CN108819292B - Thermoplastic composite material automatic laying device and method - Google Patents
Thermoplastic composite material automatic laying device and method Download PDFInfo
- Publication number
- CN108819292B CN108819292B CN201810752694.2A CN201810752694A CN108819292B CN 108819292 B CN108819292 B CN 108819292B CN 201810752694 A CN201810752694 A CN 201810752694A CN 108819292 B CN108819292 B CN 108819292B
- Authority
- CN
- China
- Prior art keywords
- prepreg tape
- air hole
- thermoplastic
- laser
- laying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 100
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 100
- 239000002131 composite material Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000003466 welding Methods 0.000 claims abstract description 50
- 238000003825 pressing Methods 0.000 claims abstract description 33
- 238000012545 processing Methods 0.000 claims abstract description 33
- 239000000523 sample Substances 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 26
- 229920002748 Basalt fiber Polymers 0.000 claims description 14
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 14
- 239000004698 Polyethylene Substances 0.000 claims description 14
- 239000004743 Polypropylene Substances 0.000 claims description 14
- 239000004917 carbon fiber Substances 0.000 claims description 14
- 239000003365 glass fiber Substances 0.000 claims description 13
- 238000000465 moulding Methods 0.000 claims description 13
- 239000004760 aramid Substances 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 9
- 229920005992 thermoplastic resin Polymers 0.000 claims description 7
- -1 polypropylene Polymers 0.000 claims description 6
- 229920006231 aramid fiber Polymers 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 10
- 229920003235 aromatic polyamide Polymers 0.000 description 9
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/30—Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
- B29C70/38—Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
- B29C70/386—Automated tape laying [ATL]
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Mechanical Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
本发明公开了一种热塑性复合材料自动铺放装置及其方法,热塑性复合材料自动铺放装置包括铺放装置,铺放装置安装在支撑板上,激光焊接装置的激光焊接头固定于铺放装置一侧,超声振动装置固定于铺放装置另一侧;铺放装置缠绕在带盘上的热塑性预浸带经导向轮和主、副驱动辊传送至加压滚轮下方,控制加压滚轮压力,使热塑性预浸带与基材充分接触;激光焊接头发出的激光束倾斜照射在热塑性预浸带与基材交界处,红外测温探头检测加工温度并反馈至计算机,实时控制加工温度;超声振动装置对加压滚轮后方热塑性预浸带超声冲击;本发明激光作为热源,加热区域精准、速度快;引入超声能量,提高界面连接强度;温度闭环控制,提高加工成型件质量。
The invention discloses a thermoplastic composite material automatic laying device and a method thereof. The thermoplastic composite material automatic laying device comprises a laying device, the laying device is installed on a support plate, and a laser welding head of a laser welding device is fixed on the laying device On one side, the ultrasonic vibration device is fixed on the other side of the laying device; the thermoplastic prepreg tape wound on the tape reel by the laying device is transferred to the lower part of the pressing roller through the guide wheel and the main and auxiliary driving rollers to control the pressure of the pressing roller. The thermoplastic prepreg tape is fully contacted with the substrate; the laser beam emitted by the laser welding head is irradiated obliquely at the junction of the thermoplastic prepreg tape and the substrate, and the infrared temperature probe detects the processing temperature and feeds it back to the computer to control the processing temperature in real time; ultrasonic vibration The device ultrasonically impacts the thermoplastic prepreg tape behind the pressure roller; the laser of the present invention acts as a heat source, and the heating area is precise and fast; ultrasonic energy is introduced to improve the interface connection strength; closed-loop temperature control improves the quality of processed molded parts.
Description
技术领域technical field
本发明属于激光加工技术领域,涉及一种热塑性复合材料自动铺放装置及方法。The invention belongs to the technical field of laser processing, and relates to a thermoplastic composite material automatic laying device and method.
背景技术Background technique
高性能复合纤维材料制成的结构件具有高强化、轻量化且耐腐蚀等特点,在宇航、汽车、电器、建筑等的领域应用日趋广泛。其中热塑性树脂基复合材料固化时间短,大大缩短了成型周期,具有抗冲击韧性强,焊接性能良好等特点,受到越来越多的关注和研究。但是,由于其树脂基材熔点高、黏度较大,构件成型需高温高压,对成型设备要求较苛刻,因此制约对其进一步的推广使用,而自动铺放成型技术能够有效解决这一问题。Structural parts made of high-performance composite fiber materials have the characteristics of high strength, light weight and corrosion resistance, and are widely used in aerospace, automobile, electrical appliances, construction and other fields. Among them, thermoplastic resin matrix composites have the characteristics of short curing time, greatly shortening the molding cycle, strong impact toughness, good welding performance, etc., and have received more and more attention and research. However, due to the high melting point and high viscosity of its resin base material, high temperature and high pressure are required for component molding, and the requirements for molding equipment are strict, which restricts its further promotion and use, and the automatic laying molding technology can effectively solve this problem.
激光焊接技术是利用高能量密度的激光束作为焊接热源,使工件发生熔化并粘合,从而达到焊接目的的一种焊接技术。激光焊接光束能量密度高,焊接速度快,且加工精准。激光焊接为非接触焊接,可以实现一定距离的焊接,灵活方便,常与机器人配合使用,实现自动化。采用激光焊接可以焊接难熔材料,能对异种材料进行焊接,而且焊接效果较好。使其成为高性能复合纤维材料自动铺放的理想手段之一。Laser welding technology is a welding technology that uses a high-energy-density laser beam as a welding heat source to melt and bond the workpiece to achieve the purpose of welding. Laser welding beam energy density is high, welding speed is fast, and processing is accurate. Laser welding is non-contact welding, which can realize welding at a certain distance, which is flexible and convenient, and is often used in conjunction with robots to achieve automation. Refractory materials can be welded by laser welding, and dissimilar materials can be welded, and the welding effect is good. This makes it one of the ideal means for automatic placement of high-performance composite fiber materials.
超声在媒介中传播时,能够产生机械、空化、声流和热效应等现象,使超声波同时兼具强烈的分散、粉碎、活化等多重作用。在复合材料加工过程中辅助以功率超声,利用超声打破液体中的气泡,同时产生高温、高压及局部作用,改善复合材料物理化学等方面性能。When the ultrasonic wave propagates in the medium, it can produce phenomena such as mechanical, cavitation, acoustic flow and thermal effects, so that the ultrasonic wave has multiple functions such as strong dispersion, crushing, and activation at the same time. In the process of composite material processing, power ultrasound is used to break the bubbles in the liquid, and at the same time, high temperature, high pressure and local effects are generated to improve the physical and chemical properties of the composite material.
中国专利CN104354302B公开了一种自动化贴膜式铺放复合材料预成型体的装置及方法,其特征在于先将纤维和树脂膜压制成半预浸带,然后将半预浸带铺放在芯模上,并得到预成型体。但是其并不适用于成型小曲率的热塑性复合材料构件的铺放,其铺放速度较慢,热塑性复合材料界面连接强度低,不能满足实际使用要求。Chinese patent CN104354302B discloses a device and method for laying composite material preforms by automatic film sticking, which is characterized by first pressing fibers and resin films into semi-prepreg tapes, and then laying the semi-prepreg tapes on the core mold , and obtain a preform. However, it is not suitable for the laying of thermoplastic composite components with small curvature, the laying speed is slow, and the interfacial connection strength of thermoplastic composites is low, which cannot meet the actual use requirements.
中国专利CN104626611B公开了一种基于六轴机器人式的自动铺带装置及方法,其特征在于通过铺带装置将预浸带输送至芯模或者已铺放表面并压紧,使用红外灯管加热铺放成型。红外加热通过电磁波传递能量,传热形式为辐射传热,具有加热范围大、能量密度低等缺点,导致铺放装置的压辊热量积累而影响成型质量,其铺放效率低且不易控制加工温度。Chinese patent CN104626611B discloses an automatic tape laying device and method based on a six-axis robot, which is characterized in that the prepreg tape is transported to the core mold or the surface that has been laid and pressed through the tape laying device, and an infrared lamp is used to heat the laying Put into shape. Infrared heating transfers energy through electromagnetic waves, and the heat transfer form is radiation heat transfer, which has the disadvantages of large heating range and low energy density, which leads to the accumulation of heat in the pressing roller of the laying device and affects the molding quality. The laying efficiency is low and it is difficult to control the processing temperature. .
中国专利CN105904739A公开了一种快速自动铺放热塑性复合材料构件的装置及方法,利用超声加热装置对热塑性预浸带进行铺放成型,并经过固化处理,控制结晶度与晶粒尺寸,从而达到优化构件性能的目的。但由于热源由机械振动产生,所制成的结构件表面成型质量低,且需固化处理,加工效率低。Chinese patent CN105904739A discloses a device and method for rapid and automatic laying of thermoplastic composite materials. The thermoplastic prepreg tape is laid and formed by using an ultrasonic heating device, and after curing, the crystallinity and grain size are controlled to achieve optimization. The purpose of component performance. However, since the heat source is generated by mechanical vibration, the surface molding quality of the fabricated structural parts is low, and curing treatment is required, resulting in low processing efficiency.
发明内容SUMMARY OF THE INVENTION
为了达到上述目的,本发明提供一种热塑性复合材料自动铺放装置及方法,解决了现有技术中铺放速度慢、热塑性复合材料界面连接强度低及加工温度不易控制的问题。In order to achieve the above purpose, the present invention provides an automatic laying device and method for thermoplastic composite materials, which solves the problems of slow laying speed, low interface connection strength of thermoplastic composite materials and difficult control of processing temperature in the prior art.
为解决上述技术问题,本发明所采用的技术方案是,热塑性复合材料自动铺放装置,包括铺放装置,铺放装置固定在支撑板上,激光焊接装置的激光焊接头固定于铺放装置一侧,超声振动装置固定于铺放装置另一侧,支撑板通过法兰与机器人的手臂相连。In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is that the thermoplastic composite material automatic laying device includes a laying device, the laying device is fixed on the support plate, and the laser welding head of the laser welding device is fixed on the first laying device. The ultrasonic vibration device is fixed on the other side of the laying device, and the support plate is connected to the arm of the robot through a flange.
所述铺放装置由带盘、张紧装置、热塑性预浸带、第一气压缸、加压滚轮、导向轮、主驱动辊、副驱动辊及第三气压缸组成,热塑性预浸带缠绕在带盘上,带盘中心设有张紧装置;导向轮固定于从带盘引出的热塑性预浸带下方,并与热塑性预浸带接触;相互平行的主驱动辊和副驱动辊位于导向轮下方,热塑性预浸带穿过主驱动辊和副驱动辊中间,并与主驱动辊和副驱动辊接触;加压滚轮位于主驱动辊和副驱动辊下方,热塑性预浸带沿加压滚轮被送至加压滚轮下方与基材接触;加压滚轮一侧连接第一气压缸,第一气压缸上设有第一活塞杆、位于第一活塞杆上方的第一气孔和位于第一活塞杆下方的第二气孔;加压滚轮另一侧连接第三气压缸,第三气压缸上设有第二活塞杆、位于第二活塞杆下方的第三气孔和位于第二活塞杆上方的第四气孔。The laying device is composed of a tape reel, a tensioning device, a thermoplastic prepreg tape, a first pneumatic cylinder, a pressure roller, a guide wheel, a main driving roller, an auxiliary driving roller and a third pneumatic cylinder. The thermoplastic prepreg tape is wound on the On the tape reel, there is a tensioning device in the center of the tape reel; the guide wheel is fixed under the thermoplastic prepreg tape drawn from the tape reel, and is in contact with the thermoplastic prepreg tape; the main driving roller and the auxiliary driving roller parallel to each other are located under the guiding wheel , the thermoplastic prepreg tape passes through the middle of the main driving roll and the auxiliary driving roll, and contacts with the main driving roll and the auxiliary driving roll; the pressing roller is located under the main driving roll and the auxiliary driving roll, and the thermoplastic prepreg tape is fed along the pressing roll contact with the base material under the pressing roller; one side of the pressing roller is connected with a first air cylinder, and the first air cylinder is provided with a first piston rod, a first air hole located above the first piston rod and a first air hole located below the first piston rod The other side of the pressure roller is connected to the third air cylinder, and the third air cylinder is provided with a second piston rod, a third air hole located below the second piston rod, and a fourth air hole located above the second piston rod .
所述激光焊接装置由激光器、计算机、激光焊接头及红外测温探头组成,激光器输入线连接计算机,激光器输出线连接激光焊接头,激光焊接头上安装红外测温探头,红外测温探头连接计算机,激光焊接头发出的激光束倾斜照射在加压滚轮下方热塑性预浸带与基材交界处。The laser welding device is composed of a laser, a computer, a laser welding head and an infrared temperature measuring probe. The laser input line is connected to the computer, the laser output line is connected to the laser welding head, an infrared temperature measuring probe is installed on the laser welding head, and the infrared temperature measuring probe is connected to the computer. , the laser beam emitted by the laser welding head is irradiated obliquely at the interface between the thermoplastic prepreg tape and the substrate under the pressing roller.
所述超声振动装置由超声波发生器、超声振动工具头、变幅杆、换能器、第二气压缸、滑块及导轨组成,超声振动工具头、变幅杆与换能器依次相连组成振动工作单元,换能器通过信号传输线与超声波发生器连接,第二气压缸通过第三活塞与换能器连接,换能器上固定滑块一端,滑块另一端卡接在导轨上,振动工作单元通过滑块沿导轨轴线方向直线运动,第二气压缸上设有位于第三活塞下方的第五气孔和位于第三活塞上方的第六气孔,导轨和第二气压缸固定在支撑板上。The ultrasonic vibration device is composed of an ultrasonic generator, an ultrasonic vibration tool head, a horn, a transducer, a second pneumatic cylinder, a slider and a guide rail. The ultrasonic vibration tool head, the horn and the transducer are connected in sequence to form a vibration. Working unit, the transducer is connected with the ultrasonic generator through the signal transmission line, the second air cylinder is connected with the transducer through the third piston, one end of the slider is fixed on the transducer, the other end of the slider is clamped on the guide rail, and the vibration works The unit moves linearly along the axis of the guide rail through the slider. The second pneumatic cylinder is provided with a fifth air hole located below the third piston and a sixth air hole located above the third piston. The guide rail and the second pneumatic cylinder are fixed on the support plate.
所述热塑性预浸带,是热塑性树脂与纤维的组合物;所述热塑性树脂为聚丙烯、聚乙烯或聚酰胺中的一种;所述纤维为碳纤维、玻璃纤维、芳纶或玄武岩纤维中的一种或两种以上的组合体。The thermoplastic prepreg tape is a combination of thermoplastic resin and fiber; the thermoplastic resin is one of polypropylene, polyethylene or polyamide; the fiber is carbon fiber, glass fiber, aramid fiber or basalt fiber. One or a combination of two or more.
所述第一气孔、第四气孔和第六气孔为进气孔;所述第二气孔、第三气孔第五气孔为排气孔。The first air hole, the fourth air hole and the sixth air hole are air intake holes; the second air hole, the third air hole and the fifth air hole are exhaust holes.
热塑性复合材料自动铺放装置的铺放方法,包括以下步骤:The laying method of the thermoplastic composite material automatic laying device includes the following steps:
步骤一:机器人牵引安装铺放装置、激光焊接装置及超声振动装置的支撑板至基材上方,热塑性预浸带经导向轮、主驱动辊和副驱动辊传送至加压滚轮下方,第一气孔和第四气孔进气,第二气孔和第三气孔排气,第一气压缸的第一活塞杆和第三气压缸的第二活塞杆推动加压滚轮,使热塑性预浸带和基材紧密贴合,并保持压力稳定;同时第六气孔进气,第五气孔排气,第二气压缸的第三活塞杆推动超声振动工具头与热塑性预浸带接触,并保持压力稳定;Step 1: The robot pulls and installs the support plate of the laying device, the laser welding device and the ultrasonic vibration device to the top of the base material, and the thermoplastic prepreg tape is transported to the bottom of the pressure roller through the guide wheel, the main driving roller and the auxiliary driving roller. The first air hole And the fourth air hole is inhaled, the second air hole and the third air hole are exhausted, the first piston rod of the first air cylinder and the second piston rod of the third air cylinder push the pressing roller to make the thermoplastic prepreg tape and the substrate tightly fit and keep the pressure stable; at the same time, the sixth air hole is inhaled, the fifth air hole is exhausted, and the third piston rod of the second pneumatic cylinder pushes the ultrasonic vibration tool head to contact the thermoplastic prepreg tape, and maintains the pressure stable;
步骤二:计算机控制激光器的输出功率,激光器通过激光焊接头释放激光束,对加压滚轮下方热塑性预浸带和基材交界处进行加热,同时开启超声波发生器,换能器将超声波发生器产生的高频电流能转换为机械振动能,并通过变幅杆将机械振动放大、汇聚后,转移至超声波振动工具头,实现超声振动工具头对加压滚轮后方热塑性预浸带超声冲击;Step 2: The computer controls the output power of the laser. The laser releases the laser beam through the laser welding head to heat the junction between the thermoplastic prepreg tape and the base material under the pressure roller. At the same time, the ultrasonic generator is turned on, and the transducer generates the ultrasonic generator. The high-frequency current energy is converted into mechanical vibration energy, and the mechanical vibration is amplified and concentrated by the horn, and then transferred to the ultrasonic vibration tool head, so as to realize the ultrasonic vibration tool head to the thermoplastic prepreg behind the pressure roller. Ultrasonic impact;
步骤三:基材和机器人同步运动,主驱动辊牵引热塑性预浸带的速率与加压滚轮铺放速率保持一致,实现热塑性热塑性预浸带的持续铺放成型,红外测温探头检测加工温度并反馈至计算机,实时调整激光器的输出功率,控制激光束功率,从而控制加工温度;Step 3: The substrate and the robot move synchronously, and the speed of the main drive roller pulling the thermoplastic prepreg tape is consistent with the laying rate of the pressure roller, so as to realize the continuous laying and molding of the thermoplastic thermoplastic prepreg tape, and the infrared temperature measuring probe detects the processing temperature and Feedback to the computer, adjust the output power of the laser in real time, control the power of the laser beam, and thus control the processing temperature;
步骤四:通过改变机器人末端手臂位姿调整铺放路径,重复步骤一至步骤三,直至整个热塑性复合材料构件成型结束。Step 4: Adjust the laying path by changing the posture of the end arm of the robot, and repeat steps 1 to 3 until the entire thermoplastic composite component is formed.
所述步骤一中,铺放热塑性预浸带时,加压滚轮对热塑性预浸带的压力为0.6MPa~1.0MPa,超声振动工具头对热塑性预浸带的压力为0.2MPa~0.5MPa。In the first step, when laying the thermoplastic prepreg tape, the pressure of the pressing roller on the thermoplastic prepreg tape is 0.6MPa-1.0MPa, and the pressure of the ultrasonic vibration tool head on the thermoplastic prepreg tape is 0.2MPa-0.5MPa.
所述步骤二中,激光光斑为矩形光斑,光斑宽度为3mm~5mm,同时加热热塑性预浸带和基材,激光加工区温度为150℃~270℃;In the second step, the laser spot is a rectangular spot, the width of the spot is 3mm-5mm, the thermoplastic prepreg tape and the substrate are heated at the same time, and the temperature of the laser processing zone is 150°C-270°C;
所述步骤二中,超声振动工具头的振幅为16~20μm、振动频率为40~80kHz;In the second step, the amplitude of the ultrasonic vibration tool head is 16-20 μm, and the vibration frequency is 40-80 kHz;
所述红外测温探头收集加工区域的辐射信号后,将其通过串口通信传输至计算机。After the infrared temperature measuring probe collects the radiation signal of the processing area, it transmits it to the computer through serial communication.
本发明的有益效果是,热塑性复合材料自动铺放装置及方法,利用激光加热实现热塑性复合材料自动铺放,有效地解决了:The beneficial effect of the present invention is that the thermoplastic composite material automatic laying device and method utilizes laser heating to realize the automatic laying of the thermoplastic composite material, which effectively solves the following problems:
(1)采用激光作为热源,加热区域精准,加热速度快可以提供较高的铺放速率,具有铺放效率高、节能环保等优点;(1) The laser is used as the heat source, the heating area is precise, and the heating speed is fast, which can provide a higher laying rate, and has the advantages of high laying efficiency, energy saving and environmental protection;
(2)将高频超声能量引入焊接中,传递至熔体后产生空化、声流现象,从而达到去除复合材料铺放层间的气泡,同时对焊后区域进行超声冲击,显著消除残余应力等缺陷,提高界面连接强度;(2) Introduce high-frequency ultrasonic energy into welding, and transfer it to the melt to generate cavitation and acoustic flow, so as to remove the bubbles between the layers of the composite material, and at the same time, ultrasonically impact the post-weld area to significantly eliminate residual stress. and other defects, improve the interface connection strength;
(3)在预浸带铺放过程中,使用温度闭环控制系统对加热温度精准控制,避免加热温度过高而导致树脂材料分解,提高加工成型件质量;(3) During the laying process of the prepreg tape, the temperature closed-loop control system is used to accurately control the heating temperature, so as to avoid the decomposition of the resin material due to the excessive heating temperature, and improve the quality of the processed molded parts;
(4)采用连续原位固结成型的方式,极大的节省铺放成型时间,铺放装置和机器人配合,可根据构件形状安排铺放路径,铺放效率高,减少对原材料的浪费。(4) The continuous in-situ consolidation molding method is adopted, which greatly saves the laying and forming time. The laying device and the robot cooperate to arrange the laying path according to the shape of the component. The laying efficiency is high and the waste of raw materials is reduced.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为热塑性复合材料自动铺放装置的整体设备布局图;Fig. 1 is the overall equipment layout diagram of the thermoplastic composite material automatic laying device;
图2为铺放装置结构示意图;Fig. 2 is a schematic diagram of the structure of a laying device;
图3为加压滚轮左视图;Figure 3 is the left side view of the pressure roller;
图4为超声振动装置三维图;4 is a three-dimensional view of an ultrasonic vibration device;
图5为热塑性复合材料自动铺放方法的控制流程图;Fig. 5 is the control flow chart of the thermoplastic composite material automatic laying method;
图6为温度闭环控制系统的控制流程图。FIG. 6 is a control flow chart of the temperature closed-loop control system.
图中,1.激光器,2.计算机,3.法兰,4.支撑板,5.带盘,6.张紧装置,7.激光焊接头,8.超声波发生器,9.红外测温探头,10.热塑性预浸带,11.第一气压缸,12.加压滚轮,13.基材,14.超声振动工具头,15.变幅杆,16.换能器,17.第二气压缸,18.机器人,19.激光束,20.导向轮,21.主驱动辊,22.副驱动辊,23.滑块,24.导轨,25.第一气孔,26.第二气孔,27.第一活塞杆,28.第三气压缸,29.第三气孔,30.第二活塞杆,31.第四气孔,32.第三活塞杆,33.第五气孔,34.第六气孔。In the figure, 1. Laser, 2. Computer, 3. Flange, 4. Support plate, 5. Tape reel, 6. Tensioning device, 7. Laser welding head, 8. Ultrasonic generator, 9. Infrared temperature probe , 10. Thermoplastic prepreg tape, 11. First pneumatic cylinder, 12. Pressurized roller, 13. Base material, 14. Ultrasonic vibration tool head, 15. Amplifier rod, 16. Transducer, 17. Second pneumatic pressure Cylinder, 18. Robot, 19. Laser beam, 20. Guide wheel, 21. Main driving roller, 22. Secondary driving roller, 23. Slider, 24. Guide rail, 25. First air hole, 26. Second air hole, 27 .First piston rod, 28. Third air cylinder, 29. Third air hole, 30. Second piston rod, 31. Fourth air hole, 32. Third piston rod, 33. Fifth air hole, 34. Sixth air hole .
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1所示,热塑性复合材料自动铺放装置,包括铺放装置,铺放装置固定在支撑板4上,用于对热塑性预浸带10进行铺放及压紧;激光焊接装置的激光焊接头7固定于铺放装置一侧,用于对热塑性预浸带10和基材13加热,超声振动装置固定于铺放装置另一侧,用于在铺放过程中输入超声能,支撑板4通过法兰3与机器人18的手臂相连;As shown in FIG. 1, the thermoplastic composite material automatic laying device includes a laying device, and the laying device is fixed on the
铺放装置如图2与图3所示,由带盘5、张紧装置6、热塑性预浸带10、第一气压缸11、加压滚轮12、导向轮20、主驱动辊21、副驱动辊22、第三气压缸28组成,热塑性预浸带10缠绕在带盘5上,带盘5中心设有张紧装置6,保证热塑性预浸带10在加工时张紧;导向轮20位于从带盘5下方左侧引出的热塑性预浸带10下方,并与热塑性预浸带10接触;相互平行的主驱动辊21和副驱动辊22位于导向轮20下方,热塑性预浸带10穿过主驱动辊21和副驱动辊22中间,并与主驱动辊21和副驱动辊22接触;加压滚轮12位于主驱动辊21和副驱动辊22左下方,热塑性预浸带10沿加压滚轮12右侧被送至加压滚轮12下方与基材13接触;加压滚轮12一侧连接第一气压缸11,第一气压缸11上设有第一活塞杆27、位于第一活塞杆27上方的第一气孔25和位于第一活塞杆27下方的第二气孔26;加压滚轮12另一侧连接第三气压缸28,第三气压缸28上设有第二活塞杆30、位于第二活塞杆30下方的第三气孔29和位于第二活塞杆30上方的第四气孔31,加压滚轮12利用第一气压缸11和第三气压缸28对热塑性预浸带10施加压力,并在加工过程中维持稳定的压力值;As shown in Figure 2 and Figure 3, the laying device is composed of a
激光焊接装置如图1所示,由激光器1、计算机2、激光焊接头7、红外测温探头9组成,激光器1输入线连接计算机2,计算机2控制激光器1的输出功率,激光器1输出线连接激光焊接头7,激光焊接头7一侧安装红外测温探头9,红外测温探头9连接计算机2,激光焊接头7发出的激光束19倾斜照射在加压滚轮12下方热塑性预浸带10与基材13交界处;As shown in Figure 1, the laser welding device consists of a laser 1, a computer 2, a
超声振动装置如图1和图4所示,由超声波发生器8、超声振动工具头14、变幅杆15、换能器16、第二气压缸17、滑块23、导轨24组成,超声振动工具头14、变幅杆15与换能器16依次相连组成振动工作单元,换能器16通过信号传输线与超声波发生器8连接,第二气压缸17通过第三活塞32与换能器16连接,换能器16一侧固定滑块23一端,滑块23另一端卡接在导轨24上,振动工作单元通过滑块23沿导轨24轴线方向直线运动,第二气压缸17上设有位于第三活塞32下方的第五气孔33和位于第三活塞32上方的第六气孔34,导轨24和第二气压缸17固定在支撑板4上;As shown in Figures 1 and 4, the ultrasonic vibration device consists of an
第一气孔25、第四气孔31和第六气孔34进气,第二气孔26、第三气孔29第五气孔33排气;第一活塞杆27、第二活塞杆30推动加压滚轮12;第三活塞杆32用于推动超声振动工具头14。The
热塑性预浸带10,是热塑性树脂与纤维的组合物;热塑性树脂为聚丙烯、聚乙烯或聚酰胺中的一种,纤维为碳纤维、玻璃纤维、芳纶或玄武岩纤维中的一种或两种以上的组合体。The
本发明还涉及一种热塑性复合材料自动铺放方法,如图5所示,包括以下步骤:The present invention also relates to a method for automatic laying of thermoplastic composite materials, as shown in Figure 5, comprising the following steps:
步骤一:机器人18牵引安装铺放装置、激光焊接装置及超声振动装置的支撑板4至基材13上方,热塑性预浸带10经导向轮20、主驱动辊21和副驱动辊22传送至加压滚轮12下方,第一气孔25和第四气孔31进气,第二气孔26和第三气孔29排气,第一活塞杆27和第二活塞杆30推动加压滚轮12,使热塑性预浸带10和基材13紧密贴合,并保持压力稳定,同时第六气孔34进气,第五气孔33排气,第二气压缸17的第三活塞杆32推动超声振动工具头14与热塑性预浸带10接触,并保持压力稳定;Step 1: The
步骤二:计算机2控制激光器1的输出功率,激光器1通过激光焊接头7释放激光束19,对加压滚轮12下方热塑性预浸带10和基材13交界处进行加热,同时开启超声波发生器8,换能器16将超声波发生器8产生的高频电流能转换为机械振动能,并通过变幅杆15将机械振动放大、汇聚后,转移至超声波振动工具头14,实现超声振动工具头14对加压滚轮12后方热塑性预浸带10超声冲击;Step 2: The computer 2 controls the output power of the laser 1, the laser 1 releases the
步骤三:基材13和机器人18同步运动,主驱动辊21牵引热塑性预浸带10的速率与加压滚轮12铺放速率保持一致,实现热塑性热塑性预浸带10的持续铺放成型;红外测温探头9检测加工温度并反馈至计算机2,实时调整激光器1的输出功率,控制激光束19功率,从而控制加热温度,具体如图6所示;Step 3: The
步骤四:通过改变机器人18末端手臂位姿调整铺放路径,重复步骤一至步骤三,直至整个热塑性复合材料构件成型结束。Step 4: Adjust the laying path by changing the posture of the end arm of the
步骤一中,铺放热塑性预浸带10时,调整第一气压缸11和第三气压缸28的压力,使得加压滚轮12对热塑性预浸带10的压力为0.6MPa~1.0MPa,保证热塑性预浸带10与基材13连接后的界面强度;调整第二气压缸17,使得超声振动工具头14对热塑性预浸带10的压力为0.2MPa~0.5MPa;In step 1, when laying the
步骤二中,激光光斑为矩形光斑,光斑宽度为3mm~5mm,同时加热热塑性预浸带10和基材13,使两者都发生熔化,激光加工区温度为150℃~270℃;超声振动工具头14的振幅为16~20μm,振动频率为40~80kHz;红外测温探头9收集加工区域的辐射信号后,将其通过串口通信传输至计算机2,计算机2根据闭环控制系统调整激光器1的输出功率,控制激光束19的功率,保证加工温度。In step 2, the laser spot is a rectangular spot, the width of the spot is 3mm-5mm, the
实施例1Example 1
对尺寸为0.5mm×12mm的芳纶/PA预浸带10利用复合材料自动铺放装置进行自动铺放,具体包括以下步骤:The aramid fiber/
步骤一:机器人18牵引安装铺放装置、激光焊接装置及超声振动装置的支撑板4至基材13上方,芳纶/PA预浸带10经导向轮20、主驱动辊21和副驱动辊22传送至加压滚轮12下方,第一气孔25和第四气孔31进气,第二气孔26和第三气孔29排气,第一活塞杆27和第二活塞杆30推动加压滚轮12,使芳纶/PA预浸带10和基材13紧密贴合,调整调整第一气压缸11和第三气压缸28压力,使加压滚轮12对芳纶/PA预浸带10的压力为1.0MPa,同时第六气孔34进气,第五气孔33排气,第二气压缸17的第三活塞杆32推动超声振动工具头14与芳纶/PA预浸带10接触,并使超声振动工具头14对芳纶/PA预浸带10的压力为0.5MPa;Step 1: The
步骤二:计算机2控制激光器1的输出功率,激光器1通过激光焊接头7释放激光束19,对加压滚轮12下方芳纶/PA预浸带10和基材13交界处进行加热,同时加热芳纶/PA预浸带10和基材13,激光光斑为矩形光斑,光斑宽度为5mm,激光加工区温度为270℃;同时开启超声波发生器8,换能器16将超声波发生器8产生的高频电流能转换为机械振动能,并通过变幅杆15将机械振动放大、汇聚后,转移至超声波振动工具头14,实现超声振动工具头14对加压滚轮12后方芳纶/PA预浸带10超声冲击,超声振动工具头14的振幅为20μm,超声振动工具头14的振动频率为40kHz;Step 2: The computer 2 controls the output power of the laser 1, and the laser 1 releases the
步骤三:基材13和机器人18同步运动,主驱动辊21牵引芳纶/PA预浸带10的速率与加压滚轮12铺放速率保持一致,实现芳纶/PA预浸带10的持续铺放成型,红外测温探头9检测加工温度并反馈至计算机2,实时调整激光器1的输出功率,控制激光束19功率,从而控制加工温度;Step 3: The
步骤四:通过改变机器人18末端手臂位姿调整铺放路径,重复步骤一至步骤三,直至整个热塑性复合材料构件成型结束。Step 4: Adjust the laying path by changing the posture of the end arm of the
实施例2Example 2
对尺寸为0.4mm×10mm的玄武岩纤维和碳纤维共混/PE预浸带10利用复合材料自动铺放装置进行自动铺放,具体包括以下步骤:The basalt fiber and carbon fiber blend/
步骤一:机器人18牵引安装铺放装置、激光焊接装置及超声振动装置的支撑板4至基材13上方,玄武岩纤维和碳纤维共混/PE预浸带10经导向轮20、主驱动辊21和副驱动辊22传送至加压滚轮12下方,第一气孔25和第四气孔31进气,第二气孔26和第三气孔29排气,第一活塞杆27和第二活塞杆30推动加压滚轮12,使玄武岩纤维和碳纤维共混/PE预浸带10和基材13紧密贴合,调整调整第一气压缸11和第三气压缸28压力,使加压滚轮12对玄武岩纤维和碳纤维共混/PE预浸带10的压力为0.6MPa,同时第六气孔34进气,第五气孔33排气,第二气压缸17的第三活塞杆32推动超声振动工具头14与玄武岩纤维和碳纤维共混/PE预浸带10接触,并使超声振动工具头14对玄武岩纤维和碳纤维共混/PE预浸带10的压力为0.2MPa;Step 1: The
步骤二:计算机2控制激光器1的输出功率,激光器1通过激光焊接头7释放激光束19,对加压滚轮12下方玄武岩纤维和碳纤维共混/PE预浸带10和基材13交界处进行加热,同时加热玄武岩纤维和碳纤维共混/PE预浸带10和基材13,激光光斑为矩形光斑,光斑宽度为3mm,激光加工区温度为150℃;同时开启超声波发生器8,换能器16将超声波发生器8产生的高频电流能转换为机械振动能,并通过变幅杆15将机械振动放大、汇聚后,转移至超声波振动工具头14,实现超声振动工具头14对加压滚轮12后方玄武岩纤维和碳纤维共混/PE预浸带10超声冲击,超声振动工具头14的振幅为18μm,超声振动工具头14的振动频率为80kHz;Step 2: The computer 2 controls the output power of the laser 1, and the laser 1 releases the
步骤三:基材13和机器人18同步运动,主驱动辊21牵引玄武岩纤维和碳纤维共混/PE预浸带10的速率与加压滚轮12铺放速率保持一致,实现玄武岩纤维和碳纤维共混/PE预浸带10的持续铺放成型,红外测温探头9检测加工温度并反馈至计算机2,实时调整激光器1的输出功率,控制激光束19功率,从而控制加工温度;Step 3: The
步骤四:通过改变机器人18末端手臂位姿调整铺放路径,重复步骤一至步骤三,直至整个热塑性复合材料构件成型结束。Step 4: Adjust the laying path by changing the posture of the end arm of the
实施例3Example 3
对尺寸为0.3mm×15mm的玻璃纤维/PP预浸带10利用复合材料自动铺放装置进行自动铺放,具体包括以下步骤:The glass fiber/
步骤一:机器人18牵引安装铺放装置、激光焊接装置及超声振动装置的支撑板4至基材13上方,玻璃纤维/PP预浸带10经导向轮20、主驱动辊21和副驱动辊22传送至加压滚轮12下方,第一气孔25和第四气孔31进气,第二气孔26和第三气孔29排气,第一活塞杆27和第二活塞杆30推动加压滚轮12,使玻璃纤维/PP预浸带10和基材13紧密贴合,调整调整第一气压缸11和第三气压缸28压力,使加压滚轮12对玻璃纤维/PP预浸带10的压力为0.8MPa,同时第六气孔34进气,第五气孔33排气,第二气压缸17的第三活塞杆32推动超声振动工具头14与玻璃纤维/PP预浸带10接触,并使超声振动工具头14对玻璃纤维/PP预浸带10的压力为0.3MPa;Step 1: The
步骤二:计算机2控制激光器1的输出功率,激光器1通过激光焊接头7释放激光束19,对加压滚轮12下方玻璃纤维/PP预浸带10和基材13交界处进行加热,同时加热玻璃纤维/PP预浸带10和基材13,激光光斑为矩形光斑,光斑宽度为4mm,激光加工区温度为180℃;同时开启超声波发生器8,换能器16将超声波发生器8产生的高频电流能转换为机械振动能,并通过变幅杆15将机械振动放大、汇聚后,转移至超声波振动工具头14,实现超声振动工具头14对加压滚轮12后方玻璃纤维/PP预浸带10超声冲击,超声振动工具头14的振幅为16μm,超声振动工具头14的振动频率为60kHz;Step 2: The computer 2 controls the output power of the laser 1, and the laser 1 releases the
步骤三:基材13和机器人18同步运动,主驱动辊21牵引玻璃纤维/PP预浸带10的速率与加压滚轮12铺放速率保持一致,实现玻璃纤维/PP预浸带10的持续铺放成型,红外测温探头9检测加工温度并反馈至计算机2,实时调整激光器1的输出功率,控制激光束19功率,从而控制加工温度;Step 3: The
步骤四:通过改变机器人18末端手臂位姿调整铺放路径,重复步骤一至步骤三,直至整个热塑性复合材料构件成型结束。Step 4: Adjust the laying path by changing the posture of the end arm of the
本发明实施例3所得结构件的层间剪切强度可达35MPa,与现有层间剪切强度可达28MPa相比,性能显著提高,且所制成结构件较传统金属构件重量降低至75%。The interlaminar shear strength of the structure obtained in Example 3 of the present invention can reach 35 MPa, which is significantly improved compared with the existing interlaminar shear strength of 28 MPa, and the weight of the fabricated structural component is reduced to 75 MPa compared with traditional metal components %.
由于树脂材料的熔化温度与热分解温度差异较小,自动铺放过程中的局部加热应控制在一定范围类,避免未粘连或过熔情况的发生。本发明使用的温度闭环控制系统可以保证加工区温度控制在预设温度±10℃以内,界面连接情况好,大幅提高加工成型件质量。Since the difference between the melting temperature of the resin material and the thermal decomposition temperature is small, the local heating during the automatic laying process should be controlled within a certain range to avoid the occurrence of non-adhesion or over-melting. The temperature closed-loop control system used in the present invention can ensure that the temperature of the processing area is controlled within the preset temperature ±10°C, the interface connection is good, and the quality of the processed and formed parts is greatly improved.
本发明实施例所成型的热塑性复合材料结构件为多层次结构,具有强度高、质量轻的特点,可应用于原油管道、飞机、汽车及船体等的大尺寸结构件和复杂曲面结构件的整体制造,有效减轻设备重量,减少零件的拼装数目,节约装配和制造成本。The thermoplastic composite material structure formed in the embodiment of the present invention has a multi-layered structure, and has the characteristics of high strength and light weight, and can be applied to large-sized structural parts such as crude oil pipelines, aircraft, automobiles and ship hulls and the whole of complex curved structural parts. It can effectively reduce the weight of equipment, reduce the number of parts assembled, and save assembly and manufacturing costs.
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。Each embodiment in this specification is described in a related manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments.
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention are included in the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810752694.2A CN108819292B (en) | 2018-07-10 | 2018-07-10 | Thermoplastic composite material automatic laying device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810752694.2A CN108819292B (en) | 2018-07-10 | 2018-07-10 | Thermoplastic composite material automatic laying device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108819292A CN108819292A (en) | 2018-11-16 |
CN108819292B true CN108819292B (en) | 2020-09-04 |
Family
ID=64136792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810752694.2A Active CN108819292B (en) | 2018-07-10 | 2018-07-10 | Thermoplastic composite material automatic laying device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108819292B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109822938B (en) * | 2019-02-20 | 2021-09-21 | 长春理工大学 | Laser hot-pressing laying forming device for thermoplastic composite material plate |
CN113853270B (en) | 2019-06-17 | 2024-04-30 | 麦格纳国际公司 | Optical wheel assembly for laser transmission welding apparatus |
CN111361179A (en) * | 2020-03-30 | 2020-07-03 | 西安交通大学 | A thermoplastic composite molding process suitable for complex and large curvature |
US11819942B2 (en) | 2020-12-10 | 2023-11-21 | Magna International Inc. | Method and apparatus for applying an active joining force during laser welding of overlapping workpieces |
CN113289837A (en) * | 2021-05-27 | 2021-08-24 | 燕山大学 | Vibration-assisted powder coating roll forming device and method |
CN113459501B (en) * | 2021-06-16 | 2022-03-18 | 华中科技大学 | Complex bearing part forming device based on fused deposition technology |
WO2022271633A1 (en) * | 2021-06-21 | 2022-12-29 | University Of Washington | Closed loop composite welding and bonding system using radio-frequency and pressure |
CN114474720B (en) * | 2022-01-17 | 2022-10-04 | 浙江大学 | A device for in-situ additive manufacturing of laser-assisted continuous fiber composites with adjustable irradiation angle |
CN116619783B (en) * | 2023-05-26 | 2025-05-27 | 长春理工大学 | A method for suppressing interference between a pressure roller and a core mold shaft in laser in-situ forming of composite material prepreg |
CN116787802A (en) * | 2023-06-20 | 2023-09-22 | 中国科学院福建物质结构研究所 | Automatic thermoplastic composite material laying device and method |
CN118752764A (en) * | 2024-07-03 | 2024-10-11 | 南京航空航天大学 | A method and device for ultrasonically adding thermoplastic composite materials |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102076475A (en) * | 2008-06-24 | 2011-05-25 | 空中客车操作有限公司 | Method and apparatus for fabricating fiber-reinforced thermoplastic composite structures |
DE102011104071A1 (en) * | 2011-06-11 | 2012-12-13 | Daimler Ag | Method for manufacturing leaf spring that is utilized for function integration of e.g. axle to vehicle, involves melting matrix material in prepeg tape by concentrated introduction of heat when prepeg band is impinged on mold |
CN104626611A (en) * | 2015-01-30 | 2015-05-20 | 武汉大学 | Six-shaft robot-based type automatic tape paving device and six-shaft robot based type automatic tape paving method |
CN105904739A (en) * | 2016-04-12 | 2016-08-31 | 南京航空航天大学 | Apparatus for rapidly and automatically laying thermoplastic composite material member, and method thereof |
CN107052597A (en) * | 2016-12-20 | 2017-08-18 | 江苏大学 | A kind of method for laser welding and device for making up dissimilar metal welding line bath temperature difference |
CN107414291A (en) * | 2016-05-05 | 2017-12-01 | 香港理工大学 | Ultrasonic-assisted laser welding of dissimilar materials |
-
2018
- 2018-07-10 CN CN201810752694.2A patent/CN108819292B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102076475A (en) * | 2008-06-24 | 2011-05-25 | 空中客车操作有限公司 | Method and apparatus for fabricating fiber-reinforced thermoplastic composite structures |
DE102011104071A1 (en) * | 2011-06-11 | 2012-12-13 | Daimler Ag | Method for manufacturing leaf spring that is utilized for function integration of e.g. axle to vehicle, involves melting matrix material in prepeg tape by concentrated introduction of heat when prepeg band is impinged on mold |
CN104626611A (en) * | 2015-01-30 | 2015-05-20 | 武汉大学 | Six-shaft robot-based type automatic tape paving device and six-shaft robot based type automatic tape paving method |
CN105904739A (en) * | 2016-04-12 | 2016-08-31 | 南京航空航天大学 | Apparatus for rapidly and automatically laying thermoplastic composite material member, and method thereof |
CN107414291A (en) * | 2016-05-05 | 2017-12-01 | 香港理工大学 | Ultrasonic-assisted laser welding of dissimilar materials |
CN107052597A (en) * | 2016-12-20 | 2017-08-18 | 江苏大学 | A kind of method for laser welding and device for making up dissimilar metal welding line bath temperature difference |
Also Published As
Publication number | Publication date |
---|---|
CN108819292A (en) | 2018-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108819292B (en) | Thermoplastic composite material automatic laying device and method | |
Li et al. | Ultrasonic welding of fiber-reinforced thermoplastic composites: a review | |
CN105904739B (en) | A kind of fast automatic device and method for laying thermoplastic composite component | |
US12240184B2 (en) | Method for welding parts made of thermoplastic material | |
Yousefpour et al. | Fusion bonding/welding of thermoplastic composites | |
CN1285460C (en) | Ultrasonic vibration assisting resistance implantation welding method for thermoplastic resin base composite material | |
Yang et al. | Ultrasonic welding of short carbon fiber reinforced PEEK with spherical surface anvils | |
CN115922052B (en) | An ultrasonic continuous welding system and method | |
CN114013069B (en) | A composite process of automatic placement and fused deposition of fiber reinforced thermoplastic materials | |
US20230059804A1 (en) | Ultrasonic consolidation of materials | |
CN113664374A (en) | Ultrasonic-assisted laser joining process of thermoplastic composite material and light alloy | |
CN113619125A (en) | Device and method for induction welding of double coils of thermoplastic composite material skin stringer structure | |
CN113320151B (en) | 3D printing head and printing method for continuous fiber reinforced resin composite material | |
CN115366427A (en) | Method of Plasma Treatment to Improve the Strength of Ultrasonic Welded Joints of Resin Matrix Composites | |
CN114407372A (en) | Device and method for improving laser connection strength of metal piece and plastic piece | |
CN117644661A (en) | Method for improving interface strength of ultrasonic welding joint of composite material by utilizing metal mesh composite energy guide ribs | |
Sadeghi et al. | Ultrasonic welding of composite laminate GF/PA6: Weldability and weld quality by current and strength | |
EP3017931B1 (en) | Induction welding method for electrically conducting composite materials having a thermosetting matrix | |
CN112895474A (en) | Method for connecting fiber reinforced thermoplastic composite material and metal | |
CN115534322A (en) | Method of joining a first fiber composite part to a second fiber composite part | |
CN114101949A (en) | A kind of welding equipment and welding method | |
CN114536746A (en) | Ultrasonic-assisted continuous fiber reinforced thermoplastic resin 3D printing device and method | |
CN115923145B (en) | Ultrasonic welding method and assembly with controllable interface structure | |
CN113977058A (en) | Mirror image welding method and device for double induction coils made of thermoplastic composite material | |
CN118752764A (en) | A method and device for ultrasonically adding thermoplastic composite materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |