CN108855191A - 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 - Google Patents
可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 Download PDFInfo
- Publication number
- CN108855191A CN108855191A CN201810765790.0A CN201810765790A CN108855191A CN 108855191 A CN108855191 A CN 108855191A CN 201810765790 A CN201810765790 A CN 201810765790A CN 108855191 A CN108855191 A CN 108855191A
- Authority
- CN
- China
- Prior art keywords
- carbon nitride
- metavanadate
- silver
- quantum dot
- visible light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/007—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/682—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/32—Freeze drying, i.e. lyophilisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
- B01J6/001—Calcining
- B01J6/004—Calcining using hot gas streams in which the material is moved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/104—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20723—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/80—Type of catalytic reaction
- B01D2255/802—Photocatalytic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用,以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料;将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯进行水热反应,然后冷冻干燥,制备偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶,为可见光响应的杂化气凝胶。本发明克服了传统烟气脱硝技术处理废气存在的还原剂量大,二次污染严重,操作复杂等问题,光催化氧化法反应条件温和,能耗低,去除效率高,在污染物降解领域已经得到广泛应用。
Description
技术领域
本发明属于纳米复合材料技术领域,具体涉及一种可见光响应的偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶及其制备与在废气处理方面的应用。
背景技术
近年来,全球废气排放量迅速增加,环境容量基本饱和,导致了一系列区域和环境问题,如光化学烟雾,酸雨和臭氧层破坏。大多数废气的水溶性和反应性差,难以控制。目前使用的烟气脱硝技术还存在还原剂量大,二次污染严重,操作复杂等问题。
发明内容
本发明的目的是提供一种可见光响应的偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶及其制备方法与在废气处理方面的应用。
为了达到上述目的,本发明采用如下具体技术方案:
一种可见光响应的杂化气凝胶的制备方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料;
(3)将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯进行水热反应,然后冷冻干燥,制备偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶,为可见光响应的杂化气凝胶。
本发明还公开了偏钒酸银量子点/氮化碳纳米片复合材料及其制备方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料。
本发明还公开了一种废气处理的方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料;
(3)将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯进行水热反应,然后冷冻干燥,制备可见光响应的杂化气凝胶;
(4)将废气通过可见光响应的杂化气凝胶,光照,完成废气的处理。
本发明可见光响应的杂化气凝胶的制备方法可举例如下:
(1)以双氰胺为前驱体,在管式炉中经过两次煅烧,得到超薄的氮化碳纳米片;
(2)将氮化碳纳米片分散于去离子水中,先后加入硝酸银和偏钒酸铵,在氮化碳上原位生长偏钒酸银量子点,经过洗涤、离心和干燥后得到偏钒酸银量子点/氮化碳纳米片复合材料;
(3)将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯通过反应釜水热反应,然后冷冻干燥,得到可见光响应的杂化气凝胶。
上述技术方案中,步骤(1)中,所述第一次煅烧在氩气中进行,煅烧时升温速率为5℃/min,煅烧的时间为4 h,煅烧的温度为550 ℃;所述第二次煅烧在空气中进行,煅烧时升温速率为5 ℃/min,煅烧的时间为2h,煅烧的温度为550 ℃。
上述技术方案中,步骤(2)中,所述氮化碳、硝酸银以及偏钒酸铵的质量比为(18~22):(1~2):(0.5~1),优选20:2:1。原位生长在避光条件下进行,原位生长的时间为8~12h,原位生长的温度为常温。优选的,将硝酸银分散于去离子水中,然后加入氮化碳纳米片,搅拌30min后再加入偏钒酸铵,继续搅拌;进一步优选的,将产物先后用去离子水和乙醇冲洗后烘干制备偏钒酸银量子点/氮化碳纳米片复合材料;优选烘干温度为60~90℃。形成的偏钒酸银的纳米尺寸小且均匀的负载到氮化碳载体的表面,利于高效的催化处理废气。
上述技术方案中,步骤(3)中,所述偏钒酸银量子点/氮化碳纳米片复合材料和氧化石墨烯的质量比为(4~5):(1~2),优选3:1;所述水热反应的温度为95 ℃,反应的时间为6h;所述冷冻干燥的温度为-50 ℃,冷冻干燥的时间为24h。
本发明进一步公开了上述偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶复合材料在光催化处理废气方面的应用;上述偏钒酸银量子点/氮化碳纳米片在光催化处理废气方面的应用;上述氮化碳纳米片在光催化处理废气方面的应用。优选的,所述废气处理为烟气脱硝或者一氧化氮废气处理。
本发明的优点:
1、本发明采用简单易操作的水热法和冷冻干燥法,制得偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶复合光催化剂,制备工艺简单,原料廉价易得,易于实现大规模生产;氮化碳的带隙约为2.7 eV,有较高可见光催化性能;但是现有技术表明,由于其较窄的带隙,其光生电子和空穴很容易复合,本发明在氮化碳上修饰偏钒酸银量子点,构成零维/二维异质结,抑制了电子-空穴对的重组,使其发挥协效的氧化还原作用;冷冻干燥后所得三维气凝胶具有规则的几何形貌,在空气中不易吹飞,易于回收利用。
2、本发明偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶复合光催化剂,具有较大的比表面积,且孔径均一,具有优异的导电性。偏钒酸银量子点的尺寸可调,光稳定性高,禁带宽度窄,可均匀地负载于氮化碳纳米片上,分散电荷,促进光生载流子的转移;偏钒酸银量子点/氮化碳纳米片均匀地分散于石墨烯上,进一步促进了光生载流子的转移,使得体系的荧光强度明显降低,对氮化碳纳米片的逐步改性极大地增强了光催化处理废气方面的能力。
3、本发明克服了传统烟气脱硝技术处理废气存在的还原剂量大,二次污染严重,操作复杂等问题,光催化氧化法反应条件温和,能耗低,去除效率高,在污染物降解领域已经得到广泛应用。
附图说明
图1为氮化碳纳米片的透射电镜图;
图2为偏钒酸银量子点/氮化碳纳米片的透射电镜图;
图3为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的透射电镜图;
图4为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的扫描电镜图;
图5为不同负载质量的偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的催化效果图;
图6为不同负载质量的偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的催化效果图;
图7为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶催化循环图。
具体实施方式
实施例一
氮化碳纳米片的制备,具体步骤如下:
将10 g双氰氨放入管式炉中,在Ar气氛围下进行煅烧,以升温速率5℃/min升温至550℃,煅烧4h,得到块状氮化碳;所得块状氮化碳在空气中进行煅烧,以升温速率5℃/min升温至550℃,煅烧2h,本发明通过煅烧从而获得比表面积较大的氮化碳纳米片;附图1为氮化碳纳米片的透射电镜图。
实施例二
偏钒酸银量子点/氮化碳纳米片的制备,具体步骤如下:
用包裹铝箔的烧杯将硝酸银(0.0170g,0.1mmol)溶解于20ml去离子水中,然后将氮化碳纳米片(0.1g)加入到上述溶液中并搅拌30min,随后获得的悬浮液超声1小时。通过一次性注射器(20ml)以60ml / h的速率将20ml 偏钒酸铵水溶液(0.0117g,0.1mmol)加入到悬浮液中,调节pH至中性并超声处理1小时,油浴搅拌8小时,用去离子水和无水乙醇洗涤三次。 将产物置于80℃的烘箱中8h,制备得偏钒酸银量子点/氮化碳纳米片,记为AVO-CN,根据加入的氮化碳纳米片质量的不同,可得到不同钒酸银负载质量的复合材料AVO10-CN(钒酸银的负载质量为30 wt%)、AVO20-CN、AVO30-CN、AVO40-CN;附图2为偏钒酸银量子点/氮化碳纳米片的透射电镜图。
实施例三
偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的制备,具体步骤如下:
将15mg 氧化石墨烯加入玻璃瓶(20ml)中并加入4ml水使其均匀分散,然后将45mgAVO30-CN加入到氧化石墨烯分散体系中,超声混合后,加入30mg L-抗坏血酸,将混合物置于沸水浴中加热,半小时后,形成水凝胶并立即在-40℃冰箱中冷冻40分钟。 自然融化后,将其置于沸水浴中8小时,最后置于冷冻干燥器中冷冻干燥两天以获得形状规则的轻质气凝胶杂化体偏钒酸银量子点/氮化碳纳米片/石墨烯,记为AVO30-CN-GA-75(AVO30-CN的质量分数为75 wt%),根据加入氧化石墨烯质量的不同,可制备得到不同AVO30-CN质量负载的气凝胶,记为AVO30-CN-GA-50、AVO30-CN-GA-75、AVO30-CN-GA-90;附图3为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的透射电镜图;附图4为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的扫描电镜图。
实施例四
光催化降解,具体步骤如下:
在体积为1.6L的密闭圆柱形反应器中心放置50mg催化剂,氙灯垂直放置在反应器上方,一氧化氮气体由浓缩气瓶供应,经压缩空气缸提供的空气流稀释至600ppb,两个气流在三通阀中预混合,流速控制在2.4 L /min。当催化剂,气体和水蒸气在半小时内达到吸附-解吸平衡时,打开300w的氙灯,使用NOx分析仪,测量时间为30min,仪器检测的浓度间隔为1min,最后根据所测浓度数据计算去除效率。附图5、附图6为不同负载质量的偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶的催化效果图;附图7为偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶催化循环图。
本发明的光催化氧化法反应条件温和,能耗低,氧化路线与自然界具有正效应的氮固定过程一致,因此在污染物降解领域可得到广泛应用;其中,氮化碳在光催化处理废气方面具有较高的可见光吸收以及降解效率,对其进行改性可抑制电子-空穴对的复合,提高催化效率。
Claims (10)
1.一种可见光响应的杂化气凝胶的制备方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料;
(3)将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯进行水热反应,然后冷冻干燥,制备偏钒酸银量子点/氮化碳纳米片/石墨烯杂化气凝胶,为可见光响应的杂化气凝胶。
2.偏钒酸银量子点/氮化碳纳米片复合材料的制备方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料。
3.一种废气处理的方法,包括以下步骤:
(1)以双氰胺为前驱体,经过两次煅烧,制备氮化碳纳米片;
(2)将氮化碳纳米片分散于水中,原位生长偏钒酸银量子点,制备偏钒酸银量子点/氮化碳纳米片复合材料;
(3)将偏钒酸银量子点/氮化碳纳米片复合材料与氧化石墨烯进行水热反应,然后冷冻干燥,制备可见光响应的杂化气凝胶;
(4)将废气通过可见光响应的杂化气凝胶,光照,完成废气的处理。
4.根据权利要求1、2或者3所述的方法,其特征在于,步骤(1)中,第一次煅烧在氩气中进行,煅烧时升温速率为5 ℃/min,煅烧的时间为4 h,煅烧的温度为550 ℃;第二次煅烧在空气中进行,煅烧时升温速率为5 ℃/min,煅烧的时间为2h,煅烧的温度为550 ℃。
5.根据权利要求1、2或者3所述的方法,其特征在于,步骤(2)中,将氮化碳纳米片分散于水中,加入硝酸银和偏钒酸铵,原位生长偏钒酸银量子点;氮化碳、硝酸银以及偏钒酸铵的质量比为(18~22):(1~2):(0.5~1);原位生长在避光条件下进行,原位生长的时间为8~12 h,原位生长的温度为常温。
6.根据权利要求5所述的方法,其特征在于,将氮化碳纳米片分散于去离子水中,然后加入硝酸银,搅拌30min后再加入偏钒酸铵,原位生长偏钒酸银量子点;氮化碳、硝酸银以及偏钒酸铵的质量比为20:2:1。
7.根据权利要求1或者3所述的方法,其特征在于,步骤(3)中,偏钒酸银量子点/氮化碳纳米片复合材料和氧化石墨烯的质量比为(4~5):(1~2);水热反应的温度为95 ℃,反应的时间为6h;冷冻干燥的温度为-50 ℃,冷冻干燥的时间为24h。
8.根据权利要求7所述的方法,其特征在于,偏钒酸银量子点/氮化碳纳米片复合材料和氧化石墨烯的质量比为3:1。
9.根据权利要求1或者2所述的方法制备的可见光响应的杂化气凝胶或者偏钒酸银量子点/氮化碳纳米片复合材料。
10.权利要求9所述可见光响应的杂化气凝胶或者偏钒酸银量子点/氮化碳纳米片复合材料在光催化处理废气中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765790.0A CN108855191B (zh) | 2018-07-12 | 2018-07-12 | 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 |
US16/509,354 US11325115B2 (en) | 2018-07-12 | 2019-07-11 | Visible-light response hybrid aerogel and preparation method and application thereof in waste gas processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765790.0A CN108855191B (zh) | 2018-07-12 | 2018-07-12 | 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108855191A true CN108855191A (zh) | 2018-11-23 |
CN108855191B CN108855191B (zh) | 2020-09-08 |
Family
ID=64301695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810765790.0A Active CN108855191B (zh) | 2018-07-12 | 2018-07-12 | 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11325115B2 (zh) |
CN (1) | CN108855191B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10518252B1 (en) * | 2018-06-14 | 2019-12-31 | Soochow University | Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment |
CN110871100A (zh) * | 2019-12-10 | 2020-03-10 | 苏州大学 | 苯胺碳量子点掺杂的氮化碳材料及其制备和应用 |
CN111939957A (zh) * | 2020-08-15 | 2020-11-17 | 青岛农业大学 | 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法 |
CN113283118A (zh) * | 2021-06-15 | 2021-08-20 | 北京清创美科环境科技有限公司 | 一种基于o3达标约束的环境容量获取方法及装置 |
CN114314738A (zh) * | 2021-12-29 | 2022-04-12 | 河海大学 | 一种具有昼夜节律的水污染处理装置 |
CN114392730A (zh) * | 2022-01-11 | 2022-04-26 | 河南康宁特环保科技股份有限公司 | 一种高分散多级孔Ti基SCR催化剂的制备方法 |
CN115090313A (zh) * | 2022-05-26 | 2022-09-23 | 南京林业大学 | 一种0D/3D生物炭量子点/g-C3N4异质结光催化剂的制备方法及应用 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111282549A (zh) * | 2020-02-28 | 2020-06-16 | 上海电力大学 | 一种吸附降解材料的制备方法及其应用 |
CN111686783B (zh) * | 2020-07-27 | 2022-03-18 | 齐鲁理工学院 | 一种用于光催化氮气还原的2D/2D异质结BiO2-x/g-C3N4纳米片复合材料 |
CN111790432A (zh) * | 2020-08-10 | 2020-10-20 | 泰州市海创新能源研究院有限公司 | 碳化镍/氮化碳纳米片光催化材料及制备方法和应用 |
CN112076774A (zh) * | 2020-09-11 | 2020-12-15 | 华东理工大学 | 一种碳化钛量子点负载碳缺陷反蛋白石氮化碳的催化剂及其制备方法 |
CN112250118B (zh) * | 2020-10-16 | 2022-11-01 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种复合材料修饰石墨烯的制备方法及其产品和应用 |
CN112691676B (zh) * | 2021-02-01 | 2024-03-01 | 河南师范大学 | 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用 |
CN113275028B (zh) * | 2021-04-20 | 2022-12-06 | 广东石油化工学院 | 一种氮化碳量子点/亚氧化钛纳米棒复合光催化剂及其制备方法和应用 |
CN113155914B (zh) * | 2021-04-26 | 2022-10-18 | 中国人民解放军国防科技大学 | 具有垂直取向三维结构的叉指电极材料及制备方法和应用 |
CN113385164A (zh) * | 2021-07-02 | 2021-09-14 | 青岛瑞利特新材料科技有限公司 | 一种除甲醛的石墨烯纳米复合凝胶及其制备工艺 |
CN113578381B (zh) * | 2021-07-22 | 2024-02-27 | 江苏科技大学 | 氧掺杂氮化碳水凝胶及其制备方法和降解甲醛的应用 |
CN113842937B (zh) * | 2021-09-07 | 2023-10-31 | 湖南大学 | 超薄富氮石墨相氮化碳纳米片负载的气凝胶可见光催化剂及其制备方法和应用 |
CN113680372B (zh) * | 2021-09-23 | 2023-09-01 | 西安工程大学 | 一种石墨相氮化碳纳米片的热辅助制备方法及应用 |
CN114743804B (zh) * | 2022-03-31 | 2023-05-26 | 河北工业大学 | 一种氮化钨-氧化石墨烯复合材料的制备方法 |
CN114950498B (zh) * | 2022-05-16 | 2023-12-22 | 江苏农林职业技术学院 | 一种可循环利用的高效光催化材料及其制备方法和应用 |
CN115155654B (zh) * | 2022-06-16 | 2024-03-22 | 湖南农业大学 | 氮化碳复合光催化剂及制备方法和除草剂废水的处理方法 |
CN115041212B (zh) * | 2022-06-17 | 2023-07-28 | 河北农业大学 | 一种氯化银-氮化碳复合光催化剂及其制备方法与应用 |
CN115490264B (zh) * | 2022-09-15 | 2023-10-20 | 山东黄海科技创新研究院 | 钒酸银模拟酶制备方法及其抑菌应用 |
CN115814834B (zh) * | 2022-11-30 | 2024-10-15 | 江汉大学 | 一种简单的溶剂后处理增强石墨氮化碳材料性能改性方法 |
CN115888743A (zh) * | 2022-12-15 | 2023-04-04 | 深圳仕上电子科技有限公司 | 铜负载钒酸铟及其制备方法、光催化固氮催化剂 |
CN116655235A (zh) * | 2023-05-30 | 2023-08-29 | 中山大学 | 一种量子点荧光玻璃的制备方法与应用 |
CN116809106B (zh) * | 2023-06-25 | 2024-05-28 | 重庆工商大学 | 一种用于高效降解有机污染物的微波辅助的富氧空位Co@NCXA气凝胶催化剂 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102580736A (zh) * | 2012-02-09 | 2012-07-18 | 江苏大学 | 一种石墨烯/钒酸银纳米复合可见光催化剂及其制备方法 |
CN102623708A (zh) * | 2012-04-12 | 2012-08-01 | 上海智荣科技有限责任公司 | 锂离子电池正极用磷酸钒锂/石墨烯复合材料的制备方法 |
CN105381810A (zh) * | 2014-09-09 | 2016-03-09 | 江南大学 | 一种钒酸银复合光催化材料的制备及应用 |
CN105498821A (zh) * | 2015-12-17 | 2016-04-20 | 苏州大学 | 一种用于催化降解氮氧化物的复合材料及其制备方法和用途 |
CN106268900A (zh) * | 2016-07-21 | 2017-01-04 | 吉林师范大学 | 一种g‑C3N4量子点敏化AgVO3纳米线的制备方法 |
CN106362785A (zh) * | 2016-08-05 | 2017-02-01 | 中国海洋大学 | 一种酸化氮化碳纳米片石墨烯复合气凝胶的制备方法 |
CN107195469A (zh) * | 2017-05-26 | 2017-09-22 | 桂林理工大学 | 一种石墨烯包裹Ag/AgVO3纳米带复合物的制备方法 |
CN107737601A (zh) * | 2017-09-08 | 2018-02-27 | 石家庄学院 | ɑ‑AgVO3/氧化石墨烯/ Ag3PO4复合材料及其制备方法和应用 |
CN108262054A (zh) * | 2018-03-06 | 2018-07-10 | 内蒙古大学 | 一种钒酸银/多孔氮化碳异质结复合光催化剂的制备方法 |
-
2018
- 2018-07-12 CN CN201810765790.0A patent/CN108855191B/zh active Active
-
2019
- 2019-07-11 US US16/509,354 patent/US11325115B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102580736A (zh) * | 2012-02-09 | 2012-07-18 | 江苏大学 | 一种石墨烯/钒酸银纳米复合可见光催化剂及其制备方法 |
CN102623708A (zh) * | 2012-04-12 | 2012-08-01 | 上海智荣科技有限责任公司 | 锂离子电池正极用磷酸钒锂/石墨烯复合材料的制备方法 |
CN105381810A (zh) * | 2014-09-09 | 2016-03-09 | 江南大学 | 一种钒酸银复合光催化材料的制备及应用 |
CN105498821A (zh) * | 2015-12-17 | 2016-04-20 | 苏州大学 | 一种用于催化降解氮氧化物的复合材料及其制备方法和用途 |
CN106268900A (zh) * | 2016-07-21 | 2017-01-04 | 吉林师范大学 | 一种g‑C3N4量子点敏化AgVO3纳米线的制备方法 |
CN106362785A (zh) * | 2016-08-05 | 2017-02-01 | 中国海洋大学 | 一种酸化氮化碳纳米片石墨烯复合气凝胶的制备方法 |
CN107195469A (zh) * | 2017-05-26 | 2017-09-22 | 桂林理工大学 | 一种石墨烯包裹Ag/AgVO3纳米带复合物的制备方法 |
CN107737601A (zh) * | 2017-09-08 | 2018-02-27 | 石家庄学院 | ɑ‑AgVO3/氧化石墨烯/ Ag3PO4复合材料及其制备方法和应用 |
CN108262054A (zh) * | 2018-03-06 | 2018-07-10 | 内蒙古大学 | 一种钒酸银/多孔氮化碳异质结复合光催化剂的制备方法 |
Non-Patent Citations (1)
Title |
---|
MENG-YANG YE 等: "0D/2D Heterojunctions of Vanadate Quantum Dots/Graphitic Carbon Nitride Nanosheets for Enhanced Visible-Light-Driven Photocatalysis", 《ANGEWANDTE CHEMIE》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10518252B1 (en) * | 2018-06-14 | 2019-12-31 | Soochow University | Carbon nitride membrane composite material modified by black phosphorus/ metal organic framework, and preparation method thereof and application in waste gas treatment |
CN110871100A (zh) * | 2019-12-10 | 2020-03-10 | 苏州大学 | 苯胺碳量子点掺杂的氮化碳材料及其制备和应用 |
CN110871100B (zh) * | 2019-12-10 | 2022-07-12 | 苏州大学 | 苯胺碳量子点掺杂的氮化碳材料及其制备和应用 |
CN111939957A (zh) * | 2020-08-15 | 2020-11-17 | 青岛农业大学 | 一种光催化固氮材料多孔氮化碳纳米纤维/石墨烯的制备方法 |
CN113283118A (zh) * | 2021-06-15 | 2021-08-20 | 北京清创美科环境科技有限公司 | 一种基于o3达标约束的环境容量获取方法及装置 |
CN113283118B (zh) * | 2021-06-15 | 2023-09-19 | 北京清创美科环境科技有限公司 | 一种基于o3达标约束的环境容量获取方法及装置 |
CN114314738A (zh) * | 2021-12-29 | 2022-04-12 | 河海大学 | 一种具有昼夜节律的水污染处理装置 |
CN114314738B (zh) * | 2021-12-29 | 2022-11-11 | 河海大学 | 一种具有昼夜节律的水污染处理装置 |
CN114392730A (zh) * | 2022-01-11 | 2022-04-26 | 河南康宁特环保科技股份有限公司 | 一种高分散多级孔Ti基SCR催化剂的制备方法 |
CN114392730B (zh) * | 2022-01-11 | 2023-09-12 | 河南康宁特环保科技股份有限公司 | 一种高分散多级孔Ti基SCR催化剂的制备方法 |
CN115090313A (zh) * | 2022-05-26 | 2022-09-23 | 南京林业大学 | 一种0D/3D生物炭量子点/g-C3N4异质结光催化剂的制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
US11325115B2 (en) | 2022-05-10 |
CN108855191B (zh) | 2020-09-08 |
US20200016585A1 (en) | 2020-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108855191B (zh) | 可见光响应的杂化气凝胶及其制备方法与在废气处理中的应用 | |
CN110180570B (zh) | 四氧化三钴十二面体/氮化碳纳米片复合物及其在废气处理中的应用 | |
US11174164B2 (en) | Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas | |
CN104495837B (zh) | 一种马尾藻基活性炭及其制备方法和应用 | |
WO2022083793A1 (zh) | 三维 / 二维 Ni-Co 双金属氧化物 /g-C3N4 纳米复合材料及其制备方法与应用 | |
CN110479350A (zh) | 一种薄层多孔氮化碳光催化剂的制备方法 | |
CN103011264B (zh) | 一种一维金属钛酸盐纳米棒的制备方法 | |
CN107413295B (zh) | 多孔活性炭纳米纤维负载羟基磷灰石除氟材料的制备方法 | |
CN103736513A (zh) | 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法 | |
CN107185493A (zh) | 石墨烯改性的复合介孔碳微球空气净化剂制备方法 | |
CN111530490A (zh) | 一种Co3O4-TiO2异质结负载碳纳米管光催化降解材料及其制法 | |
CN112354533A (zh) | 一种仿生合成活性炭-二氧化钛复合材料的制备方法 | |
CN111874988A (zh) | 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法 | |
CN109999835A (zh) | 一种碳化细菌纤维素-硫化镉复合光催化材料及其制备方法和用途 | |
CN115090313A (zh) | 一种0D/3D生物炭量子点/g-C3N4异质结光催化剂的制备方法及应用 | |
CN110479343A (zh) | 一种Fe2O3/g-C3N4复合光催化材料的一步合成制备方法 | |
CN112537783A (zh) | 一种W18O49修饰的g-C3N4材料在光催化固氮中的应用 | |
CN109126700A (zh) | 一种石墨烯/钙镁铝水滑石复合材料的制备方法及应用 | |
CN114160104A (zh) | 一种窑炉烟气co2捕集与利用耦合材料及其应用 | |
CN105597810B (zh) | 一种高活性中低温scr脱硝催化剂的制备方法 | |
CN115845921B (zh) | 一种双金属有机骨架材料Ce-MIL-88B(Fe)光催化剂的制备及其应用 | |
CN115504539B (zh) | 利用中空管状氮化碳/硼掺杂氮缺陷氮化碳纳米片z型异质结材料处理环丙沙星废水的方法 | |
CN117427692A (zh) | 一种NH2-MIL-88B(Fe)/Bi2WO6复合光催化剂及其制备方法和应用 | |
CN114768766B (zh) | 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用 | |
CN113751014B (zh) | 用于脱硝抗硫的单分散纺锤形单原子催化剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |