CN108809097B - Synchronous rectifier applied to power converter and method of operation thereof - Google Patents
Synchronous rectifier applied to power converter and method of operation thereof Download PDFInfo
- Publication number
- CN108809097B CN108809097B CN201710302246.8A CN201710302246A CN108809097B CN 108809097 B CN108809097 B CN 108809097B CN 201710302246 A CN201710302246 A CN 201710302246A CN 108809097 B CN108809097 B CN 108809097B
- Authority
- CN
- China
- Prior art keywords
- control signal
- attenuation
- current period
- signal corresponding
- secondary side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000001514 detection method Methods 0.000 claims abstract description 32
- 230000002238 attenuated effect Effects 0.000 claims description 6
- 238000011017 operating method Methods 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
- H02M3/325—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33592—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
- H02M7/2195—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明公开了一种应用于电源转换器的同步整流器及其操作方法。所述操作方法包含当所述电源转换器的二次侧开启时,所述同步整流器内的控制信号产生电路根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号;所述同步整流器内的预衰减电路根据对应所述二次侧的前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。因此,当耦接于所述二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号,以及当所述负载是非常重载时,也不会直接关闭对应所述当下周期的栅极控制信号。
The present invention discloses a synchronous rectifier applied to a power converter and an operation method thereof. The operation method includes that when the secondary side of the power converter is turned on, the control signal generating circuit in the synchronous rectifier generates a control signal corresponding to the previous cycle according to the detection voltage of the previous cycle corresponding to the secondary side, a first reference voltage and a second reference voltage; the pre-attenuation circuit in the synchronous rectifier pre-attenuates the gate control signal of the current cycle corresponding to the secondary side and generates a pre-attenuation signal corresponding to the current cycle according to the discharge time of the previous cycle corresponding to the secondary side. Therefore, when the load coupled to the secondary side is lightly loaded, the synchronous rectifier will not pre-attenuate the gate control signal corresponding to the current cycle in advance, and when the load is very heavily loaded, the gate control signal corresponding to the current cycle will not be directly turned off.
Description
技术领域technical field
本发明涉及一种应用于电源转换器的同步整流器及其操作方法,尤其涉及一种可根据对应所述电源转换器的二次侧的前一周期的放电时间,预衰减对应所述电源转换器的二次侧的当下周期的栅极控制信号的同步整流器及其操作方法。The present invention relates to a synchronous rectifier applied to a power converter and an operation method thereof, in particular to a method that can pre-attenuate the corresponding power converter according to the discharge time corresponding to the previous cycle of the secondary side of the power converter A synchronous rectifier with a gate control signal of the current period of the secondary side and an operation method thereof.
背景技术Background technique
如图1所示,在电源转换器100的连续导通模式(continuous conduction mode,CCM)下,应用于电源转换器100的二次侧SEC的同步整流器200是当电源转换器100的二次侧SEC开启时,根据电源转换器100的二次侧SEC的一检测电压VDET(也就是说同步开关102的源极电压),产生控制同步开关102的栅极控制信号GCS,其中在电源转换器100的连续导通模式下,现有技术是利用同步整流器200根据检测电压VDET,快速地关闭栅极控制信号GCS以避免电源转换器100的一次侧PRI和电源转换器100的二次侧SEC同时开启。As shown in FIG. 1 , in the continuous conduction mode (CCM) of the
如图2所示,当电源转换器100的二次侧SEC开启时,检测电压VDET会从最小值VMIM(约-0.7V)逐渐增加。因此,在一时间T1时,当检测电压VDET增加至一第一参考电压VREF1(约-50mV)时,同步整流器200会预衰减栅极控制信号GCS,然后在一时间T2时,当检测电压VDET增加至一第二参考电压VREF2(约-10mV)时,同步整流器200会完全关闭栅极控制信号GCS。As shown in FIG. 2 , when the secondary side SEC of the
然而当耦接于电源转换器100的二次侧SEC的负载104是非常重载时,因为检测电压VDET可能不会增加至第一参考电压VREF1,所以同步整流器200不会预衰减栅极控制信号GCS,导致同步整流器200必须直接关闭栅极控制信号GCS。另外,当耦接于电源转换器100的二次侧SEC的负载104是轻载时,因为检测电压VDET可能很快增加至第一参考电压VREF1,所以同步开关102大部分时间都操作在三极管区(triode region),导致电源转换器100的效率变差。However, when the
因此,如何改进上述现有技术已成为同步整流器200的设计者的一项重要课题。Therefore, how to improve the above-mentioned prior art has become an important issue for designers of the
发明内容SUMMARY OF THE INVENTION
本发明的一实施例公开一种应用于电源转换器的同步整流器。所述同步整流器包含一控制信号产生电路、一预衰减电路及一栅极驱动电路。所述控制信号产生电路是用于当所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述前一周期的放电时间。所述预衰减电路耦接于所述控制信号产生电路,用于根据对应所述前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。所述栅极驱动电路耦接于所述控制信号产生电路和所述预衰减电路,用于根据对应所述当下周期的控制信号,驱动对应所述当下周期的栅极控制信号,以及根据对应所述当下周期的预衰减信号,停止驱动对应所述当下周期的栅极控制信号。An embodiment of the present invention discloses a synchronous rectifier applied to a power converter. The synchronous rectifier includes a control signal generating circuit, a pre-attenuation circuit and a gate driving circuit. The control signal generating circuit is used to generate a first reference voltage and a second reference voltage according to a detection voltage corresponding to the previous cycle of the secondary side, a first reference voltage and a second reference voltage when the secondary side of the power converter is turned on. The control signal corresponding to the previous cycle, wherein the control signal corresponding to the previous cycle is the discharge time corresponding to the previous cycle. The pre-attenuation circuit is coupled to the control signal generating circuit, and is configured to pre-attenuate the gate control signal corresponding to the current cycle of the secondary side and generate a gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle. Periodic pre-attenuated signal. The gate driving circuit is coupled to the control signal generating circuit and the pre-attenuating circuit, and is used for driving the gate control signal corresponding to the current period according to the control signal corresponding to the current period, and according to the control signal corresponding to the current period. The pre-attenuation signal of the current period is described below, and the gate control signal corresponding to the current period is stopped from driving.
本发明的另一实施例公开一种应用于电源转换器的同步整流器的操作方法,其中所述同步整流器包含一控制信号产生电路、一预衰减电路及一栅极驱动电路。所述操作方法包含当所述电源转换器的二次侧开启时,所述控制信号产生电路根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述二次侧的前一周期的放电时间;所述预衰减电路根据对应所述前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。Another embodiment of the present invention discloses an operation method of a synchronous rectifier applied to a power converter, wherein the synchronous rectifier includes a control signal generating circuit, a pre-attenuation circuit and a gate driving circuit. The operating method includes that when the secondary side of the power converter is turned on, the control signal generating circuit is based on a detection voltage corresponding to a previous cycle of the secondary side, a first reference voltage and a second reference voltage , to generate a control signal corresponding to the previous cycle, wherein the control signal corresponding to the previous cycle is the discharge time corresponding to the previous cycle of the secondary side; the pre-attenuation circuit Discharge time, pre-attenuate the gate control signal corresponding to the current period of the secondary side, and generate a pre-attenuation signal corresponding to the current period.
本发明公开一种应用于电源转换器的同步整流器及其操作方法。所述同步整流器及所述操作方法是利用所述同步整流器的控制信号产生电路于所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,以及利用所述同步整流器的预衰减电路根据对应所述前一周期的放电时间(对应所述前一周期的控制信号),预衰减对应所述二次侧的当下周期的栅极控制信号。因为所述同步整流器及所述操作方法是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号,所以当耦接于所述电源转换器的二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号以避免所述同步开关大部分时间操作在三极管区,以及当所述负载是非常重载时,所述同步整流器也不必直接关闭对应所述当下周期的栅极控制信号。The invention discloses a synchronous rectifier applied to a power converter and an operation method thereof. The synchronous rectifier and the operating method utilize the control signal generating circuit of the synchronous rectifier when the secondary side of the power converter is turned on, according to the detected voltage corresponding to the previous cycle of the secondary side, a first a reference voltage and a second reference voltage, generate a control signal corresponding to the previous cycle, and use the pre-attenuation circuit of the synchronous rectifier according to the discharge time corresponding to the previous cycle (corresponding to the control signal of the previous cycle signal), pre-attenuate the gate control signal corresponding to the current cycle of the secondary side. Because the synchronous rectifier and the operating method pre-attenuate the gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle, when the power converter is coupled to the secondary side of the power converter When the load is light, the synchronous rectifier does not pre-damp the gate control signal corresponding to the current period in advance to avoid the synchronous switch operating in the triode region most of the time, and when the load is very heavy, The synchronous rectifier does not need to directly turn off the gate control signal corresponding to the current period.
附图说明Description of drawings
图1是说明应用于电源转换器的二次侧的同步整流器的示意图。FIG. 1 is a schematic diagram illustrating a synchronous rectifier applied to the secondary side of a power converter.
图2是说明检测电压和栅极控制信号的时序示意图。FIG. 2 is a timing diagram illustrating detection voltages and gate control signals.
图3是本发明的第一实施例所公开的一种应用于电源转换器的二次侧的同步整流器的示意图。3 is a schematic diagram of a synchronous rectifier applied to the secondary side of a power converter disclosed in the first embodiment of the present invention.
图4是说明检测电压、控制信号、栅极控制信号和预衰减脉冲的时序示意图。FIG. 4 is a timing diagram illustrating a detection voltage, a control signal, a gate control signal, and a pre-attenuation pulse.
图5是本发明的第二实施例所公开的一种应用于电源转换器的同步整流器的操作方法的流程图。FIG. 5 is a flowchart of an operation method of a synchronous rectifier applied to a power converter disclosed in a second embodiment of the present invention.
其中,附图标记说明如下:Among them, the reference numerals are described as follows:
100 电源转换器100 Power Converters
101 一次侧绕组101 Primary winding
102 同步开关102 Sync switch
103 功率开关103 Power switch
104 负载104 loads
200、300 同步整流器200, 300 Synchronous Rectifier
302 控制信号产生电路302 control signal generation circuit
304 预衰减电路304 Pre-attenuation circuit
306 栅极驱动电路306 gate drive circuit
308、310 引脚308, 310 pins
3042 预衰减信号产生器3042 Pre-Attenuation Signal Generator
3044 脉冲产生器3044 Pulse Generator
3046 下拉电路3046 pull-down circuit
30462 第一N型金属氧化物半导体晶体管30462 The first N-type metal-oxide-semiconductor transistor
30464 第二N型金属氧化物半导体晶体管30464 Second N-type metal oxide semiconductor transistor
30466 开关30466 Switch
CS 控制信号CS control signal
CT 当下预衰减时间CT current pre-attenuation time
GND 地端GND ground
GCS 栅极控制信号GCS gate control signal
PAS 预衰减信号PAS pre-attenuated signal
PAP 预衰减脉冲PAP Pre-Attenuation Pulse
PDT 伪死区时间PDT Pseudo Dead Time
PRI 一次侧PRI primary side
PV 预定电压值PV Predetermined voltage value
SEC 二次侧SEC Secondary Side
T1-T3 时间T1-T3 time
TDIS 放电时间TDIS discharge time
VDET 检测电压VDET detection voltage
VREF1 第一参考电压VREF1 first reference voltage
VREF2 第二参考电压VREF2 second reference voltage
VREF3 第三参考电压VREF3 third reference voltage
VMIM 最小值VMIM minimum
500-508 步骤500-508 steps
具体实施方式Detailed ways
请参照图3,图3是本发明的第一实施例所公开的一种应用于电源转换器100的二次侧SEC的同步整流器300的示意图,其中电源转换器100的一次侧PRI仅一次侧绕组101和一功率开关103显示在图3中,电源转换器100是一交流/直流电源转换器,同步整流器300是适用于电源转换器100的连续导通模式,且GND代表一地端。如图3所示,同步整流器300包含一控制信号产生电路302、一预衰减电路304和一栅极驱动电路306,其中预衰减电路304耦接于控制信号产生电路302,以及栅极驱动电路306耦接于控制信号产生电路302和预衰减电路304。当电源转换器100的二次侧SEC开启时,控制信号产生电路302是通过同步整流器300的引脚308接收对应电源转换器100的二次侧SEC的当下周期的检测电压VDET(也就是说电源转换器100的二次侧SEC的同步开关102的源极电压)。在控制信号产生电路302接收对应所述当下周期的检测电压VDET后,控制信号产生电路302可根据对应所述当下周期的检测电压VDET、一第一参考电压VREF1和一第二参考电压VREF2,产生对应所述当下周期的控制信号CS,其中对应所述当下周期的检测电压VDET和对应所述当下周期的控制信号CS的时序可参照图4。如图4所示,在一时间T1时,控制信号产生电路302可根据对应所述当下周期的检测电压VDET和第一参考电压VREF1启用对应所述当下周期的控制信号CS,以及在一时间T2时,控制信号产生电路302可根据对应所述当下周期的检测电压VDET和第二参考电压VREF2关闭对应所述当下周期的控制信号CS,其中第二参考电压VREF2大于第一参考电压VREF1。因此,如图4所示,对应所述当下周期的控制信号CS是对应所述当下周期的放电时间TDIS。另外,如图4所示,栅极驱动电路306是用于根据对应所述当下周期的控制信号CS,驱动对应所述当下周期的栅极控制信号GCS,对应所述当下周期的栅极控制信号GCS是通过一引脚310传送至电源转换器100的二次侧SEC的同步开关102,以及对应所述当下周期的栅极控制信号GCS是用于控制同步开关102的开启与关闭。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a
如图3所示,预衰减电路304包含一预衰减信号产生器3042、一脉冲产生器3044和一下拉电路3046,其中预衰减信号产生器3042耦接于控制信号产生电路302,脉冲产生器3044耦接于预衰减信号产生器3042,下拉电路3046耦接于脉冲产生器3044和预衰减信号产生器3042,以及下拉电路3046包含一第一N型金属氧化物半导体晶体管30462、一第二N型金属氧化物半导体晶体管30464以及一开关30466。另外,控制信号产生电路302、栅极驱动电路306、预衰减信号产生器3042、脉冲产生器3044、第一N型金属氧化物半导体晶体管30462、第二N型金属氧化物半导体晶体管30464以及开关30466之间的耦接关系可参照图3,在此不再赘述。As shown in FIG. 3 , the
预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的前一周期的放电时间(对应电源转换器100的二次侧SEC的前一周期的控制信号CS),产生对应所述当下周期的当下预衰减时间CT(如图4所示)和对应当下预衰减时间CT的预衰减信号PAS(其中对应当下预衰减时间CT的预衰减信号PAS也对应所述当下周期)。例如,起初预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第零周期的放电时间和一预设时间值,产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间和对应所述第一预衰减时间的预衰减信号;然后预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第一周期的放电时间和所述第一预衰减时间,产生对应电源转换器100的二次侧SEC的第二周期的第二预衰减时间和对应所述第二预衰减时间的预衰减信号;然后预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第二周期的放电时间和所述第二预衰减时间,产生对应电源转换器100的二次侧SEC的第三周期的第三预衰减时间和对应所述第三预衰减时间的预衰减信号;以此类推,其中所述第三周期在所述第二周期之后,所述第二周期在所述第一周期之后,以及所述第一周期在所述第零周期之后。因此,预衰减信号产生器3042根据对应电源转换器100的二次侧SEC的前一周期的放电时间所产生的对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT会逐渐趋近于对应电源转换器100的二次侧SEC的前一周期的放电时间,但预衰减信号产生器3042会使如图4所示的一伪死区时间PDT(pseudo dead time)不小于一预定时间区间。The
另外,在本发明的一实施例中,预衰减信号产生器3042是平均对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间,但本发明并不受限于预衰减信号产生器3042平均对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间,也就是说预衰减信号产生器3042也可加权对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间。因此,只要是预衰减信号产生器3042利用对应电源转换器100的二次侧SEC的前一周期的放电时间以产生对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT都落入本发明的范围。In addition, in an embodiment of the present invention, the
如图3所示,在预衰减信号产生器3042产生对应所述当下周期的预衰减信号PAS后,栅极驱动电路306将会停止驱动对应所述当下周期的栅极控制信号GCS。As shown in FIG. 3 , after the
另外,如图4所示,脉冲产生器3044用于根据对应所述当下周期的预衰减信号PAS,于一时间T3产生对应所述当下周期的预衰减脉冲PAP。因此,如图3所示,在脉冲产生器3044产生对应所述当下周期的预衰减脉冲PAP后,第一N型金属氧化物半导体晶体管30462开启,因为栅极驱动电路306停止驱动对应所述当下周期的栅极控制信号GCS,所以对应所述当下周期的栅极控制信号GCS将会被预衰减(如图4所示)。另外,因为开关30466根据对应所述当下周期的预衰减信号PAS开启,所以第二N型金属氧化物半导体晶体管30464会根据一第三参考电压VREF3开启,导致对应所述当下周期的栅极控制信号GCS被稳压在一预定电压值PV(如图4所示),其中预定电压值PV可由第三参考电压VREF3、第二N型金属氧化物半导体晶体管30464的临界电压VTH30464和式(1)决定:In addition, as shown in FIG. 4 , the
PV=VREF3–VTH30464 (1)PV=VREF3–VTH30464 (1)
另外,在本发明的另一实施例中,开关30466和第二N型金属氧化物半导体晶体管30464可被一箝位电路取代,也就是说所述箝位电路可根据对应所述当下周期的预衰减信号PAS将栅极控制信号GCS稳压在预定电压值PV。In addition, in another embodiment of the present invention, the
因为同步整流器300是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号GCS,所以当耦接于电源转换器100的二次侧SEC的负载104是轻载时,同步整流器300不会提早预衰减对应所述当下周期的栅极控制信号GCS以避免同步开关102大部分时间操作在三极管区,以及当负载104是非常重载时,同步整流器300也不必直接关闭对应所述当下周期的栅极控制信号GCS。Because the
请参照图3-5,图5是本发明的第二实施例所公开的一种应用于电源转换器的同步整流器的操作方法的流程图。图5的操作方法是利用图3的电源转换器100与同步整流器300说明,详细步骤如下:Please refer to FIGS. 3-5 . FIG. 5 is a flowchart of an operation method of a synchronous rectifier applied to a power converter disclosed in a second embodiment of the present invention. The operation method of FIG. 5 is described by using the
步骤500:开始;Step 500: start;
步骤502:当电源转换器100的二次侧SEC开启时,控制信号产生电路302根据对应电源转换器100的二次侧SEC的前一周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应电源转换器100的二次侧SEC的前一周期的控制信号CS;Step 502 : When the secondary side SEC of the
步骤504:预衰减信号产生器3042根据对应所述前一周期的控制信号CS,产生对应电源转换器100的二次侧SEC的当下周期的预衰减信号PAS;Step 504: The
步骤506:脉冲产生器3044根据对应电源转换器100的二次侧SEC的当下周期的预衰减信号PAS,产生对应电源转换器100的二次侧SEC的当下周期的预衰减脉冲PAP;Step 506: The
步骤508:下拉电路3046根据对应电源转换器100的二次侧SEC的当下周期的预衰减脉冲PAP,预衰减对应电源转换器100的二次侧SEC的当下周期的栅极控制信号GCS,跳回步骤502。Step 508: The pull-
在步骤502中,当电源转换器100的二次侧SEC在电源转换器100的二次侧SEC的前一周期开启时,控制信号产生电路302是通过同步整流器300的引脚308接收对应所述前一周期的检测电压VDET。在控制信号产生电路302接收对应所述前一周期的检测电压VDET后,控制信号产生电路302可根据对应所述前一周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应所述前一周期的控制信号CS。同理,当电源转换器100的二次侧SEC在电源转换器100的二次侧SEC的当下周期开启时,控制信号产生电路302也可根据对应所述当下周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应所述当下周期的控制信号CS。In step 502, when the secondary side SEC of the
在步骤504中,如图3所示,预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的前一周期的放电时间(对应电源转换器100的二次侧SEC的前一周期的控制信号CS),产生对应所述当下周期的当下预衰减时间CT(如图4所示)和对应当下预衰减时间CT的预衰减信号PAS。因此,预衰减信号产生器3042根据对应电源转换器100的二次侧SEC的前一周期的放电时间所产生的对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT会逐渐趋近于对应电源转换器100的二次侧SEC的前一周期的放电时间,但预衰减信号产生器3042会使如图4所示的伪死区时间PDT不小于所述预定时间区间。In
在步骤506和步骤508中,如图4所示,脉冲产生器3044根据对应所述当下周期的预衰减信号PAS,于时间T3产生对应所述当下周期的预衰减脉冲PAP。因此,如图3所示,在脉冲产生器3044产生对应所述当下周期的预衰减脉冲PAP后,第一N型金属氧化物半导体晶体管30462开启,因为栅极驱动电路306停止驱动对应所述当下周期的栅极控制信号GCS,所以对应所述当下周期的栅极控制信号GCS将会被预衰减(如图4所示)。另外,因为开关30466根据对应所述当下周期的预衰减信号PAS开启,所以第二N型金属氧化物半导体晶体管30464会根据第三参考电压VREF3开启,导致对应所述当下周期的栅极控制信号GCS被稳压在预定电压值PV(如图4所示)。In
另外,如图3、4所示,栅极驱动电路306可根据对应所述当下周期的控制信号CS,驱动对应所述当下周期的栅极控制信号GCS,以及在预衰减信号产生器3042产生对应所述当下周期的预衰减信号PAS后,栅极驱动电路306将会停止驱动对应所述当下周期的栅极控制信号GCS。In addition, as shown in FIGS. 3 and 4 , the
综上所述,本发明所公开的应用于电源转换器的同步整流器及其操作方法是利用所述控制信号产生电路于所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、所述第一参考电压和所述第二参考电压,产生对应所述前一周期的控制信号,以及利用所述预衰减电路根据对应所述前一周期的放电时间(对应所述前一周期的控制信号),预衰减对应所述二次侧的当下周期的栅极控制信号。因为所述同步整流器及所述操作方法是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号,所以当耦接于所述电源转换器的二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号以避免所述同步开关大部分时间操作在三极管区,以及当所述负载是非常重载时,所述同步整流器也不必直接关闭对应所述当下周期的栅极控制信号。To sum up, the synchronous rectifier applied to the power converter and the operation method thereof disclosed in the present invention utilize the control signal generating circuit when the secondary side of the power converter is turned on, according to the corresponding secondary side The detection voltage of the previous cycle, the first reference voltage and the second reference voltage, generate a control signal corresponding to the previous cycle, and use the pre-attenuation circuit according to the discharge time corresponding to the previous cycle. (corresponding to the control signal of the previous cycle), pre-attenuate the gate control signal corresponding to the current cycle of the secondary side. Because the synchronous rectifier and the operating method pre-attenuate the gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle, when the power converter is coupled to the secondary side of the power converter When the load is light, the synchronous rectifier does not pre-damp the gate control signal corresponding to the current period in advance to avoid the synchronous switch operating in the triode region most of the time, and when the load is very heavy, The synchronous rectifier does not need to directly turn off the gate control signal corresponding to the current period.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710302246.8A CN108809097B (en) | 2017-05-02 | 2017-05-02 | Synchronous rectifier applied to power converter and method of operation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710302246.8A CN108809097B (en) | 2017-05-02 | 2017-05-02 | Synchronous rectifier applied to power converter and method of operation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108809097A CN108809097A (en) | 2018-11-13 |
CN108809097B true CN108809097B (en) | 2020-08-11 |
Family
ID=64054159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710302246.8A Active CN108809097B (en) | 2017-05-02 | 2017-05-02 | Synchronous rectifier applied to power converter and method of operation thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108809097B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173835B1 (en) * | 2005-11-16 | 2007-02-06 | System General Corp. | Control circuit associated with saturable inductor operated as synchronous rectifier forward power converter |
CN101572485A (en) * | 2008-04-30 | 2009-11-04 | 杭州茂力半导体技术有限公司 | Intelligent driving control method and device for secondary synchronous rectifier |
CN103746566A (en) * | 2014-01-21 | 2014-04-23 | 成都芯源系统有限公司 | Primary side controlled switching power supply and control method thereof |
CN105743349A (en) * | 2014-12-24 | 2016-07-06 | 罗姆股份有限公司 | DC/DC converter, synchronous rectification controller and control method thereof, power device, power adaptor and electronic device |
CN106533207A (en) * | 2015-09-15 | 2017-03-22 | 通嘉科技股份有限公司 | Synchronous rectifier applied to power converter and operation method thereof |
CN206060573U (en) * | 2016-08-31 | 2017-03-29 | 广州金升阳科技有限公司 | Synchronous commutating control circuit |
-
2017
- 2017-05-02 CN CN201710302246.8A patent/CN108809097B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7173835B1 (en) * | 2005-11-16 | 2007-02-06 | System General Corp. | Control circuit associated with saturable inductor operated as synchronous rectifier forward power converter |
CN101572485A (en) * | 2008-04-30 | 2009-11-04 | 杭州茂力半导体技术有限公司 | Intelligent driving control method and device for secondary synchronous rectifier |
CN103746566A (en) * | 2014-01-21 | 2014-04-23 | 成都芯源系统有限公司 | Primary side controlled switching power supply and control method thereof |
CN105743349A (en) * | 2014-12-24 | 2016-07-06 | 罗姆股份有限公司 | DC/DC converter, synchronous rectification controller and control method thereof, power device, power adaptor and electronic device |
CN106533207A (en) * | 2015-09-15 | 2017-03-22 | 通嘉科技股份有限公司 | Synchronous rectifier applied to power converter and operation method thereof |
CN206060573U (en) * | 2016-08-31 | 2017-03-29 | 广州金升阳科技有限公司 | Synchronous commutating control circuit |
Also Published As
Publication number | Publication date |
---|---|
CN108809097A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112838772B (en) | Flyback switching power supply and its control method | |
US9614448B2 (en) | Switching power-supply device | |
JP5811246B1 (en) | DC-DC converter | |
US8649129B2 (en) | Method and apparatus of providing over-temperature protection for power converters | |
US20150381056A1 (en) | Switched-mode power supply device | |
TW201642569A (en) | Power converter with synchronous control function and control method thereof | |
US10361636B2 (en) | Synchronous rectifier applied to a power converter and operation method thereof | |
JP2009284667A (en) | Power supply device, its control method, and semiconductor device | |
JP2014202632A (en) | Zero-crossing detection circuit | |
JP2017153350A5 (en) | ||
CN106953518B (en) | Multi-mode controller applied to power converter and operation method thereof | |
TWI673589B (en) | System and method for controlling power converter | |
US9391501B2 (en) | VCC charge and free-wheeling detection via source controlled MOS transistor | |
JP2016010186A (en) | DC-DC converter | |
JP6142917B2 (en) | Power device drive circuit | |
JP2017169268A (en) | Full-wave rectification circuit | |
CN107888092A (en) | Power supply conversion device | |
JP4548484B2 (en) | Synchronous rectification forward converter | |
CN104795983B (en) | Overpower compensating circuit, control system and power supply for Width funtion power supply | |
TWI422132B (en) | Controllers, power converters and method for providing over-temperature protection | |
JP6053235B2 (en) | Power supply | |
CN108322065A (en) | Semiconductor devices and its operating method | |
US10004118B1 (en) | LED control circuit and method therefor | |
CN108809097B (en) | Synchronous rectifier applied to power converter and method of operation thereof | |
TWI395515B (en) | Switching control circuit with voltage sensing function and photo-flash capacitor charger thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |