[go: up one dir, main page]

CN108827940B - A three-dimensional laser Raman scattering spectrum measurement system - Google Patents

A three-dimensional laser Raman scattering spectrum measurement system Download PDF

Info

Publication number
CN108827940B
CN108827940B CN201810945056.2A CN201810945056A CN108827940B CN 108827940 B CN108827940 B CN 108827940B CN 201810945056 A CN201810945056 A CN 201810945056A CN 108827940 B CN108827940 B CN 108827940B
Authority
CN
China
Prior art keywords
laser
dimensional
raman
surface focusing
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810945056.2A
Other languages
Chinese (zh)
Other versions
CN108827940A (en
Inventor
程鹏
郭亮
赵冰
孙万臣
庄宇欣
苏岩
孙成斌
孙毅
李奉学
刘中鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810945056.2A priority Critical patent/CN108827940B/en
Publication of CN108827940A publication Critical patent/CN108827940A/en
Application granted granted Critical
Publication of CN108827940B publication Critical patent/CN108827940B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The invention relates to a three-dimensional laser Raman scattering spectrum measurement system, belonging to the technical field of laser combustion diagnosis, wherein a pulse laser system is arranged right left of a three-dimensional surface focusing optical system, is positioned on the same central line with a 45-degree reflecting mirror and vertically intersected with the central line of the three-dimensional surface focusing optical system, and a synchronous output end of a pulse delay generator is connected with an external trigger input end of a pumping lamp of a laser controller; the synchronous output end of the pulse delay generator is connected with the motor control input end of the motor controller; the synchronous output end of the pulse delay generator is connected with the external trigger input end of the Raman ICCD camera; the external trigger output end of the Raman ICCD camera is connected with the external trigger input end of the Q switch of the laser controller; the Raman ICCD camera data output end is connected with the Raman ICCD camera acquisition card data input end, and the surface focusing sheet optical body optical device forms a three-dimensional surface focusing sheet optical body group in the three-dimensional combustion field; the invention can realize quantitative measurement of components, component mole fractions and temperatures of multiple species in a combustion field at three-dimensional accurate positions.

Description

一种三维激光拉曼散射光谱测量系统A three-dimensional laser Raman scattering spectrum measurement system

技术领域Technical field

本发明属激光燃烧诊断技术领域,具体涉及一种三维激光拉曼散射光谱测量系统。The invention belongs to the technical field of laser combustion diagnosis, and specifically relates to a three-dimensional laser Raman scattering spectrum measurement system.

背景技术Background technique

高效清洁安全燃烧是人类重要的研究课题之一。无论是在发动机(包括航空航天发动机、交通运输发动机等)、供电供热的煤系统和燃气轮机中,还是在基础研究用的各类燃烧器中的燃烧,都需要通过各种先进的燃烧诊断技术手段来探索进一步改善燃烧状况的途径和方法。由于一些燃烧体系的封闭性、瞬态性、爆炸恶劣性等问题,目前人们一般采用各种激光燃烧诊断技术来检测燃烧过程。通过这些技术可以直接观测到燃烧场燃烧状态,实现燃烧场温度、组分及组分浓度、流度和火焰结构等高时空分辨的精确测量,为燃烧理论数值模拟计算提供实验验证。Efficient, clean and safe combustion is one of the important research topics for mankind. Whether it is combustion in engines (including aerospace engines, transportation engines, etc.), coal systems and gas turbines for power and heating, or in various burners used in basic research, various advanced combustion diagnostic technologies are required. Means to explore ways and methods to further improve combustion conditions. Due to problems such as the closed nature, transient nature, and explosion severity of some combustion systems, currently people generally use various laser combustion diagnostic technologies to detect the combustion process. Through these technologies, the combustion state of the combustion field can be directly observed, and precise measurements of combustion field temperature, components and component concentrations, fluidity, and flame structure can be accurately measured with high spatial and temporal resolution, providing experimental verification for numerical simulation calculations of combustion theory.

通过激光自发振动拉曼散射物种光谱测量,可以实现复杂燃烧环境下的主要物种的浓度 (摩尔分数)和区域温度的检测,并具有测量的非接触性、多物种测量同步性、定量性、时间(纳秒级)和空间(毫米级)分辨能力。目前它已经广泛应用于如发动机燃烧室内或某封闭或大气环境下的各种燃烧体系内。通过同步测量具有拉曼活性的气态物种(氮气、氧气、二氧化碳、碳氢燃料、氢气、一氧化碳等)的自发振动斯托克斯拉曼光谱信号,来获得气体摩尔分数,并由氮气的自发振动斯托克斯和反斯托克斯拉曼光谱信号,来获得局部空间上的温度。这些光学测量结果与数值模拟计算结果互相验证和补充,为燃烧理论和燃烧试验提供基础数据。Through laser spontaneous vibration Raman scattering species spectrum measurement, the concentration (mole fraction) and regional temperature of the main species in complex combustion environments can be detected, and it has non-contact measurement, multi-species measurement synchronization, quantification, and time (nanosecond level) and spatial (millimeter level) resolution capabilities. At present, it has been widely used in various combustion systems such as engine combustion chambers or in a closed or atmospheric environment. By simultaneously measuring the spontaneous vibration Stokes Raman spectrum signals of gaseous species with Raman activity (nitrogen, oxygen, carbon dioxide, hydrocarbon fuels, hydrogen, carbon monoxide, etc.), the gas mole fraction is obtained, and is determined by the spontaneous vibration of nitrogen Stokes and anti-Stokes Raman spectral signals are used to obtain the temperature in local space. These optical measurement results and numerical simulation calculation results verify and complement each other, providing basic data for combustion theory and combustion experiments.

但目前这项技术一般应用于燃烧场中某区域的点(直径约为1mm(毫米)左右)或线(直径约1mm左右,长约几十毫米)或面(长约几十毫米、宽约1mm和高约几十毫米)上的拉曼光谱成像测量,要想得到三维燃烧场空间的全部光谱信息,需要通过手工移动激光聚焦点或线或面的激发区位置,最后再按点或线或面上的矩阵数据整合处理来形成燃烧场整体物理量信息。这样首先存在测量效率低的问题,其次很难保证点与点之间或线与线之间或面与面之间的等间距,也造成了测量的非实时性问题,即燃烧场测量信息不同步问题。这种光学测量方式下得到的时空分辨率上的偏差又很难与数值模拟的计算结果相比对。But at present, this technology is generally applied to points (about 1mm in diameter) or lines (about 1mm in diameter and tens of millimeters long) or surfaces (about tens of millimeters long and about tens of millimeters wide) in a certain area of the combustion field. 1mm and about tens of millimeters in height), in order to obtain all the spectral information of the three-dimensional combustion field space, it is necessary to manually move the laser focus point or the excitation zone position of the line or surface, and finally press the point or line or The matrix data on the surface are integrated and processed to form the overall physical quantity information of the combustion field. First of all, there is the problem of low measurement efficiency. Secondly, it is difficult to ensure equal spacing between points or between lines or between surfaces. It also causes the problem of non-real-time measurement, that is, the problem of asynchronous measurement information of the combustion field. . The deviation in the spatial and temporal resolution obtained by this optical measurement method is difficult to compare with the calculation results of numerical simulation.

发明内容Contents of the invention

本发明的目的在于提供一种利用三维激光拉曼散射光谱测量技术,首先将原始点光源激光线经过由精密微角度高速电机驱动的可旋转的反射镜,反射进入面聚焦片光体光学器中,在燃烧场环境中形成激发面,激发出的各物种拉曼光谱由具有不同波长的物种滤光片组和拉曼ICCD相机完成面阵成像。电机驱动旋转反射镜到下一个角度位置,在激发区形成的激发面与上一个角度位置上的激发面平行且尺寸相同,完成同样的面阵成像。以此类推,通过逐步旋转反射镜,在燃烧场中形成高时空分辨的互相平行且尺寸相同的一系列面聚焦激发面,再由拉曼光谱成像系统同步成像,实时燃烧场三维空间上的物种摩尔分数和温度定量测量。The purpose of the present invention is to provide a three-dimensional laser Raman scattering spectrum measurement technology. First, the original point light source laser line passes through a rotatable reflector driven by a precision micro-angle high-speed motor and is reflected into a surface focusing plate light body optical device. , an excitation surface is formed in the combustion field environment, and the Raman spectrum of each excited species is imaged by a species filter set with different wavelengths and a Raman ICCD camera to complete the area array imaging. The motor drives the rotating mirror to the next angular position, and the excitation surface formed in the excitation zone is parallel to and of the same size as the excitation surface at the previous angular position, completing the same area array imaging. By analogy, by gradually rotating the mirror, a series of parallel and identical-sized surface focusing excitation surfaces with high spatiotemporal resolution are formed in the combustion field, which are then synchronously imaged by the Raman spectroscopy imaging system to detect species in the three-dimensional space of the combustion field in real time. Quantitative measurements of mole fraction and temperature.

本发明由脉冲激光器系统Ⅰ、拉曼光谱面成像系统Ⅱ、三维燃烧场Ⅲ、工控机Ⅳ、三维面聚焦光学系统Ⅴ和脉冲延迟发生器1组成,其中脉冲激光器系统Ⅰ、拉曼光谱面成像系统Ⅱ、三维燃烧场Ⅲ、工控机Ⅳ、三维面聚焦光学系统Ⅴ和脉冲延迟发生器1置于同一光学平台。脉冲激光器系统Ⅰ置于三维面聚焦光学系统Ⅴ的正左方,脉冲激光器系统Ⅰ的水平中心线与三维面聚焦光学系统Ⅴ中45度反射镜24的水平中心线在同一条左右水平中心线Ⅰ4上,左右水平中心线Ⅰ4与三维面聚焦光学系统Ⅴ中的前后水平中心线26互相垂直相交。三维燃烧场Ⅲ置于拉曼光谱面成像系统Ⅱ的右方和工控机Ⅳ的左方,三维燃烧场Ⅲ中的三维面聚焦片光体组2置于三维面聚焦光学系统Ⅴ中面聚焦片光体光学器19的正后方。脉冲延迟发生器 1置于脉冲激光器系统Ⅰ和拉曼光谱面成像系统Ⅱ之间。所述的脉冲延迟发生器1上设有同步输出端口Ⅰk、同步输出端口Ⅱl和同步输出端口Ⅲm。脉冲延迟发生器1的同步输出端口Ⅰk经专用电缆与脉冲激光器系统Ⅰ中激光控制器3的泵浦灯外触发输入端口o连接;脉冲延迟发生器1的同步输出端口Ⅱl经专用电缆与电机控制器23的电机控制输入端口t连接;脉冲延迟发生器1的同步输出端口Ⅲm经专用电缆与拉曼光谱面成像系统Ⅱ中拉曼ICCD相机 9的外触发输入端口p连接;拉曼光谱面成像系统Ⅱ中拉曼ICCD相机9的外触发输出端口q 经专用电缆与脉冲激光器系统Ⅰ中激光控制器3的Q开关外触发输入端口n连接;拉曼光谱面成像系统Ⅱ中拉曼ICCD相机9的数据输出端口r经专用电缆与工控机Ⅳ中拉曼ICCD相机采集卡16的数据输入端口s连接。三维面聚焦光学系统Ⅴ中的面聚焦片光体光学器19在三维燃烧场Ⅲ中形成三维面聚焦片光体组2,三维面聚焦光学系统Ⅴ中的激光束Ⅱ17形成面聚焦激发区域abcdefghij,即形成面聚焦片光体ⅠZ1,三维面聚焦光学系统Ⅴ中的激光束Ⅲ18 形成面聚焦片光体ⅡZ2,三维面聚焦光学系统Ⅴ中的激光束Ⅳ20形成面聚焦片光体nZn。面聚焦激发区域abcdefghij中:线Aaf和线Bbe相交于点Ⅰi,线Cch和线Ddg相交于点Ⅱj,长方形面Ⅰabcd和长方形面Ⅱefgh平行且相等,并与物种滤光片组12平行,左右水平中心线Ⅱ13与长方形面Ⅰabcd、长方形面Ⅱefgh和线Eij的中心相交;长方形面Ⅲbcgf与长方形面Ⅳadhe平行且相等,并与长方形面Ⅰabcd和长方形面Ⅱefgh垂直;长方形面Ⅰabcd、长方形面Ⅱefgh和线Eij的中心与三维面聚焦光学系统Ⅴ中的前后水平中心线26垂直相交。The invention consists of a pulse laser system I, a Raman spectrum surface imaging system II, a three-dimensional combustion field III, an industrial computer IV, a three-dimensional surface focusing optical system V and a pulse delay generator 1. The pulse laser system I, the Raman spectrum surface imaging system System II, three-dimensional combustion field III, industrial computer IV, three-dimensional surface focusing optical system V and pulse delay generator 1 are placed on the same optical platform. The pulse laser system I is placed directly to the left of the three-dimensional surface focusing optical system V. The horizontal center line of the pulse laser system I and the horizontal center line of the 45-degree reflector 24 in the three-dimensional surface focusing optical system V are on the same left and right horizontal center line I4 On the top, the left and right horizontal center lines I4 intersect perpendicularly with the front and rear horizontal center lines 26 of the three-dimensional surface focusing optical system V. The three-dimensional combustion field III is placed on the right side of the Raman spectrum surface imaging system II and the left side of the industrial computer IV. The three-dimensional surface focusing piece light body group 2 in the three-dimensional burning field III is placed on the middle surface focusing piece of the three-dimensional surface focusing optical system V. Directly behind the light body optic 19. The pulse delay generator 1 is placed between the pulse laser system I and the Raman spectrum imaging system II. The pulse delay generator 1 is provided with a synchronous output port Ik, a synchronous output port IIl and a synchronous output port IIIm. The synchronous output port Ik of the pulse delay generator 1 is connected to the external trigger input port o of the pump lamp of the laser controller 3 in the pulse laser system I via a dedicated cable; the synchronous output port IIl of the pulse delay generator 1 is connected to the motor control via a dedicated cable The motor control input port t of the generator 23 is connected; the synchronization output port IIIm of the pulse delay generator 1 is connected to the external trigger input port p of the Raman ICCD camera 9 in the Raman spectrum surface imaging system II through a dedicated cable; Raman spectrum surface imaging The external trigger output port q of the Raman ICCD camera 9 in the system II is connected to the Q switch external trigger input port n of the laser controller 3 in the pulse laser system I via a dedicated cable; the Raman ICCD camera 9 in the Raman spectral surface imaging system II The data output port r is connected to the data input port s of the Raman ICCD camera acquisition card 16 in the industrial computer IV via a special cable. The surface focusing sheet light body optics 19 in the three-dimensional surface focusing optical system V form a three-dimensional surface focusing sheet light body group 2 in the three-dimensional combustion field III, and the laser beam II 17 in the three-dimensional surface focusing optical system V forms a surface focusing excitation area abcdefghij, That is, the surface focusing sheet light body IZ1 is formed, the laser beam III18 in the three-dimensional surface focusing optical system V forms the surface focusing sheet light body IIZ2, and the laser beam IV20 in the three-dimensional surface focusing optical system V forms the surface focusing sheet light body nZn. In the surface focusing excitation area abcdefghij: line Aaf and line Bbe intersect at point Ⅰi, line Cch and line Ddg intersect at point Ⅱj, rectangular surface Ⅰabcd and rectangular surface Ⅱefgh are parallel and equal, and parallel to species filter set 12, horizontal on the left and right Center line II13 intersects the center of rectangular surface Iabcd, rectangular surface IIefgh and line Eij; rectangular surface IIIbcgf is parallel and equal to rectangular surface IVadhe, and perpendicular to rectangular surface Iabcd and rectangular surface IIefgh; rectangular surface Iabcd, rectangular surface IIefgh and line Eij The center intersects perpendicularly with the front and rear horizontal center lines 26 in the three-dimensional surface focusing optical system V.

所述的脉冲激光器系统Ⅰ由激光控制器3、激光发射器5、偏振片6和激光脉冲展宽器7 组成,激光发射器5、偏振片6和激光脉冲展宽器7自左至右顺序排列,激光控制器3经专用电缆与激光发射器5连接,激光控制器3上设有Q开关外触发输入端口n和泵浦灯外触发输入端口o。激光发射器5的激光出口、偏振片6的中心和激光脉冲展宽器7的出口在同一条左右水平中心线Ⅰ4上,激光脉冲展宽器7的出口出射的激光束Ⅰ8与左右水平中心线Ⅰ4 重合。The pulse laser system I is composed of a laser controller 3, a laser transmitter 5, a polarizer 6 and a laser pulse stretcher 7. The laser transmitter 5, the polarizer 6 and the laser pulse stretcher 7 are arranged in sequence from left to right. The laser controller 3 is connected to the laser transmitter 5 via a special cable. The laser controller 3 is provided with a Q switch external trigger input port n and a pump lamp external trigger input port o. The laser outlet of the laser transmitter 5, the center of the polarizer 6 and the outlet of the laser pulse stretcher 7 are on the same left and right horizontal center line I4. The laser beam I8 emitted from the outlet of the laser pulse stretcher 7 coincides with the left and right horizontal center line I4. .

所述的拉曼光谱面成像系统Ⅱ由拉曼ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12组成,拉曼ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12自左至右顺序排列,其中拉曼ICCD相机9上设有外触发输入端口p、外触发输出端口q和数据输出端口r,物种滤光片组12由六个不同中心波长的滤光片组成;拉曼ICCD相机9、成像镜头 10、激光滤光片11和物种滤光片组12的中心在同一条左右水平中心线Ⅱ13上。The Raman spectral surface imaging system II is composed of a Raman ICCD camera 9, an imaging lens 10, a laser filter 11 and a species filter set 12. The Raman ICCD camera 9, the imaging lens 10, the laser filter 11 The species filter set 12 is arranged in sequence from left to right. The Raman ICCD camera 9 is provided with an external trigger input port p, an external trigger output port q and a data output port r. The species filter set 12 consists of six different The centers of the Raman ICCD camera 9, the imaging lens 10, the laser filter 11 and the species filter set 12 are on the same left and right horizontal center line II 13.

所述的三维燃烧场Ⅲ由燃烧场环境和三维面聚焦片光体组2组成,燃烧场环境为任何一种燃烧体系,三维面聚焦片光体组2由分时形成的自左至右排列的n个面聚焦片光体ⅠZ1、面聚焦片光体ⅡZ2....面聚焦片光体nZn组成。The three-dimensional combustion field III is composed of a combustion field environment and a three-dimensional surface focusing sheet light body group 2. The combustion field environment is any kind of combustion system. The three-dimensional surface focusing sheet light body group 2 is arranged from left to right formed by time sharing. It is composed of n surface focusing sheet light bodies IZ1, surface focusing sheet light bodies IIZ2... surface focusing sheet light bodies nZn.

所述的工控机Ⅳ由显示器14、主机15和拉曼ICCD相机采集卡16组成,显示器14置于主机15上,主机15内设有拉曼ICCD相机采集卡16,拉曼ICCD相机采集卡16设有数据输入端口s。The industrial computer IV is composed of a display 14, a host 15 and a Raman ICCD camera capture card 16. The display 14 is placed on the host 15. The host 15 is equipped with a Raman ICCD camera capture card 16 and a Raman ICCD camera capture card 16. Equipped with data input port s.

所述的三维面聚焦光学系统Ⅴ由面聚焦片光体光学器19、精密电机21、电机控制器23、 45度反射镜24和镜架25组成,面聚焦片光体光学器19、45度反射镜24和镜架25自后至前顺序排列,其中45度反射镜24固接于镜架25正后方。精密电机21置于镜架25的正下方,且精密电机21经输出轴22与镜架25下部竖直连接。电机控制器23置于精密电机21右边,且经专用电缆与精密电机21连接,电机控制器23上设有电机控制输入端口t。面聚焦片光体光学器19、45度反射镜24和镜架25的前后中心在同一条前后水平中心线26上。由45度反射镜24反射的激光束Ⅱ17、激光束Ⅲ18和激光束Ⅳ20自左至右顺序排列。The three-dimensional surface focusing optical system V is composed of a surface focusing piece light body optic 19, a precision motor 21, a motor controller 23, a 45 degree reflector 24 and a frame 25. The surface focusing piece light body optic 19, 45 degree The reflector 24 and the frame 25 are arranged in sequence from back to front, and the 45-degree reflector 24 is fixed directly behind the frame 25 . The precision motor 21 is placed directly below the mirror frame 25, and the precision motor 21 is vertically connected to the lower part of the mirror frame 25 through the output shaft 22. The motor controller 23 is placed on the right side of the precision motor 21 and is connected to the precision motor 21 via a special cable. The motor controller 23 is provided with a motor control input port t. The front and rear centers of the surface focusing sheet optical body optic 19, the 45-degree reflector 24 and the frame 25 are on the same front and rear horizontal center line 26. The laser beam II17, the laser beam III18 and the laser beam IV20 reflected by the 45-degree reflector 24 are arranged in sequence from left to right.

本发明可实现燃烧场中多物种组分、组分摩尔分数和温度的三维精准位置上的定量测量。The invention can realize quantitative measurement of multi-species components, component mole fractions and temperature at three-dimensional precise positions in the combustion field.

附图说明Description of drawings

图1为三维激光拉曼散射光谱测量系统的结构示意图Figure 1 is a schematic structural diagram of the three-dimensional laser Raman scattering spectrum measurement system.

图2为脉冲激光器系统Ⅰ的结构示意图Figure 2 is a schematic structural diagram of the pulse laser system I

图3为拉曼光谱面成像系统Ⅱ的结构示意图Figure 3 is a schematic structural diagram of the Raman spectrum imaging system II.

图4为三维面聚焦片光体组2的结构示意图Figure 4 is a schematic structural diagram of the three-dimensional surface focusing sheet light body group 2

图5为工控机Ⅳ的结构示意图Figure 5 is a schematic structural diagram of industrial computer IV

图6为三维面聚焦光学系统Ⅴ的结构示意图Figure 6 is a schematic structural diagram of the three-dimensional surface focusing optical system V

图7为物种滤光片组12的结构示意图Figure 7 is a schematic structural diagram of the species filter set 12

图8为同步时序图Figure 8 shows the synchronization timing diagram

其中:Ⅰ.脉冲激光器系统 Ⅱ.拉曼光谱面成像系统 Ⅲ.三维燃烧场 Ⅳ.工控机Ⅴ. 三维面聚焦光学系统 1.脉冲延迟发生器 2.三维面聚焦片光体组 3.激光控制器 4.左右水平中心线Ⅰ 5.激光发射器 6.偏振片 7.激光脉冲展宽器 8.激光束Ⅰ 9.拉曼 ICCD相机 10.成像镜头 11.激光滤光片 12.物种滤光片组 13.左右水平中心线Ⅱ 14.显示器15.主机 16.拉曼ICCD相机采集卡 17.激光束Ⅱ 18.激光束Ⅲ 19.面聚焦片光体光学器20.激光束Ⅳ 21.精密电机 22.输出轴 23.电机控制器 24.45度反射镜 25.镜架 26.前后水平中心线 abcdefghij.面聚焦激发区域 k.同步输出端口Ⅰ l.同步输出端口Ⅱ m.同步输出端口Ⅲ n.Q开关外触发输入端口 o.泵浦灯外触发输入端口 p.外触发输入端口 q.外触发输出端口 r.数据输出端口 s.数据输入端口 t.电机控制输入端口 i.点Ⅰ j.点Ⅱaf.线A be.线B ch.线C dg.线D ij.线E ae.线F eh. 线G hd.线H da.线I bf.线J fg.线Kgc.线L cb.线M ab.线N ef.线O cd. 线P gh.线Q abcd.长方形面Ⅰ efgh.长方形面Ⅱbcgf.长方形面Ⅲ adhe.长方形面Ⅳ Z1.面聚焦片光体Ⅰ Z2.面聚焦片光体Ⅱ Zn.面聚焦片光体nAmong them: Ⅰ. Pulse laser system Ⅱ. Raman spectrum surface imaging system Ⅲ. Three-dimensional combustion field Ⅳ. Industrial computer V. Three-dimensional surface focusing optical system 1. Pulse delay generator 2. Three-dimensional surface focusing sheet light body group 3. Laser control 4. Left and right horizontal center lines I 5. Laser emitter 6. Polarizer 7. Laser pulse stretcher 8. Laser beam I 9. Raman ICCD camera 10. Imaging lens 11. Laser filter 12. Species filter Group 13. Left and right horizontal center lines II 14. Display 15. Host 16. Raman ICCD camera capture card 17. Laser beam II 18. Laser beam III 19. Surface focusing sheet light body optics 20. Laser beam IV 21. Precision motor 22. Output shaft 23. Motor controller 24. 45-degree reflector 25. Mirror frame 26. Front and rear horizontal center line abcdefghij. Surface focus excitation area k. Synchronous output port Ⅰ l. Synchronous output port Ⅱ m. Synchronous output port Ⅲ n. Outside Q switch Trigger input port o. Pump lamp external trigger input port p. External trigger input port q. External trigger output port r. Data output port s. Data input port t. Motor control input port i. Point Ⅰ j. Point Ⅱ af. Line A be. Line B ch. Line C dg. Line D ij. Line E ae. Line F eh. Line G hd. Line H da. Line I bf. Line J fg. Line Kgc. Line L cb. Line M ab. Line N ef. Line O cd. Line P gh. Line Q abcd. Rectangular surface I efgh. Rectangular surface II bcgf. Rectangular surface III adhe. Rectangular surface IV Z1. Surface focusing sheet light body Ⅰ Z2. Surface focusing sheet light body Ⅱ Zn .Surface focusing sheet light body n

具体实施方式Detailed ways

下面结合附图对本发明进行描述。The present invention will be described below with reference to the accompanying drawings.

如图1所示,本发明由脉冲激光器系统Ⅰ、拉曼光谱面成像系统Ⅱ、三维燃烧场Ⅲ工控机Ⅳ、三维面聚焦光学系统Ⅴ和脉冲延迟发生器1组成,其中脉冲激光器系统ⅠⅠ、拉曼光谱面成像系统Ⅱ、三维燃烧场Ⅲ、工控机Ⅳ、三维面聚焦光学系统Ⅴ和脉冲延迟发生器1置于同一光学平台。脉冲激光器系统Ⅰ置于三维面聚焦光学系统Ⅴ的正左方,脉冲激光器系统Ⅰ的水平中心线与三维面聚焦光学系统Ⅴ中45度反射镜24的水平中心线在同一条左右水平中心线Ⅰ4上,左右水平中心线Ⅰ4与三维面聚焦光学系统Ⅴ中的前后水平中心线26互相垂直相交。三维燃烧场Ⅲ置于拉曼光谱面成像系统Ⅱ的右方和工控机Ⅳ的左方,三维燃烧场Ⅲ中的三维面聚焦片光体组2置于三维面聚焦光学系统Ⅴ中面聚焦片光体光学器19的正后方。脉冲延迟发生器1置于脉冲激光器系统Ⅰ和拉曼光谱面成像系统Ⅱ之间。所述的脉冲延迟发生器1上设有同步输出端口Ⅰk、同步输出端口Ⅱl和同步输出端口Ⅲm。脉冲延迟发生器1 的同步输出端口Ⅰk经专用电缆与脉冲激光器系统Ⅰ中激光控制器3的泵浦灯外触发输入端口o连接;脉冲延迟发生器1的同步输出端口Ⅱl经专用电缆与电机控制器23的电机控制输入端口t连接;脉冲延迟发生器1的同步输出端口Ⅲm经专用电缆与拉曼光谱面成像系统Ⅱ中拉曼ICCD相机9的外触发输入端口p连接;拉曼光谱面成像系统Ⅱ中拉曼ICCD相机9的外触发输出端口q经专用电缆与脉冲激光器系统Ⅰ中激光控制器3的Q开关外触发输入端口n连接;拉曼光谱面成像系统Ⅱ中拉曼ICCD相机9的数据输出端口r经专用电缆与工控机Ⅳ中拉曼ICCD相机采集卡16的数据输入端口s连接。三维面聚焦光学系统Ⅴ中的面聚焦片光体光学器19在三维燃烧场Ⅲ中形成三维面聚焦片光体组2,三维面聚焦光学系统Ⅴ中的激光束Ⅱ17形成面聚焦激发区域abcdefghij,即形成面聚焦片光体ⅠZ1,三维面聚焦光学系统Ⅴ中的激光束Ⅲ18形成面聚焦片光体ⅡZ2,三维面聚焦光学系统Ⅴ中的激光束Ⅳ20形成面聚焦片光体nZn。面聚焦激发区域abcdefghij中:线Aaf和线Bbe相交于点Ⅰi,线Cch和线Ddg相交于点Ⅱj,长方形面Ⅰabcd和长方形面Ⅱefgh平行且相等,并与物种滤光片组12平行,左右水平中心线Ⅱ13与长方形面Ⅰabcd、长方形面Ⅱefgh和线Eij的中心相交;长方形面Ⅲbcgf与长方形面Ⅳadhe平行且相等,并与长方形面Ⅰabcd和长方形面Ⅱefgh垂直;长方形面Ⅰabcd、长方形面Ⅱefgh和线Eij的中心与三维面聚焦光学系统Ⅴ中的前后水平中心线26垂直相交。As shown in Figure 1, the present invention consists of a pulse laser system I, a Raman spectrum surface imaging system II, a three-dimensional combustion field III industrial computer IV, a three-dimensional surface focusing optical system V and a pulse delay generator 1. The pulse laser system II, Raman spectral surface imaging system II, three-dimensional combustion field III, industrial computer IV, three-dimensional surface focusing optical system V and pulse delay generator 1 are placed on the same optical platform. The pulse laser system I is placed directly to the left of the three-dimensional surface focusing optical system V. The horizontal center line of the pulse laser system I and the horizontal center line of the 45-degree reflector 24 in the three-dimensional surface focusing optical system V are on the same left and right horizontal center line I4 On the top, the left and right horizontal center lines I4 intersect perpendicularly with the front and rear horizontal center lines 26 of the three-dimensional surface focusing optical system V. The three-dimensional combustion field III is placed on the right side of the Raman spectrum surface imaging system II and the left side of the industrial computer IV. The three-dimensional surface focusing piece light body group 2 in the three-dimensional burning field III is placed on the middle surface focusing piece of the three-dimensional surface focusing optical system V. Directly behind the light body optic 19. The pulse delay generator 1 is placed between the pulse laser system I and the Raman spectrum imaging system II. The pulse delay generator 1 is provided with a synchronous output port Ik, a synchronous output port IIl and a synchronous output port IIIm. The synchronous output port Ik of the pulse delay generator 1 is connected to the external trigger input port o of the pump lamp of the laser controller 3 in the pulse laser system I through a dedicated cable; the synchronous output port IIl of the pulse delay generator 1 is connected to the motor control via a dedicated cable The motor control input port t of the generator 23 is connected; the synchronization output port IIIm of the pulse delay generator 1 is connected to the external trigger input port p of the Raman ICCD camera 9 in the Raman spectrum surface imaging system II through a dedicated cable; Raman spectrum surface imaging The external trigger output port q of the Raman ICCD camera 9 in the system II is connected to the Q switch external trigger input port n of the laser controller 3 in the pulse laser system I via a special cable; the Raman ICCD camera 9 in the Raman spectral surface imaging system II The data output port r is connected to the data input port s of the Raman ICCD camera acquisition card 16 in the industrial computer IV via a special cable. The surface focusing sheet light body optics 19 in the three-dimensional surface focusing optical system V form a three-dimensional surface focusing sheet light body group 2 in the three-dimensional combustion field III, and the laser beam II 17 in the three-dimensional surface focusing optical system V forms a surface focusing excitation area abcdefghij, That is, the surface focusing sheet light body IZ1 is formed, the laser beam III18 in the three-dimensional surface focusing optical system V forms the surface focusing sheet light body IIZ2, and the laser beam IV20 in the three-dimensional surface focusing optical system V forms the surface focusing sheet light body nZn. In the surface focusing excitation area abcdefghij: line Aaf and line Bbe intersect at point Ⅰi, line Cch and line Ddg intersect at point Ⅱj, rectangular surface Ⅰabcd and rectangular surface Ⅱefgh are parallel and equal, and parallel to species filter set 12, horizontal on the left and right Center line II13 intersects the center of rectangular surface Iabcd, rectangular surface IIefgh and line Eij; rectangular surface IIIbcgf is parallel and equal to rectangular surface IVadhe, and perpendicular to rectangular surface Iabcd and rectangular surface IIefgh; rectangular surface Iabcd, rectangular surface IIefgh and line Eij The center intersects perpendicularly with the front and rear horizontal center lines 26 in the three-dimensional surface focusing optical system V.

如图2所示,所述的脉冲激光器系统Ⅰ由激光控制器3、激光发射器5、偏振片6和激光脉冲展宽器7组成,激光发射器5、偏振片6和激光脉冲展宽器7自左至右顺序排列,激光控制器3经专用电缆与激光发射器5连接,激光控制器3上设有Q开关外触发输入端口n和泵浦灯外触发输入端口o。激光发射器5的激光出口、偏振片6的中心和激光脉冲展宽器7 的出口在同一条左右水平中心线Ⅰ4上,激光脉冲展宽器7的出口出射的激光束Ⅰ8与左右水平中心线Ⅰ4重合。As shown in Figure 2, the pulse laser system I is composed of a laser controller 3, a laser transmitter 5, a polarizer 6 and a laser pulse stretcher 7. The laser transmitter 5, the polarizer 6 and the laser pulse stretcher 7 are automatically Arranged from left to right, the laser controller 3 is connected to the laser transmitter 5 via a special cable. The laser controller 3 is provided with a Q-switch external trigger input port n and a pump lamp external trigger input port o. The laser outlet of the laser transmitter 5, the center of the polarizer 6 and the outlet of the laser pulse stretcher 7 are on the same left and right horizontal center line I4. The laser beam I8 emitted from the outlet of the laser pulse stretcher 7 coincides with the left and right horizontal center line I4. .

如图3和图7所示,所述的拉曼光谱面成像系统Ⅱ由拉曼ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12组成,拉曼ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12自左至右顺序排列,其中拉曼ICCD相机9上设有外触发输入端口p、外触发输出端口q和数据输出端口r,物种滤光片组12由六个不同中心波长的滤光片组成;拉曼 ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12的中心在同一条左右水平中心线Ⅱ13上。As shown in Figures 3 and 7, the Raman spectral surface imaging system II is composed of a Raman ICCD camera 9, an imaging lens 10, a laser filter 11 and a species filter set 12. The Raman ICCD camera 9, The imaging lens 10, the laser filter 11 and the species filter group 12 are arranged in order from left to right. The Raman ICCD camera 9 is provided with an external trigger input port p, an external trigger output port q and a data output port r. Species The filter set 12 is composed of six filters with different center wavelengths; the centers of the Raman ICCD camera 9, imaging lens 10, laser filter 11 and species filter set 12 are on the same left and right horizontal center line II 13 .

如图4所示,所述的三维燃烧场Ⅲ由燃烧场环境和三维面聚焦片光体组2组成,燃烧场环境为任何一种燃烧体系,三维面聚焦片光体组2由分时形成的自左至右排列的n个面聚焦片光体ⅠZ1、面聚焦片光体ⅡZ2....面聚焦片光体nZn组成。As shown in Figure 4, the three-dimensional combustion field III is composed of a combustion field environment and a three-dimensional surface focusing sheet light body group 2. The combustion field environment is any kind of combustion system, and the three-dimensional surface focusing sheet light body group 2 is formed by time sharing. It consists of n surface focusing sheet light bodies IZ1, surface focusing sheet light bodies IIZ2, and surface focusing sheet light bodies nZn arranged from left to right.

如图5所示,所述的工控机Ⅳ由显示器14、主机15和拉曼ICCD相机采集卡16组成,显示器14置于主机15上,主机15内设有拉曼ICCD相机采集卡16,拉曼ICCD相机采集卡 16设有数据输入端口s。As shown in Figure 5, the industrial computer IV is composed of a display 14, a host 15 and a Raman ICCD camera capture card 16. The display 14 is placed on the host 15. The host 15 is equipped with a Raman ICCD camera capture card 16. Man ICCD camera capture card 16 is equipped with data input port s.

如图6所示,所述的三维面聚焦光学系统Ⅴ由面聚焦片光体光学器19、精密电机21、电机控制器23、45度反射镜24和镜架25组成,面聚焦片光体光学器19、45度反射镜24和镜架25自后至前顺序排列,其中45度反射镜24固接于镜架25正后方。精密电机21置于镜架25的正下方,且精密电机21经输出轴22与镜架25下部竖直连接。电机控制器23置于精密电机21右边,且经专用电缆与精密电机21连接,电机控制器23上设有电机控制输入端口 t。面聚焦片光体光学器19、45度反射镜24和镜架25的前后中心在同一条前后水平中心线 26上。由45度反射镜24反射的激光束Ⅱ17、激光束Ⅲ18和激光束Ⅳ20自左至右顺序排列。As shown in Figure 6, the three-dimensional surface focusing optical system V is composed of a surface focusing sheet light body optic 19, a precision motor 21, a motor controller 23, a 45-degree reflector 24 and a frame 25. The surface focusing sheet light body The optical device 19, the 45-degree reflector 24 and the frame 25 are arranged in sequence from back to front, and the 45-degree reflector 24 is fixed directly behind the frame 25. The precision motor 21 is placed directly below the mirror frame 25, and the precision motor 21 is vertically connected to the lower part of the mirror frame 25 through the output shaft 22. The motor controller 23 is placed on the right side of the precision motor 21 and is connected to the precision motor 21 via a special cable. The motor controller 23 is provided with a motor control input port t. The front and rear centers of the surface focusing sheet optical body optic 19, the 45-degree reflector 24 and the frame 25 are on the same front and rear horizontal center line 26. The laser beam II17, the laser beam III18 and the laser beam IV20 reflected by the 45-degree reflector 24 are arranged in sequence from left to right.

本发明的具体连接过程和要求如下:The specific connection process and requirements of the present invention are as follows:

本发明中脉冲激光器系统Ⅰ、拉曼光谱面成像系统Ⅱ、工控机Ⅳ、三维面聚焦光学系统Ⅴ和脉冲延迟发生器1置于同一光学平台上。在三维燃烧场Ⅲ中布置燃烧场环境,如燃烧器,使得三维面聚焦片光体组2被包含在燃烧场环境中。拉曼ICCD相机9、成像镜头10、激光滤光片11和物种滤光片组12从左向右依次顺序排列置于三维面聚焦片光体组2的正左方。面聚焦片光体光学器19置于三维面聚焦片光体组2的正前方,45度反射镜24置于面聚焦片光体光学器19的正前方,激光控制器3、激光发射器5、偏振片6和激光脉冲展宽器7从左向右依次排列置于45度反射镜24正左方。显示器14置于主机15上。In the present invention, the pulse laser system I, the Raman spectrum surface imaging system II, the industrial computer IV, the three-dimensional surface focusing optical system V and the pulse delay generator 1 are placed on the same optical platform. Arrange the combustion field environment, such as the burner, in the three-dimensional combustion field III so that the three-dimensional surface focusing sheet light body group 2 is included in the combustion field environment. The Raman ICCD camera 9, the imaging lens 10, the laser filter 11 and the species filter group 12 are arranged in sequence from left to right and placed directly to the left of the three-dimensional surface focusing sheet light body group 2. The surface focusing sheet light body optics 19 are placed directly in front of the three-dimensional surface focusing sheet light body group 2, the 45-degree reflector 24 is placed directly in front of the surface focusing sheet light body optics 19, the laser controller 3 and the laser transmitter 5 , the polarizer 6 and the laser pulse stretcher 7 are arranged in sequence from left to right and placed directly on the left of the 45-degree reflector 24. The display 14 is placed on the host computer 15 .

用专用电缆分别连接:脉冲延迟发生器1的同步输出端口Ⅰk至激光控制器3的泵浦灯外触发输入端口o;脉冲延迟发生器1的同步输出端口Ⅱl至电机控制器23的电机控制输入端口t;脉冲延迟发生器1的同步输出端口Ⅰm至拉曼ICCD相机9的外触发输入端口p。拉曼ICCD相机9的外触发输出端口q至激光控制器3的Q开关外触发输入端口n;拉曼ICCD 相机9的数据输出端口r至拉曼ICCD相机采集卡16的数据输入端口s;激光控制器3至激光发射器5;电机控制器23至精密电机21。Use special cables to connect respectively: the synchronous output port Ik of the pulse delay generator 1 to the pump lamp external trigger input port o of the laser controller 3; the synchronous output port IIl of the pulse delay generator 1 to the motor control input of the motor controller 23 Port t; the synchronization output port Im of the pulse delay generator 1 to the external trigger input port p of the Raman ICCD camera 9. The external trigger output port q of the Raman ICCD camera 9 is connected to the Q switch external trigger input port n of the laser controller 3; the data output port r of the Raman ICCD camera 9 is connected to the data input port s of the Raman ICCD camera acquisition card 16; laser Controller 3 to laser transmitter 5; motor controller 23 to precision motor 21.

成像镜头10通过螺纹连通到拉曼ICCD相机9的散射光输入口。The imaging lens 10 is connected to the scattered light input port of the Raman ICCD camera 9 through threads.

初步调整各光学器件的中心高度:使得左右水平中心线Ⅰ4与前后水平中心线26垂直相交于45度反射镜24的中心。左右水平中心线Ⅱ13与前后水平中心线26垂直相交于三维面聚焦片光体组2的中心。Preliminarily adjust the center height of each optical device: make the left and right horizontal center lines I4 and the front and rear horizontal center lines 26 perpendicularly intersect at the center of the 45-degree reflector 24. The left and right horizontal center lines II13 and the front and rear horizontal center lines 26 intersect perpendicularly at the center of the three-dimensional surface focusing sheet light body group 2.

所有设备通电并预热,设置各仪器旋钮位置,输入仪器各测量参数,进入工控机Ⅳ上的主控程序。All equipment is powered on and preheated, the knob positions of each instrument are set, the measurement parameters of the instrument are input, and the main control program on the industrial computer IV is entered.

精确调整各光学器件中心多维度位置:激光发射器5出射调试用的低能量的532nm(纳米)可见光激光束Ⅰ8,调整偏振片6、45度反射镜24及激光脉冲展宽器7和面聚焦片光体光学器19内的各镜片位置,在三维燃烧场Ⅲ的燃烧场环境内形成面聚焦片光体ⅠZ1。移开激光滤光片6。通过拉曼ICCD相机5的实时成像功能模式,测量成像面聚焦激发区域abcdefghij 上的面聚焦片光体ⅠZ1。微调所有设备和镜架的高度、左右和前后位置、倾角和俯仰,保证显示器14上出现的像的强度值在竖直和水平方向上均匀分布。依此方法,再分别对面聚焦片光体ⅡZ2和面聚焦片光体nZn成像,最终保证各面聚焦片光体的像的强度值相同,以及在屏幕上的位置重合。Accurately adjust the multi-dimensional position of the center of each optical device: the laser transmitter 5 emits the low-energy 532nm (nanometer) visible light laser beam I8 for debugging, adjust the polarizer 6, the 45-degree mirror 24, the laser pulse stretcher 7 and the surface focusing plate Each lens position in the light body optical device 19 forms a surface focusing sheet light body IZ1 in the combustion field environment of the three-dimensional combustion field III. Remove laser filter 6. Through the real-time imaging function mode of the Raman ICCD camera 5, the surface focusing sheet light body IZ1 on the imaging surface focusing excitation area abcdefghij is measured. Fine-tune the height, left and right, front and rear positions, inclination and pitch of all equipment and frames to ensure that the intensity values of the image appearing on the display 14 are evenly distributed in the vertical and horizontal directions. According to this method, the surface focusing sheet light body IIZ2 and the surface focusing sheet light body nZn are respectively imaged to ultimately ensure that the intensity values of the images of the surface focusing sheet light bodies are the same and their positions on the screen coincide.

测量实际燃烧场环境下的激光自发振动拉曼散射光谱:重新放回激光滤光片6到原位置。激光滤光片6阻止面聚焦激发区域abcdefghij上的强激光散射光直接进入到拉曼ICCD相机 6内,而影响对待测物种的弱的自发振动拉曼散射光的测量。物种滤光片组12中的不同波长的单个滤光片允许与其波长相同的物种的拉曼散射光通过,并进入到拉曼ICCD相机16中。将燃烧场环境中的燃烧器调整到待测状态。将激光发射器5、拉曼ICCD相机9设置到测量功能模式下。控制激光发射器5出射实验能量的脉冲激光束Ⅰ8。按图8所示的同步时序图,由工控机Ⅳ内的主程序完成面聚焦片光体ⅠZ1、面聚焦片光体ⅡZ2直到面聚焦片光体nZn上的各物种拉曼光谱的同步测量,经过主程序内的数据处理程序,最终计算出这种实验条件下的燃烧场三维空间上的各物种的摩尔分数和区域温度值。Measure the laser spontaneous vibration Raman scattering spectrum in the actual combustion field environment: Replace the laser filter 6 to its original position. The laser filter 6 prevents the strong laser scattered light in the surface focused excitation area abcdefghij from directly entering the Raman ICCD camera 6 and affects the measurement of the weak spontaneous vibration Raman scattered light of the species to be measured. The individual filters of different wavelengths in the species filter set 12 allow the Raman scattered light of species with the same wavelength to pass through and enter the Raman ICCD camera 16 . Adjust the burner in the combustion field environment to the state to be tested. Set the laser transmitter 5 and the Raman ICCD camera 9 to the measurement function mode. The laser transmitter 5 is controlled to emit a pulsed laser beam I8 of experimental energy. According to the synchronization timing diagram shown in Figure 8, the main program in the industrial computer IV completes the synchronous measurement of the Raman spectra of various species on the surface focusing plate light body IZ1, the surface focusing plate light body IIZ2, and the surface focusing plate light body n Zn , through the data processing program in the main program, the mole fraction and regional temperature value of each species in the three-dimensional space of the combustion field under this experimental condition are finally calculated.

实施例:Example:

如图1所示,脉冲激光器系统Ⅰ中的激光控制器3和激光发射器5为白俄罗斯LOTISTII 公司的LS2137型激光器系统,其出射532nm(纳米)激光,其光斑直径约为8mm(毫米),脉宽半高宽(FWHM)约为7ns(纳秒),频率为10Hz(赫兹),实验激光能量为380mJ(毫焦),调试激光能量为50mJ;从激光发射器5的出口出射的激光首先经过线偏振1/2波片的偏振片6,其直径为24.5mm。在实验前通过采集实验室环境空气的激光拉曼光谱,不断旋转偏振片6的位置,通过拉曼光谱面成像系统Ⅱ找到空气拉曼光谱信号的最大值,并固定该位置。之后激光经过自制的激光脉冲展宽器7,将激光的FWHM从原来的7ns展宽到35ns,形成激光束Ⅰ8,并射入到可控调旋转角度的45度反射镜24的中心,再反射进入自制的面聚焦片光体光学器 19中,最后在三维燃烧场Ⅲ中形成各面聚焦片光体。As shown in Figure 1, the laser controller 3 and laser transmitter 5 in the pulse laser system I are the LS2137 laser system of the Belarusian LOTISTII company. It emits 532nm (nanometer) laser, and its spot diameter is about 8mm (millimeter). The width at half maximum (FWHM) is about 7ns (nanoseconds), the frequency is 10Hz (Hertz), the experimental laser energy is 380mJ (millijoules), and the debugging laser energy is 50mJ; the laser emitted from the exit of the laser transmitter 5 first passes through The diameter of the polarizing plate 6 of the linearly polarized 1/2 wave plate is 24.5 mm. Before the experiment, the laser Raman spectrum of the laboratory ambient air was collected, the position of the polarizer 6 was continuously rotated, the maximum value of the air Raman spectrum signal was found through the Raman spectrum surface imaging system II, and the position was fixed. Afterwards, the laser passes through the homemade laser pulse stretcher 7, which broadens the FWHM of the laser from the original 7ns to 35ns, forming the laser beam I8, and is injected into the center of the 45-degree reflector 24 with a controllable rotation angle, and then reflected into the homemade laser pulse stretcher 7. In the surface focusing sheet light body optical device 19, each surface focusing sheet light body is finally formed in the three-dimensional combustion field III.

在面聚焦激发区域abcdefghij中,线Fae、线Jbf、线Hhd和线Lgc均为1mm,线Ida、线Geh、线Eij、线bc、线fg均为6mm,线Nab、线Oef、线Pcd、线Qgh均为25mm。In the surface focus excitation area abcdefghij, the lines Fae, Jbf, Hhd and Lgc are all 1mm, the lines Ida, Geh, Eij, bc and fg are all 6mm, the lines Nab, Oef, Pcd, Line Qgh is 25mm.

物种滤光片组12中的6个滤光片的中心波长分别是660nm、650nm、620nm、607nm、580nm 和572nm,其直径均为10mm;激光滤光片11为德国Semrock公司的NF01-532U-25型Notch 滤光片;成像镜头10为日本Nikon公司的105mm,f2.8镜头,成像镜头10的景深大于面聚焦片光体ⅢZn;拉曼ICCD相机9为英国Andor公司的DH720-18F-03增强型CCD相机。The center wavelengths of the six filters in the species filter set 12 are 660nm, 650nm, 620nm, 607nm, 580nm and 572nm respectively, and their diameters are all 10mm; the laser filter 11 is NF01-532U- from Semrock Company of Germany. 25-type Notch filter; imaging lens 10 is a 105mm, f2.8 lens from Nikon Company of Japan. The depth of field of imaging lens 10 is greater than that of the surface focusing film IIIZn; Raman ICCD camera 9 is DH720-18F-03 from Andor Company of England. Enhanced CCD camera.

精密电机21和电机控制器选用美国Thorlabs公司的GVS211振镜系统。控制精密电机 21旋转45度反射镜24形成8个角度,在三维燃烧场Ⅲ中形成8个互相平行的面聚焦片光体。各面聚焦片光体之间的间距为0.5mm。脉冲延迟发生器1为美国STANFORD公司的DG645脉冲延迟发生器。中国台湾研华610H型工控机Ⅳ内的Intel主板上插入拉曼ICCD相机采集卡16。The precision motor 21 and the motor controller use the GVS211 galvanometer system of the American Thorlabs company. The precision motor 21 is controlled to rotate the 45-degree reflector 24 to form 8 angles, forming 8 mutually parallel surface focusing light bodies in the three-dimensional combustion field III. The distance between the light bodies of the focusing sheets on each side is 0.5mm. Pulse delay generator 1 is the DG645 pulse delay generator of American STANFORD Company. The Raman ICCD camera capture card 16 is inserted into the Intel motherboard of the Advantech 610H industrial computer IV in Taiwan, China.

如图8所示,其中:A为同步输出端口Ⅱl和电机控制输入端口t的信号波形;B为同步输出端口Ⅰk、同步输出端口Ⅲm、泵浦灯外触发输入端口o、和外触发输入端口p的信号波形;C为外触发输出端口q和Q开关外触发输入端口n的信号波形;D为从偏振片6输出的激光时域波形(FWHM为7ns);E为从激光脉冲展宽器7输出的激光时域波形(FWHM为35ns); F为数据输出端口r和数据输入端口s的拉曼信号波形;G为拉曼ICCD相机9的内触发信号波形;A1为精密电机21的脉冲间隔,取0.4ms;B1为激光束Ⅰ8的脉冲间隔,取0.1s;C1 为激光最佳延迟时间,取140μs(微秒);G1为拉曼ICCD相机9的门延迟时间,取140.14μs; G2为拉曼ICCD相机9的门宽,取40ns;A波形的频率为2.5KHz,B、C、D、E、F和G波形的频率均为10Hz。As shown in Figure 8, where: A is the signal waveform of the synchronous output port IIl and the motor control input port t; B is the synchronous output port Ik, the synchronous output port IIIm, the pump lamp external trigger input port o, and the external trigger input port The signal waveform of p; C is the signal waveform of the external trigger output port q and the Q switch external trigger input port n; D is the laser time domain waveform output from the polarizer 6 (FWHM is 7ns); E is the laser pulse stretcher 7 The output laser time domain waveform (FWHM is 35ns); F is the Raman signal waveform of the data output port r and the data input port s; G is the internal trigger signal waveform of the Raman ICCD camera 9; A1 is the pulse interval of the precision motor 21 , taken as 0.4ms; B1 is the pulse interval of laser beam I8, taken as 0.1s; C1 is the optimal delay time of the laser, taken as 140μs (microseconds); G1 is the gate delay time of Raman ICCD camera 9, taken as 140.14μs; G2 is the gate width of the Raman ICCD camera 9, which is taken as 40ns; the frequency of the A waveform is 2.5KHz, and the frequencies of the B, C, D, E, F and G waveforms are all 10Hz.

Claims (6)

1.一种三维激光拉曼散射光谱测量系统,其特征在于:由脉冲激光器系统(Ⅰ)、拉曼光谱面成像系统(Ⅱ)、三维燃烧场(Ⅲ)、工控机(Ⅳ)、三维面聚焦光学系统(Ⅴ)和脉冲延迟发生器(1)组成,脉冲激光器系统Ⅰ(Ⅰ)、拉曼光谱面成像系统(Ⅱ)、三维燃烧场(Ⅲ)、工控机(Ⅳ)、三维面聚焦光学系统(Ⅴ)和脉冲延迟发生器(1)置于同一光学平台;脉冲激光器系统(Ⅰ)置于三维面聚焦光学系统(Ⅴ)的正左方,脉冲激光器系统(Ⅰ)的水平中心线与三维面聚焦光学系统(Ⅴ)中45度反射镜(24)的水平中心线在同一条左右水平中心线Ⅰ(4)上,左右水平中心线Ⅰ(4)与三维面聚焦光学系统(Ⅴ)中的前后水平中心线(26)互相垂直相交;三维燃烧场(Ⅲ)置于拉曼光谱面成像系统(Ⅱ)的右方和工控机(Ⅳ)的左方,三维燃烧场(Ⅲ)中的三维面聚焦片光体组(2)置于三维面聚焦光学系统(Ⅴ)中面聚焦片光体光学器(19)的正后方;脉冲延迟发生器(1)置于脉冲激光器系统(Ⅰ)和拉曼光谱面成像系统(Ⅱ)之间;所述的脉冲延迟发生器(1)上设有同步输出端口Ⅰ(k)、同步输出端口Ⅱ(l)和同步输出端口Ⅲ(m);脉冲延迟发生器(1)的同步输出端口Ⅰ(k)经专用电缆与脉冲激光器系统(Ⅰ)中激光控制器(3)的泵浦灯外触发输入端口(o)连接;脉冲延迟发生器1的同步输出端口Ⅱl经专用电缆与电机控制器23的电机控制输入端口(t)连接;脉冲延迟发生器(1)的同步输出端口Ⅲ(m)经专用电缆与拉曼光谱面成像系统(Ⅱ)中拉曼ICCD相机(9)的外触发输入端口(p)连接;拉曼光谱面成像系统(Ⅱ)中拉曼ICCD相机(9)的外触发输出端口(q)经专用电缆与脉冲激光器系统(Ⅰ)中激光控制器(3)的Q开关外触发输入端口(n)连接;拉曼光谱面成像系统(Ⅱ)中拉曼ICCD相机(9)的数据输出端口(r)经专用电缆与工控机(Ⅳ)中拉曼ICCD相机采集卡(16)的数据输入端口(s)连接;三维面聚焦光学系统(Ⅴ)中的面聚焦片光体光学器(19)在三维燃烧场(Ⅲ)中形成三维面聚焦片光体组(2),三维面聚焦光学系统(Ⅴ)中的激光束Ⅱ(17)形成面聚焦激发区域(abcdefghij),即形成面聚焦片光体Ⅰ(Z1),三维面聚焦光学系统(Ⅴ)中的激光束Ⅲ(18)形成面聚焦片光体Ⅱ(Z2),三维面聚焦光学系统(Ⅴ)中的激光束Ⅳ(20)形成面聚焦片光体n(Zn);面聚焦激发区域(abcdefghij)中:线A(af)和线B(be)相交于点Ⅰ(i),线C(ch)和线D(dg)相交于点Ⅱ(j),长方形面Ⅰ(abcd)和长方形面Ⅱ(efgh)平行且相等,并与物种滤光片组(12)平行,左右水平中心线Ⅱ(13)与长方形面Ⅰ(abcd)、长方形面Ⅱ(efgh)和线Eij)的中心相交;长方形面Ⅲ(bcgf)与长方形面Ⅳ(adhe)平行且相等,并与长方形面Ⅰ(abcd)和长方形面Ⅱ(efgh)垂直;长方形面Ⅰ(abcd)、长方形面Ⅱ(efgh)和线E(ij)的中心与三维面聚焦光学系统(Ⅴ)中的前后水平中心线(26)垂直相交。1. A three-dimensional laser Raman scattering spectrum measurement system, characterized by: consisting of a pulse laser system (Ⅰ), a Raman spectrum surface imaging system (Ⅱ), a three-dimensional combustion field (Ⅲ), an industrial computer (Ⅳ), and a three-dimensional surface It consists of focusing optical system (V) and pulse delay generator (1), pulse laser system I (I), Raman spectrum imaging system (II), three-dimensional combustion field (III), industrial computer (IV), three-dimensional surface focusing The optical system (V) and the pulse delay generator (1) are placed on the same optical platform; the pulse laser system (I) is placed directly to the left of the three-dimensional surface focusing optical system (V), with the horizontal center line of the pulse laser system (I) The horizontal center line of the 45-degree reflector (24) in the three-dimensional surface focusing optical system (V) is on the same left and right horizontal center line I (4), and the left and right horizontal center lines I (4) and the three-dimensional surface focusing optical system (V) are ) in the front and rear horizontal center lines (26) perpendicularly intersect each other; the three-dimensional combustion field (Ⅲ) is placed on the right of the Raman spectrum imaging system (Ⅱ) and the left of the industrial computer (Ⅳ), and the three-dimensional combustion field (Ⅲ) The three-dimensional surface focusing piece light body group (2) is placed directly behind the three-dimensional surface focusing piece light body optics (19) in the three-dimensional surface focusing optical system (V); the pulse delay generator (1) is placed in the pulse laser system ( Between I) and the Raman spectrum imaging system (II); the pulse delay generator (1) is provided with a synchronous output port I(k), a synchronous output port II(l) and a synchronous output port III(m ); the synchronous output port I (k) of the pulse delay generator (1) is connected to the pump lamp external trigger input port (o) of the laser controller (3) in the pulse laser system (I) via a dedicated cable; the pulse delay occurs The synchronous output port II of the generator 1 is connected to the motor control input port (t) of the motor controller 23 via a dedicated cable; the synchronous output port III (m) of the pulse delay generator (1) is connected to the Raman spectrum imaging system via a dedicated cable The external trigger input port (p) of the Raman ICCD camera (9) in (II) is connected; the external trigger output port (q) of the Raman ICCD camera (9) in the Raman spectral plane imaging system (II) is connected to The Q-switch external trigger input port (n) of the laser controller (3) in the pulse laser system (I) is connected; the data output port (r) of the Raman ICCD camera (9) in the Raman spectral plane imaging system (II) is connected. The special cable is connected to the data input port (s) of the Raman ICCD camera acquisition card (16) in the industrial computer (IV); the surface focusing sheet light body optics (19) in the three-dimensional surface focusing optical system (V) burns in the three-dimensional A three-dimensional surface focusing sheet light body group (2) is formed in the field (III), and the laser beam II (17) in the three-dimensional surface focusing optical system (V) forms a surface focusing excitation area (abcdefghij), that is, a surface focusing sheet light body I is formed. (Z1), the laser beam III (18) in the three-dimensional surface focusing optical system (V) forms a surface focusing sheet light body II (Z2), and the laser beam IV (20) in the three-dimensional surface focusing optical system (V) forms a surface focusing Sheet light body n (Zn); in the surface focusing excitation region (abcdefghij): line A (af) and line B (be) intersect at point I (i), line C (ch) and line D (dg) intersect at point Ⅱ(j), the rectangular surface Ⅰ(abcd) and the rectangular surface Ⅱ(efgh) are parallel and equal, and parallel to the species filter set (12), and the left and right horizontal center lines Ⅱ(13) and the rectangular surface Ⅰ(abcd), The centers of rectangular surface II (efgh) and line Eij) intersect; rectangular surface III (bcgf) is parallel and equal to rectangular surface IV (adhe), and perpendicular to rectangular surface I (abcd) and rectangular surface II (efgh); rectangular surface The centers of I (abcd), rectangular surface II (efgh) and line E (ij) intersect perpendicularly with the front and rear horizontal center lines (26) in the three-dimensional surface focusing optical system (V). 2.按权利要求1所述的三维激光拉曼散射光谱测量系统,其特征在于:所述的脉冲激光器系统(Ⅰ)由激光控制器(3)、激光发射器(5)、偏振片(6)和激光脉冲展宽器(7)组成,激光发射器(5)、偏振片(6)和激光脉冲展宽器(7)自左至右顺序排列,激光控制器(3)经专用电缆与激光发射器5连接,激光控制器(3)上设有Q开关外触发输入端口(n)和泵浦灯外触发输入端口(o);激光发射器(5)的激光出口、偏振片(6)的中心和激光脉冲展宽器(7)的出口在同一条左右水平中心线Ⅰ(4)上,激光脉冲展宽器(7)的出口出射的激光束Ⅰ(8)与左右水平中心线Ⅰ(4)重合。2. The three-dimensional laser Raman scattering spectrum measurement system according to claim 1, characterized in that: the pulse laser system (I) consists of a laser controller (3), a laser transmitter (5), and a polarizer (6 ) and a laser pulse stretcher (7). The laser transmitter (5), polarizer (6) and laser pulse stretcher (7) are arranged in sequence from left to right. The laser controller (3) communicates with the laser transmitter through a special cable. 5, the laser controller (3) is provided with a Q switch external trigger input port (n) and a pump lamp external trigger input port (o); the laser outlet of the laser transmitter (5) and the polarizer (6) The center and the outlet of the laser pulse stretcher (7) are on the same left and right horizontal center line I (4). The laser beam I (8) emitted from the outlet of the laser pulse stretcher (7) is consistent with the left and right horizontal center line I (4). coincide. 3.按权利要求1所述的三维激光拉曼散射光谱测量系统,其特征在于:所述的拉曼光谱面成像系统(Ⅱ)由拉曼ICCD相机(9)、成像镜头(10)、激光滤光片(11)和物种滤光片组(12)组成,拉曼ICCD相机(9)、成像镜头(10)、激光滤光片(11)和物种滤光片组(12)自左至右顺序排列,其中拉曼ICCD相机(9)上设有外触发输入端口(p)、外触发输出端口(q)和数据输出端口(r),物种滤光片组(12)由六个不同中心波长的滤光片组成;拉曼ICCD相机(9)、成像镜头(10)、激光滤光片(11)和物种滤光片组(12)的中心在同一条左右水平中心线Ⅱ(13)上。3. The three-dimensional laser Raman scattering spectrum measurement system according to claim 1, characterized in that: the Raman spectrum surface imaging system (II) consists of a Raman ICCD camera (9), an imaging lens (10), a laser Composed of filter (11) and species filter set (12), Raman ICCD camera (9), imaging lens (10), laser filter (11) and species filter set (12) from left to Arranged in order from the right, the Raman ICCD camera (9) is equipped with an external trigger input port (p), an external trigger output port (q) and a data output port (r), and the species filter set (12) consists of six different The central wavelength filter is composed of; the centers of the Raman ICCD camera (9), imaging lens (10), laser filter (11) and species filter set (12) are on the same left and right horizontal center line II (13 )superior. 4.按权利要求1所述的三维激光拉曼散射光谱测量系统,其特征在于:所述的三维燃烧场(Ⅲ)由燃烧场环境和三维面聚焦片光体组(2)组成,燃烧场环境为任何一种燃烧体系,三维面聚焦片光体组(2)由分时形成的自左至右排列的n个面聚焦片光体Ⅰ(Z1)、面聚焦片光体Ⅱ(Z2)....面聚焦片光体n(Zn)组成。4. The three-dimensional laser Raman scattering spectrum measurement system according to claim 1, characterized in that: the three-dimensional combustion field (III) is composed of a combustion field environment and a three-dimensional surface focusing plate light body group (2), and the combustion field The environment is any kind of combustion system. The three-dimensional surface focusing plate light body group (2) consists of n surface focusing plate light bodies I (Z1) and surface focusing plate light bodies II (Z2) formed in time sharing and arranged from left to right. ....The surface focusing piece is composed of light body n (Zn). 5.按权利要求1所述的三维激光拉曼散射光谱测量系统,其特征在于:所述的工控机(Ⅳ)由显示器(14)、主机(15)和拉曼ICCD相机采集卡(16)组成,显示器(14)置于主机(15)上,主机(15)内设有拉曼ICCD相机采集卡(16),拉曼ICCD相机采集卡(16)设有数据输入端口(s)。5. The three-dimensional laser Raman scattering spectrum measurement system according to claim 1, characterized in that: the industrial computer (IV) consists of a display (14), a host (15) and a Raman ICCD camera acquisition card (16) It consists of a display (14) placed on a host (15), a Raman ICCD camera capture card (16) inside the host (15), and the Raman ICCD camera capture card (16) is provided with a data input port (s). 6.按权利要求1所述的三维激光拉曼散射光谱测量系统,其特征在于:所述的三维面聚焦光学系统(Ⅴ)由面聚焦片光体光学器(19)、精密电机(21)、电机控制器(23)、45度反射镜(24)和镜架(25)组成,面聚焦片光体光学器(19)、45度反射镜(24)和镜架(25)自后至前顺序排列,其中45度反射镜(24)固接于镜架(25)正后方;精密电机(21)置于镜架(25)的正下方,且精密电机(21)经输出轴(22)与镜架(25)下部竖直连接;电机控制器(23)置于精密电机(21)右边,且经专用电缆与精密电机(21)连接,电机控制器(23)上设有电机控制输入端口(t);面聚焦片光体光学器(19)、45度反射镜(24)和镜架(25)的前后中心在同一条前后水平中心线(26)上;由45度反射镜24反射的激光束Ⅱ(17)、激光束Ⅲ(18)和激光束Ⅳ(20)自左至右顺序排列。6. The three-dimensional laser Raman scattering spectrum measurement system according to claim 1, characterized in that: the three-dimensional surface focusing optical system (V) consists of a surface focusing plate light body optic (19) and a precision motor (21) , motor controller (23), 45-degree reflector (24) and lens frame (25), from the back to Arranged in front order, the 45-degree reflector (24) is fixed directly behind the mirror frame (25); the precision motor (21) is placed directly below the mirror frame (25), and the precision motor (21) passes through the output shaft (22) ) is vertically connected to the lower part of the mirror frame (25); the motor controller (23) is placed on the right side of the precision motor (21) and is connected to the precision motor (21) via a special cable. The motor controller (23) is provided with a motor control Input port (t); the front and rear centers of the surface focusing sheet light body optic (19), the 45-degree reflector (24) and the frame (25) are on the same front and rear horizontal center line (26); by the 45-degree reflector The laser beam II (17), laser beam III (18) and laser beam IV (20) reflected by 24 are arranged in sequence from left to right.
CN201810945056.2A 2018-08-20 2018-08-20 A three-dimensional laser Raman scattering spectrum measurement system Active CN108827940B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810945056.2A CN108827940B (en) 2018-08-20 2018-08-20 A three-dimensional laser Raman scattering spectrum measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810945056.2A CN108827940B (en) 2018-08-20 2018-08-20 A three-dimensional laser Raman scattering spectrum measurement system

Publications (2)

Publication Number Publication Date
CN108827940A CN108827940A (en) 2018-11-16
CN108827940B true CN108827940B (en) 2023-09-19

Family

ID=64150329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810945056.2A Active CN108827940B (en) 2018-08-20 2018-08-20 A three-dimensional laser Raman scattering spectrum measurement system

Country Status (1)

Country Link
CN (1) CN108827940B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765213B (en) * 2019-03-27 2024-03-29 苏州威邦震电光电技术有限公司 Coherent anti-stokes raman scattering microscope imaging device
CN111551667A (en) * 2020-05-26 2020-08-18 厦门大学 Two-dimensional temperature and concentration measurement method of transient combustion field based on three-mirror scanning

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300808A (en) * 2005-04-22 2006-11-02 Kyocera Mita Corp Raman spectrometry system
CN202351178U (en) * 2011-12-08 2012-07-25 吉林大学 Optical diagnosis system based on spontaneous laser raman scattering ray imaging
US8310671B1 (en) * 2010-09-29 2012-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Interference-free optical detection for Raman spectroscopy
CN103940800A (en) * 2014-03-10 2014-07-23 北京理工大学 Laser confocal Brillouin-Raman spectral measurement method and apparatus
WO2014110900A1 (en) * 2013-01-21 2014-07-24 北京理工大学 Method and apparatus for laser differential confocal spectrum microscopy
CN103954602A (en) * 2014-03-10 2014-07-30 北京理工大学 Laser double-shaft differential confocal Brillouin-Raman spectrum measurement method and device
CN208736798U (en) * 2018-08-15 2019-04-12 吉林大学 A two-dimensional laser Raman scattering spectroscopy measurement system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300808A (en) * 2005-04-22 2006-11-02 Kyocera Mita Corp Raman spectrometry system
US8310671B1 (en) * 2010-09-29 2012-11-13 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Interference-free optical detection for Raman spectroscopy
CN202351178U (en) * 2011-12-08 2012-07-25 吉林大学 Optical diagnosis system based on spontaneous laser raman scattering ray imaging
WO2014110900A1 (en) * 2013-01-21 2014-07-24 北京理工大学 Method and apparatus for laser differential confocal spectrum microscopy
CN103940800A (en) * 2014-03-10 2014-07-23 北京理工大学 Laser confocal Brillouin-Raman spectral measurement method and apparatus
CN103954602A (en) * 2014-03-10 2014-07-30 北京理工大学 Laser double-shaft differential confocal Brillouin-Raman spectrum measurement method and device
CN208736798U (en) * 2018-08-15 2019-04-12 吉林大学 A two-dimensional laser Raman scattering spectroscopy measurement system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Laser Spintaneous Raman Scattering Based on Multi-Channel Measurement of Mole Fraction of Air;Bu Tianjia et al.;SPECTROSCOPY AND SPECTRAL ANALYSIS;全文 *
显微激光共焦拉曼散射仪性能快速测试方法;康立丽;黄耀熊;;中国医学物理学杂志(06);全文 *

Also Published As

Publication number Publication date
CN108827940A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
Sick High speed imaging in fundamental and applied combustion research
Miller et al. Investigation of transient ignition processes in a model scramjet pilot cavity using simultaneous 100 kHz formaldehyde planar laser-induced fluorescence and CH* chemiluminescence imaging
Hult et al. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines
CN104596645B (en) Complex environment full polarization multi-angle scattering simulation and test system
CN108507627B (en) A spectral detection system for gaseous species concentration and temperature under high temperature and high pressure
CN109856085B (en) Device and method for synchronously measuring transient fuel oil spraying and combustion processes
CN108827940B (en) A three-dimensional laser Raman scattering spectrum measurement system
CN106404410A (en) Apparatus capable of simultaneously measuring diesel spray structure and combustion characteristic and method thereof
CN104458646B (en) High-speed multi-width terahertz time-domain spectral imager
CN111397907B (en) A System for Studying the Spatial Structure of Cellular Flames Based on Stereo Schlieren Imaging Technology
CN112596075B (en) Multi-excitation-wavelength spectrometer type fluorescence laser radar system
CN110296975A (en) Energetic material macroparameter quickly detects spectroscopic system
CN108918505B (en) Polarized gas Raman spectrum measurement system
CN111487228A (en) Device for synchronously measuring combustion intermediate products and main components
Doll et al. Temperature measurements at the outlet of a lean burn single-sector combustor by laser optical methods
Greifenstein et al. Influence of effusion cooling air on the thermochemical state of combustion in a pressurized model single sector gas turbine combustor
CN208736798U (en) A two-dimensional laser Raman scattering spectroscopy measurement system
CN108956578B (en) Measuring system for real-time in-situ calibration of Raman spectrum
CN209027994U (en) A multi-channel fiber-optic gas Raman scattering measurement system
CN108827939B (en) A two-dimensional laser Raman scattering spectrum measurement system
Kim et al. Development of a fs/ps CARS system for temperature and species measurements in a dual-mode scramjet combustor
Jakob et al. Development and application of a stereoscopic 3-color high-speed ratio-pyrometry
Sjöholm et al. Challenges for in-cylinder high-speed two-dimensional laser-induced incandescence measurements of soot
CN105136329B (en) A kind of CARS spectroscopic temperature measurement experimental provisions based on bifocal lens
CN208736799U (en) A three-dimensional laser Raman scattering spectroscopy measurement system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant