CN108866481A - 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 - Google Patents
一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 Download PDFInfo
- Publication number
- CN108866481A CN108866481A CN201810575978.9A CN201810575978A CN108866481A CN 108866481 A CN108866481 A CN 108866481A CN 201810575978 A CN201810575978 A CN 201810575978A CN 108866481 A CN108866481 A CN 108866481A
- Authority
- CN
- China
- Prior art keywords
- target
- coating
- substrate
- adjust
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/347—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明属于刀具涂层和表面防护涂层制备技术领域,公开了一种纳米复合Al‑Ti‑V‑Cu‑N涂层及其制备方法。本发明涂层包括沉积于衬底基体上的Cr金属结合层、CrN过渡层以及Al‑Ti‑V‑Cu‑N纳米复合层;Al‑Ti‑V‑Cu‑N纳米复合层中各元素原子百分比含量为:Al 18~20at.%,Ti 8~10at.%,V 10~12at.%,Cu 6~12at.%,N 50~54at.%。本发明还可通过自由调节衬底基体与拼接靶的相对位置和改变工艺参数来沉积不同元素含量的Al‑Ti‑V‑Cu‑N纳米复合涂层,以满足不同的加工对象和切削条件,具有可控性强,工艺简单等优点。
Description
技术领域
本发明属于刀具涂层和表面防护涂层制备技术领域,特别涉及一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用。
背景技术
目前,电弧离子镀和磁控溅射沉积是制备刀具涂层的主流PVD技术。其中电弧离子镀技术具有离子能量高、金属离化率高、膜层致密和附着力强等优点,但其制备的涂层表面质量较差,且膜内应力大;而磁控溅射沉积技术制备的涂层表面平整、致密,无明显的孔洞和大颗粒,但离化率低,膜基结合力较差,且靶材刻蚀不均匀,利用率低。随着新型涂层制备技术的不断发展,高功率脉冲磁控溅射技术(HIPIMS)利用较高的脉冲峰值功率和较低的脉冲占空比来实现高金属离化率,在获得优异膜基结合力和降低残余内应力等方面具有显著的技术优势。HIPIMS技术综合了磁控溅射低温沉积、表面光滑、无颗粒缺陷和电弧离子镀金属离化率高、膜基结合力强、涂层致密等优点,可制备出结构和性能更优异的硬质涂层。
随着现代化高速切削技术和难加工材料的发展,目前常用的硬质涂层刀具越来越不能满足高速切削加工的要求。特别是随着淬硬钢和高强度钢硬度的提高,由于切削力的增大和切削温度的升高,扩散磨损和氧化磨损加剧,涂层在短时间内局部脱落,导致刀具涂层快速磨损而失效。
发明内容
为了克服现有技术中存在的缺点和不足,本发明的首要目的在于提供一种纳米复合Al-Ti-V-Cu-N涂层,大大提高了硬质涂层的高温耐磨性,解决了现行PVD硬质涂层刀具高速切削难加工材料的易磨损问题。
本发明的又一目的在于提供一种纳米复合Al-Ti-V-Cu-N涂层的制备方法。
本发明的再一目的在于提供一种上述纳米复合Al-Ti-V-Cu-N涂层的应用。
本发明目的通过以下技术方案实现:
一种纳米复合Al-Ti-V-Cu-N涂层,该涂层由下到上包括衬底基体、Cr金属结合层、CrN过渡层以及Al-Ti-V-Cu-N纳米复合层;其中Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量:Al 18~20at.%,Ti 8~10at.%,V 10~12at.%,Cu 6~12at.%,N 50~54at.%。
所述CrN过渡层的厚度为100~500nm,Al-Ti-V-Cu-N纳米复合层的厚度为0.5~1.5μm。
所述衬底基体为WC-Co硬质合金或高速钢刀具基体。
上述的一种纳米复合Al-Ti-V-Cu-N涂层的制备方法,包括以下步骤:
(1)将经抛光处理后的衬底基体放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗10~20min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度2~5rpm,使基体正对靶材表面,保持靶基距60~120cm,打开加热器升温至100~300℃,预抽本底真空至1.0~5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压1.0~2.0Pa,基体偏压-800~-1000V,对腔体进行辉光溅射清洗10~30min;
(3)降低基体偏压至-400~-600V,调节Ar气压至0.5~1.0Pa,打开Cr电弧靶,调节靶电流60~120A,以Cr离子高能轰击基体3~5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-50~-200V,关闭Ar、打开N2气流量阀,调节气压0.5~1.0Pa,沉积3~15min,得到厚度100~500nm的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比1:1~5:1,调节总气压至0.5~1.0Pa,基体偏压至-50~-200V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率0.5~3.0kW,靶电压600~900V,脉冲宽度50~250μs,频率160~500Hz,沉积100~300min,得到厚度0.5~1.5μm的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
步骤(5)所述Al-Ti-V-Cu拼接靶是由Al67Ti33合金靶、纯V靶和纯Cu靶通过几何形状拼接而成的平面靶。
上述的一种纳米复合Al-Ti-V-Cu-N涂层在刀具切削和表面防护涂层领域中的应用。
本发明研究发现润滑相V加入到TiAlN涂层中可以形成Ti-Al-V-N固溶体,实现固溶强化作用,有效提高涂层硬度。另一方面可以通过V向外表面扩散实现氧化润滑作用,提高涂层的耐磨性。此外,还可以将软金属Cu加入到硬质涂层中形成氮化物/软金属非晶相的纳米复合结构,使晶粒细化、硬度提高,获得更低的摩擦系数和更高的耐磨性。
与现有技术相比,本发明具有以下优点及有益效果:
(1)本发明有机结合了高功率脉冲磁控溅射的优点,可制备出综合性能良好的Al-Ti-V-Cu-N纳米复合涂层,该涂层具有表面光滑、高硬度、以及优异的高温耐磨性,可大大提高涂层刀具高速切削加工时的使用寿命,在刀具切削和表面防护涂层领域具有重大的应用前景;
(2)本发明可通过自由调节衬底基体与拼接靶的相对位置和改变工艺参数来沉积不同元素含量的Al-Ti-V-Cu-N纳米复合涂层,以满足不同的加工对象和切削条件,具有可控性强,工艺简单等优点。
附图说明
图1实施例中拼接靶的示意图,拼接靶中AlTi合金靶的原子百分比为67:33;
图2实施例中不同占空比下Al-Ti-V-Cu-N纳米复合涂层的表面形貌图:(a)1.6%,(b)2%,(c)3%,(d)4%,(e)5%;
图3实施例中不同占空比下Al-Ti-V-Cu-N纳米复合涂层的截面形貌图:(a)1.6%,(b)2%,(c)3%,(d)4%,(e)5%;
图4实施例中不同占空比下Al-Ti-V-Cu-N纳米复合涂层的XRD图;
具体实施方式
下面通过实施例对本发明作进一步详细说明,这些实施例仅用来说明本发明,但本发明的保护范围不限于此。
以下实施例中使用的拼接靶Al-Ti-V-Cu的示意图如图1所示,是由Al67Ti33合金靶、纯V靶和纯Cu靶通过几何形状拼接而成的平面靶,且样品基体正对V靶的中心。
实施例1:
(1)将经抛光处理后的衬底基体(WC-Co硬质合金)放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗15min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,保持靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,基体加偏压-1000V,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-600V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流100A,以Cr离子高能轰击基体5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-120V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积10min的CrN过渡层,得到400nm厚的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比4:1,调节总气压至0.6Pa,降低基体偏压至-100V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率1.0kW,靶电压800V,脉冲宽度100μs,频率160Hz,沉积180min,得到0.7μm厚的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量为:Al19.9at.%,Ti 9.9at.%,V 10.3at.%,Cu 6.2at.%,N 53.7at.%。
图2的(a)和图3的(a)分别为纳米复合Al-Ti-V-Cu-N涂层的表面和截面形貌图,可以看出表面比较光滑,截面非常致密,且膜基界面处平整光滑;图4为纳米复合Al-Ti-V-Cu-N涂层的XRD图,形成了TiAlVN固溶体结构。
实施例2:
(1)将经抛光处理后的衬底基体(WC-Co硬质合金)放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗15min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,保持靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,基体加偏压-1000V,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-600V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流100A,以Cr离子高能轰击基体5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-120V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积10min的CrN过渡层,得到400nm厚的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比4:1,调节总气压至0.6Pa,降低基体偏压至-100V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率1.0kW,靶电压800V,脉冲宽度100μs,频率200Hz,沉积180min,得到0.9μm厚的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量为:Al19.4at.%,Ti 9.4at.%,V 11.6at.%,Cu 7.9at.%,N 51.7at.%。
图2的(b)和图3的(b)分别为纳米复合Al-Ti-V-Cu-N涂层的表面和截面形貌图,表面也比较光滑,截面呈现比较致密的双层结构;在图4的XRD图中,除了TiAlVN固溶体的衍射峰,也出现较弱Cu单质的(111)峰。
实施例3:
(1)将经抛光处理后的衬底基体(WC-Co硬质合金)放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗15min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,保持靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,基体加偏压-1000V,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-600V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流100A,以Cr离子高能轰击基体5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-120V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积10min的CrN过渡层,得到400nm厚的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比4:1,调节总气压至0.6Pa,降低基体偏压至-100V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率1.0kW,靶电压800V,脉冲宽度100μs,频率300Hz,沉积180min,得到1.0μm厚的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量为:Al19.4at.%,Ti 8.9at.%,V 10.6at.%,Cu 10.2at.%,N 50.9at.%。
图2的(c)和图3的(c)分别为纳米复合Al-Ti-V-Cu-N涂层的表面和截面形貌图,表面颗粒增多,截面呈现微柱状晶结构;在图4的XRD图中,Cu单质的(111)峰明显增强,说明涂层中Cu的含量增多。
实施例4:
(1)将经抛光处理后的衬底基体(高速钢刀具基体)放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗15min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,保持靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,基体加偏压-1000V,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-600V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流100A,以Cr离子高能轰击基体5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-120V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积10min的CrN过渡层,得到400nm厚的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比4:1,调节总气压至0.6Pa,降低基体偏压至-100V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率1.0kW,靶电压800V,脉冲宽度100μs,频率400Hz,沉积180min,得到1.1μm厚的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量为:Al18.5at.%,Ti 8.1at.%,V 11.2at.%,Cu 10.7at.%,N 51.5at.%。
图2的(d)和图3的(d)分别为纳米复合Al-Ti-V-Cu-N涂层的表面和截面形貌图,表面比较粗糙,截面呈现疏松的柱状晶结构;在图4的XRD图中,TiAlVN固溶体的衍射峰强度有所降低。
实施例5:
(1)将经抛光处理后的衬底基体(高速钢刀具基体)放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗15min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度3rpm,使基体正对靶材表面,保持靶基距120cm,打开加热器升温至200℃,预抽本底真空至5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压至1.8Pa,基体加偏压-1000V,对腔体进行辉光溅射清洗30min;
(3)降低基体偏压至-600V,调节Ar气压至0.5Pa,打开Cr电弧靶,调节靶电流100A,以Cr离子高能轰击基体5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-120V,关闭Ar、打开N2气流量阀,调节气压至0.5Pa,沉积10min的CrN过渡层,得到400nm厚的CrN过渡层,以降低涂层的残余内应力,提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比4:1,调节总气压至0.6Pa,降低基体偏压至-100V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率1.0kW,靶电压800V,脉冲宽度100μs,频率500Hz,沉积180min,得到1.1μm厚的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
本实施例中,制备的Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量为:Al17.9at.%,Ti 8.3at.%,V 10.3at.%,Cu 11.7at.%,N 51.8at.%。
图2的(e)和图3的(e)分别为纳米复合Al-Ti-V-Cu-N涂层的表面和截面形貌图,表面比较粗糙,截面呈现明显柱状晶结构;在图4的XRD图中,TiAlVN固溶体的衍射峰强度大大降低,而Cu单质的(111)峰进一步增强,说明涂层中Cu的含量进一步增多。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (6)
1.一种纳米复合Al-Ti-V-Cu-N涂层,其特征在于:该涂层由下到上包括衬底基体、Cr金属结合层、CrN过渡层以及Al-Ti-V-Cu-N纳米复合层;其中Al-Ti-V-Cu-N纳米复合层中各元素的原子百分比含量:Al 18~20at.%,Ti 8~10at.%,V 10~12at.%,Cu 6~12at.%,N50~54at.%。
2.根据权利要求1所述的一种纳米复合Al-Ti-V-Cu-N涂层,其特征在于:所述CrN过渡层的厚度为100~500nm,Al-Ti-V-Cu-N纳米复合层的厚度为0.5~1.5μm。
3.根据权利要求1所述的一种纳米复合Al-Ti-V-Cu-N涂层,其特征在于:所述衬底基体为WC-Co硬质合金或高速钢刀具基体。
4.根据权利要求1所述的一种纳米复合Al-Ti-V-Cu-N涂层的制备方法,其特征在于包括以下步骤:
(1)将经抛光处理后的衬底基体放入超声波清洗机中,依次用丙酮、酒精分别进行超声波清洗10~20min,然后用干燥压缩空气吹干后固定在镀膜腔室内的工件转架上,调节工件转架自转速度2~5rpm,使基体正对靶材表面,保持靶基距60~120cm,打开加热器升温至100~300℃,预抽本底真空至1.0~5.0×10-3Pa;
(2)打开Ar气流量阀,调节气压1.0~2.0Pa,基体偏压-800~-1000V,对腔体进行辉光溅射清洗10~30min;
(3)降低基体偏压至-400~-600V,调节Ar气压至0.5~1.0Pa,打开Cr电弧靶,调节靶电流60~120A,以Cr离子高能轰击基体3~5min,活化基体表面以提高膜基结合力,形成Cr金属结合层;
(4)降低基体偏压至-50~-200V,关闭Ar、打开N2气流量阀,调节气压0.5~1.0Pa,沉积3~15min,得到厚度100~500nm的CrN过渡层,以降低涂层的残余内应力提高韧性;
(5)关闭Cr电弧靶,打开Ar、N2气流量阀,调节Ar/N2流量比1:1~5:1,调节总气压至0.5~1.0Pa,基体偏压至-50~-200V,打开高功率脉冲磁控溅射电源,开启拼接靶Al-Ti-V-Cu,调节靶功率0.5~3.0kW,靶电压600~900V,脉冲宽度50~250μs,频率160~500Hz,沉积100~300min,得到厚度0.5~1.5μm的Al-Ti-V-Cu-N纳米复合层;
(6)沉积结束后,关闭靶电源和偏压电源,关闭Ar和N2气流量阀,待腔室温度降至室温后即可开炉门取出样品,完成镀膜。
5.根据权利要求4所述的制备方法,其特征在于:步骤(5)所述Al-Ti-V-Cu拼接靶是由Al67Ti33合金靶、纯V靶和纯Cu靶通过几何形状拼接而成的平面靶。
6.根据权利要求1所述的一种纳米复合Al-Ti-V-Cu-N涂层在刀具切削和表面防护涂层领域中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810575978.9A CN108866481B (zh) | 2018-06-06 | 2018-06-06 | 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810575978.9A CN108866481B (zh) | 2018-06-06 | 2018-06-06 | 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108866481A true CN108866481A (zh) | 2018-11-23 |
CN108866481B CN108866481B (zh) | 2021-01-19 |
Family
ID=64337349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810575978.9A Active CN108866481B (zh) | 2018-06-06 | 2018-06-06 | 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108866481B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115181926A (zh) * | 2021-09-08 | 2022-10-14 | 武汉苏泊尔炊具有限公司 | 刀具 |
CN115233169A (zh) * | 2022-06-22 | 2022-10-25 | 苏州六九新材料科技有限公司 | 一种铝基管状靶材及其制备方法 |
CN116288152A (zh) * | 2023-03-22 | 2023-06-23 | 纳狮新材料有限公司 | 一种包含抗菌不粘涂层的产品及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0516248B1 (en) * | 1988-05-02 | 1996-09-18 | Orient Watch Co., Ltd. | Multilayered film |
CN101660160A (zh) * | 2009-09-14 | 2010-03-03 | 南昌航空大学 | 一种兼具有高硬度和高抗热震性能的氮化物复合防护涂层 |
CN105839054A (zh) * | 2016-05-24 | 2016-08-10 | 上海都浩真空镀膜技术有限公司 | 一种CrAlTiSiN刀具保护性涂层及其制备方法 |
CN107523790A (zh) * | 2017-07-05 | 2017-12-29 | 广东工业大学 | 一种AlCrSiCuN纳米多层涂层及其制备方法 |
CN107604329A (zh) * | 2017-08-11 | 2018-01-19 | 广东工业大学 | 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用 |
-
2018
- 2018-06-06 CN CN201810575978.9A patent/CN108866481B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0516248B1 (en) * | 1988-05-02 | 1996-09-18 | Orient Watch Co., Ltd. | Multilayered film |
CN101660160A (zh) * | 2009-09-14 | 2010-03-03 | 南昌航空大学 | 一种兼具有高硬度和高抗热震性能的氮化物复合防护涂层 |
CN105839054A (zh) * | 2016-05-24 | 2016-08-10 | 上海都浩真空镀膜技术有限公司 | 一种CrAlTiSiN刀具保护性涂层及其制备方法 |
CN107523790A (zh) * | 2017-07-05 | 2017-12-29 | 广东工业大学 | 一种AlCrSiCuN纳米多层涂层及其制备方法 |
CN107604329A (zh) * | 2017-08-11 | 2018-01-19 | 广东工业大学 | 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
王新: "炮铜表面磁控溅射制备TiAlVN膜层及性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115181926A (zh) * | 2021-09-08 | 2022-10-14 | 武汉苏泊尔炊具有限公司 | 刀具 |
CN115181926B (zh) * | 2021-09-08 | 2023-12-01 | 武汉苏泊尔炊具有限公司 | 刀具 |
CN115233169A (zh) * | 2022-06-22 | 2022-10-25 | 苏州六九新材料科技有限公司 | 一种铝基管状靶材及其制备方法 |
CN115233169B (zh) * | 2022-06-22 | 2023-09-05 | 苏州六九新材料科技有限公司 | 一种铝基管状靶材及其制备方法 |
CN116288152A (zh) * | 2023-03-22 | 2023-06-23 | 纳狮新材料有限公司 | 一种包含抗菌不粘涂层的产品及其制备方法 |
CN116288152B (zh) * | 2023-03-22 | 2024-03-26 | 纳狮新材料有限公司 | 一种包含抗菌不粘涂层的产品及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108866481B (zh) | 2021-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106222610B (zh) | 一种纳米复合硬质涂层及其制备方法 | |
CN105112858B (zh) | 一种多层结构的纳米复合刀具涂层 | |
CN101712215B (zh) | 一种TiCN系列纳米梯度复合多层涂层的制备方法 | |
CN102653855B (zh) | 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法 | |
CN108866480B (zh) | 一种多层多元纳米复合自润滑硬质涂层及其制备方法和应用 | |
CN103143761B (zh) | 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法 | |
CN104928638A (zh) | 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法 | |
CN112981321B (zh) | 一种单相结构(CrZrVTiAl)N高熵陶瓷涂层及其制备方法 | |
CN103273687A (zh) | TiSiN+ZrSiN复合纳米涂层刀具及其制备方法 | |
CN105088127B (zh) | 一种涂层及其制备方法 | |
WO2019072084A1 (zh) | 一种耐高温硬质复合涂层及其制备方法和涂层刀具 | |
CN107523790A (zh) | 一种AlCrSiCuN纳米多层涂层及其制备方法 | |
CN109735799A (zh) | 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法 | |
CN107058948B (zh) | 一种软硬复合涂层刀具及其制备方法 | |
CN107287555A (zh) | 一种自组装纳米氧氮化物涂层及其制备方法和应用 | |
CN106480417A (zh) | 一种TiAlSiN-AlTiN复合涂层及制备工艺 | |
CN107604329A (zh) | 一种耐磨自润滑Mo‑Cu‑V‑N复合涂层及其制备方法和应用 | |
CN108866481A (zh) | 一种纳米复合Al-Ti-V-Cu-N涂层及其制备方法和应用 | |
CN110004409A (zh) | 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺 | |
CN108456843A (zh) | 一种高性能TiAlSiN纳米复合涂层及其制备方法和应用 | |
CN108930021B (zh) | 一种纳米多层AlTiN/AlTiVCuN涂层及其制备方法和应用 | |
CN106567074A (zh) | 一种AlTiSiN‑AlCrSiN纳米晶‑非晶多层复合涂层制备方法 | |
CN108930022B (zh) | 一种纳米多层AlTiN/MoVCuN涂层及其制备方法和应用 | |
CN207176061U (zh) | 一种物理气相沉积Ta‑C涂层及设有该涂层的工件 | |
CN108456845B (zh) | 一种软硬复合纳米多层涂层刀具及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |