CN108868180B - 一种采用逐层后退铺网的trc薄板梁侧加固法 - Google Patents
一种采用逐层后退铺网的trc薄板梁侧加固法 Download PDFInfo
- Publication number
- CN108868180B CN108868180B CN201710328017.3A CN201710328017A CN108868180B CN 108868180 B CN108868180 B CN 108868180B CN 201710328017 A CN201710328017 A CN 201710328017A CN 108868180 B CN108868180 B CN 108868180B
- Authority
- CN
- China
- Prior art keywords
- layer
- trc
- fabric
- thin plate
- trc thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000003014 reinforcing effect Effects 0.000 title claims abstract description 6
- 239000004744 fabric Substances 0.000 claims abstract description 25
- 230000002787 reinforcement Effects 0.000 claims description 30
- 239000000835 fiber Substances 0.000 abstract description 7
- 238000005452 bending Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 12
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 239000004567 concrete Substances 0.000 description 7
- 239000011150 reinforced concrete Substances 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011083 cement mortar Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 2
- 229960002261 magnesium phosphate Drugs 0.000 description 2
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 2
- 239000004137 magnesium phosphate Substances 0.000 description 2
- 235000010994 magnesium phosphates Nutrition 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920000914 Metallic fiber Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0218—Increasing or restoring the load-bearing capacity of building construction elements
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Working Measures On Existing Buildindgs (AREA)
Abstract
本发明公开了一种采用逐层后退铺网的TRC薄板梁侧加固法,其特征是:在RC梁两侧中和轴以下部分粘贴TRC薄板,所用TRC薄板中铺设了多层织物网,所铺设的织物网从梁底开始沿梁高逐层后退,后退步距为2mm到5mm之间。该加固方法通过使TRC薄板中织物网的纵向纤维束与钢筋共同承受拉力来提高梁抗弯承载力,同时通过加固梁在受弯破坏过程中使得TRC薄板中织物网的纤维束自梁底开始逐步拉断来提高梁的延性,从而取得在有效提高RC梁承载力的同时确保加固后梁具有良好的延性性能的效果。
Description
技术领域
本发明属于RC结构加固补强技术领域,涉及一种采用逐层后退铺网的 TRC薄板侧面加固RC梁的方法,该方法在有效提高RC梁承载力的同时确保了加固后梁良好的延性性能。
背景技术
混凝土结构加固技术的研究在国内外都是学术研究的重点之一,混凝土加固学已成为结构工程的一门重要的分支学科。从国外建筑工程发展的经验并结合我国的实际现状,可以肯定其应用前景将是十分广阔的,并且将会获得极高的社会效益和经济效益,对我国的现代化建设及发展具有重大的现实意义。
近年来,纤维织物增强混凝土(TRC)在国内外成了一个新的研究热点。国内对TRC的研究主要集中在TRC薄板性能及采用TRC薄板对既有RC结构的加固方面。所谓“TRC薄板加固技术”就是将碳纤维、玻璃纤维、芳纶纤维或碳/玻、碳/芳纶混杂纤维缝编织物网与高性能细骨料混凝土(骨料最大粒径为 1mm,也称为高性能砂浆)结合形成复合材料薄板来对RC结构的梁、板、柱等结构构件进行补强的一种新型加固技术。该加固技术具有如下优点:
(1)TRC是类似于钢丝网水泥砂浆的一种无机复合凝胶材料,与胶浸基体的FRP加固材料相比,砂浆作为无机凝胶材料,与基材间有更好的相容性、协调性及相互渗透性,而且抗老化、耐火、耐久性更好,弥补了FRP材料不适宜用于潮湿的基体表面及低温环境的缺陷,同时也省去了界面粘贴技术中高成本粘结剂的使用,并且避免了因采用环氧树脂有机胶粘结剂所带来的一系列问题;
(2)由于土木工程中应用得最多的纤维材料——碳纤维价格较高,因此采用TRC相比FRP具有较大的经济优势;
(3)由于非金属纤维织物在混凝土中不锈蚀,这就免去了在TRC中设置传统的保护层,故TRC复合材料可以做成很薄的薄板构件,薄度甚至可达 10mm[1],一方面有效地限制了原有结构自重的增加,另一方面也维持了原结构的截面尺寸;
(4)由于TRC细骨料)粒径较小,因此铺设的织物层间间距可少于2mm,能方便地进行多层铺设,以满足加固层承载力的需要;
(5)复合材料中的纤维织物,可根据承载的差异,在主要受力方向上进行铺设(如文献[2]采用正交碳/玻双向织物进行增强时,就将碳纤维织物布置在构件承受拉力的方向上),可充分发挥纤维织物的优势,这种多向织物最多可在四个受力方向上进行织造[3]。
根据TRC薄板加固技术的上述特点,可以肯定该类加固技术具有较好的应用前景。
目前,采用TRC薄板加固技术对RC梁进行抗弯加固时,一般都是将TRC 薄板粘贴于梁底,这种加固方法由于所采用的织物网的弹性模量比钢筋高很多、极限变形能力比钢筋低很多,因此加固后梁承载力虽有大幅度提高,但延性大幅度降低(如文献[2]所述),因此如何提高加固后梁的延性是该类加固技术需要解决的问题。
参考文献:
[1]Ortlepp R,Hampel U,Curbach M.A new approach for evaluating bondcapacity of TRC strengthening[J].Cement&Concrete Composites,2006,28(7):589-597.
[2]荀勇;支正东;张勤.织物增强混凝土薄板加固钢筋混凝土梁受弯性能试验研究[J].建筑结构学报, 2010,31(3):70-76.
[3]A.Bruckner,R.Ortlepp,M.Curbach.Anchoring of shear strengtheningfor T-beams made of textile reinforced concrete(TRC)[J].Materials andStructures,2007.
发明内容
目前,采用TRC薄板加固技术对RC梁进行抗弯加固时,一般都是将TRC 薄板粘贴于梁底,这种加固方法由于所采用的织物网的弹性模量比钢筋高很多、极限变形能力比钢筋低很多,因此加固后梁承载力虽有大幅度提高,但延性大幅度降低。
本发明的目的在于提供一种采用逐层后退铺网的TRC薄板梁侧加固法,其特征是:在RC梁两侧中和轴以下部分粘贴TRC薄板(如附图1所示),所用 TRC薄板中铺设了多层织物网,所铺设的织物网从梁底开始沿梁高逐层后退,后退步距为2mm到5mm之间(如附图2所示)。该方法在有效提高RC梁承载力的同时确保了加固后梁良好的延性性能。
本发明的技术方案是:
采用逐层后退铺网的TRC薄板粘贴在RC梁的两侧对其进行抗弯加固,通过使TRC薄板中织物网的纵向纤维束与钢筋共同承受拉力来提高梁抗弯承载力,同时通过加固梁在受弯破坏过程中使得TRC薄板中织物网的纤维束自梁底开始逐步拉断来提高梁的延性,从而取得在有效提高RC梁承载力的同时确保加固后梁具有良好的延性性能的效果。
附图说明
图1是本发明提供的逐层后退铺网的TRC薄板示意图;
图2是本发明提供的TRC薄板梁侧加固示意图;
图3是本发明提供的既有钢筋混凝土梁配筋图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种采用逐层后退铺网的TRC薄板梁侧加固法,具体实施方式如下:
步骤1制作逐层后退铺网的TRC薄板,采用细骨料混凝土浇筑薄板,并在薄板中铺设多层织物网,所铺设的织物网在从薄板的下边缘开始按一定步距逐层后退,如图1所示,薄板制作好后养护28天;
步骤2对既有钢筋混凝土梁两侧粘贴TRC薄板区域进行凿糙处理;
步骤3对凿糙面进行洒水润湿,并让其自然干燥;
步骤4采用磷酸镁水泥砂浆将TRC薄板粘贴在既有钢筋混凝土梁两侧处理过的加固区域,并用夹具夹紧。所述磷酸镁水泥砂浆的材料组成为:黄沙 1800kg/m3,MgO666.7kg/m3,SiO2 74.1kg/m3,缓凝剂22.2kg/m3,硼砂15.0kg/m3, Na51.9kg/m3,KH2PO4 370.4kg/m3,H2O 180.0kg/m3;
步骤524小时后拆掉夹具。
下面结合试验来说明本发明的加固效果。
试验共制作了3根钢筋混凝土梁,截面尺寸及配筋见附图3。其中1根作对比梁,其余2根在梁两侧作加固处理,加固范围:梁高方向为中和轴以下至梁底边缘,梁长方向为跨中向两端各750mm。加固梁的加固区段均进行凿糙处理(凿糙度H≈3.17~3.62mm)。
既有钢筋混凝土梁的混凝土立方体抗压强度为27.2MPa,φ12钢筋的屈服强度为336.9N/mm2、极限强度为512.7N/mm2,φ6钢筋的屈服强度为 409.1N/mm2、极限强度为622.3N/mm2。TRC薄板所用细骨料混凝土28天立方体抗压强度为50.5MPa。薄板中铺设4层织物网,后退步距为3mm。所用织物网网孔为5mm×5mm,受力方向为碳纤维,弹性模量为230GPa,单束粗纱线密度为1600tex、抗拉承载力为2853N。
试验得到的承载力和延性结果如表1所示。
表1
由表1可知:加固构件1和2极限承载力比对比构件分别提高21.9%、20.2%,延性系数相比对比构件均略有下降,但仍能达到4.8左右,加固效果良好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (2)
1.一种采用逐层后退铺网的TRC薄板梁侧加固法,其特征是:
在RC梁两侧中和轴以下部分粘贴TRC薄板,所述TRC薄板中铺设多层织物网,所铺设的织物网从梁底开始沿梁高方向向上逐层后退。
2.如权利要求1所述的采用逐层后退铺网的TRC薄板梁侧加固法,其特征是:TRC薄板中织物网后退步距为2mm到5mm之间。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710328017.3A CN108868180B (zh) | 2017-05-10 | 2017-05-10 | 一种采用逐层后退铺网的trc薄板梁侧加固法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710328017.3A CN108868180B (zh) | 2017-05-10 | 2017-05-10 | 一种采用逐层后退铺网的trc薄板梁侧加固法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108868180A CN108868180A (zh) | 2018-11-23 |
CN108868180B true CN108868180B (zh) | 2022-06-14 |
Family
ID=64319318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710328017.3A Expired - Fee Related CN108868180B (zh) | 2017-05-10 | 2017-05-10 | 一种采用逐层后退铺网的trc薄板梁侧加固法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108868180B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112016149B (zh) * | 2020-09-01 | 2023-02-24 | 西南交通大学 | 受弯加固rc梁承载力求解方法、电子设备和可读存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20110611A1 (it) * | 2011-10-28 | 2013-04-29 | Uab Leonardo Gef Baltic Gef | Metodo per rinforzare una struttura muraria e corrispondente sistema di rinforzo |
CN102995789B (zh) * | 2012-05-25 | 2015-03-11 | 北京工业大学 | 内藏型钢柱-格构钢梁-网状钢撑混凝土墙体及作法 |
CN104763163B (zh) * | 2015-01-26 | 2017-05-03 | 盐城工学院 | 一种e玻纤织物增强磷酸镁水泥基混凝土薄板加固rc梁的加固方法及工艺 |
CN205743928U (zh) * | 2016-06-30 | 2016-11-30 | 吴镇 | 浅埋型球铁框架‑钢筋混凝土组合隧道壁板 |
-
2017
- 2017-05-10 CN CN201710328017.3A patent/CN108868180B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108868180A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Comparison of different types of TRM composites for strengthening masonry panels | |
Ye et al. | Novel ultra-high-performance concrete composite plates reinforced with FRP grid: Development and mechanical behaviour | |
Nayak et al. | Strengthening of RC beams using externally bonded fibre reinforced polymer composites | |
Sen et al. | Strengthening of RC beams in flexure using natural jute fibre textile reinforced composite system and its comparative study with CFRP and GFRP strengthening systems | |
Mashrei et al. | Flexural strengthening of reinforced concrete beams using carbon fiber reinforced polymer (CFRP) sheets with grooves | |
CN101481930B (zh) | 纤维编织网复合钢筋增强混凝土的建筑结构及其制备方法 | |
Dong et al. | Out-of-plane strengthening of unreinforced masonry walls using textile reinforced mortar added short polyvinyl alcohol fibers | |
CN109190194B (zh) | 一种uhpc受弯构件的配筋计算方法 | |
CN103496865A (zh) | 一种混杂frp网格增强ecc及用于加固混凝土结构 | |
CN101985825A (zh) | 一种纤维增强塑料-混凝土组合梁 | |
KR102286554B1 (ko) | 슬립과 균열 발생을 억제하기 위한 텍스타일 보강 시멘트 복합체 및 그 제조방법 | |
CN107217788A (zh) | 全frp筋增强ecc‑混凝土组合梁构件及其制备方法 | |
Hosen et al. | Flexural strengthening of RC beams with NSM steel bars | |
Ramesh et al. | Flexural behaviour of glass fibre reinforced polymer (GFRP) laminated hybrid-fibre reinforced concrete beams | |
Shamseldein et al. | Tensile behavior of basalt textile-reinforced mortar (BTRM) | |
CN104763163B (zh) | 一种e玻纤织物增强磷酸镁水泥基混凝土薄板加固rc梁的加固方法及工艺 | |
Shi et al. | Improving bonding behavior between basalt fiber-reinforced polymer sheets and concrete using multi-wall carbon nanotubes modified epoxy composites | |
CN108868180B (zh) | 一种采用逐层后退铺网的trc薄板梁侧加固法 | |
DEEPA et al. | Shear strengthening of reinforced concrete beams using near surface mounted glass fibre reinforced polymer | |
Salman et al. | Confinement of RC columns by carbon fiber reinforced geopolymer adhesive jackets | |
Singh et al. | Strengthening of masonry beam with ECC as bed joint | |
Illampas et al. | Development and performance evaluation of a novel high-ductility fiber-reinforced lime-pozzolana matrix for textile reinforced mortar (TRM) masonry strengthening applications | |
Pang et al. | Experimental study of tensile properties of strain-hardening cementitious composites (SHCCs) reinforced with innovative twisted basalt fibers | |
CN1916365A (zh) | 一种利用frp筋强化盾构管片的功能梯度材料界面的工艺 | |
Murad et al. | The influence of basalt and steel fibers on the flexural behavior of RC beams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220614 |