CN108818533A - Heterogeneous robot remote control system position and speed synchronisation control means - Google Patents
Heterogeneous robot remote control system position and speed synchronisation control means Download PDFInfo
- Publication number
- CN108818533A CN108818533A CN201810680814.2A CN201810680814A CN108818533A CN 108818533 A CN108818533 A CN 108818533A CN 201810680814 A CN201810680814 A CN 201810680814A CN 108818533 A CN108818533 A CN 108818533A
- Authority
- CN
- China
- Prior art keywords
- robot
- master
- slave
- speed
- position information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 abstract description 15
- 230000001360 synchronised effect Effects 0.000 abstract description 8
- 238000004891 communication Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 239000013598 vector Substances 0.000 description 4
- 241000282412 Homo Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/10—Programme-controlled manipulators characterised by positioning means for manipulator elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
本发明属于机器人遥操作控制技术领域。本发明公开了一种异构机器人遥操作系统位置和速度同步控制方法,主要步骤包括:施加作用力fh使主机器人产生位置信息xmaster和位置变化量;位置信息xmaster及主机器人位置变化量通过通讯网络传递给从机器人;从机器人运动并产生位置信息xslave;以主机器人位置信息xmaster控制从机器人位置信息xslave,实现主机器人和从机器人位置同步;以主机器人位置变化量控制从机器人的速度Vs,实现主机器人和从机器人速度同步。本发明实现了主机器人的位置信息控制从机器人在三维任务空间中的位置移动,同时也使主机器人在该过程中的位置变化量控制从机器人在三维任务空间中的速度变化,实现了从机器人的位置和速度与主机器人的位置和速度保持同步。
The invention belongs to the technical field of robot teleoperation control. The invention discloses a method for synchronously controlling the position and speed of a remote operating system of a heterogeneous robot. The main steps include: applying force f h to make the main robot generate position information x master and position variation; position information x master and the position change of the main robot The amount is transmitted to the slave robot through the communication network; the slave robot moves and generates position information x slave ; the master robot position information x master is used to control the slave robot position information x slave , and the position synchronization between the master robot and the slave robot is realized; the position change of the master robot is controlled The speed V s of the slave robot realizes the speed synchronization of the master robot and the slave robot. The invention realizes that the position information of the master robot controls the position movement of the slave robot in the three-dimensional task space, and at the same time enables the position change of the master robot in the process to control the speed change of the slave robot in the three-dimensional task space, realizing the slave robot The position and velocity of the robot are synchronized with those of the main robot.
Description
技术领域technical field
本发明属于机器人遥操作控制技术领域。特别涉及一种异构机器人遥操作系统位置和速度同步控制方法。The invention belongs to the technical field of robot teleoperation control. In particular, it relates to a position and speed synchronous control method of a remote control system of a heterogeneous robot.
背景技术Background technique
异构机器人遥操作系统将人的经验智慧与机器人的优势相结合,实现了人的行为能力与感知能力的延伸,让机器人能够代替人在复杂或恶劣环境中进行作业,从而可以避免对人体产生伤害,降低生产成本,提高生产效率。在太空、深海、医疗手术、矿工业以及核工业等领域得到了广泛应用。因此实现主机器人与从机器人的位置同步跟踪及对从机器人速度的精确控制,是机器人遥操作系统中最重要功能。The heterogeneous robot teleoperation system combines human experience and wisdom with the advantages of robots, and realizes the extension of human behavior and perception capabilities, allowing robots to replace humans in complex or harsh environments, thereby avoiding damage to the human body. damage, reduce production costs, and improve production efficiency. It has been widely used in fields such as space, deep sea, medical surgery, mining industry and nuclear industry. Therefore, it is the most important function in the robot teleoperation system to realize the synchronous tracking of the position of the master robot and the slave robot and the precise control of the speed of the slave robot.
异构机器人遥操作系统因其所使用的主机器人和从机器人型号和结构不同,搭建遥操作系统平台的方法不同。对于速度与位置控制方法,其中比较有代表性的为:文献[M.Mamdouh and A.A.Ramadan,"Development of a teleoperation system with a newworkspace spanning technique,"2012IEEE International Conference on Roboticsand Biomimetics(ROBIO),Guangzhou,2012,pp.1570-1575.]主要利用主机器人端的额外开关变量来进行开关的切换,触发开关设定不同的模式,实现不同形式的主从机器人位置和速度的控制,以此达到主机器人在微小范围及大范围内对从机器人运动模式的控制。文献[Farkhatdinov I,Ryu J H.Hybrid position-position and position-speed commandstrategy for the bilateral teleoperation of a mobile robot[C].InternationalConference on Control,Automation and Systems.IEEE,2007:2442-2447.]针对轮式移动机器人的远程导航遥操作系统,提出了一种位置-位置和位置-速度模式的混合控制方法,通过对两种模式的切换以实现在二维平面上主机器人对轮式移动机器人的位置或者对其线速度、航向角度的控制。Because of the different models and structures of the master robot and the slave robot used in the heterogeneous robot teleoperation system, the methods of building the teleoperation system platform are different. For speed and position control methods, the more representative ones are: [M.Mamdouh and A.A.Ramadan, "Development of a teleoperation system with a newworkspace spanning technique," 2012IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, 2012 ,pp.1570-1575.] Mainly use the extra switch variable on the master robot side to switch the switch, trigger the switch to set different modes, and realize different forms of master-slave robot position and speed control, so as to achieve the master robot in a small The control of the movement mode of the slave robot in a wide range and a large range. Literature [Farkhatdinov I, Ryu J H. Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot [C]. International Conference on Control, Automation and Systems. IEEE, 2007: 2442-2447.] for wheeled The teleoperation system for remote navigation of mobile robots proposes a hybrid control method of position-position and position-velocity modes. By switching between the two modes, the main robot can control the position of the wheeled mobile robot on the two-dimensional plane or Control its linear speed and heading angle.
这些方法存在的不足之处主要在于需要手动进行开关的切换,增加了异构遥操作系统控制的复杂性,对于从机器人的操作也缺乏灵活性。The shortcomings of these methods mainly lie in the need to manually switch the switch, which increases the complexity of the control of the heterogeneous remote control system and lacks flexibility for the operation of the slave robot.
发明内容Contents of the invention
本发明的主要目的在于提供一种异构机器人遥操作系统位置和速度同步控制方法,以改善异构型机器人遥操作系统的操作性能。The main purpose of the present invention is to provide a method for synchronously controlling the position and speed of the heterogeneous robot teleoperation system to improve the operation performance of the heterogeneous robot teleoperation system.
为了实现上述目的,根据本发明具体实施方式的一个方面,提供了一种异构机器人遥操作系统位置和速度同步控制方法,其特征在于,包括如下步骤:In order to achieve the above object, according to an aspect of the specific embodiment of the present invention, a method for synchronously controlling the position and speed of the remote operating system of a heterogeneous robot is provided, which is characterized in that it includes the following steps:
施加作用力fh使主机器人产生位置信息xmaster和位置变化量;Apply force f h to make the main robot generate position information x master and position change amount;
位置信息xmaster及主机器人位置变化量通过通讯网络传递给从机器人;The position information x master and the position change of the master robot are transmitted to the slave robot through the communication network;
从机器人运动并产生位置信息xslave;Move from the robot and generate position information x slave ;
以主机器人位置信息xmaster控制从机器人位置信息xslave,实现主机器人和从机器人位置同步;Use the position information x master of the master robot to control the position information x slave of the slave robot to realize the position synchronization between the master robot and the slave robot;
以主机器人位置变化量控制从机器人的速度Vs,实现主机器人和从机器人速度同步。The speed V s of the slave robot is controlled by the position change of the master robot to realize the speed synchronization of the master robot and the slave robot.
进一步的,所述作用力fh为操作者施加的力。Further, the force f h is the force exerted by the operator.
进一步的,还包括步骤:Further, steps are also included:
作用力fh使从机器人作用于目标物,并使从机器人产生作用于目标物的力fenvi,该力fenvi反馈给操作者,使其进行下一步操作。The acting force f h causes the slave robot to act on the target object, and causes the slave robot to generate a force f envi acting on the target object, and the force f envi is fed back to the operator for the next operation.
进一步的,所述主机器人位置信息xmaster为主机器人的三维空间坐标;所述从机器人位置信息xslave为从机器人任务空间的三维空间坐标。Further, the position information x master of the master robot is the three-dimensional space coordinates of the master robot; the position information x slave of the slave robot is the three-dimensional space coordinates of the task space of the slave robot.
进一步的,所述主机器人位置信息xmaster和从机器人位置信息xslave满足关系式:Further, the position information x master of the master robot and the position information x slave of the slave robot satisfy the relational expression:
其中,xm,ym,zm为主机器人在任务空间中的位置矢量;xs,ys,zs为从机器人在任务空间中的位置矢量;在机器人任务空间三维坐标中,xm对应xs;ys对应zm;zs对应ym;kx,ky,kz为主机器人在任务空间中的比例常数;λx,λy,λz为主机器人在任务空间中的参数常量。Among them, x m , y m , z m are the position vectors of the master robot in the task space; x s , y s , z s are the position vectors of the slave robot in the task space; in the three-dimensional coordinates of the robot task space, x m corresponds to x s ; y s corresponds to z m ; z s corresponds to y m ; k x , k y , k z are proportional constants of the main robot in the task space; λ x , λ y , λ z are the main robot in the task space parameter constants.
进一步的,所述主机器人位置变化量与从机器人的速度Vs满足关系式:Further, the position variation of the master robot and the speed V s of the slave robot satisfy the relational expression:
其中,vzx,vzy,vxy代表从机器人在任务空间中各三维坐标上的速度;k1,k2,k3为从机器人在任务空间中各三维坐标上速度变化的比例常数;h1,h2,h3分别代表主机器人在任务空间中zx,zy,xy三维坐标上的位置取值;Δxm,Δzm,Δym分别表示主机器人在任务空间中的坐标轴x,z,y上的单位时间位置变化量;xd,zd,yd为主机器人在任务空间中各坐标上限定的边界常量值。Among them, v zx , v zy , v xy represent the speed of the slave robot on each three-dimensional coordinate in the task space; k 1 , k 2 , k 3 are the proportional constants of the speed change of the slave robot on each three-dimensional coordinate in the task space; h 1 , h 2 , h 3 respectively represent the position values of the main robot on the zx, zy, xy three-dimensional coordinates in the task space; Δx m , Δz m , Δy m respectively represent the coordinate axes x, z of the main robot in the task space , the unit time position change on y; x d , z d , y d are the boundary constant values defined by the main robot on each coordinate in the task space.
本发明的有益效果是,克服了现有技术中需要手动切换模式的问题,利用操作者作用于主机器人的力,使主机器人产生位置信息,实现主机器人的位置信息控制从机器人在三维任务空间中的位置移动,同时也使主机器人在该过程中的位置变化量控制从机器人在三维任务空间中的速度变化,实现从机器人的位置和速度与主机器人的位置和速度保持同步,从而使从机器人更为精确、快速地作用于目标物。The beneficial effect of the present invention is that it overcomes the problem of manual mode switching in the prior art, utilizes the force of the operator acting on the main robot to make the main robot generate position information, and realizes the position information of the main robot to control the slave robot in the three-dimensional task space. The position of the master robot moves in the process, and at the same time, the position change of the master robot controls the speed change of the slave robot in the three-dimensional task space, so that the position and speed of the slave robot are synchronized with the position and speed of the master robot, so that the slave robot The robot acts on the target more precisely and quickly.
下面结合附图和具体实施方式对本发明做进一步的说明。本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments. Additional aspects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的具体实施方式、示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of this application are used to provide a further understanding of the present invention, and the specific implementation modes, schematic embodiments and descriptions thereof of the present invention are used to explain the present invention, and do not constitute improper limitations to the present invention. In the attached picture:
图1为本发明控制原理示意图;Fig. 1 is a schematic diagram of the control principle of the present invention;
图2为位置-位置控制示意图;Fig. 2 is a schematic diagram of position-position control;
图3为主机器人任务空间中的三维坐标示意图;Fig. 3 is a schematic diagram of three-dimensional coordinates in the main robot task space;
图4为从机器人任务空间中的三维坐标示意图;Fig. 4 is a schematic diagram of three-dimensional coordinates from the robot task space;
图5为位置-速度控制示意图。Figure 5 is a schematic diagram of position-speed control.
具体实施方式Detailed ways
需要说明的是,在不冲突的情况下,本申请中的具体实施方式、实施例以及其中的特征可以相互组合。现将参考附图并结合以下内容详细说明本发明。It should be noted that, in the case of no conflict, the specific implementation methods, examples and features in the present application can be combined with each other. The present invention will now be described in detail with reference to the accompanying drawings and in conjunction with the following contents.
为了使本领域技术人员更好的理解本发明方案,下面将结合本发明具体实施方式、实施例中的附图,对本发明具体实施方式、实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的具体实施方式、实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施方式、实施例,都应当属于本发明保护的范围。In order to enable those skilled in the art to better understand the solutions of the present invention, the technical solutions in the specific embodiments of the present invention and the examples will be clearly and completely described below in conjunction with the accompanying drawings in the specific embodiments of the present invention and the examples. , the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the specific implementation modes and examples in the present invention, all other implementation modes and examples obtained by persons of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
实施例Example
本发明异构机器人遥操作系统位置与速度同步控制方法,操作原理如图1所示,包括操作者、主机器人、计算机、通信网络、从机器人和目标物。操作者作用于主机器人的力fh,使主机器人产生位置信息xmaster和位置变化量,位置信息xmaster及主机器人位置变化量通过通讯网络传递给从机器人;从而控制从机器人在三维任务空间中的位置xslave,使主机器人在该过程中的位置变化量控制从机器人在三维任务空间中的速度Vs,实现从机器人的位置和速度与主机器人的位置和速度保持同步。使从机器人更精确地作用于目标物,并使从机器人产生作用于目标物的力fenvi,经过通信网络将该力fenvi反馈给操作者端,使其进行下一步操作。The heterogeneous robot remote control system position and speed synchronization control method of the present invention, the operating principle is shown in Figure 1, including an operator, a master robot, a computer, a communication network, a slave robot and an object. The force f h that the operator acts on the master robot makes the master robot generate the position information x master and the position change amount, and the position information x master and the position change amount of the master robot are transmitted to the slave robot through the communication network; thus controlling the slave robot in the three-dimensional task space The position x slave in the process makes the position change of the master robot control the speed V s of the slave robot in the three-dimensional task space, so that the position and speed of the slave robot are synchronized with those of the master robot. Make the slave robot act on the target more accurately, and make the slave robot generate a force f envi acting on the target, and feed back the force f envi to the operator through the communication network, so that it can perform the next operation.
主从机器人位置-位置的同步控制,如图2所示。Master-slave robot position-position synchronous control, as shown in Figure 2.
操作者作用于主机器人的力fh,使主机器人产生位置信息xmaster,经过通信网络进行信息传递,使从机器人运动并产生位置信息xslave,并使从机器人产生作用于目标物的力fenvi,从而实现了主机器人对从机器人位置-位置的同步控制,其公式为:The force f h that the operator acts on the master robot causes the master robot to generate position information x master , transmits information through the communication network, makes the slave robot move and generate position information x slave , and makes the slave robot generate force f acting on the target envi , thus realizing the position-position synchronous control of the master robot to the slave robot, the formula is:
其中,xm,ym,zm为主机器人在任务空间中的位置矢量;xs,ys,zs为从机器人在任务空间中的位置矢量,在机器人任务空间三维坐标中xm对应xs;ys对应zm;zs对应ym;kx,ky,kz为主机器人在任务空间中的比例常数,λx,λy,λz为主机器人在任务空间中参数常量,主从机器人在任务空间中的三维坐标示意图分别如图3和4所示。Among them, x m , y m , z m are the position vectors of the master robot in the task space; x s , y s , z s are the position vectors of the slave robot in the task space, and x m corresponds to the three-dimensional coordinates of the robot task space x s ; y s corresponds to z m ; z s corresponds to y m ; k x , k y , k z are proportional constants of the main robot in the task space, λ x , λ y , λ z are the parameters of the main robot in the task space constant, the schematic diagrams of the three-dimensional coordinates of the master-slave robot in the task space are shown in Figures 3 and 4, respectively.
主从机器人的位置-速度控制,如图5所示。The position-velocity control of the master-slave robot is shown in Figure 5.
通过操作主机器人进行位置移动,此时主机器人移动产生的位置信息xmaster的变化量转化为从机器人的速度信息Vs,使从机器人更精确地作用于目标物,并使从机器人产生作用于目标物的力fenvi。从而达到主从机器人的速度同步,实现了利用主机器人的位置对从机器人的速度控制。By operating the master robot to move the position, the change of the position information x master generated by the movement of the master robot is converted into the speed information V s of the slave robot, so that the slave robot can act on the target more accurately, and make the slave robot act on the The force f envi of the target. In this way, the speed synchronization of the master and slave robots is achieved, and the speed control of the slave robots by the position of the master robot is realized.
主从机器人的位置-速度控制分如下三种情况:The position-speed control of the master-slave robot is divided into the following three situations:
情况1Case 1
当从机器人到目标物的距离L大于等于设定的从机器人到目标物的安全距离常量Lp(即L≥Lp)时,表明从机器人的距离目标物在安全距离之外,此时主机器人在任务空间中的速度Vm大于等于所设定的主机器人的正常速度常量Vp(即Vm≥Vp),从机器人的实时速度参数Vs大于等于从机器人的正常速度常量Vq(即Vs≥Vq)。When the distance L from the robot to the target is greater than or equal to the set safety distance constant L p from the robot to the target (that is, L≥L p ), it indicates that the distance from the robot to the target is beyond the safe distance. The speed V m of the robot in the task space is greater than or equal to the normal speed constant V p of the master robot (that is, V m ≥ V p ), and the real-time speed parameter V s of the slave robot is greater than or equal to the normal speed constant V q of the slave robot (ie V s ≥ V q ).
情况2Case 2
当从机器人到目标物的距离L小于设定的从机器人到目标物的安全距离常量Lp(即L<Lp)时,表明从机器人的距离目标物在设定的安全距离以内,此时操作者通过操作主机器人进行位置移动,通过位置-速度控制实现主从机器人的速度同步,而达到从机器人在有限范围内进行位置的小幅度移动的目的,此时主机器人在任务空间中的速度Vm小于所设定的主机器人的正常速度常量Vp(即Vm<Vp)时,从机器人的实时速度参数Vs小于从机器人的正常速度常量Vq(即Vs<Vq)时。When the distance L from the robot to the target is less than the set safety distance constant L p from the robot to the target (that is, L<L p ), it indicates that the distance from the robot to the target is within the set safety distance. The operator moves the position of the master robot by operating the master robot, and realizes the speed synchronization of the master robot and the slave robot through the position-speed control, so as to achieve the purpose of the slave robot moving in a small range within a limited range. At this time, the speed of the master robot in the task space When V m is less than the set normal speed constant V p of the master robot (that is, V m <V p ), the real-time speed parameter V s of the slave robot is smaller than the normal speed constant V q of the slave robot (that is, V s <V q ) Time.
主从机器人位置-速度的同步控制,公式为:The master-slave robot position-velocity synchronous control, the formula is:
其中,主从机器人任务空间中的三维坐标示意图分别如图3和4所示。Vm,Vs代表从机器人的速度,vzx,vzy,vxy代表从机器人在任务空间中各三维坐标上的速度,k1,k2,k3为从机器人在任务空间中各三维坐标上速度变化的比例常数,h1,h2,h3分别代表主机器人在任务空间中zx,zy,xy三维坐标上的位置取值,Δxm,Δzm,Δym分别表示主机器人在任务空间中的坐标轴x,z,y上的单位时间位置变化量,xd,zd,yd为主机器人在任务空间中各坐标上限定的边界常量值,即主机器人在此常量值范围内进行微小移动时,从机器人的速度将不跟随产生变化,以防止因人手抖动而造成的误差操作。Among them, the schematic diagrams of the three-dimensional coordinates in the task space of the master-slave robot are shown in Figures 3 and 4, respectively. V m , V s represent the speed of the slave robot, v zx , v zy , v xy represent the speed of the slave robot on the three-dimensional coordinates in the task space, k 1 , k 2 , k 3 are the three-dimensional coordinates of the slave robot in the task space The proportional constants of speed changes on the coordinates, h 1 , h 2 , h 3 respectively represent the position values of the main robot on the zx, zy, xy three-dimensional coordinates in the task space, Δx m , Δz m , Δy m represent the position values of the main robot in the task space The position change per unit time on the coordinate axes x, z, y in the task space, x d , z d , y d are the boundary constant values defined by the main robot on each coordinate in the task space, that is, the constant value of the main robot at this time When making small movements within the range, the speed of the slave robot will not change accordingly to prevent error operations caused by human hand shaking.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810680814.2A CN108818533B (en) | 2018-06-27 | 2018-06-27 | Position and speed synchronous control method for remote operation system of heterogeneous robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810680814.2A CN108818533B (en) | 2018-06-27 | 2018-06-27 | Position and speed synchronous control method for remote operation system of heterogeneous robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108818533A true CN108818533A (en) | 2018-11-16 |
CN108818533B CN108818533B (en) | 2021-05-18 |
Family
ID=64139031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810680814.2A Active CN108818533B (en) | 2018-06-27 | 2018-06-27 | Position and speed synchronous control method for remote operation system of heterogeneous robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108818533B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109333497A (en) * | 2018-11-30 | 2019-02-15 | 西华大学 | A remote operating system control method with virtual binding force |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111745643A (en) * | 2020-05-28 | 2020-10-09 | 西华大学 | Master robot and slave robot teleoperating system position control method |
CN113021344A (en) * | 2021-03-19 | 2021-06-25 | 南开大学 | Master-slave heterogeneous teleoperation robot working space mapping method |
CN115157256A (en) * | 2022-07-20 | 2022-10-11 | 燕山大学 | Remote control robot system control method capable of automatically switching working modes |
US20220371186A1 (en) * | 2021-05-19 | 2022-11-24 | Guangzhou Institute of advanced technology | Dual-robot position/force multivariate-data-driven method using reinforcement learning |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147939A (en) * | 1987-12-04 | 1989-06-09 | Fujitsu Ltd | Robot control system |
CN101132336A (en) * | 2007-10-17 | 2008-02-27 | 中国人民解放军国防科学技术大学 | Heterogeneous multi-core processor high-speed asynchronous interconnection communication network |
CN103273489A (en) * | 2013-05-10 | 2013-09-04 | 上海大学 | Robot control system and method based on principal and subordinate teleoperation mechanical arm |
CN106003034A (en) * | 2016-06-16 | 2016-10-12 | 深圳先进技术研究院 | Master-slave robot control system and control method |
CN106272484A (en) * | 2016-10-09 | 2017-01-04 | 福州大学 | A kind of many isomeries industrial robot control system |
CN107717994A (en) * | 2017-11-08 | 2018-02-23 | 西安交通大学 | Principal and subordinate's heterogeneous robot universal control method and system based on principal and subordinate's space reflection |
-
2018
- 2018-06-27 CN CN201810680814.2A patent/CN108818533B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01147939A (en) * | 1987-12-04 | 1989-06-09 | Fujitsu Ltd | Robot control system |
CN101132336A (en) * | 2007-10-17 | 2008-02-27 | 中国人民解放军国防科学技术大学 | Heterogeneous multi-core processor high-speed asynchronous interconnection communication network |
CN103273489A (en) * | 2013-05-10 | 2013-09-04 | 上海大学 | Robot control system and method based on principal and subordinate teleoperation mechanical arm |
CN106003034A (en) * | 2016-06-16 | 2016-10-12 | 深圳先进技术研究院 | Master-slave robot control system and control method |
CN106272484A (en) * | 2016-10-09 | 2017-01-04 | 福州大学 | A kind of many isomeries industrial robot control system |
CN107717994A (en) * | 2017-11-08 | 2018-02-23 | 西安交通大学 | Principal and subordinate's heterogeneous robot universal control method and system based on principal and subordinate's space reflection |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109333497A (en) * | 2018-11-30 | 2019-02-15 | 西华大学 | A remote operating system control method with virtual binding force |
CN111427264A (en) * | 2020-03-15 | 2020-07-17 | 中国地质大学(武汉) | Neural self-adaptive fixed time control method of complex teleoperation technology |
CN111427264B (en) * | 2020-03-15 | 2021-12-14 | 中国地质大学(武汉) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology |
CN111745643A (en) * | 2020-05-28 | 2020-10-09 | 西华大学 | Master robot and slave robot teleoperating system position control method |
CN113021344A (en) * | 2021-03-19 | 2021-06-25 | 南开大学 | Master-slave heterogeneous teleoperation robot working space mapping method |
US20220371186A1 (en) * | 2021-05-19 | 2022-11-24 | Guangzhou Institute of advanced technology | Dual-robot position/force multivariate-data-driven method using reinforcement learning |
CN115157256A (en) * | 2022-07-20 | 2022-10-11 | 燕山大学 | Remote control robot system control method capable of automatically switching working modes |
CN115157256B (en) * | 2022-07-20 | 2024-08-20 | 燕山大学 | Remote control robot system control method capable of automatically switching working modes |
Also Published As
Publication number | Publication date |
---|---|
CN108818533B (en) | 2021-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108818533A (en) | Heterogeneous robot remote control system position and speed synchronisation control means | |
Lipton et al. | Baxter's homunculus: Virtual reality spaces for teleoperation in manufacturing | |
CN104808668B (en) | Multiple mobile robot's cooperation transporting flat plate shape object method based on force information | |
CN104950885B (en) | A kind of view-based access control model and power feel the UAV group's bilateral teleoperation control system and its method of feedback | |
CN114571469B (en) | Zero-space real-time obstacle avoidance control method and system for mechanical arm | |
CN109968361B (en) | A variable impedance remote operation control device and method based on real-time force feedback | |
CN106375421A (en) | Robot-assisted intelligent maintenance system based on remote control | |
CN102662350A (en) | Track teaching and planning method of master-slave mode multi-robot cooperative system | |
CN109669479A (en) | A kind of mobile robot trace tracking and controlling method based on event triggering | |
CN113829343B (en) | Real-time multitasking and multi-man-machine interaction system based on environment perception | |
CN104708517A (en) | Industrial robot automatic grinding and polishing system based on ROS | |
CN105319991B (en) | A kind of robot environment's identification and job control method based on Kinect visual informations | |
CN114347033B (en) | Robot character grabbing method and device, robot and storage medium | |
CN110039561B (en) | Live working robot teleoperation personnel training system and method based on point cloud | |
CN102814815A (en) | Virtual engineering robot system and control method | |
CN109333497B (en) | Control method of teleoperation system with virtual constraint force | |
CN115338869A (en) | Master-slave control method and system for master-slave heterogeneous teleoperation system | |
CN117207158A (en) | A hybrid workspace mapping method for master-slave heterogeneous teleoperated robots | |
CN104097208B (en) | A kind of multiplex's industry mechanical arm controller based on double-deck CPG | |
CN104656676A (en) | Hand, leg and eye servo control device and method for humanoid robot | |
CN111745643A (en) | Master robot and slave robot teleoperating system position control method | |
CN108791560B (en) | A teleoperating system and control method capable of cooperatively regulating single-leg operation and body translation of a multi-legged robot | |
Lau et al. | Implementation of position–force and position–position teleoperator controllers with cable-driven mechanisms | |
CN107553485B (en) | Method for generating dynamic virtual clamp in human-computer interaction process | |
CN106647248B (en) | Method and device for determining inverse solution result of serial robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240118 Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province Patentee after: Dragon totem Technology (Hefei) Co.,Ltd. Address before: 610039 No. 999, golden week Road, Chengdu, Sichuan, Jinniu District Patentee before: XIHUA University |