , but the second light exit surface S22 faces the projection target P. In this embodiment, the projection target P is, for example, one of the pupils of the user's eyes. In other embodiments, the projection target P is, for example, an image sensing device that receives the image beam ML, such as a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor image sensor (Complementary Metal-Oxide-Semiconductor). image sensor, CMOS image sensor).
在本实施例中,影像光束ML在透镜模块140中沿着第三方向Z的相反方向(-Z)传递,其传递方向与光轴A1的延伸方向实质上相同。在本实施例中,投射目标P具有视轴A2,其延伸方向(第三方向Z)实质上与影像光束ML投射入投射目标P的传递方向相同,并且垂直于第一方向Y。因此,在图1中,将投射目标P的视轴A2向第一波导元件110平移至YZ平面(参考平面)上,可在第一波导元件110中标示出参考轴A3,如图2A所示。In this embodiment, the image light beam ML transmits in the lens module 140 along a direction (−Z) opposite to the third direction Z, and the transmission direction is substantially the same as the extending direction of the optical axis A1 . In this embodiment, the projection target P has a visual axis A2, and its extending direction (third direction Z) is substantially the same as the transmission direction of the image beam ML projected into the projection target P, and is perpendicular to the first direction Y. Therefore, in FIG. 1, the visual axis A2 of the projection target P is translated to the YZ plane (reference plane) toward the first waveguide element 110, and the reference axis A3 can be marked in the first waveguide element 110, as shown in FIG. 2A .
也就是说,在本实施例中,投射目标P具有与第一方向Y垂直的视轴A2,并且视轴A2朝向第一波导元件110平移会在第一波导元件110内的参考平面YZ上产生参考轴A3。在图2A中,在参考平面YZ上,照明光束ML的传递路径上,照明光束ML形成的第一光栏(Stop)PA1与第一分光元件Y1、Y2、Y3、Y4的第一片分光元件Y1的中心位置PC在第一方向上的距离为D1,以及参考轴A3与第一片分光元件Y1的中心位置PC在第一方向Y上的距离为D2。在本实施例中,距离D1大于或等于距离D2。第一片分光元件Y1是部分影像光束ML进入第一波导元件110中,第一个反射影像光束ML的分光元件,也是最接近透镜模块140的第一分光元件Y1、Y2、Y3、Y4其中之一。That is to say, in this embodiment, the projection target P has a visual axis A2 perpendicular to the first direction Y, and the translation of the visual axis A2 toward the first waveguide element 110 will generate Reference axis A3. In Fig. 2A, on the reference plane YZ, on the transmission path of the illuminating light beam ML, the first stop PA1 formed by the illuminating light beam ML and the first light-splitting elements of the first light-splitting elements Y1, Y2, Y3, and Y4 The distance between the central position PC of Y1 in the first direction is D1, and the distance between the reference axis A3 and the central position PC of the first light splitting element Y1 in the first direction Y is D2. In this embodiment, the distance D1 is greater than or equal to the distance D2. The first light splitting element Y1 is part of the image beam ML entering the first waveguide element 110, and the first light splitting element that reflects the image light beam ML is also one of the first light splitting elements Y1, Y2, Y3, and Y4 closest to the lens module 140. one.
在本实施例中,来自于透镜模块140的影像光束ML在第一波导元件110之内收敛至第一光栏PA1。第一光栏PA1位于第一波导元件110之内。在本实施例中,第一光栏PA是影像光束ML在第一波导元件110之内收敛至最小光束直径的位置,并且通过第一光栏PA的位置后,影像光束ML开始发散。举例而言,透镜模块140可使入射至第一波导元件110的影像光束ML从第一分光元件Y1开始收敛,并且在第一光栏PA1达到光束直径最小的位置。在第一光栏PA1之后,影像光束ML开始发散并且入射至第一分光元件Y4再被反射至第一出光面S12。在本实施例中,影像光束ML经由第二出光面S22离开第二波导元件120之后在第二波导元件120之外投射至第二光栏PA2。第二光栏PA2位于投射目标P之处。举例而言,第二分光元件X1、X2、X3、X4、X5、X6可使入射至第二波导元件120的影像光束ML反射从第二出光面S22离开第二波导元件120,且影像光束ML投射到第二光栏PA2的位置,从而影像光束ML可入射至投射目标P,其中第二光栏PA2的位置实质同于投射目标P的位置,也就是使用者的其中之一的眼睛可以看到影像的位置即是第二光栏PA2的位置。In this embodiment, the image light beam ML from the lens module 140 converges to the first diaphragm PA1 within the first waveguide element 110 . The first aperture PA1 is located inside the first waveguide element 110 . In this embodiment, the first aperture PA is the position where the image beam ML converges to the minimum beam diameter within the first waveguide element 110 , and after passing through the position of the first aperture PA, the image beam ML starts to diverge. For example, the lens module 140 can make the image beam ML incident on the first waveguide element 110 converge from the first light splitting element Y1 and reach the position where the beam diameter is the smallest at the first aperture PA1 . After the first diaphragm PA1 , the image light beam ML starts to diverge and enters the first light splitting element Y4 and is reflected to the first light emitting surface S12 . In this embodiment, the image light beam ML exits the second waveguide element 120 through the second light-emitting surface S22 and is projected to the second aperture PA2 outside the second waveguide element 120 . The second aperture PA2 is located where the object P is projected. For example, the second light-splitting elements X1, X2, X3, X4, X5, and X6 can reflect the image beam ML incident on the second waveguide element 120 to leave the second waveguide element 120 from the second light-emitting surface S22, and the image beam ML Projected to the position of the second diaphragm PA2, so that the image beam ML can be incident on the projection target P, wherein the position of the second diaphragm PA2 is substantially the same as the position of the projection target P, that is, one of the eyes of the user can see The position of the image is the position of the second diaphragm PA2.
在本实施例中,透镜模块140的视角(Field Of View,FOV)相对应于投射目标P之处接收到影像的视角(FOV)。换句话说,在本实施例中,在投射目标P接收到由影像光束ML形成影像的对角线方向的视角大体上等同透镜模块140投射出影像光束ML的视角。但在其他实施例中,投射目标P接收到由影像光束ML形成影像的对角线方向的视角小于透镜模块140投射出影像光束ML的视角。In this embodiment, the field of view (FOV) of the lens module 140 corresponds to the field of view (FOV) of the projected object P where the image is received. In other words, in this embodiment, the angle of view in the diagonal direction where the projection target P receives the image formed by the image beam ML is substantially equal to the angle of view of the image beam ML projected by the lens module 140 . However, in other embodiments, the angle of view of the projection target P receiving the image formed by the image beam ML in the diagonal direction is smaller than the angle of view of the image beam ML projected by the lens module 140 .
藉由影像光束ML形成影像的对角线方向的视角可得知在第一方向Y上的第一视角以及在第二方向X上的第二视角。在本实施例中,当显示器130投射出影像光束ML欲显现为16:9投射比的影像时,透过透镜模块140会投射出具有对角线方向视角约在30度到90度之间,例如视角40度的影像光束ML透过第一波导元件110与第二波导元件120将影像光束ML传递至投射目标P,使得投射目标P可接收到影像光束ML形成影像的对角线方向的视角约在30度到90度之间,例如为40度,但不以此为限。此领域技术人员可藉由16:9投射比计算出在第一方向Y上的第一视角约为10度以及在第二方向X上的第二视角约为17度。由上述可知,透过本发明的头戴式显示装置,使得投射目标P之处接收到由影像光束ML形成影像的对角线方向的视角(FOV)可为30~90度或者90度以上。此外,如图2A所示,另一实施例中,透镜模块140的光轴A1垂直第一方向Y且平行投射目标P的视轴A2,投射目标P之处接收到由影像光束ML形成影像的对角线方向的视角(FOV)可为30~50度。以及先参考图3所示,另一实施例中,透镜模块140的光轴A1平行第一方向Y且垂直投射目标P的视轴A2,投射目标P之处接收到由影像光束ML形成影像的对角线方向的视角(FOV)可为50~90度。所述对角线方向的视角可依据不同产品需求来设计之,并不用以限定本发明。可使头戴式显示装置100提供大视角,且头戴式显示装置100的体积缩小。The first viewing angle in the first direction Y and the second viewing angle in the second direction X can be obtained from the viewing angle in the diagonal direction of the image formed by the image light beam ML. In this embodiment, when the display 130 projects the image beam ML to display an image with a projection ratio of 16:9, the lens module 140 will project a diagonal viewing angle between about 30 degrees and 90 degrees. For example, the image beam ML with a viewing angle of 40 degrees passes through the first waveguide element 110 and the second waveguide element 120 to transmit the image beam ML to the projection target P, so that the projection target P can receive the angle of view in the diagonal direction of the image beam ML to form an image. About between 30 degrees and 90 degrees, such as 40 degrees, but not limited thereto. Those skilled in the art can calculate that the first viewing angle in the first direction Y is about 10 degrees and the second viewing angle in the second direction X is about 17 degrees based on the projection ratio of 16:9. It can be seen from the above that, through the head-mounted display device of the present invention, the angle of view (FOV) in the diagonal direction where the projection target P receives the image formed by the image light beam ML can be 30-90 degrees or more than 90 degrees. In addition, as shown in FIG. 2A, in another embodiment, the optical axis A1 of the lens module 140 is perpendicular to the first direction Y and parallel to the visual axis A2 of the projection target P, where the projection target P receives the image formed by the image light beam ML The angle of view (FOV) in the diagonal direction may be 30-50 degrees. 3, in another embodiment, the optical axis A1 of the lens module 140 is parallel to the first direction Y and perpendicular to the visual axis A2 of the projection target P, where the projection target P receives the image formed by the image light beam ML The angle of view (FOV) in the diagonal direction may be 50-90 degrees. The angle of view in the diagonal direction can be designed according to different product requirements, and is not intended to limit the present invention. The head-mounted display device 100 can provide a large viewing angle, and the volume of the head-mounted display device 100 can be reduced.
在其它实施例中,当透镜模块140投射的影像光束ML形成影像的对角线方向的视角(FOV)后,第一视角的大小可依据第一波导元件110中第一分光元件的数量来决定,或者是依据第一波导元件110中第一片分光元件至最后一片分光元件的距离来决定,或者是依据第一波导元件110中相邻两片分光元件之间的距离来决定。类似地,第二视角的大小例如是依据第二波导元件120中第二分光元件的数量来决定,或者是依据第二波导元件120中第一片分光元件至最后一片分光元件的距离来决定,或者是依据第二波导元件120中相邻两片分光元件之间的距离来决定。但值得一提的是,藉由上述第一波导元件110与第二波导元件120的调整而产生的第一视角的大小与第二视角的大小,皆可小于或等于透镜模块140投射的影像光束ML形成影像的第一视角的大小与第二视角的大小。In other embodiments, after the image light beam ML projected by the lens module 140 forms the angle of view (FOV) in the diagonal direction of the image, the size of the first angle of view can be determined according to the number of first light splitting elements in the first waveguide element 110 , or it is determined according to the distance from the first light splitting element to the last light splitting element in the first waveguide element 110 , or it is determined according to the distance between two adjacent light splitting elements in the first waveguide element 110 . Similarly, the size of the second viewing angle is determined, for example, according to the number of second light-splitting elements in the second waveguide element 120, or according to the distance from the first light-splitting element to the last light-splitting element in the second waveguide element 120, Or it may be determined according to the distance between two adjacent light splitting elements in the second waveguide element 120 . However, it is worth mentioning that the size of the first viewing angle and the size of the second viewing angle generated by the adjustment of the first waveguide element 110 and the second waveguide element 120 can be less than or equal to the image beam projected by the lens module 140 The ML forms the size of the first viewing angle and the size of the second viewing angle of the image.
此外,由于考量显示器130可提供的影像投射比,将影响在第一波导元件110的第一片分光元件的数量和第二波导元件120的第二片分光元件的数量,举例而言,若投射比为16:9则第二波导元件120的第二片分光元件的数量大于第一波导元件110的第一片分光元件的数量。不过,在其他设计条件下,第二波导元件120的第二片分光元件的数量可小于第一波导元件110的第一片分光元件的数量,不以此为限。In addition, due to consideration of the image projection ratio that the display 130 can provide, it will affect the number of the first light-splitting element in the first waveguide element 110 and the number of the second light-splitting element in the second waveguide element 120. For example, if the projection If the ratio is 16:9, the number of the second light-splitting elements of the second waveguide element 120 is greater than the number of the first light-splitting elements of the first waveguide element 110 . However, under other design conditions, the number of the second light-splitting elements of the second waveguide element 120 may be smaller than the number of the first light-splitting elements of the first waveguide element 110 , and it is not limited thereto.
此外,依据显示器与透镜模块设置位置的不同,在一实施例中,第一波导元件的第一入光面可与第一出光面邻接,且透镜模块的光轴平行于第一方向。在一实施例中,第一波导元件的第一入光面可与第一出光面邻接,且透镜模块的光轴可垂直于第一方向且平行于第二方向。In addition, depending on the positions of the display and the lens module, in an embodiment, the first light incident surface of the first waveguide element may be adjacent to the first light output surface, and the optical axis of the lens module is parallel to the first direction. In an embodiment, the first light incident surface of the first waveguide element may be adjacent to the first light exit surface, and the optical axis of the lens module may be perpendicular to the first direction and parallel to the second direction.
图2B绘示本发明图2A中实施例的头戴式显示装置的光路径侧视示意图。同时参考图2B。由于第一波导元件110的第一分光元件Y1、Y2、Y3、Y4为半穿透半反射膜,也就是将部分影像光束ML可被第一分光元件Y1、Y2、Y3、Y4反射,部分影像光束ML穿透于第一分光元件Y1、Y2、Y3、Y4,在本实施例中,在第一波导元件110中部分影像光束ML收敛于第一光栏PA1的位置,由基础光学原理可知,穿过第一分光元件Y1的部分影像光束ML同样可收敛于第二波导元件120中光栏PA1’的位置,且由第一分光元件Y1的中心位置至光栏PA1’的位置的距离等于第一分光元件Y1的中心位置至第一光栏PA1的位置的距离。相同理由,第一分光元件Y2、Y3所反射的部分影像光束ML可收敛于第二波导元件120中光栏PA1”与PA1”’的位置,且第一分光元件Y2的中心位置至光栏PA1”的位置的距离等于第一分光元件Y2的中心位置至第一光栏PA1的位置的距离,以及第一分光元件Y3的中心位置至光栏PA1”’的位置的距离等于第一分光元件Y3的中心位置至第一光栏PA1的位置的距离。FIG. 2B is a schematic side view of the light path of the head-mounted display device of the embodiment shown in FIG. 2A of the present invention. Also refer to FIG. 2B . Since the first light-splitting elements Y1, Y2, Y3, and Y4 of the first waveguide element 110 are semi-transparent and semi-reflective films, that is, part of the image light beam ML can be reflected by the first light-splitting elements Y1, Y2, Y3, and Y4, and part of the image The light beam ML penetrates the first light splitting elements Y1, Y2, Y3, and Y4. In this embodiment, part of the image light beam ML in the first waveguide element 110 converges at the position of the first diaphragm PA1. It can be known from basic optical principles that The part of the image light beam ML passing through the first light splitting element Y1 can also converge at the position of the diaphragm PA1' in the second waveguide element 120, and the distance from the center position of the first light splitting element Y1 to the position of the diaphragm PA1' is equal to the second waveguide element 120. A distance from the center position of the light splitting element Y1 to the position of the first diaphragm PA1. For the same reason, the partial image light beam ML reflected by the first light splitting elements Y2 and Y3 can converge to the positions of the diaphragms PA1 ″ and PA1 ″′ in the second waveguide element 120 , and the center position of the first light splitting element Y2 reaches the position of the diaphragm PA1 The distance from the position of "is equal to the distance from the center position of the first light-splitting element Y2 to the position of the first light barrier PA1, and the distance from the center position of the first light-splitting element Y3 to the position of the light barrier PA1"' is equal to the distance from the first light-splitting element Y3 The distance from the center position of to the position of the first diaphragm PA1.
图2C绘示本发明另一实施例的头戴式显示装置的侧视示意图。图2C实施例的头戴式显示装置类似于图2A实施例的头戴式显示装置100,其构件以及相关叙述可以参考头戴式显示装置100的构件以及相关叙述,在此不再赘述。头戴式显示装置100与头戴式显示装置100的差异如下所述。在本实施例中,头戴式显示装置100包括第一光波导元件110以及第二光波导元件120。另外,头戴式显示装置100还包括反射镜150,配置于第一入光面S11旁,且面向第一入光面S11。反射镜150用于反射由显示器130经过透镜模块140所提供的影像光束ML,以使影像光束ML由第一入光面S11进入第一光波导元件110。接着,进入第一光波导元件110的影像光束ML可再被多个第一分光片Y1、Y2、Y3、Y4反射而传递至第二光波导元件120。FIG. 2C is a schematic side view of a head-mounted display device according to another embodiment of the present invention. The head-mounted display device in the embodiment of FIG. 2C is similar to the head-mounted display device 100 in the embodiment of FIG. 2A , and its components and related descriptions can refer to the components and related descriptions of the head-mounted display device 100 , which will not be repeated here. The differences between the head-mounted display device 100 and the head-mounted display device 100 are as follows. In this embodiment, the head-mounted display device 100 includes a first light waveguide element 110 and a second light waveguide element 120 . In addition, the head-mounted display device 100 further includes a reflector 150 disposed beside the first light-incident surface S11 and facing the first light-incident surface S11 . The mirror 150 is used to reflect the image beam ML provided by the display 130 through the lens module 140 , so that the image beam ML enters the first optical waveguide element 110 from the first incident surface S11 . Next, the image light beam ML entering the first optical waveguide element 110 can be reflected by a plurality of first beam splitters Y1 , Y2 , Y3 , Y4 and delivered to the second optical waveguide element 120 .
具体而言,反射镜150与第一出光面S11之间的夹角例如是45度。当影像光束ML经由反射镜150反射后,可以入射第一分光片Y1。此外,在本实施例中,影像光束ML的第一光栏PA1的位置例如是位于第一光波导元件110中。第一光栏PA1的位置例如是位于这些第一分光片Y1、Y2、Y3、Y4之间。因此,行进于第一光波导元件110的影像光束ML可以缩束到第一光栏PA1的位置。在本实施例中,藉由将影像光束ML缩束的第一光栏PA1的位置设置至第一光波导元件110的内部,可以避免影像光束ML太早于XY平面上发散而在第一出光面S12以及第一入光面S11产生全反射。也就是说,影像光束ML在发生全反射之前就可以通过这些第一分光片Y1、Y2、Y3、Y4导引到第二光波导元件120中,因此可以避免影像光束ML于第一光波导元件110中发生全反射而造成非预期显示画面的问题。Specifically, the included angle between the reflecting mirror 150 and the first light-emitting surface S11 is, for example, 45 degrees. When the image beam ML is reflected by the mirror 150, it may enter the first beam splitter Y1. In addition, in this embodiment, the position of the first diaphragm PA1 of the image light beam ML is located in the first optical waveguide element 110 , for example. The position of the first diaphragm PA1 is, for example, located between the first light splitters Y1 , Y2 , Y3 , and Y4 . Therefore, the image light beam ML traveling through the first optical waveguide element 110 can be narrowed to the position of the first diaphragm PA1. In this embodiment, by setting the position of the first diaphragm PA1 where the image beam ML is narrowed to the inside of the first optical waveguide element 110, it is possible to prevent the image beam ML from diverging too early on the XY plane and to be in the first light exit. The surface S12 and the first incident surface S11 produce total reflection. That is to say, the image light beam ML can be guided into the second optical waveguide element 120 through the first light splitters Y1, Y2, Y3, and Y4 before total reflection occurs, so that the image light beam ML can be prevented from entering the first optical waveguide element. Total reflection occurs in 110 and causes the problem of unexpected display screen.
图3绘示本发明另一实施例的头戴式显示装置的立体示意图。请参考图1及图3,本实施例的头戴式显示装置200类似于图1实施例的头戴式显示装置100,惟两者之间主要的差异例如在于头戴式显示装置200的显示器230与透镜模块240平行设置在第一波导元件110的侧边,来自透镜模块240的影像光束ML从第一波导元件110的第一入光面S13入射第一波导元件100,并且经由第一出光面S12离开第一波导元件110。因此,在本实施例中,第一波导元件110的第一入光面S13与第一出光面S12邻接,且透镜模块240的光轴A1平行于第一方向Y。在本实施例中,第一光栏PA1位于第一波导元件210之内,并且第二光栏PA2位于投射目标P之处。并且,第一光栏PA1在第一波导元件210之内的位置也符合距离D1大于或等于距离D2的条件。FIG. 3 is a three-dimensional schematic diagram of a head-mounted display device according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 3, the head-mounted display device 200 of this embodiment is similar to the head-mounted display device 100 of the embodiment of FIG. 230 is arranged parallel to the lens module 240 on the side of the first waveguide element 110. The image beam ML from the lens module 240 enters the first waveguide element 100 from the first incident surface S13 of the first waveguide element 110, and passes through the first light-emitting The face S12 leaves the first waveguide element 110 . Therefore, in this embodiment, the first light incident surface S13 of the first waveguide element 110 is adjacent to the first light exit surface S12 , and the optical axis A1 of the lens module 240 is parallel to the first direction Y. In this embodiment, the first aperture PA1 is located inside the first waveguide element 210 , and the second aperture PA2 is located where the target P is projected. Moreover, the position of the first aperture PA1 within the first waveguide element 210 also meets the condition that the distance D1 is greater than or equal to the distance D2.
图4绘示本发明另一实施例的头戴式显示装置的立体示意图。请参考图1及图4,本实施例的头戴式显示装置800类似于图1实施例的头戴式显示装置100,惟两者之间主要的差异例如在于第一入光面与第一出光面邻接,且透镜模块的光轴A1垂直于第一方向Y且平行于第二方向X。FIG. 4 is a schematic perspective view of a head-mounted display device according to another embodiment of the present invention. Please refer to FIG. 1 and FIG. 4, the head-mounted display device 800 of this embodiment is similar to the head-mounted display device 100 of the embodiment of FIG. The light emitting surfaces are adjacent, and the optical axis A1 of the lens module is perpendicular to the first direction Y and parallel to the second direction X.
具体而言,在本实施例中,头戴式显示装置800包括第一波导元件810、第二波导元件820、第三波导元件850、显示器830以及透镜模块840。在一实施例中,第三波导元件850与第二波导元件820亦可为相同材料且一体成型的结构。显示器830用于提供影像光束ML。在本实施例中,影像光束ML经由第一入射面S14入射至第一波导元件810,并且经由反射面S15反射,朝向第一方向Y传递。接着,影像光束ML再由第一出光面S12离开第一波导元件810。因此,在本实施例中,第一入光面S14与第一出光面S12与反射面S15邻接,且透镜模块840的光轴A1垂直于第一方向Y且平行于第二方向X。显示器830与透镜模块840配置的位置可依据不同产品设计或光学特性来决定之,本发明并不加以限制。并且,本实施例的第三波导元件850可采用如图5A至图5C实施例的其中之一的第三波导元件设计。Specifically, in this embodiment, the head-mounted display device 800 includes a first waveguide element 810 , a second waveguide element 820 , a third waveguide element 850 , a display 830 and a lens module 840 . In one embodiment, the third waveguide element 850 and the second waveguide element 820 can also be made of the same material and integrally formed. The display 830 is used to provide the image beam ML. In this embodiment, the image beam ML is incident on the first waveguide element 810 through the first incident surface S14 , is reflected by the reflecting surface S15 , and travels toward the first direction Y. Next, the image light beam ML leaves the first waveguide element 810 through the first light exit surface S12 . Therefore, in this embodiment, the first light incident surface S14 is adjacent to the first light exit surface S12 and the reflective surface S15 , and the optical axis A1 of the lens module 840 is perpendicular to the first direction Y and parallel to the second direction X. The positions of the display 830 and the lens module 840 may be determined according to different product designs or optical characteristics, which are not limited by the present invention. Moreover, the third waveguide element 850 of this embodiment can adopt the design of the third waveguide element in one of the embodiments shown in FIG. 5A to FIG. 5C .
在本实施例中,第一波导元件810包括多个第一分光元件811。影像光束ML在这些第一分光元件811的位置发生半穿透半反射的光学效应,并且入射至第三波导元件850。第三波导元件850可具有例如图5A至图5C实施例所述的反射结构。在本实施例中,影像光束ML在第三波导元件850的反射结构的位置发生反射,并且入射至第二波导元件820。第二波导元件820包括多个第二分光元件831。影像光束ML在这些第二分光元件831的位置发生半穿透半反射的光学效应,并且离开第二波导元件820。在本实施例中,离开第二波导元件820的影像光束ML用于进入投射目标P,其中投射目标P例如是使用者的一只眼睛位置。此外,第一分光元件811以及第二分光元件831的数量并不限于图4所示,配置在第一波导元件810以及第二波导元件820当中的分光元件的数量可依据不同产品需求来设计之,本发明并不加以限制。In this embodiment, the first waveguide element 810 includes a plurality of first light splitting elements 811 . The image light beam ML undergoes an optical effect of half-transmission and half-reflection at the positions of the first light splitting elements 811 , and enters the third waveguide element 850 . The third waveguide element 850 may have, for example, the reflective structure described in the embodiment of FIG. 5A to FIG. 5C . In this embodiment, the image light beam ML is reflected at the position of the reflective structure of the third waveguide element 850 and enters the second waveguide element 820 . The second waveguide element 820 includes a plurality of second light splitting elements 831 . The image light beam ML undergoes an optical effect of half-transmission and half-reflection at the positions of the second light splitting elements 831 , and leaves the second waveguide element 820 . In this embodiment, the image beam ML leaving the second waveguide element 820 is used to enter the projection target P, where the projection target P is, for example, the position of one eye of the user. In addition, the number of the first light-splitting element 811 and the second light-splitting element 831 is not limited to that shown in FIG. 4 , and the number of light-splitting elements arranged in the first waveguide element 810 and the second waveguide element 820 can be designed according to different product requirements. , the present invention is not limited.
在本实施例中,由于这些第一分光元件811以及这些第二分光元件831分别具有镀膜,并且镀膜仅能使得特定入射角范围入射的影像光束ML穿透。因此,当影像光束ML在第一波导元件810以及第二波导元件820行进的过程中以过大的入射角入射这些第一分光元件811以及这些第二分光元件831时,一部分的影像光束ML反而会在这些第一分光元件811以及这些第二分光元件831片上发生反射。此非预期的反射影像光束ML会继续于第一波导元件810以及第二波导元件820中行进,而在后续以较小角度入射分光片的情况下,以与前述预期方向相反的方向倾斜地导入使用者的眼睛。此时,使用者除了会观看到原本预期的影像画面外,同时还会观看到镜像的非预期的影像画面。因此,使用者容易在使用头戴式显示器的过程中感觉影像画面有鬼影的存在或影像画面变得模糊。In this embodiment, since the first light splitting elements 811 and the second light splitting elements 831 have coatings respectively, and the coatings can only pass through the image beam ML incident in a specific incident angle range. Therefore, when the image beam ML enters these first light splitting elements 811 and these second light splitting elements 831 at an excessively large incident angle during the traveling process of the first waveguide element 810 and the second waveguide element 820, a part of the image light beam ML instead Reflection will occur on the first light splitting elements 811 and the second light splitting elements 831 . The unexpected reflected image light beam ML will continue to travel in the first waveguide element 810 and the second waveguide element 820, and in the case of entering the beam splitter at a smaller angle, it will be obliquely introduced in the direction opposite to the aforementioned expected direction. user's eyes. At this time, in addition to watching the originally expected image frame, the user will also watch the mirrored unexpected image frame at the same time. Therefore, the user tends to feel that there is a ghost in the video screen or the video screen becomes blurred when using the head-mounted display.
图5A绘示本发明的头戴式显示装置的一实施例的示意图,参考图5A。在本实施例中,头戴式显示装置500包括第一波导元件510、第二波导元件520以及第三波导元件530,其中第二波导元件520包括多个第二分光元件531。在本实施例中,第一波导元件510配置于第三波导元件530旁。第一波导元件510可贴合于第三波导元件530,或透过透明胶材粘合,或者利用固定件532(例如间隔物或胶材或垫片)在第一波导元件510与第三波导元件530的外围固定,中间区域具有间隔(gap),间隔可为微小的空气间隙(air gap)。此外,第一出光面ES1面对第二入光面IS2。第二入光面IS2连接第二出光面ES2。第三波导元件530可贴合于第二波导元件520,或透过透明胶材粘合。因此,第三入光面IS3连接于第二出光面ES2。在本实施例中,第三波导元件530包括反射结构521。反射结构521可由多个光学微结构所组成,并且这些多个光学微结构可为多个倾斜配置且周期性排列的多个反射面。FIG. 5A is a schematic diagram of an embodiment of the head-mounted display device of the present invention, refer to FIG. 5A . In this embodiment, the head-mounted display device 500 includes a first waveguide element 510 , a second waveguide element 520 and a third waveguide element 530 , wherein the second waveguide element 520 includes a plurality of second light splitting elements 531 . In this embodiment, the first waveguide element 510 is disposed beside the third waveguide element 530 . The first waveguide element 510 can be bonded to the third waveguide element 530, or bonded through a transparent adhesive, or use a fixing member 532 (such as a spacer or an adhesive material or a spacer) between the first waveguide element 510 and the third waveguide. The periphery of the element 530 is fixed, and the middle region has a gap, which may be a small air gap. In addition, the first light emitting surface ES1 faces the second light incident surface IS2. The second light incident surface IS2 is connected to the second light exit surface ES2. The third waveguide element 530 can be adhered to the second waveguide element 520, or bonded through a transparent adhesive. Therefore, the third light incident surface IS3 is connected to the second light exit surface ES2. In this embodiment, the third waveguide element 530 includes a reflective structure 521 . The reflective structure 521 may be composed of a plurality of optical microstructures, and the plurality of optical microstructures may be a plurality of obliquely arranged and periodically arranged reflective surfaces.
此外,上述空气间隙(air gap)的目的在于具有大角度的入射角度的影像光束ML射入第一波导元件510中,可避免部分的影像光束ML直接穿透第一波导元件510,使得部分影像光束ML以全反射的方式在第一波导元件510中传递。另一优点,部分影像光束ML由反射结构521反射后朝向第二入光面IS2,由于空气间隙可让部分影像光束ML在第二入光面IS2产生全反射,将部分影像光束ML导入第二波导元件520。In addition, the purpose of the above-mentioned air gap (air gap) is that the image beam ML with a large incident angle enters the first waveguide element 510, so as to prevent part of the image beam ML from directly penetrating the first waveguide element 510, so that part of the image beam ML The light beam ML is transmitted in the first waveguide element 510 in a total reflection manner. Another advantage is that part of the image beam ML is reflected by the reflective structure 521 and then directed towards the second light incident surface IS2. Due to the air gap, the part of the image beam ML can be totally reflected on the second light incident surface IS2, and the part of the image beam ML is guided into the second light incident surface IS2. waveguide element 520 .
在本实施例中,影像光束ML经由第一波导元件510的第一出光面ES1入射至第三波导元件530,并且经由第二入光面IS2入射第三波导元件530。影像光束ML经由反射结构521反射来自于第二入光面IS2的影像光束ML,并且经由第二出光面ES2离开第三波导元件530。影像光束ML经由第三入光面IS3入射第二波导元件520,并经由第三出光面ES3离开第二波导元件520。In this embodiment, the image light beam ML enters the third waveguide element 530 through the first light exit surface ES1 of the first waveguide element 510 , and enters the third waveguide element 530 through the second light incident surface IS2 . The image beam ML reflects the image beam ML from the second incident surface IS2 through the reflective structure 521 , and leaves the third waveguide element 530 through the second incident surface ES2 . The image beam ML enters the second waveguide element 520 through the third light incident surface IS3 and exits the second waveguide element 520 through the third light exit surface ES3.
在本实施例中,第三波导元件530与第二波导元件520可为不同材料。例如,第三波导元件530可为塑胶材料,并且第一波导元件510以及第二波导元件520可为玻璃,但本发明并不限于此。在一实施例中,第三波导元件530与第二波导元件520亦可为相同材料且一体成型的结构。在本实施例中,第一波导元件510、第三波导元件530以及第二波导元件520个别的材料选择亦可依据不同反射率需求或产品设计来决定之。In this embodiment, the third waveguide element 530 and the second waveguide element 520 can be made of different materials. For example, the third waveguide element 530 can be plastic material, and the first waveguide element 510 and the second waveguide element 520 can be glass, but the invention is not limited thereto. In one embodiment, the third waveguide element 530 and the second waveguide element 520 can also be made of the same material and integrally formed. In this embodiment, the material selection of the first waveguide element 510 , the third waveguide element 530 and the second waveguide element 520 can also be determined according to different reflectivity requirements or product design.
图5B绘示本发明的头戴式显示装置的一实施例的示意图,参考图5B。在本实施例中,头戴式显示装置600包括第一波导元件610、第三波导元件630以及第二波导元件620,其中第二波导元件620包括多个第二分光元件631。在本实施例中,第一波导元件610配置于第二波导元件620旁。第一波导元件610可贴合于第二波导元件620,或透过透明胶材粘合,或利用机构件(例如间隔物或胶材)在第一波导元件610与第二波导元件620的外围固定,但中间区域具有间隔,间隔可为微小的空气间隙。因此,在影像光束ML的传递路径上,影像光束ML经由第一出光面ES1穿过第二波导元件620而传递至第三波导元件630。此外,第一出光面ES1面对第二入光面IS2。第二入光面IS2连接第二出光面ES2。第三波导元件630可贴合于第二波导元件620,或透过透明胶材粘合。因此,第三入光面IS3连接于第二出光面ES2。第二入光面IS2与第三入光面IS3面对第一出光面ES1。在本实施例中,第三波导元件630包括反射结构621。反射结构621可由多个光学微结构所组成,并且这些多个光学微结构可为多个倾斜配置且周期性排列的多个反射面。FIG. 5B is a schematic diagram of an embodiment of the head-mounted display device of the present invention, refer to FIG. 5B . In this embodiment, the head-mounted display device 600 includes a first waveguide element 610 , a third waveguide element 630 and a second waveguide element 620 , wherein the second waveguide element 620 includes a plurality of second light splitting elements 631 . In this embodiment, the first waveguide element 610 is disposed beside the second waveguide element 620 . The first waveguide element 610 can be bonded to the second waveguide element 620, or bonded through a transparent adhesive, or use mechanical components (such as spacers or adhesive materials) on the periphery of the first waveguide element 610 and the second waveguide element 620 Fixed, but with space in the middle area, which can be a tiny air gap. Therefore, on the transmission path of the image beam ML, the image beam ML passes through the second waveguide element 620 through the first light-emitting surface ES1 and is transmitted to the third waveguide element 630 . In addition, the first light emitting surface ES1 faces the second light incident surface IS2. The second light incident surface IS2 is connected to the second light exit surface ES2. The third waveguide element 630 can be adhered to the second waveguide element 620 , or bonded through a transparent adhesive. Therefore, the third light incident surface IS3 is connected to the second light exit surface ES2. The second light incident surface IS2 and the third light incident surface IS3 face the first light exit surface ES1. In this embodiment, the third waveguide element 630 includes a reflective structure 621 . The reflective structure 621 may be composed of a plurality of optical microstructures, and the plurality of optical microstructures may be a plurality of obliquely arranged and periodically arranged reflective surfaces.
在本实施例中,影像光束ML经由第一波导元件610的第一出光面ES1入射第二波导元件620,通过第二波导元件620后再经由第二入光面IS2入射第三波导元件630。影像光束ML经由反射结构621反射来自于第二入光面IS2的影像光束ML,并且经由第二出光面ES2离开第三波导元件630。影像光束ML经由第三入光面IS3再入射第二波导元件620,并经由第三出光面ES3离开第二波导元件620。In this embodiment, the image beam ML enters the second waveguide element 620 through the first light exit surface ES1 of the first waveguide element 610 , passes through the second waveguide element 620 and then enters the third waveguide element 630 through the second light incident surface IS2 . The image beam ML reflects the image beam ML from the second incident surface IS2 through the reflective structure 621 , and leaves the third waveguide element 630 through the second incident surface ES2 . The image beam ML re-enters the second waveguide element 620 through the third light-incident surface IS3 , and exits the second waveguide element 620 through the third light-emitting surface ES3 .
在本实施例中,第三波导元件630与第二波导元件620可为不同材料。例如,第三波导元件630可为塑胶材料,并且第一波导元件610以及第二波导元件620可为玻璃,但本发明并不限于此。在一实施例中,第三波导元件630与第二波导元件620亦可为相同材料且一体成型的结构。在本实施例中,第一波导元件610、第三波导元件630以及第二波导元件620个别的材料选择亦可依据不同反射率需求或产品设计来决定之。In this embodiment, the third waveguide element 630 and the second waveguide element 620 can be made of different materials. For example, the third waveguide element 630 can be plastic material, and the first waveguide element 610 and the second waveguide element 620 can be glass, but the invention is not limited thereto. In an embodiment, the third waveguide element 630 and the second waveguide element 620 may also be made of the same material and integrally formed. In this embodiment, the material selection of the first waveguide element 610 , the third waveguide element 630 and the second waveguide element 620 can also be determined according to different reflectivity requirements or product design.
图5C绘示本发明的头戴式显示装置的一实施例的示意图,参考图5C。在本实施例中,头戴式显示装置700包括第一波导元件710、第三波导元件730以及第二波导元件720,其中第二波导元件720包括多个第二分光元件731。在本实施例中,第一波导元件710配置于第二波导元件720旁。第一波导元件710可贴合于第二波导元件720,或透过透明胶材粘合,或利用固定件(例如间隔物或胶材或垫片,如图5A所示)在第一波导元件710与第二波导元件720的外围固定,中间区域具有间隔(gap),间隔可为微小的空气间隙(air gap)。因此,第一出光面ES1透过第二波导元件720面对第二入光面IS2。第二入光面IS2连接第二出光面ES2。第三波导元件730倾斜配置于第二波导元件720旁,因此第二入光面IS2、第二出光面ES2以及第三入光面IS3相对于第三出光面ES3具有一倾斜角度。第三波导元件730可贴合于第二波导元件720,或透过透明胶材粘合。因此,第三入光面IS3连接第二出光面ES2。在本实施例中,第三波导元件730包括反射结构721与透光层。第三波导元件730为反射单元(reflecting unit),并且反射结构721可为反射镜或者为反射涂层。FIG. 5C is a schematic diagram of an embodiment of the head-mounted display device of the present invention, refer to FIG. 5C . In this embodiment, the head-mounted display device 700 includes a first waveguide element 710 , a third waveguide element 730 and a second waveguide element 720 , wherein the second waveguide element 720 includes a plurality of second light splitting elements 731 . In this embodiment, the first waveguide element 710 is disposed beside the second waveguide element 720 . The first waveguide element 710 can be bonded to the second waveguide element 720, or bonded through a transparent adhesive, or use a fixing member (such as a spacer or an adhesive or a spacer, as shown in FIG. 5A ) on the first waveguide element. 710 is fixed to the periphery of the second waveguide element 720 , and there is a gap in the middle region, which can be a small air gap. Therefore, the first light emitting surface ES1 faces the second light incident surface IS2 through the second waveguide element 720 . The second light incident surface IS2 is connected to the second light exit surface ES2. The third waveguide element 730 is obliquely disposed beside the second waveguide element 720 , so the second light incident surface IS2 , the second light exit surface ES2 and the third light incident surface IS3 have an inclination angle relative to the third light exit surface ES3 . The third waveguide element 730 can be adhered to the second waveguide element 720 , or bonded through a transparent adhesive. Therefore, the third light incident surface IS3 is connected to the second light exit surface ES2. In this embodiment, the third waveguide element 730 includes a reflective structure 721 and a transparent layer. The third waveguide element 730 is a reflecting unit, and the reflecting structure 721 can be a mirror or a reflective coating.
在本实施例中,影像光束ML经由第一波导元件710的第一出光面ES1入射第二波导元件720,通过第二波导元件720后再经由第二入光面IS2入射第三波导元件730。影像光束ML经由反射结构721反射来自于第二入光面IS2的影像光束ML,并且经由第二出光面ES2离开第三波导元件730。影像光束ML经由第三入光面IS3再入射第二波导元件720,并经由第三出光面ES3离开第二波导元件720。In this embodiment, the image beam ML enters the second waveguide element 720 through the first light exit surface ES1 of the first waveguide element 710 , passes through the second waveguide element 720 and then enters the third waveguide element 730 through the second light incident surface IS2 . The image beam ML reflects the image beam ML from the second incident surface IS2 through the reflective structure 721 , and leaves the third waveguide element 730 through the second incident surface ES2 . The image beam ML re-enters the second waveguide element 720 through the third light-incident surface IS3 , and exits the second waveguide element 720 through the third light-emitting surface ES3 .
在本实施例中,第一波导元件710、第三波导元件730以及第二波导元件720可皆为玻璃材料,但本发明并不限于此。在一实施例中,第三波导元件730可为塑胶材料的反射单元。并且,第一波导元件710、第三波导元件730以及第三波导元件730个别的材料选择亦可依据不同反射率需求或产品设计来决定之。In this embodiment, the first waveguide element 710 , the third waveguide element 730 and the second waveguide element 720 can all be made of glass material, but the invention is not limited thereto. In one embodiment, the third waveguide element 730 may be a reflective unit made of plastic material. Moreover, the material selection of the first waveguide element 710 , the third waveguide element 730 , and the third waveguide element 730 can also be determined according to different reflectivity requirements or product design.
图6A绘示本发明另一实施例的头戴式显示装置的示意图。请参考图1~4,6A,在本实施例中,头戴式显示装置900包括第一波导元件910、第三波导元件930、第二波导元件920以及反射元件950。反射元件950用于接收显示器提供的影像光束ML,反射元件950可为具有反射层的棱镜(未显示),且显示器提供的影像光束由X轴方向入射至反射元件950,在藉由反射元件950的反射层将影像光束沿Y轴方向入射至第一波导元件910。为了方便说明,本实施例的第三波导元件930采用上述图5C实施例的第二波导元件的反射结构设计,但本发明并不限于此。上述图5A以及图5B实施例的第二波导元件的反射结构设计亦可适用之。FIG. 6A is a schematic diagram of a head-mounted display device according to another embodiment of the present invention. Referring to FIGS. 1-4 and 6A , in this embodiment, the head-mounted display device 900 includes a first waveguide element 910 , a third waveguide element 930 , a second waveguide element 920 and a reflective element 950 . The reflective element 950 is used to receive the image beam ML provided by the display. The reflective element 950 can be a prism (not shown) with a reflective layer, and the image beam provided by the display enters the reflective element 950 from the X-axis direction. The reflective layer makes the image beam incident to the first waveguide element 910 along the Y-axis direction. For the convenience of description, the third waveguide element 930 of this embodiment adopts the reflective structure design of the second waveguide element in the embodiment of FIG. 5C , but the present invention is not limited thereto. The design of the reflective structure of the second waveguide element in the embodiment shown in FIG. 5A and FIG. 5B is also applicable.
在本实施例中,本发明提出显示器提供的影像光束ML可仅具有单一极化方向。举例来说,影像光束ML由反射元件950入射至第一波导元件910时,可使用偏振元件(Polarizer),偏振元件960可配置在显示器与第一波导元件910之间、显示器与反射元件950之间,或者反射元件950与第一波导元件910之间,以使由显示器入射至第一波导元件910的影像光束只具有P极化方向的光(如同第三轴Z的方向),并且影像光束ML由第一波导元件910经由第三波导元件930的反射结构入射至第二波导元件920,基于此领域基本偏振光的光学定义可知,将P极化方向的光转换为S极化方向的光(如同第二轴Y的方向)。因此,第一波导元件910中,只传递单一极化方向的影像光束,并且这些第一分光元件911以及这些第二分光元件931各别的镀膜层是可对应具有单一极化方向的影像光束来设计。In this embodiment, the present invention proposes that the image light beam ML provided by the display can only have a single polarization direction. For example, when the image light beam ML enters the first waveguide element 910 from the reflective element 950, a polarizer can be used, and the polarizer 960 can be arranged between the display and the first waveguide element 910, between the display and the reflective element 950 between the reflective element 950 and the first waveguide element 910, so that the image beam incident on the first waveguide element 910 by the display only has light in the P polarization direction (like the direction of the third axis Z), and the image beam ML enters the second waveguide element 920 from the first waveguide element 910 through the reflective structure of the third waveguide element 930. Based on the optical definition of basic polarized light in this field, it can be known that the light in the P polarization direction is converted into the light in the S polarization direction. (like the direction of the second axis Y). Therefore, in the first waveguide element 910, only the image beam with a single polarization direction is transmitted, and the coating layers of the first light splitting elements 911 and the second light splitting elements 931 can correspond to the image light beam with a single polarization direction. design.
在另一实施例中,本实施例的头戴式显示装置900可进一步包括相位延迟片970。在本实施例中,偏振元件960可配置在显示器与第一波导元件910之间,或反射元件950与第一波导元件910之间,以使由反射元件950入射至第一波导元件910的影像光束可只具有S极化方向的光。并且,相位延迟片970可配置在第一波导元件910与第三波导元件930之间(也将相位延迟片970可配置在第二波导元件920与第一波导元件910之间),以使由第一波导元件910入射至第二波导元件920的影像光束可为S极化方向的光。据此,头戴式显示装置900藉由配置偏振元件960、相位延迟片970,而可有效降低非预期的反射光线于第一波导元件910以及第二波导元件920中行进的情况。In another embodiment, the head-mounted display device 900 of this embodiment may further include a phase delay film 970 . In this embodiment, the polarizing element 960 can be arranged between the display and the first waveguide element 910, or between the reflective element 950 and the first waveguide element 910, so that the image incident on the first waveguide element 910 by the reflective element 950 The light beam may only have light in the S polarization direction. Moreover, the phase retarder 970 can be arranged between the first waveguide element 910 and the third waveguide element 930 (the phase retarder 970 can also be arranged between the second waveguide element 920 and the first waveguide element 910), so that the The image light beam incident on the second waveguide element 920 by the first waveguide element 910 may be light in the S polarization direction. Accordingly, the head-mounted display device 900 can effectively reduce the unintended reflected light traveling in the first waveguide element 910 and the second waveguide element 920 by configuring the polarizing element 960 and the phase retarder 970 .
图6B绘示本发明另一实施例的头戴式900A显示装置的示意图。对此,显示器830提供的影像光束ML可仅具有单一极化方向。举例来说,影像光束ML直接入射至第一波导元件910可具有P极化方向的光(如同第三方向Z的方向),并且影像光束ML由第一波导元件910经由反射结构入射至第二波导元件920,基于基本光学反射效果,而自然地转换为S极化方向的影像光束ML(如同第一方向Y的方向)。因此,第一波导元件910当中可只传递单一极化方向的影像光束ML,并且这些第一分光元件911以及这些第二分光元件931个别的镀膜可对应具有单一极化方向的影像光束ML来设计之。据此,本实施例的头戴式显示装置900A可有效降低非预期的反射光线于第一波导元件910以及第二波导元件920中行进的情况。在本实施例中,第一光栏也位于第一波导元件910之内,并且第二光栏PA2位于投射目标P之处。并且,第一光栏在第一波导元件910之内的位置也符合距离D1大于或等于距离D2的条件。FIG. 6B is a schematic diagram of a head-mounted display device 900A according to another embodiment of the present invention. For this, the image light beam ML provided by the display 830 may only have a single polarization direction. For example, the image beam ML directly incident on the first waveguide element 910 may have light in the P polarization direction (like the direction of the third direction Z), and the image beam ML is incident from the first waveguide element 910 to the second waveguide element 910 through the reflective structure. The waveguide element 920 is naturally converted into the image light beam ML in the S polarization direction (like the direction of the first direction Y) based on the basic optical reflection effect. Therefore, only the image light beam ML with a single polarization direction can be transmitted in the first waveguide element 910, and the individual coatings of the first light splitting elements 911 and the second light splitting elements 931 can be designed corresponding to the image light beam ML with a single polarization direction. Of. Accordingly, the head-mounted display device 900A of this embodiment can effectively reduce the unintended reflected light traveling in the first waveguide element 910 and the second waveguide element 920 . In this embodiment, the first aperture PA2 is also located inside the first waveguide element 910 , and the second aperture PA2 is located where the target P is projected. Moreover, the position of the first light barrier within the first waveguide element 910 also meets the condition that the distance D1 is greater than or equal to the distance D2.
图7绘示图1的第二波导元件的俯视示意图。图8绘示本发明一实施例之扩散镀膜的反射率相对于影像光束的入射角的反射率分布曲线的概要示意图。在图8中,扩散镀膜的反射率相对于影像光束的入射角的反射率分布曲线例如是以波长520奈米为例,但不用以限定本发明。并且,图8的反射率分布曲线仅用以例示说明,也不用以限定本发明。请参考图7至图8,在本实施例中,在第二波导元件120中的各第二分光元件X1、X2、X3、X4、X5、X6皆包括第一表面以及相对于第一表面的第二表面,且在第一表面与第二表面其中之一可包括扩散镀膜,以第一表面包括扩散镀膜为例。以第二分光元件X1为例,第二表面SX12相对于第一表面SX11,并且第一表面SX11包括扩散镀膜。在本实施例中,影像光束ML从各第二分光元件的第一表面入射至各第二分光元件,影像光束ML入射至各第二分光元件的入射角范围介于15度至45度之间,如此可让部分影像光束ML经由扩散镀膜反射至光瞳P,其中第二波导元件120中的各第二分光元件与第二出光面S22之间的夹角为30度,但本案不以此为限。在第二波导元件120中,影像光束ML具有的偏振方向为第二极化方向(例如S方向偏振光)。在本实施例中,扩散镀膜的反射率例如符合图8的反射率分布曲线。在入射角介于15度至45度之间,第N个第二分光元件的反射率小于或等于第(N+1)个第二分光元件的反射率,其中N是大于或等于1的整数。在图8中,曲线SR(N+1)例如是第(N+1)个第二分光元件的反射率分布曲线,曲线SRN例如是第N个第二分光元件的反射率分布曲线。举例而言,第1个第二分光元件X1的反射率小于或等于第2个第二分光元件X2的反射率,但不以此为限。FIG. 7 is a schematic top view of the second waveguide element in FIG. 1 . FIG. 8 is a schematic diagram showing the reflectance distribution curve of the reflectance of the diffusion coating with respect to the incident angle of the image beam according to an embodiment of the present invention. In FIG. 8 , the reflectance distribution curve of the reflectance of the diffusion coating relative to the incident angle of the image beam is, for example, taken with a wavelength of 520 nm as an example, but it is not intended to limit the present invention. Moreover, the reflectance distribution curve in FIG. 8 is only used for illustration, and is not intended to limit the present invention. Please refer to FIG. 7 to FIG. 8. In this embodiment, each of the second light splitting elements X1, X2, X3, X4, X5, and X6 in the second waveguide element 120 includes a first surface and an angle relative to the first surface. The second surface, and one of the first surface and the second surface may include a diffusion coating, taking the first surface including a diffusion coating as an example. Taking the second light splitting element X1 as an example, the second surface SX12 is opposite to the first surface SX11, and the first surface SX11 includes a diffusion coating. In this embodiment, the image light beam ML enters each second light splitting element from the first surface of each second light splitting element, and the incident angle range of the image light beam ML incident on each second light splitting element is between 15 degrees and 45 degrees. , so that part of the image light beam ML can be reflected to the pupil P through the diffusion coating, wherein the angle between each second light splitting element in the second waveguide element 120 and the second light-emitting surface S22 is 30 degrees, but this case does not limit. In the second waveguide element 120 , the polarization direction of the image light beam ML is the second polarization direction (for example, S-direction polarized light). In this embodiment, the reflectance of the diffusion coating conforms to the reflectance distribution curve of FIG. 8 , for example. When the incident angle is between 15 degrees and 45 degrees, the reflectance of the Nth second light splitting element is less than or equal to the reflectance of the (N+1)th second light splitting element, where N is an integer greater than or equal to 1 . In FIG. 8 , the curve SR(N+1) is, for example, the reflectance distribution curve of the (N+1)th second light splitting element, and the curve SRN is, for example, the reflectance distribution curve of the Nth second light splitting element. For example, the reflectivity of the first second light-splitting element X1 is less than or equal to the reflectivity of the second second light-splitting element X2, but not limited thereto.
图9绘示图7实施例之影像光束在投射目标之处产生的影像画面的概要示意图。请参考图7至图9,在本实施例中,在投射目标P中所形成的影像画面是来自各第二分光元件反射的影像光束ML,换句话说,人眼可看到的水平方向(第二方向X)的影像画面。因此,经由不同的第二分光元件反射的影像光束ML在投射目标P上产生的影像画面部分会重叠或者影像画面部分相接,若影像画面之间产生空隙,则会使人眼观看到一影像具有一黑区。因此,如图9所示,举例而言,在投射目标P中影像画面的不同区块是由不同的第二分光元件所反射的影像光束ML所贡献,并且在部分区块产生影像重叠或影像相接。依据本实施例的扩散镀膜的设计方式,亦即第二分光元件当中的第N个第二分光元件的反射率小于或等于第二分光元件当中的第(N+1)个第二分光元件,即使部分区块产生重叠,在投射目标P中的影像画面仍可保持均匀,具有良好的显示品质。FIG. 9 is a schematic diagram of an image frame generated by the image beam projected on the target in the embodiment of FIG. 7 . Please refer to FIG. 7 to FIG. 9 , in this embodiment, the image frame formed in the projection target P is the image light beam ML reflected from each second light splitting element, in other words, the horizontal direction ( The image frame of the second direction X). Therefore, the image frames generated by the image light beams ML reflected by different second light splitting elements on the projection target P will partially overlap or be partially connected. If there is a gap between the image frames, the human eye will see an image has a black area. Therefore, as shown in FIG. 9 , for example, different blocks of the image frame in the projection target P are contributed by the image light beam ML reflected by different second light splitting elements, and image overlapping or image overlap occurs in some blocks. connect. According to the design method of the diffusion coating in this embodiment, that is, the reflectance of the Nth second light splitting element among the second light splitting elements is less than or equal to the (N+1)th second light splitting element among the second light splitting elements, Even if some blocks are overlapped, the image frame in the projection target P can still maintain uniformity and have good display quality.
图10绘示图1的第一波导元件的侧视示意图。请参考图10,在本实施例中,各第一分光元件Y1、Y2、Y3、Y4皆包括第一表面以及相对于第一表面的第二表面,且第一表面包括扩散镀膜。且在第一表面与第二表面其中之一可包括扩散镀膜,以第一分光元件Y1为例,第二表面SY22相对于第一表面SY21,并且第一表面SY21包括扩散镀膜。在本实施例中,同时参考图3,透镜模块140的光轴A1平行第一方向Y且垂直投射目标P的视轴A2,影像光束ML入射至第一分光元件Y1的第一表面SY21,其入射角介于30度至60度之间,其中第一波导元件110中的各第一分光元件与第一出光面S12之间的夹角为45度,在其他设计下也可为30度,但本案不以此为限。此外,第M个第一分光元件的反射率小于或等于第(M+1)个第一分光元件的反射率,其中M是大于或等于1的整数。举例而言,第2个第一分光元件Y2的反射率小于或等于第3个第一分光元件Y3的反射率,如此可让部分影像光束ML经由扩散镀膜反射至第二波导元件120,在投射目标P中的影像画面仍可保持均匀,具有良好的显示品质。在另一实施例中,同时参考图2A,透镜模块140的光轴A1垂直第一方向Y且平行投射目标P的视轴A2,影像光束ML入射至第一分光元件的第一表面SY21,1减去第一个第一分光元件的反射率小于或等于第(M+1)个第一分光元件的反射率,其中M是大于或等于1的整数。举例而言,1减去第1个第一分光元件Y1的反射率小于或等于第2个第一分光元件Y2的反射率。如此可让部分影像光束ML经由扩散镀膜反射至第二波导元件120,在投射目标P中的影像画面仍可保持均匀,具有良好的显示品质。FIG. 10 is a schematic side view of the first waveguide element in FIG. 1 . Please refer to FIG. 10 , in this embodiment, each of the first light splitting elements Y1 , Y2 , Y3 , and Y4 includes a first surface and a second surface opposite to the first surface, and the first surface includes a diffusion coating. And one of the first surface and the second surface may include a diffusion coating, taking the first light splitting element Y1 as an example, the second surface SY22 is opposite to the first surface SY21, and the first surface SY21 includes a diffusion coating. In this embodiment, referring to FIG. 3 at the same time, the optical axis A1 of the lens module 140 is parallel to the first direction Y and perpendicular to the visual axis A2 of the projection target P, and the image beam ML is incident on the first surface SY21 of the first light splitting element Y1, which The incident angle is between 30 degrees and 60 degrees, wherein the angle between each first light-splitting element in the first waveguide element 110 and the first light-emitting surface S12 is 45 degrees, and it can also be 30 degrees under other designs, But this case is not limited to this. In addition, the reflectance of the M-th first light-splitting element is less than or equal to the reflectance of the (M+1)-th first light-splitting element, where M is an integer greater than or equal to 1. For example, the reflectance of the second first light-splitting element Y2 is less than or equal to the reflectance of the third first light-splitting element Y3, so that part of the image beam ML can be reflected to the second waveguide element 120 through the diffusion coating, and then projected The video frame in the object P can still be kept uniform and has good display quality. In another embodiment, referring to FIG. 2A at the same time, the optical axis A1 of the lens module 140 is perpendicular to the first direction Y and parallel to the visual axis A2 of the projection target P, and the image beam ML is incident on the first surface SY21,1 of the first light splitting element. Subtracting the reflectance of the first first light-splitting element is less than or equal to the reflectance of the (M+1)th first light-splitting element, where M is an integer greater than or equal to 1. For example, 1 minus the reflectance of the first first light-splitting element Y1 is less than or equal to the reflectance of the second first light-splitting element Y2 . In this way, part of the image light beam ML can be reflected to the second waveguide element 120 through the diffusion coating, and the image frame in the projection target P can still be kept uniform with good display quality.
图11绘示图10实施例之影像光束在投射目标之处产生的影像画面的概要示意图。请参考图10及图11,在本实施例中,在投射目标P中所形成的影像画面是来自各第一分光元件反射的影像光束ML。换句话说,人眼可看到的垂直方向(第一方向Y)的影像画面。经由不同的第一分光元件反射的影像光束ML在投射目标P上产生的影像画面部分重叠或者影像画面部分相接,也就是经由不同的第二分光元件反射的影像光束ML在投射目标P上产生一影像画面,影像画面由部分重叠的影像光束ML所形成,或者经由不同的第二分光元件反射的影像光束ML在投射目标P上产生一影像画面,影像画面由部分相接的影像光束ML所形成。FIG. 11 is a schematic diagram of an image frame generated by the image beam projected on the target in the embodiment of FIG. 10 . Please refer to FIG. 10 and FIG. 11 , in this embodiment, the image frame formed in the projection target P is the image light beam ML reflected from each first light splitting element. In other words, the image frames in the vertical direction (the first direction Y) can be seen by human eyes. The image beams ML reflected by different first light-splitting elements on the projection target P partially overlap or partially connect the image frames, that is, the image light beams ML reflected by different second light-splitting elements generate on the projection target P An image frame, the image frame is formed by partially overlapping image light beams ML, or the image light beams ML reflected by different second light splitting elements generate an image frame on the projection target P, and the image frame is formed by partially contiguous image light beams ML form.
在其他实施例中,经由不同的第一分光元件反射的影像光束ML以及经由不同的第二分光元件反射的影像光束ML,在投射目标P上产生一影像画面,影像画面由部分重叠的影像光束ML所形成。或者另一实施例中,经由不同的第一分光元件反射的影像光束ML以及经由不同的第二分光元件反射的影像光束ML,在投射目标P上产生一影像画面,影像画面由部分相接的影像光束所形成。若影像画面之间产生空隙,则会使人眼观看到一影像具有一黑区。因此,如图11所示,在投射目标P中影像画面的不同区块是由不同的第一分光元件反射的影像光束ML所贡献,并且在部分区块产生影像重叠或影像相接,使得在投射目标P中的影像画面仍可保持均匀,具有良好的显示品质。In other embodiments, the image beam ML reflected by different first light splitting elements and the image light beam ML reflected by different second light splitting elements generate an image frame on the projection target P, and the image frame consists of partially overlapping image beams ML formed. Or in another embodiment, the image light beam ML reflected by different first light-splitting elements and the image light beam ML reflected by different second light-splitting elements generate an image frame on the projection target P, and the image frame is composed of partially connected Image beams are formed. If there is a gap between the image frames, the human eyes will see that an image has a black area. Therefore, as shown in FIG. 11 , different blocks of the image frame in the projection target P are contributed by the image light beams ML reflected by different first light splitting elements, and image overlapping or image contact occurs in some blocks, so that in The image frame in the projection target P can still be kept uniform and has good display quality.
图12A绘示叠加图9与图11的影像光束在投射目标之处产生的影像画面的概要示意图。可参考图9、图11与图12A可知,将在投射目标P中所形成的影像画面是来自各第二分光元件反射的影像光束ML,形成水平方向(第二方向X)的影像画面,以及在投射目标P中所形成的影像画面是来自各第一分光元件反射的影像光束ML,形成垂直方向(第一方向Y)的影像画面。两者的影像画面加以叠加则形成投射目标P可观看到的影像画面。FIG. 12A is a schematic diagram of an image frame generated by superimposing the image beams in FIG. 9 and FIG. 11 at the projected target. Referring to FIG. 9, FIG. 11 and FIG. 12A, it can be known that the image frame formed in the projection target P is the image light beam ML reflected from each second light splitting element to form an image frame in the horizontal direction (second direction X), and The image frame formed in the projection target P is the image light beam ML reflected from each first light splitting element, forming an image frame in the vertical direction (the first direction Y). The image frames of the two are superimposed to form an image frame that can be viewed by the projection target P.
图12B绘示不同的第二分光元件将影像光束反射至投射目标的概要示意图。参考图12B可知,影像光束透过第二分光元件向第二波导元件外部以扩散的方式射出,但在投射目标P的位置是可接收由第二分光元件投射出来的影像光束,且投射目标P接收到部分重叠的影像光束或者部分相邻的影像光束,可让投射目标P获取清晰且完整的影像。FIG. 12B is a schematic diagram of different second light splitting elements reflecting the image beam to the projection target. Referring to FIG. 12B , it can be seen that the image beam passes through the second light splitting element and emits in a diffused manner to the outside of the second waveguide element, but the position of the projection target P can receive the image beam projected by the second light splitting element, and the projection target P Receiving partially overlapping image beams or partially adjacent image beams allows the projection target P to obtain a clear and complete image.
图13绘示本发明一实施例之影像光束由入射第一分光元件入射至第二波导元件的概要示意图。在图13中,经由不同的第一分光元件反射的影像光束ML从第一波导元件110离开至第二波导元件120的入射角可能不同,因此,针对不同的第一分光元件,其扩散镀膜可作不同的设计。部分影像光束的主光线经由第一分光元件的第一片分光元件Y1反射的路径偏向第一分光元件的最后一片分光元件Y4。部分影像光束的主光线经由第一分光元件的最后一片分光元件Y4反射的路径偏向第一分光元件的第一片分光元件Y1。在在图13中的光束方向为示意描述,实际影像光束是入射进入第二波导元件120。举例而言,在图13中,影像光束ML的行进方向(第一方向Y)例如以45度角相对于第一分光元件作为入射角,影像光束ML入射至第一分光元件的角度可能大于、小于或等于45度(参考角度)。例如,影像光束ML入射至第一分光元件Y1、Y2的角度可能大于45度,可参考图14A所示。图14A所绘示的是影像光束ML入射第一分光元件Y1的概要示意图,其入射角大于45度。影像光束ML入射至第一分光元件Y2的角度可以此类推。因此,针对第一分光元件Y1、Y2的扩散镀膜设计,可设计为在入射角大于45度之处,在第一分光元件Y1、Y2在入射角为47度与50度的区域具有反射率为15%与30%,使得从第一分光元件Y1、Y2反射至第二波导元件120的影像光束ML具有较大的光量,从而提高影像光束ML投射至投射目标P的效率。又例如,影像光束ML入射至第一分光元件Y3、Y4的角度可能小于45度,如图14B所示。图14B所绘示的是影像光束ML入射第一分光元件Y4的概要示意图,其入射角小于45度。影像光束ML入射至第一分光元件Y3的角度可以此类推。因此,针对第一分光元件Y3、Y4的扩散镀膜设计,可设计为在入射角小于45度之处,在第一分光元件Y3、Y4在入射角为40度与43度的区域具有反射率为40%与55%,使得从第一分光元件Y3、Y4反射至第二波导元件120的影像光束ML具有较大的光量,从而提高影像光束ML投射至投射目标P的效率。FIG. 13 shows a schematic diagram of an image beam entering the second waveguide element from the first light splitting element according to an embodiment of the present invention. In FIG. 13 , the incident angles of the image beam ML reflected by different first light splitting elements from the first waveguide element 110 to the second waveguide element 120 may be different. Therefore, for different first light splitting elements, the diffusion coating can be Make different designs. The principal ray of part of the image light beam is deflected to the last light-splitting element Y4 of the first light-splitting element through the reflection path of the first light-splitting element Y1 of the first light-splitting element. The principal ray of part of the image beam is deflected to the first light-splitting element Y1 of the first light-splitting element through the path reflected by the last light-splitting element Y4 of the first light-splitting element. The beam direction in FIG. 13 is schematically described, and the actual image beam is incident into the second waveguide element 120 . For example, in FIG. 13 , the traveling direction (first direction Y) of the image light beam ML is, for example, at an angle of 45 degrees relative to the first light splitting element as an incident angle, and the angle at which the image light beam ML is incident on the first light splitting element may be larger than, Less than or equal to 45 degrees (reference angle). For example, the angle at which the image light beam ML is incident on the first light splitting elements Y1 and Y2 may be greater than 45 degrees, as shown in FIG. 14A . FIG. 14A is a schematic diagram of the image beam ML incident on the first light splitting element Y1 , and the incident angle thereof is greater than 45 degrees. The angle at which the image light beam ML is incident on the first light splitting element Y2 can be deduced by analogy. Therefore, for the diffusion coating design of the first light splitting elements Y1 and Y2, it can be designed to have a reflectivity in the areas where the incident angles of the first light splitting elements Y1 and Y2 are 47 degrees and 50 degrees at places where the incident angle is greater than 45 degrees. 15% and 30%, so that the image beam ML reflected from the first light splitting elements Y1 and Y2 to the second waveguide element 120 has a larger amount of light, thereby improving the projection efficiency of the image beam ML to the projection target P. For another example, the angle at which the image light beam ML is incident on the first light splitting elements Y3 and Y4 may be smaller than 45 degrees, as shown in FIG. 14B . FIG. 14B shows a schematic diagram of the image light beam ML incident on the first light splitting element Y4, and the incident angle thereof is less than 45 degrees. The angle at which the image beam ML is incident on the first light splitting element Y3 can be deduced by analogy. Therefore, for the diffusion coating design of the first light splitting elements Y3 and Y4, it can be designed to have reflectivity in the areas where the incident angles of the first light splitting elements Y3 and Y4 are 40 degrees and 43 degrees where the incident angle is less than 45 degrees. 40% and 55%, so that the image beam ML reflected from the first light splitting elements Y3 and Y4 to the second waveguide element 120 has a larger amount of light, thereby improving the projection efficiency of the image beam ML to the projection target P.
因此,在本发明的实施例中,利用调整分光元件上的扩散镀膜的光学特性,可使得在投射目标P上的影像画面具有均匀性且投射至投射目标P的影像光束ML的光量较大。Therefore, in the embodiment of the present invention, by adjusting the optical characteristics of the diffusion coating on the light splitting element, the image frame on the projection target P can be made uniform and the light quantity of the image beam ML projected to the projection target P is relatively large.
以下再举多个实施例,说明包括照明系统、显示器以及波导系统的头戴式显示装置的操作方法。Several embodiments are given below to describe the operation method of the head-mounted display device including the lighting system, the display and the waveguide system.
图15绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图15,本实施例的头戴式显示装置300A包括照明系统350A、显示器330A、透镜模块340以及波导系统。透镜模块340可包括一个或多个透镜,波导系统包括第一波导元件310以及第二波导元件320。在本实施例中,显示器330A例如包括数位光源处理(Digital Light ProcessingTM,简称DLPTM)投影系统,用于将来自照明系统350A的照明光束IL转换为影像光束ML。影像光束ML经由波导系统传递至投射目标P。在本实施例中,波导系统的操作方式可由图1至图14B实施例之叙述中获致足够的教示、建议与实施说明。FIG. 15 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Please refer to FIG. 15 , the head-mounted display device 300A of this embodiment includes an illumination system 350A, a display 330A, a lens module 340 and a waveguide system. The lens module 340 may include one or more lenses, and the waveguide system includes a first waveguide element 310 and a second waveguide element 320 . In this embodiment, the display 330A includes, for example, a digital light processing (Digital Light Processing ™ , DLP ™ for short) projection system for converting the illumination beam IL from the illumination system 350A into an image beam ML. The image beam ML is transmitted to the projection target P through the waveguide system. In this embodiment, the operation of the waveguide system can be sufficiently taught, suggested and implemented from the description of the embodiment shown in FIGS. 1 to 14B.
在本实施例中,照明系统350A用于提供照明光束IL给显示器330A。照明系统350A包括照明光源351、准直透镜组353、孔径光栏(aperture stop)355、均光元件357以及棱镜模块359A。照明光源351提供照明光束IL。照明光束IL经由准直透镜组353、孔径光栏(aperture stop)355、均光元件357以及棱镜模块359A传递至显示器330A。在本实施例中,孔径光栏355配置在准直透镜组353与均光元件357之间,并且照明光源351例如是发光二极管(light emitting diode,LED),但不以此为限,均光元件357例如是透镜阵列(fly-eyelens array),准直透镜组353包括一个或多个透镜。在本实施例中,来自于照明光源351的照明光束IL在照明系统350A之内收敛至第三光栏(stop)PA3。第三光栏PA3位于孔径光栏355之处。在本实施例中,孔径光栏355可具有驱动元件358(例如马达),驱动元件用于控制孔径光栏355的开口大小,以控制第三光栏PA3的面积大小。因此,孔径光栏355可调整通过其开口的照明光束IL的光量。在本实施例中,棱镜模块359A包括棱镜352(第一棱镜)。来自于均光元件357的照明光束IL经由棱镜352传递至显示器330A。在另一实施例中,依设计需求,孔径光栏355的开口可为固定孔径大小。In this embodiment, the lighting system 350A is used to provide the lighting beam IL to the display 330A. The illumination system 350A includes an illumination light source 351 , a collimating lens group 353 , an aperture stop 355 , a light homogenizing element 357 and a prism module 359A. The illumination light source 351 provides an illumination light beam IL. The illumination light beam IL is transmitted to the display 330A through the collimating lens group 353 , the aperture stop 355 , the light homogenizing element 357 and the prism module 359A. In this embodiment, the aperture diaphragm 355 is arranged between the collimating lens group 353 and the light uniform element 357, and the illumination light source 351 is, for example, a light emitting diode (light emitting diode, LED), but not limited thereto. The element 357 is, for example, a lens array (fly-eyelens array), and the collimating lens group 353 includes one or more lenses. In this embodiment, the illumination light beam IL from the illumination light source 351 converges to a third stop PA3 within the illumination system 350A. The third diaphragm PA3 is located at the aperture diaphragm 355 . In this embodiment, the aperture diaphragm 355 may have a driving element 358 (such as a motor), and the driving element is used to control the opening size of the aperture diaphragm 355 so as to control the area size of the third diaphragm PA3. Therefore, the aperture stop 355 can adjust the light quantity of the illumination light beam IL passing through its opening. In the present embodiment, the prism module 359A includes a prism 352 (first prism). The illumination light beam IL from the homogenizing element 357 is transmitted to the display 330A through the prism 352 . In another embodiment, according to design requirements, the opening of the aperture stop 355 may have a fixed aperture size.
图16绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图15及图16,本实施例的头戴式显示装置300B类似于图15的头戴式显示装置300A,惟两者之间主要的差异例如在于照明系统350B以及显示器330B的设计方式。FIG. 16 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. 15 and 16, the head-mounted display device 300B of this embodiment is similar to the head-mounted display device 300A of FIG.
具体而言,在本实施例中,显示器330A例如包括液晶覆硅(Liquid Crystal OnSilicon,简称LCoS)投影系统,用于将来自照明系统350B的照明光束IL转换为影像光束ML。影像光束ML经由波导系统传递至投射目标P。在本实施例中,波导系统的操作方式可由图1至图14B的实施例之叙述中获致足够的教示、建议与实施说明。在本实施例中,照明系统350B用于提供照明光束IL给显示器330B。孔径光栏355配置在准直透镜组353与均光元件357之间。在本实施例中,来自于照明光源351的照明光束IL在照明系统350A之内收敛至第三光栏PA3。照明光源351的照明光束IL可经极性转换为具有单一极性的照明光束IL。第三光栏PA3位于孔径光栏355之处。在本实施例中,孔径光栏355具有驱动元件。驱动元件用于控制孔径光栏355的开口大小,以控制第三光栏PA3的面积大小。因此,孔径光栏355可调整通过其开口的照明光束IL的光量。在本实施例中,棱镜模块359B包括一个极化分束器(Polarizing beam splitter,PBS)。来自于均光元件357的照明光束IL经由极化分束器传递至显示器330A,并且反射至透镜模块340。Specifically, in this embodiment, the display 330A includes, for example, a Liquid Crystal On Silicon (LCoS) projection system for converting the illumination beam IL from the illumination system 350B into an image beam ML. The image beam ML is transmitted to the projection target P through the waveguide system. In this embodiment, the operation of the waveguide system can be sufficiently taught, suggested and implemented from the description of the embodiments shown in FIGS. 1 to 14B. In this embodiment, the lighting system 350B is used to provide the lighting beam IL to the display 330B. The aperture stop 355 is disposed between the collimating lens group 353 and the light homogenizing element 357 . In this embodiment, the illumination light beam IL from the illumination light source 351 converges to the third diaphragm PA3 within the illumination system 350A. The illumination light beam IL of the illumination light source 351 can be transformed into an illumination light beam IL with a single polarity through polarity conversion. The third diaphragm PA3 is located at the aperture diaphragm 355 . In this embodiment, the aperture stop 355 has a driving element. The driving element is used to control the opening size of the aperture diaphragm 355 to control the area size of the third diaphragm PA3. Therefore, the aperture stop 355 can adjust the light quantity of the illumination light beam IL passing through its opening. In this embodiment, the prism module 359B includes a polarizing beam splitter (Polarizing beam splitter, PBS). The illumination light beam IL from the homogenizing element 357 is delivered to the display 330A through the polarization beam splitter, and reflected to the lens module 340 .
图17绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图15及图17,本实施例的头戴式显示装置300C类似于图15的头戴式显示装置300A,惟两者之间主要的差异例如在于棱镜模块359C的设计方式。FIG. 17 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Please refer to FIG. 15 and FIG. 17 , the head-mounted display device 300C of this embodiment is similar to the head-mounted display device 300A of FIG. 15 , but the main difference between the two lies in the design of the prism module 359C.
具体而言,在本实施例中,显示器330C例如包括数位光源处理(Digital LightProcessingTM,简称DLPTM)投影系统,用于将来自照明系统350C的照明光束IL转换为影像光束ML。影像光束ML经由波导系统传递至投射目标P。在本实施例中,波导系统的操作方式可由图1至图14B的实施例之叙述中获致足够的教示、建议与实施说明。在本实施例中,棱镜模块359C包括第一棱镜359_1、第二棱镜359_2以及第三棱镜359_3。第一棱镜359_1具有曲面。曲面具有反射层R。曲面用于反射自于均光元件357的照明光束IL。在本实施例中,两两棱镜之间间隔微小的空气间隙。例如,第一间隙位于第一棱镜359_1与第二棱镜359_2之间,第二间隙位于第二棱镜359_2与第三棱镜359_3之间。来自于均光元件357的照明光束IL经由第一棱镜359_1、第一间隙、曲面、第二棱镜359_2、第二间隙以及第三棱镜359_3传递至显示器330C。在一实施例中,第一棱镜359_1可贴合于第二棱镜359_2,或透过透明胶材粘合。第二棱镜359_2可贴合于第三棱镜359_3,或透过透明胶材粘合。Specifically, in this embodiment, the display 330C includes, for example, a digital light processing (Digital Light Processing TM , DLP TM ) projection system for converting the illumination beam IL from the illumination system 350C into an image beam ML. The image beam ML is transmitted to the projection target P through the waveguide system. In this embodiment, the operation of the waveguide system can be sufficiently taught, suggested and implemented from the description of the embodiments shown in FIGS. 1 to 14B. In this embodiment, the prism module 359C includes a first prism 359_1 , a second prism 359_2 and a third prism 359_3 . The first prism 359_1 has a curved surface. The curved surface has a reflective layer R. The curved surface is used to reflect the illumination beam IL from the homogenizing element 357 . In this embodiment, there is a slight air gap between the two prisms. For example, the first gap is located between the first prism 359_1 and the second prism 359_2 , and the second gap is located between the second prism 359_2 and the third prism 359_3 . The illumination light beam IL from the homogenizing element 357 is delivered to the display 330C through the first prism 359_1 , the first gap, the curved surface, the second prism 359_2 , the second gap and the third prism 359_3 . In one embodiment, the first prism 359_1 can be adhered to the second prism 359_2, or bonded through a transparent adhesive. The second prism 359_2 can be attached to the third prism 359_3, or bonded through a transparent adhesive.
在图15至图17的实施例中,照明系统350A、350B、350C具有第一F值,且第一F值是依据第三光栏PA3的面积大小来决定。透镜模块340具有第二F值。头戴式显示装置300A、300B、300C符合第一F值大于或等于第二F值条件,可消除降低影像画面所产生鬼影的情况。F值可定义为1/2*sin(θ),θ角为光束入射的圆锥角(cone angle)。In the embodiments shown in FIGS. 15 to 17 , the lighting systems 350A, 350B, and 350C have a first F value, and the first F value is determined according to the size of the third diaphragm PA3 . The lens module 340 has a second F-number. The head-mounted display devices 300A, 300B, and 300C meet the condition that the first F-value is greater than or equal to the second F-value, which can eliminate the ghost image generated by reducing the image frame. The F value can be defined as 1/2*sin(θ), and the θ angle is the cone angle of the incident light beam (cone angle).
举例而言,图18绘示图17实施例的头戴式显示装置的部分元件的概要示意图。为简要说明起见,图18仅绘示头戴式显示装置300C的显示器330C、第三棱镜359_3以及透镜模块340。在本实施例中,照明光束IL入射至显示器330C,显示器330C例如包括数位微型反射镜元件(Digital Micromirror Device,简称DMD)。数位微型反射镜元件先将照明光束IL转换为影像光束ML,再将影像光束ML反射至第三棱镜359_3。第三棱镜359_3再将影像光束ML反射至透镜模块340。在本实施例中,照明光束IL入射至显示器330C的圆锥角(cone angle)例如是θ1,照明系统350C的第一F值可定义为1/2*sin(θ1)。在本实施例中,透镜模块340接收来自于显示器330C的影像光束ML,其圆锥角(cone angle)例如是θ2。透镜模块340的第二F值可定义为1/2*sin(θ2)。For example, FIG. 18 shows a schematic diagram of some components of the head-mounted display device in the embodiment of FIG. 17 . For brief description, FIG. 18 only shows the display 330C, the third prism 359_3 and the lens module 340 of the head-mounted display device 300C. In this embodiment, the illumination light beam IL is incident on the display 330C, and the display 330C includes, for example, a digital micromirror device (Digital Micromirror Device, DMD for short). The digital micro-mirror element converts the illumination light beam IL into the image light beam ML, and then reflects the image light beam ML to the third prism 359_3. The third prism 359_3 then reflects the image beam ML to the lens module 340 . In this embodiment, the cone angle of the illumination light beam IL incident on the display 330C is, for example, θ1, and the first F value of the illumination system 350C can be defined as 1/2*sin(θ1). In this embodiment, the lens module 340 receives the image light beam ML from the display 330C, and its cone angle is, for example, θ2. The second F value of the lens module 340 can be defined as 1/2*sin(θ2).
在本实施例中,依据制造者的设计,预先设定好透镜模块340的第二F值,即可得知所需要入射角度θ2,因此,透过孔径光栏355可调整通过其开口的大小来控制第三光栏PA3的大小,而第三光栏PA3的大小会影响照明光束IL入射至显示器330C的圆锥角θ1的大小。也就是,透镜模块340的第二F值被决定之后,可透过孔径光栏355来控制照明系统350C的第一F值的大小,以使头戴式显示装置300C符合第一F值大于或等于第二F值条件。在一实施例中,孔径光栏355的开口可为固定孔径大小,配合透镜模块340的第二F值设计,将控制照明系统350C的第一F值的大小设计为使头戴式显示装置300C符合第一F值大于或等于第二F值条件。在图15及图16的实施例中,照明系统350A、350B也可利用此方式来调整,以使头戴式显示装置300A、300B符合第一F值大于或等于第二F值条件,因此,使用者容易在使用头戴式显示器300A、300B的过程中将可消除或降低观看的影像画面中会有鬼影的存在或观看的影像画面变得模糊的情况。In this embodiment, according to the manufacturer's design, the second F value of the lens module 340 is preset, and the required incident angle θ2 can be obtained. Therefore, the size of the opening passing through the aperture stop 355 can be adjusted. to control the size of the third light bar PA3, and the size of the third light bar PA3 will affect the size of the cone angle θ1 of the illumination light beam IL incident on the display 330C. That is, after the second F value of the lens module 340 is determined, the size of the first F value of the lighting system 350C can be controlled through the aperture stop 355, so that the head-mounted display device 300C meets the first F value greater than or Equal to the second F value condition. In one embodiment, the opening of the aperture stop 355 can be a fixed aperture size, and in conjunction with the design of the second F value of the lens module 340, the size of the first F value of the control lighting system 350C is designed so that the head-mounted display device 300C Meet the condition that the first F value is greater than or equal to the second F value. In the embodiments shown in FIG. 15 and FIG. 16 , the lighting systems 350A, 350B can also be adjusted in this way, so that the head-mounted display devices 300A, 300B meet the condition that the first F value is greater than or equal to the second F value. Therefore, It is easy for the user to eliminate or reduce the presence of ghosts in the viewed image frames or the blurring of the viewed image frames during the use of the head-mounted displays 300A and 300B.
图19绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图15及图19,本实施例的头戴式显示装置400A类似于图15的头戴式显示装置300A,惟两者之间主要的差异例如在于孔径光栏455的设置位置以及均光元件457是光积分柱。FIG. 19 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Please refer to FIG. 15 and FIG. 19, the head-mounted display device 400A of this embodiment is similar to the head-mounted display device 300A of FIG. Element 457 is a light integrating rod.
具体而言,在本实施例中,棱镜模块459A包括一棱镜与两个透镜,其中孔径光栏455配置在两个透镜之间,并且均光元件457例如是光积分柱。在本实施例中,来自于照明光源451的照明光束IL在照明系统450A之内收敛至第三光栏PA3。第三光栏PA3位于孔径光栏455之处。在本实施例中,孔径光栏455具有驱动元件。驱动元件用于控制孔径光栏455的开口大小,以控制第三光栏PA3的大小,从而控制照明光束IL入射至显示器430A的圆锥角的大小。因此,在透镜模块440的第二F值被决定之后,可透过孔径光栏455来控制照明系统450A的第一F值的大小,以使头戴式显示装置400A符合第一F值大于或等于第二F值条件。Specifically, in this embodiment, the prism module 459A includes a prism and two lenses, wherein the aperture stop 455 is disposed between the two lenses, and the light homogenizing element 457 is, for example, a light integrating cylinder. In this embodiment, the illumination light beam IL from the illumination light source 451 converges to the third diaphragm PA3 within the illumination system 450A. The third diaphragm PA3 is located at the aperture diaphragm 455 . In this embodiment, the aperture stop 455 has a driving element. The driving element is used to control the opening size of the aperture diaphragm 455 to control the size of the third diaphragm PA3, thereby controlling the size of the cone angle of the illumination light beam IL incident on the display 430A. Therefore, after the second F value of the lens module 440 is determined, the size of the first F value of the lighting system 450A can be controlled through the aperture stop 455, so that the head-mounted display device 400A meets the requirement that the first F value is larger than or Equal to the second F value condition.
图20绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图16及图20,本实施例的头戴式显示装置400B类似于图16的头戴式显示装置300B,惟两者之间主要的差异例如在于孔径光栏455的设置位置以及均光元件457是光积分柱。FIG. 20 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Please refer to FIG. 16 and FIG. 20, the head-mounted display device 400B of this embodiment is similar to the head-mounted display device 300B of FIG. Element 457 is a light integrating rod.
具体而言,在本实施例中,棱镜模块459B包括两棱镜与两个透镜,其中孔径光栏455配置在棱镜模块459B中的两个透镜之间,并且均光元件457例如是光积分柱。在本实施例中,来自于照明光源451的照明光束IL在照明系统450A之内收敛至第三光栏PA3。第三光栏PA3位于孔径光栏455之处。在本实施例中,孔径光栏455具有驱动元件。驱动元件用于控制孔径光栏455的开口大小,以控制第三光栏PA3的大小,从而控制照明光束IL入射至显示器430A的圆锥角的大小。因此,在透镜模块440的第二F值被决定之后,可透过孔径光栏455来控制照明系统450A的第一F值的大小,以使头戴式显示装置400A符合第一F值大于或等于第二F值条件。Specifically, in this embodiment, the prism module 459B includes two prisms and two lenses, wherein the aperture stop 455 is disposed between the two lenses in the prism module 459B, and the light homogenizing element 457 is, for example, a light integrating cylinder. In this embodiment, the illumination light beam IL from the illumination light source 451 converges to the third diaphragm PA3 within the illumination system 450A. The third diaphragm PA3 is located at the aperture diaphragm 455 . In this embodiment, the aperture stop 455 has a driving element. The driving element is used to control the opening size of the aperture diaphragm 455 to control the size of the third diaphragm PA3, thereby controlling the size of the cone angle of the illumination light beam IL incident on the display 430A. Therefore, after the second F value of the lens module 440 is determined, the size of the first F value of the lighting system 450A can be controlled through the aperture stop 455, so that the head-mounted display device 400A meets the requirement that the first F value is larger than or Equal to the second F value condition.
图21绘示本发明一实施例的头戴式显示装置的概要示意图。请参考图21,本实施例的头戴式显示装置400C包括照明系统450C、显示器430C、透镜模块440以及波导系统。波导系统包括第一波导元件410以及第二波导元件420。在本实施例中,显示器330A例如包括数位光源处理(Digital Light ProcessingTM,简称DLPTM)投影系统或者液晶覆硅(LiquidCrystal On Silicon,简称LCoS)投影系统,用于将来自照明系统450C的照明光束IL转换为影像光束ML。影像光束ML经由波导系统传递至投射目标P。在本实施例中,波导系统的操作方式可由图1至图14B的实施例之叙述中获致足够的教示、建议与实施说明。FIG. 21 is a schematic diagram of a head-mounted display device according to an embodiment of the present invention. Please refer to FIG. 21 , the head-mounted display device 400C of this embodiment includes an illumination system 450C, a display 430C, a lens module 440 and a waveguide system. The waveguide system includes a first waveguide element 410 and a second waveguide element 420 . In this embodiment, the display 330A includes, for example, a digital light processing (Digital Light Processing TM , DLP TM for short) projection system or a Liquid Crystal On Silicon (LCoS for short) projection system, which is used to transmit the illumination beam from the illumination system 450C to IL is converted into image beam ML. The image beam ML is transmitted to the projection target P through the waveguide system. In this embodiment, the operation of the waveguide system can be sufficiently taught, suggested and implemented from the description of the embodiments shown in FIGS. 1 to 14B.
在本实施例中,照明系统450C用于提供照明光束IL给显示器430C。照明系统450C包括照明光源451、均光元件457、准直透镜组453C、孔径光栏455以及棱镜模块459C。照明光源451提供照明光束IL。照明光束IL经由均光元件357、孔径光栏355、准直透镜组453C以及棱镜模块459C传递至显示器430C。在本实施例中,准直透镜组453C包括透镜453_1、453_2。孔径光栏455配置在准直透镜组353C中的透镜453_1、453_2之间。均光元件457例如是光积分柱。在本实施例中,来自于照明光源451的照明光束IL在照明系统450C之内收敛至第三光栏PA3。第三光栏PA3位于孔径光栏455之处。在本实施例中,孔径光栏455具有驱动元件。驱动元件用于控制孔径光栏455的开口大小,以控制第三光栏PA3的大小。因此,孔径光栏455可调整通过其开口的照明光束IL的光量。在本实施例中,棱镜模块459C包括第一棱镜352_1以及第二棱镜352_2。来自于准直透镜组453C的照明光束IL经由第一棱镜352_1反射至显示器430C,照明光束IL转变为影像光束ML并且透过第二棱镜352_2传递至透镜模块440。In this embodiment, the lighting system 450C is used to provide the lighting beam IL to the display 430C. The illumination system 450C includes an illumination light source 451 , a uniform light element 457 , a collimating lens group 453C, an aperture stop 455 and a prism module 459C. The illumination light source 451 provides an illumination light beam IL. The illumination light beam IL is transmitted to the display 430C through the light homogenizing element 357 , the aperture stop 355 , the collimating lens group 453C and the prism module 459C. In this embodiment, the collimating lens group 453C includes lenses 453_1 and 453_2. The aperture stop 455 is arranged between the lenses 453_1 and 453_2 in the collimator lens group 353C. The light homogenizing element 457 is, for example, a light integrating rod. In this embodiment, the illumination light beam IL from the illumination light source 451 converges to the third diaphragm PA3 within the illumination system 450C. The third diaphragm PA3 is located at the aperture diaphragm 455 . In this embodiment, the aperture stop 455 has a driving element. The driving element is used to control the opening size of the aperture diaphragm 455 to control the size of the third diaphragm PA3. Therefore, the aperture stop 455 can adjust the light quantity of the illumination light beam IL passing through its opening. In this embodiment, the prism module 459C includes a first prism 352_1 and a second prism 352_2 . The illumination beam IL from the collimating lens group 453C is reflected to the display 430C through the first prism 352_1 , and the illumination beam IL is transformed into an image beam ML and transmitted to the lens module 440 through the second prism 352_2 .
在本实施例中,孔径光栏455可调整通过其开口的大小来控制第三光栏PA3的大小,而第三光栏PA3的大小会影响照明光束IL入射至显示器430C的圆锥角θ1的大小。因此,在透镜模块440的第二F值被决定之后,可透过孔径光栏455来控制照明系统450C的第一F值的大小,以使头戴式显示装置400C符合第一F值大于或等于第二F值条件。In this embodiment, the aperture diaphragm 455 can adjust the size of the opening to control the size of the third diaphragm PA3, and the size of the third diaphragm PA3 will affect the size of the cone angle θ1 of the illumination light beam IL incident on the display 430C . Therefore, after the second F value of the lens module 440 is determined, the size of the first F value of the lighting system 450C can be controlled through the aperture stop 455, so that the head-mounted display device 400C meets the requirement that the first F value is larger than or Equal to the second F value condition.
综上所述,在本发明的示范实施例中,第一光栏位于第一波导元件之内,第二光栏位于投射目标之处,可使头戴式显示装置提供大视角,且波导系统的体积小。在本发明的示范实施例中,各分光元件的扩散镀膜可依据不同反射率需求或产品设计来决定之,以使在投射目标中的影像画面可保持均匀,具有良好的显示品质。在本发明的示范实施例中,第三光栏位在照明系统之内,并且孔径光栏设置在第三光栏之处。头戴式显示装置可透过孔径光栏来第三光栏以及控制照明系统的第一F值的大小,以使头戴式显示装置符合第一F值大于或等于透镜模块的第二F值条件,从而改善影像画面中的鬼影,提供良好的显示品质。To sum up, in the exemplary embodiment of the present invention, the first light barrier is located inside the first waveguide element, and the second light barrier is located at the projection target, so that the head-mounted display device can provide a large viewing angle, and the waveguide system The size is small. In an exemplary embodiment of the present invention, the diffusion coating of each light splitting element can be determined according to different reflectivity requirements or product design, so that the image frame in the projection target can be kept uniform and has good display quality. In an exemplary embodiment of the invention, a third light bar is located within the illumination system, and the aperture light bar is disposed at the third light bar. The head-mounted display device can control the size of the first F value of the third light barrier and the lighting system through the aperture diaphragm, so that the head-mounted display device meets the requirement that the first F value is greater than or equal to the second F value of the lens module Conditions, thereby improving the ghost image in the video screen and providing good display quality.
以上所述,仅为本发明之实施例而已,不能以此限定本发明实施之范围,即凡是依本发明权利要求书及说明书内容所作之简单的等效变化与修饰,都仍属本发明专利覆盖之范围内。另外本发明的任一实施例或权利要求不须达成本发明所公开之全部目的或优点或特点。此外,说明书摘要和发明名称仅是用来辅助专利文件检索之用,并非用来限制本发明之权利范围。此外,本说明书或权利要求书中提及的“第一”、“第二”等用语仅用以命名元件(element)的名称或区别不同实施例或范围,而并非用来限制元件数量上的上限或下限。The above is only an embodiment of the present invention, and cannot limit the scope of the present invention. That is, all simple equivalent changes and modifications made according to the claims of the present invention and the contents of the description are still patents of the present invention. within the coverage. In addition, any embodiment or claim of the present invention does not necessarily achieve all the objects or advantages or features disclosed in the present invention. In addition, the abstract of the description and the title of the invention are only used to assist in the search of patent documents, and are not used to limit the scope of rights of the present invention. In addition, terms such as "first" and "second" mentioned in the specification or claims are only used to name elements or to distinguish different embodiments or ranges, and are not used to limit the number of elements. upper or lower limit.
附图标记列表List of reference signs
100、200、300A、300B、300C、400A、400B、400C、500、600、700、800、900:头戴式显示装置100, 200, 300A, 300B, 300C, 400A, 400B, 400C, 500, 600, 700, 800, 900: Head Mounted Displays
110、210、310、410、510、610、710、810、910:第一波导元件110, 210, 310, 410, 510, 610, 710, 810, 910: the first waveguide element
120、220、320、420、520、620、720、820、920:第二波导元件120, 220, 320, 420, 520, 620, 720, 820, 920: second waveguide element
130、230、330A、330B、330C、430A、430B、430C、830:显示器130, 230, 330A, 330B, 330C, 430A, 430B, 430C, 830: display
140、240、340、440、840:透镜模块140, 240, 340, 440, 840: lens module
350A、350B、350C、450A、450B、450C:照明系统350A, 350B, 350C, 450A, 450B, 450C: lighting system
351、451:照明光源351, 451: lighting source
352、352_1、352_2、359_1、359_2、359_3:棱镜352, 352_1, 352_2, 359_1, 359_2, 359_3: Prisms
353、453C:准直透镜组353, 453C: collimating lens group
355、455:孔径光栏355, 455: aperture diaphragm
357、457:均光元件357, 457: Homogenizing components
358:驱动元件358: drive element
359A、359B、359C、459A、459B、459C:棱镜模块359A, 359B, 359C, 459A, 459B, 459C: Prism Module
453_1、453_2:透镜453_1, 453_2: lens
521、621、721:反射结构521, 621, 721: reflective structures
530、630、730、850、930:第三波导元件530, 630, 730, 850, 930: the third waveguide element
532:固定件532: Fixing parts
960、970:偏振元件960, 970: polarizing element
A1:光轴A1: optical axis
A2:视轴A2: boresight
A3:参考轴A3: Reference axis
D1、D2:距离D1, D2: distance
ES3:第三出光面ES3: the third light-emitting surface
IS3:第三入光面IS3: The third light incident surface
IL:照明光束IL: Lighting Beam
ML:影像光束ML: image beam
P:投射目标P: Projection target
PA1:第一光栏PA1: first light bar
PA1’、PA1”、PA1”’:光栏PA1’, PA1”, PA1”’: light bar
PA2:第二光栏PA2: second light bar
PA3:第三光栏PA3: third light bar
PC:中心位置PC: Center position
R:反射层R: reflective layer
S11、S13、S14:第一入光面S11, S13, S14: the first light incident surface
S12、ES1:第一出光面S12, ES1: the first light emitting surface
S23、S15:反射面S23, S15: reflective surface
S21、IS2:第二入光面S21, IS2: the second light incident surface
S22、ES2:第二出光面S22, ES2: Second light emitting surface
SX11、SY21:第一表面SX11, SY21: first surface
SX12、SY22:第二表面SX12, SY22: second surface
SRN、SR(N+1):曲线SRN, SR(N+1): curve
X:第二方向X: Second direction
X1、X2、X3、X4、X5、X6、531、631、731、831、931:第二分光元件X1, X2, X3, X4, X5, X6, 531, 631, 731, 831, 931: the second light splitting element
Y:第一方向Y: first direction
Y1、Y2、Y3、Y4、811、911:第一分光元件Y1, Y2, Y3, Y4, 811, 911: the first light splitting element
Z:第三方向Z: third direction
θ1、θ2:圆锥角θ1, θ2: cone angle
Claims (14)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710343433.0A CN108873327B (en) | 2017-05-16 | 2017-05-16 | Head-mounted display device |
US15/818,769 US10409066B2 (en) | 2017-01-19 | 2017-11-21 | Head-mounted display device with waveguide elements |
EP17203690.7A EP3351994B1 (en) | 2017-01-19 | 2017-11-27 | Head-mounted display device |
JP2017226504A JP6952587B2 (en) | 2017-01-19 | 2017-11-27 | Head-mounted display device |
KR1020180006250A KR102041907B1 (en) | 2017-01-19 | 2018-01-17 | Head-mounted display device |
TW107113418A TWI661230B (en) | 2017-05-16 | 2018-04-19 | Head-mounted display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710343433.0A CN108873327B (en) | 2017-05-16 | 2017-05-16 | Head-mounted display device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108873327A true CN108873327A (en) | 2018-11-23 |
CN108873327B CN108873327B (en) | 2021-03-05 |
Family
ID=64320786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710343433.0A Active CN108873327B (en) | 2017-01-19 | 2017-05-16 | Head-mounted display device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108873327B (en) |
TW (1) | TWI661230B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111435197A (en) * | 2019-01-15 | 2020-07-21 | 精工爱普生株式会社 | Virtual image display device |
CN111736289A (en) * | 2019-03-25 | 2020-10-02 | 信泰光学(深圳)有限公司 | Optical module |
CN112540425A (en) * | 2019-09-23 | 2021-03-23 | 宇目(厦门)科技有限公司 | Optical waveguide structure and preparation method thereof |
US11275250B2 (en) | 2019-11-19 | 2022-03-15 | Apple Inc. | Optical alignment for head-mountable device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112147782B (en) * | 2019-06-26 | 2022-09-30 | 中强光电股份有限公司 | Optical Lenses and Head Mounted Display Devices |
TWI798853B (en) * | 2021-10-01 | 2023-04-11 | 佐臻股份有限公司 | Augmented reality display device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070153395A1 (en) * | 2005-12-29 | 2007-07-05 | C.R.F. Societa Conrostile Per Azioni | Optical system for image transmission, particularly for projection devices of the head-mounted type |
US20070171328A1 (en) * | 2005-11-21 | 2007-07-26 | Freeman Mark O | Substrate-guided display |
WO2011024291A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社島津製作所 | Display device |
CN102928981A (en) * | 2012-11-14 | 2013-02-13 | 中航华东光电有限公司 | Optical system of holographic optical waveguide helmet display |
US20130250431A1 (en) * | 2012-03-21 | 2013-09-26 | Steve Robbins | Two-dimensional exit-pupil expansion |
CN103823267A (en) * | 2012-11-16 | 2014-05-28 | 罗克韦尔柯林斯公司 | Transparent waveguide display |
CN103869406A (en) * | 2012-12-12 | 2014-06-18 | 泰勒斯公司 | Optical guide for collimated images with optical beam doubler, and associated optical device |
CN103941398A (en) * | 2014-04-09 | 2014-07-23 | 北京理工大学 | Transmission type glasses displayer |
CN205787362U (en) * | 2016-02-26 | 2016-12-07 | 中国航空工业集团公司洛阳电光设备研究所 | Optical waveguide components, two-dimensional expansion fiber waveguide device, head-up display and illuminator |
CN106371222A (en) * | 2016-11-30 | 2017-02-01 | 苏州苏大维格光电科技股份有限公司 | Waveguide lens of nanometer optical lens and multi-field-depth 3D display device |
CN107111204A (en) * | 2014-09-29 | 2017-08-29 | 奇跃公司 | Architecture and method for exporting different wavelengths of light from waveguide |
CN108333749A (en) * | 2017-01-19 | 2018-07-27 | 中强光电股份有限公司 | Optical system and head-mounted display device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015148782A (en) * | 2014-02-10 | 2015-08-20 | ソニー株式会社 | Image display device and display device |
JP6641974B2 (en) * | 2015-12-18 | 2020-02-05 | セイコーエプソン株式会社 | Virtual image display |
-
2017
- 2017-05-16 CN CN201710343433.0A patent/CN108873327B/en active Active
-
2018
- 2018-04-19 TW TW107113418A patent/TWI661230B/en active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070171328A1 (en) * | 2005-11-21 | 2007-07-26 | Freeman Mark O | Substrate-guided display |
US20070153395A1 (en) * | 2005-12-29 | 2007-07-05 | C.R.F. Societa Conrostile Per Azioni | Optical system for image transmission, particularly for projection devices of the head-mounted type |
WO2011024291A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社島津製作所 | Display device |
US20130250431A1 (en) * | 2012-03-21 | 2013-09-26 | Steve Robbins | Two-dimensional exit-pupil expansion |
CN102928981A (en) * | 2012-11-14 | 2013-02-13 | 中航华东光电有限公司 | Optical system of holographic optical waveguide helmet display |
CN103823267A (en) * | 2012-11-16 | 2014-05-28 | 罗克韦尔柯林斯公司 | Transparent waveguide display |
CN103869406A (en) * | 2012-12-12 | 2014-06-18 | 泰勒斯公司 | Optical guide for collimated images with optical beam doubler, and associated optical device |
CN103941398A (en) * | 2014-04-09 | 2014-07-23 | 北京理工大学 | Transmission type glasses displayer |
CN107111204A (en) * | 2014-09-29 | 2017-08-29 | 奇跃公司 | Architecture and method for exporting different wavelengths of light from waveguide |
CN205787362U (en) * | 2016-02-26 | 2016-12-07 | 中国航空工业集团公司洛阳电光设备研究所 | Optical waveguide components, two-dimensional expansion fiber waveguide device, head-up display and illuminator |
CN106371222A (en) * | 2016-11-30 | 2017-02-01 | 苏州苏大维格光电科技股份有限公司 | Waveguide lens of nanometer optical lens and multi-field-depth 3D display device |
CN108333749A (en) * | 2017-01-19 | 2018-07-27 | 中强光电股份有限公司 | Optical system and head-mounted display device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111435197A (en) * | 2019-01-15 | 2020-07-21 | 精工爱普生株式会社 | Virtual image display device |
CN111435197B (en) * | 2019-01-15 | 2022-04-19 | 精工爱普生株式会社 | virtual image display device |
CN111736289A (en) * | 2019-03-25 | 2020-10-02 | 信泰光学(深圳)有限公司 | Optical module |
CN111736289B (en) * | 2019-03-25 | 2022-06-17 | 信泰光学(深圳)有限公司 | Optical module |
US11609403B2 (en) | 2019-03-25 | 2023-03-21 | Sintai Optical (Shenzhen) Co., Ltd. | Optical module |
CN112540425A (en) * | 2019-09-23 | 2021-03-23 | 宇目(厦门)科技有限公司 | Optical waveguide structure and preparation method thereof |
US11275250B2 (en) | 2019-11-19 | 2022-03-15 | Apple Inc. | Optical alignment for head-mountable device |
Also Published As
Publication number | Publication date |
---|---|
TW201901238A (en) | 2019-01-01 |
CN108873327B (en) | 2021-03-05 |
TWI661230B (en) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI678556B (en) | Head-mounted display | |
JP6952587B2 (en) | Head-mounted display device | |
TWI661230B (en) | Head-mounted display | |
US9081182B2 (en) | Virtual image display apparatus | |
US20180372940A1 (en) | Illuminator for a wearable display | |
US10007121B2 (en) | See-through head-mounted display | |
TWI694297B (en) | Projection apparatus | |
WO2019104046A1 (en) | Optical display system, method, and applications | |
CN108873328A (en) | Head-mounted display device | |
CN108873329A (en) | Head-mounted display device | |
US11112610B2 (en) | Image display device and head mounted display using the same | |
KR101644818B1 (en) | Holographic display using curved mirror | |
US11269184B2 (en) | Head-mounted display device | |
US10368060B2 (en) | Head mounted display | |
TWI656397B (en) | Projection device | |
TWI655493B (en) | Projection device | |
TW201928495A (en) | Projection device | |
KR20250015225A (en) | Eye display device | |
KR102310995B1 (en) | Optical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |