[go: up one dir, main page]

CN108809097B - Synchronous rectifier applied to power converter and method of operation thereof - Google Patents

Synchronous rectifier applied to power converter and method of operation thereof Download PDF

Info

Publication number
CN108809097B
CN108809097B CN201710302246.8A CN201710302246A CN108809097B CN 108809097 B CN108809097 B CN 108809097B CN 201710302246 A CN201710302246 A CN 201710302246A CN 108809097 B CN108809097 B CN 108809097B
Authority
CN
China
Prior art keywords
control signal
attenuation
current period
signal corresponding
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710302246.8A
Other languages
Chinese (zh)
Other versions
CN108809097A (en
Inventor
林崇伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leadtrend Technology Corp
Original Assignee
Leadtrend Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leadtrend Technology Corp filed Critical Leadtrend Technology Corp
Priority to CN201710302246.8A priority Critical patent/CN108809097B/en
Publication of CN108809097A publication Critical patent/CN108809097A/en
Application granted granted Critical
Publication of CN108809097B publication Critical patent/CN108809097B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种应用于电源转换器的同步整流器及其操作方法。所述操作方法包含当所述电源转换器的二次侧开启时,所述同步整流器内的控制信号产生电路根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号;所述同步整流器内的预衰减电路根据对应所述二次侧的前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。因此,当耦接于所述二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号,以及当所述负载是非常重载时,也不会直接关闭对应所述当下周期的栅极控制信号。

Figure 201710302246

The present invention discloses a synchronous rectifier applied to a power converter and an operation method thereof. The operation method includes that when the secondary side of the power converter is turned on, the control signal generating circuit in the synchronous rectifier generates a control signal corresponding to the previous cycle according to the detection voltage of the previous cycle corresponding to the secondary side, a first reference voltage and a second reference voltage; the pre-attenuation circuit in the synchronous rectifier pre-attenuates the gate control signal of the current cycle corresponding to the secondary side and generates a pre-attenuation signal corresponding to the current cycle according to the discharge time of the previous cycle corresponding to the secondary side. Therefore, when the load coupled to the secondary side is lightly loaded, the synchronous rectifier will not pre-attenuate the gate control signal corresponding to the current cycle in advance, and when the load is very heavily loaded, the gate control signal corresponding to the current cycle will not be directly turned off.

Figure 201710302246

Description

应用于电源转换器的同步整流器及其操作方法Synchronous rectifier applied to power converter and method of operation thereof

技术领域technical field

本发明涉及一种应用于电源转换器的同步整流器及其操作方法,尤其涉及一种可根据对应所述电源转换器的二次侧的前一周期的放电时间,预衰减对应所述电源转换器的二次侧的当下周期的栅极控制信号的同步整流器及其操作方法。The present invention relates to a synchronous rectifier applied to a power converter and an operation method thereof, in particular to a method that can pre-attenuate the corresponding power converter according to the discharge time corresponding to the previous cycle of the secondary side of the power converter A synchronous rectifier with a gate control signal of the current period of the secondary side and an operation method thereof.

背景技术Background technique

如图1所示,在电源转换器100的连续导通模式(continuous conduction mode,CCM)下,应用于电源转换器100的二次侧SEC的同步整流器200是当电源转换器100的二次侧SEC开启时,根据电源转换器100的二次侧SEC的一检测电压VDET(也就是说同步开关102的源极电压),产生控制同步开关102的栅极控制信号GCS,其中在电源转换器100的连续导通模式下,现有技术是利用同步整流器200根据检测电压VDET,快速地关闭栅极控制信号GCS以避免电源转换器100的一次侧PRI和电源转换器100的二次侧SEC同时开启。As shown in FIG. 1 , in the continuous conduction mode (CCM) of the power converter 100 , the synchronous rectifier 200 applied to the secondary side SEC of the power converter 100 is when the secondary side of the power converter 100 is When the SEC is turned on, a gate control signal GCS for controlling the synchronous switch 102 is generated according to a detection voltage VDET of the secondary side SEC of the power converter 100 (that is, the source voltage of the synchronous switch 102 ). In the continuous conduction mode, the prior art uses the synchronous rectifier 200 to quickly turn off the gate control signal GCS according to the detection voltage VDET to avoid the simultaneous opening of the primary side PRI of the power converter 100 and the secondary side SEC of the power converter 100 .

如图2所示,当电源转换器100的二次侧SEC开启时,检测电压VDET会从最小值VMIM(约-0.7V)逐渐增加。因此,在一时间T1时,当检测电压VDET增加至一第一参考电压VREF1(约-50mV)时,同步整流器200会预衰减栅极控制信号GCS,然后在一时间T2时,当检测电压VDET增加至一第二参考电压VREF2(约-10mV)时,同步整流器200会完全关闭栅极控制信号GCS。As shown in FIG. 2 , when the secondary side SEC of the power converter 100 is turned on, the detection voltage VDET gradually increases from the minimum value VMIM (about -0.7V). Therefore, at a time T1, when the detection voltage VDET increases to a first reference voltage VREF1 (about -50mV), the synchronous rectifier 200 will pre-attenuate the gate control signal GCS, and then at a time T2, when the detection voltage VDET is When increasing to a second reference voltage VREF2 (about -10mV), the synchronous rectifier 200 will completely turn off the gate control signal GCS.

然而当耦接于电源转换器100的二次侧SEC的负载104是非常重载时,因为检测电压VDET可能不会增加至第一参考电压VREF1,所以同步整流器200不会预衰减栅极控制信号GCS,导致同步整流器200必须直接关闭栅极控制信号GCS。另外,当耦接于电源转换器100的二次侧SEC的负载104是轻载时,因为检测电压VDET可能很快增加至第一参考电压VREF1,所以同步开关102大部分时间都操作在三极管区(triode region),导致电源转换器100的效率变差。However, when the load 104 coupled to the secondary side SEC of the power converter 100 is very heavily loaded, the synchronous rectifier 200 will not pre-attenuate the gate control signal because the detection voltage VDET may not increase to the first reference voltage VREF1 GCS, so that the synchronous rectifier 200 must directly turn off the gate control signal GCS. In addition, when the load 104 coupled to the secondary side SEC of the power converter 100 is lightly loaded, because the detection voltage VDET may increase to the first reference voltage VREF1 quickly, the synchronous switch 102 operates in the triode region most of the time (triode region), resulting in poor efficiency of the power converter 100 .

因此,如何改进上述现有技术已成为同步整流器200的设计者的一项重要课题。Therefore, how to improve the above-mentioned prior art has become an important issue for designers of the synchronous rectifier 200 .

发明内容SUMMARY OF THE INVENTION

本发明的一实施例公开一种应用于电源转换器的同步整流器。所述同步整流器包含一控制信号产生电路、一预衰减电路及一栅极驱动电路。所述控制信号产生电路是用于当所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述前一周期的放电时间。所述预衰减电路耦接于所述控制信号产生电路,用于根据对应所述前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。所述栅极驱动电路耦接于所述控制信号产生电路和所述预衰减电路,用于根据对应所述当下周期的控制信号,驱动对应所述当下周期的栅极控制信号,以及根据对应所述当下周期的预衰减信号,停止驱动对应所述当下周期的栅极控制信号。An embodiment of the present invention discloses a synchronous rectifier applied to a power converter. The synchronous rectifier includes a control signal generating circuit, a pre-attenuation circuit and a gate driving circuit. The control signal generating circuit is used to generate a first reference voltage and a second reference voltage according to a detection voltage corresponding to the previous cycle of the secondary side, a first reference voltage and a second reference voltage when the secondary side of the power converter is turned on. The control signal corresponding to the previous cycle, wherein the control signal corresponding to the previous cycle is the discharge time corresponding to the previous cycle. The pre-attenuation circuit is coupled to the control signal generating circuit, and is configured to pre-attenuate the gate control signal corresponding to the current cycle of the secondary side and generate a gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle. Periodic pre-attenuated signal. The gate driving circuit is coupled to the control signal generating circuit and the pre-attenuating circuit, and is used for driving the gate control signal corresponding to the current period according to the control signal corresponding to the current period, and according to the control signal corresponding to the current period. The pre-attenuation signal of the current period is described below, and the gate control signal corresponding to the current period is stopped from driving.

本发明的另一实施例公开一种应用于电源转换器的同步整流器的操作方法,其中所述同步整流器包含一控制信号产生电路、一预衰减电路及一栅极驱动电路。所述操作方法包含当所述电源转换器的二次侧开启时,所述控制信号产生电路根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述二次侧的前一周期的放电时间;所述预衰减电路根据对应所述前一周期的放电时间,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。Another embodiment of the present invention discloses an operation method of a synchronous rectifier applied to a power converter, wherein the synchronous rectifier includes a control signal generating circuit, a pre-attenuation circuit and a gate driving circuit. The operating method includes that when the secondary side of the power converter is turned on, the control signal generating circuit is based on a detection voltage corresponding to a previous cycle of the secondary side, a first reference voltage and a second reference voltage , to generate a control signal corresponding to the previous cycle, wherein the control signal corresponding to the previous cycle is the discharge time corresponding to the previous cycle of the secondary side; the pre-attenuation circuit Discharge time, pre-attenuate the gate control signal corresponding to the current period of the secondary side, and generate a pre-attenuation signal corresponding to the current period.

本发明公开一种应用于电源转换器的同步整流器及其操作方法。所述同步整流器及所述操作方法是利用所述同步整流器的控制信号产生电路于所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、一第一参考电压和一第二参考电压,产生对应所述前一周期的控制信号,以及利用所述同步整流器的预衰减电路根据对应所述前一周期的放电时间(对应所述前一周期的控制信号),预衰减对应所述二次侧的当下周期的栅极控制信号。因为所述同步整流器及所述操作方法是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号,所以当耦接于所述电源转换器的二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号以避免所述同步开关大部分时间操作在三极管区,以及当所述负载是非常重载时,所述同步整流器也不必直接关闭对应所述当下周期的栅极控制信号。The invention discloses a synchronous rectifier applied to a power converter and an operation method thereof. The synchronous rectifier and the operating method utilize the control signal generating circuit of the synchronous rectifier when the secondary side of the power converter is turned on, according to the detected voltage corresponding to the previous cycle of the secondary side, a first a reference voltage and a second reference voltage, generate a control signal corresponding to the previous cycle, and use the pre-attenuation circuit of the synchronous rectifier according to the discharge time corresponding to the previous cycle (corresponding to the control signal of the previous cycle signal), pre-attenuate the gate control signal corresponding to the current cycle of the secondary side. Because the synchronous rectifier and the operating method pre-attenuate the gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle, when the power converter is coupled to the secondary side of the power converter When the load is light, the synchronous rectifier does not pre-damp the gate control signal corresponding to the current period in advance to avoid the synchronous switch operating in the triode region most of the time, and when the load is very heavy, The synchronous rectifier does not need to directly turn off the gate control signal corresponding to the current period.

附图说明Description of drawings

图1是说明应用于电源转换器的二次侧的同步整流器的示意图。FIG. 1 is a schematic diagram illustrating a synchronous rectifier applied to the secondary side of a power converter.

图2是说明检测电压和栅极控制信号的时序示意图。FIG. 2 is a timing diagram illustrating detection voltages and gate control signals.

图3是本发明的第一实施例所公开的一种应用于电源转换器的二次侧的同步整流器的示意图。3 is a schematic diagram of a synchronous rectifier applied to the secondary side of a power converter disclosed in the first embodiment of the present invention.

图4是说明检测电压、控制信号、栅极控制信号和预衰减脉冲的时序示意图。FIG. 4 is a timing diagram illustrating a detection voltage, a control signal, a gate control signal, and a pre-attenuation pulse.

图5是本发明的第二实施例所公开的一种应用于电源转换器的同步整流器的操作方法的流程图。FIG. 5 is a flowchart of an operation method of a synchronous rectifier applied to a power converter disclosed in a second embodiment of the present invention.

其中,附图标记说明如下:Among them, the reference numerals are described as follows:

100 电源转换器100 Power Converters

101 一次侧绕组101 Primary winding

102 同步开关102 Sync switch

103 功率开关103 Power switch

104 负载104 loads

200、300 同步整流器200, 300 Synchronous Rectifier

302 控制信号产生电路302 control signal generation circuit

304 预衰减电路304 Pre-attenuation circuit

306 栅极驱动电路306 gate drive circuit

308、310 引脚308, 310 pins

3042 预衰减信号产生器3042 Pre-Attenuation Signal Generator

3044 脉冲产生器3044 Pulse Generator

3046 下拉电路3046 pull-down circuit

30462 第一N型金属氧化物半导体晶体管30462 The first N-type metal-oxide-semiconductor transistor

30464 第二N型金属氧化物半导体晶体管30464 Second N-type metal oxide semiconductor transistor

30466 开关30466 Switch

CS 控制信号CS control signal

CT 当下预衰减时间CT current pre-attenuation time

GND 地端GND ground

GCS 栅极控制信号GCS gate control signal

PAS 预衰减信号PAS pre-attenuated signal

PAP 预衰减脉冲PAP Pre-Attenuation Pulse

PDT 伪死区时间PDT Pseudo Dead Time

PRI 一次侧PRI primary side

PV 预定电压值PV Predetermined voltage value

SEC 二次侧SEC Secondary Side

T1-T3 时间T1-T3 time

TDIS 放电时间TDIS discharge time

VDET 检测电压VDET detection voltage

VREF1 第一参考电压VREF1 first reference voltage

VREF2 第二参考电压VREF2 second reference voltage

VREF3 第三参考电压VREF3 third reference voltage

VMIM 最小值VMIM minimum

500-508 步骤500-508 steps

具体实施方式Detailed ways

请参照图3,图3是本发明的第一实施例所公开的一种应用于电源转换器100的二次侧SEC的同步整流器300的示意图,其中电源转换器100的一次侧PRI仅一次侧绕组101和一功率开关103显示在图3中,电源转换器100是一交流/直流电源转换器,同步整流器300是适用于电源转换器100的连续导通模式,且GND代表一地端。如图3所示,同步整流器300包含一控制信号产生电路302、一预衰减电路304和一栅极驱动电路306,其中预衰减电路304耦接于控制信号产生电路302,以及栅极驱动电路306耦接于控制信号产生电路302和预衰减电路304。当电源转换器100的二次侧SEC开启时,控制信号产生电路302是通过同步整流器300的引脚308接收对应电源转换器100的二次侧SEC的当下周期的检测电压VDET(也就是说电源转换器100的二次侧SEC的同步开关102的源极电压)。在控制信号产生电路302接收对应所述当下周期的检测电压VDET后,控制信号产生电路302可根据对应所述当下周期的检测电压VDET、一第一参考电压VREF1和一第二参考电压VREF2,产生对应所述当下周期的控制信号CS,其中对应所述当下周期的检测电压VDET和对应所述当下周期的控制信号CS的时序可参照图4。如图4所示,在一时间T1时,控制信号产生电路302可根据对应所述当下周期的检测电压VDET和第一参考电压VREF1启用对应所述当下周期的控制信号CS,以及在一时间T2时,控制信号产生电路302可根据对应所述当下周期的检测电压VDET和第二参考电压VREF2关闭对应所述当下周期的控制信号CS,其中第二参考电压VREF2大于第一参考电压VREF1。因此,如图4所示,对应所述当下周期的控制信号CS是对应所述当下周期的放电时间TDIS。另外,如图4所示,栅极驱动电路306是用于根据对应所述当下周期的控制信号CS,驱动对应所述当下周期的栅极控制信号GCS,对应所述当下周期的栅极控制信号GCS是通过一引脚310传送至电源转换器100的二次侧SEC的同步开关102,以及对应所述当下周期的栅极控制信号GCS是用于控制同步开关102的开启与关闭。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a synchronous rectifier 300 applied to the secondary side SEC of the power converter 100 disclosed in the first embodiment of the present invention, wherein the primary side PRI of the power converter 100 is only the primary side Winding 101 and a power switch 103 are shown in FIG. 3 , the power converter 100 is an AC/DC power converter, the synchronous rectifier 300 is suitable for the continuous conduction mode of the power converter 100 , and GND represents a ground terminal. As shown in FIG. 3 , the synchronous rectifier 300 includes a control signal generating circuit 302 , a pre-attenuation circuit 304 and a gate driving circuit 306 , wherein the pre-attenuation circuit 304 is coupled to the control signal generating circuit 302 and the gate driving circuit 306 It is coupled to the control signal generating circuit 302 and the pre-attenuating circuit 304 . When the secondary side SEC of the power converter 100 is turned on, the control signal generating circuit 302 receives the detection voltage VDET corresponding to the current cycle of the secondary side SEC of the power converter 100 through the pin 308 of the synchronous rectifier 300 (that is, the power supply source voltage of the synchronous switch 102 of the secondary side SEC of the converter 100). After the control signal generation circuit 302 receives the detection voltage VDET corresponding to the current period, the control signal generation circuit 302 can generate a voltage VDET corresponding to the current period, a first reference voltage VREF1 and a second reference voltage VREF2 according to the detection voltage VDET, a first reference voltage VREF1 and a second reference voltage VREF2. For the control signal CS corresponding to the current period, the timing sequence of the detection voltage VDET corresponding to the current period and the control signal CS corresponding to the current period can be referred to FIG. 4 . As shown in FIG. 4 , at a time T1, the control signal generating circuit 302 can enable the control signal CS corresponding to the current period according to the detection voltage VDET corresponding to the current period and the first reference voltage VREF1, and at a time T2 , the control signal generating circuit 302 can turn off the control signal CS corresponding to the current period according to the detection voltage VDET corresponding to the current period and the second reference voltage VREF2 , where the second reference voltage VREF2 is greater than the first reference voltage VREF1 . Therefore, as shown in FIG. 4 , the control signal CS corresponding to the current period is the discharge time TDIS corresponding to the current period. In addition, as shown in FIG. 4 , the gate driving circuit 306 is configured to drive the gate control signal GCS corresponding to the current period and the gate control signal corresponding to the current period according to the control signal CS corresponding to the current period. GCS is transmitted to the synchronous switch 102 of the secondary side SEC of the power converter 100 through a pin 310 , and the gate control signal GCS corresponding to the current period is used to control the opening and closing of the synchronous switch 102 .

如图3所示,预衰减电路304包含一预衰减信号产生器3042、一脉冲产生器3044和一下拉电路3046,其中预衰减信号产生器3042耦接于控制信号产生电路302,脉冲产生器3044耦接于预衰减信号产生器3042,下拉电路3046耦接于脉冲产生器3044和预衰减信号产生器3042,以及下拉电路3046包含一第一N型金属氧化物半导体晶体管30462、一第二N型金属氧化物半导体晶体管30464以及一开关30466。另外,控制信号产生电路302、栅极驱动电路306、预衰减信号产生器3042、脉冲产生器3044、第一N型金属氧化物半导体晶体管30462、第二N型金属氧化物半导体晶体管30464以及开关30466之间的耦接关系可参照图3,在此不再赘述。As shown in FIG. 3 , the pre-attenuation circuit 304 includes a pre-attenuation signal generator 3042, a pulse generator 3044 and a pull-down circuit 3046, wherein the pre-attenuation signal generator 3042 is coupled to the control signal generation circuit 302, and the pulse generator 3044 Coupled to the pre-attenuation signal generator 3042, the pull-down circuit 3046 is coupled to the pulse generator 3044 and the pre-attenuation signal generator 3042, and the pull-down circuit 3046 includes a first N-type MOS transistor 30462, a second N-type MOS transistor 30464 and a switch 30466. In addition, the control signal generating circuit 302, the gate driving circuit 306, the pre-attenuation signal generator 3042, the pulse generator 3044, the first NMOS transistor 30462, the second NMOS transistor 30464 and the switch 30466 The coupling relationship between them can be referred to FIG. 3 , which is not repeated here.

预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的前一周期的放电时间(对应电源转换器100的二次侧SEC的前一周期的控制信号CS),产生对应所述当下周期的当下预衰减时间CT(如图4所示)和对应当下预衰减时间CT的预衰减信号PAS(其中对应当下预衰减时间CT的预衰减信号PAS也对应所述当下周期)。例如,起初预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第零周期的放电时间和一预设时间值,产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间和对应所述第一预衰减时间的预衰减信号;然后预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第一周期的放电时间和所述第一预衰减时间,产生对应电源转换器100的二次侧SEC的第二周期的第二预衰减时间和对应所述第二预衰减时间的预衰减信号;然后预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的第二周期的放电时间和所述第二预衰减时间,产生对应电源转换器100的二次侧SEC的第三周期的第三预衰减时间和对应所述第三预衰减时间的预衰减信号;以此类推,其中所述第三周期在所述第二周期之后,所述第二周期在所述第一周期之后,以及所述第一周期在所述第零周期之后。因此,预衰减信号产生器3042根据对应电源转换器100的二次侧SEC的前一周期的放电时间所产生的对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT会逐渐趋近于对应电源转换器100的二次侧SEC的前一周期的放电时间,但预衰减信号产生器3042会使如图4所示的一伪死区时间PDT(pseudo dead time)不小于一预定时间区间。The pre-attenuation signal generator 3042 can generate the corresponding to the said The current pre-attenuation time CT of the current period (as shown in FIG. 4 ) and the pre-attenuation signal PAS corresponding to the current pre-attenuation time CT (wherein the pre-attenuation signal PAS corresponding to the current pre-attenuation time CT also corresponds to the current period). For example, initially the pre-attenuation signal generator 3042 can generate the first cycle corresponding to the secondary side SEC of the power converter 100 according to the discharge time corresponding to the zeroth cycle of the secondary side SEC of the power converter 100 and a preset time value The first pre-attenuation time of the power converter 100 and the pre-attenuation signal corresponding to the first pre-attenuation time; then the pre-attenuation signal generator 3042 can be based on the discharge time corresponding to the first cycle of the secondary side SEC of the power converter 100 and the first a pre-attenuation time, to generate a second pre-attenuation time corresponding to the second period of the secondary side SEC of the power converter 100 and a pre-attenuation signal corresponding to the second pre-attenuation time; then the pre-attenuation signal generator 3042 can The discharge time and the second pre-decay time of the second cycle of the secondary side SEC of the power converter 100 generate a third pre-decay time corresponding to the third cycle of the secondary side SEC of the power converter 100 and the second pre-decay time corresponding to the A pre-decay signal for a third pre-decay time; and so on, wherein the third period is after the second period, the second period is after the first period, and the first period is after the first period After the zeroth cycle. Therefore, the current pre-attenuation time CT of the current cycle corresponding to the secondary side SEC of the power converter 100 generated by the pre-attenuation signal generator 3042 according to the discharge time of the previous cycle corresponding to the secondary side SEC of the power converter 100 will gradually Approaching the discharge time corresponding to the previous cycle of the secondary side SEC of the power converter 100, but the pre-attenuation signal generator 3042 will make a pseudo dead time (PDT) as shown in FIG. 4 not less than one predetermined time interval.

另外,在本发明的一实施例中,预衰减信号产生器3042是平均对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间,但本发明并不受限于预衰减信号产生器3042平均对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间,也就是说预衰减信号产生器3042也可加权对应所述第零周期的放电时间和所述预设时间值以产生对应电源转换器100的二次侧SEC的第一周期的第一预衰减时间。因此,只要是预衰减信号产生器3042利用对应电源转换器100的二次侧SEC的前一周期的放电时间以产生对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT都落入本发明的范围。In addition, in an embodiment of the present invention, the pre-attenuation signal generator 3042 averages the discharge time corresponding to the zeroth cycle and the preset time value to generate the first SEC corresponding to the secondary side of the power converter 100 . The first pre-attenuation time of the cycle, but the present invention is not limited to the pre-attenuation signal generator 3042 to average the discharge time corresponding to the zeroth cycle and the preset time value to generate a secondary side corresponding to the power converter 100 The first pre-attenuation time of the first cycle of the SEC, that is to say, the pre-attenuation signal generator 3042 may also weight the discharge time corresponding to the zeroth cycle and the preset time value to generate a secondary signal corresponding to the power converter 100 . The first pre-decay time of the first cycle of the side SEC. Therefore, as long as the pre-attenuation signal generator 3042 uses the discharge time corresponding to the previous cycle of the secondary side SEC of the power converter 100 to generate the current pre-attenuation time CT corresponding to the current cycle of the secondary side SEC of the power converter 100 fall within the scope of the present invention.

如图3所示,在预衰减信号产生器3042产生对应所述当下周期的预衰减信号PAS后,栅极驱动电路306将会停止驱动对应所述当下周期的栅极控制信号GCS。As shown in FIG. 3 , after the pre-attenuation signal generator 3042 generates the pre-attenuation signal PAS corresponding to the current period, the gate driving circuit 306 will stop driving the gate control signal GCS corresponding to the current period.

另外,如图4所示,脉冲产生器3044用于根据对应所述当下周期的预衰减信号PAS,于一时间T3产生对应所述当下周期的预衰减脉冲PAP。因此,如图3所示,在脉冲产生器3044产生对应所述当下周期的预衰减脉冲PAP后,第一N型金属氧化物半导体晶体管30462开启,因为栅极驱动电路306停止驱动对应所述当下周期的栅极控制信号GCS,所以对应所述当下周期的栅极控制信号GCS将会被预衰减(如图4所示)。另外,因为开关30466根据对应所述当下周期的预衰减信号PAS开启,所以第二N型金属氧化物半导体晶体管30464会根据一第三参考电压VREF3开启,导致对应所述当下周期的栅极控制信号GCS被稳压在一预定电压值PV(如图4所示),其中预定电压值PV可由第三参考电压VREF3、第二N型金属氧化物半导体晶体管30464的临界电压VTH30464和式(1)决定:In addition, as shown in FIG. 4 , the pulse generator 3044 is configured to generate a pre-attenuation pulse PAP corresponding to the current period at a time T3 according to the pre-attenuation signal PAS corresponding to the current period. Therefore, as shown in FIG. 3, after the pulse generator 3044 generates the pre-attenuation pulse PAP corresponding to the current period, the first NMOS transistor 30462 is turned on because the gate driving circuit 306 stops driving the current period corresponding to the current period. period of the gate control signal GCS, so the gate control signal GCS corresponding to the current period will be pre-attenuated (as shown in FIG. 4 ). In addition, because the switch 30466 is turned on according to the pre-attenuation signal PAS corresponding to the current period, the second NMOS transistor 30464 is turned on according to a third reference voltage VREF3, resulting in a gate control signal corresponding to the current period The GCS is regulated to a predetermined voltage value PV (as shown in FIG. 4 ), wherein the predetermined voltage value PV can be determined by the third reference voltage VREF3 , the threshold voltage VTH30464 of the second N-type metal oxide semiconductor transistor 30464 and equation (1) :

PV=VREF3–VTH30464 (1)PV=VREF3–VTH30464 (1)

另外,在本发明的另一实施例中,开关30466和第二N型金属氧化物半导体晶体管30464可被一箝位电路取代,也就是说所述箝位电路可根据对应所述当下周期的预衰减信号PAS将栅极控制信号GCS稳压在预定电压值PV。In addition, in another embodiment of the present invention, the switch 30466 and the second NMOS transistor 30464 can be replaced by a clamp circuit, that is to say, the clamp circuit can be based on the preset corresponding to the current cycle. The attenuation signal PAS stabilizes the gate control signal GCS at a predetermined voltage value PV.

因为同步整流器300是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号GCS,所以当耦接于电源转换器100的二次侧SEC的负载104是轻载时,同步整流器300不会提早预衰减对应所述当下周期的栅极控制信号GCS以避免同步开关102大部分时间操作在三极管区,以及当负载104是非常重载时,同步整流器300也不必直接关闭对应所述当下周期的栅极控制信号GCS。Because the synchronous rectifier 300 pre-attenuates the gate control signal GCS corresponding to the current cycle according to the discharge time corresponding to the previous cycle, the load 104 coupled to the secondary side SEC of the power converter 100 is lightly loaded. , the synchronous rectifier 300 does not pre-attenuate the gate control signal GCS corresponding to the current period in advance to avoid the synchronous switch 102 operating in the triode region most of the time, and when the load 104 is very heavy, the synchronous rectifier 300 does not have to directly The gate control signal GCS corresponding to the current period is turned off.

请参照图3-5,图5是本发明的第二实施例所公开的一种应用于电源转换器的同步整流器的操作方法的流程图。图5的操作方法是利用图3的电源转换器100与同步整流器300说明,详细步骤如下:Please refer to FIGS. 3-5 . FIG. 5 is a flowchart of an operation method of a synchronous rectifier applied to a power converter disclosed in a second embodiment of the present invention. The operation method of FIG. 5 is described by using the power converter 100 and the synchronous rectifier 300 of FIG. 3 , and the detailed steps are as follows:

步骤500:开始;Step 500: start;

步骤502:当电源转换器100的二次侧SEC开启时,控制信号产生电路302根据对应电源转换器100的二次侧SEC的前一周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应电源转换器100的二次侧SEC的前一周期的控制信号CS;Step 502 : When the secondary side SEC of the power converter 100 is turned on, the control signal generating circuit 302 is based on the detection voltage VDET, the first reference voltage VREF1 and the second reference corresponding to the previous cycle of the secondary side SEC of the power converter 100 . The voltage VREF2 generates the control signal CS corresponding to the previous cycle of the secondary side SEC of the power converter 100;

步骤504:预衰减信号产生器3042根据对应所述前一周期的控制信号CS,产生对应电源转换器100的二次侧SEC的当下周期的预衰减信号PAS;Step 504: The pre-attenuation signal generator 3042 generates a pre-attenuation signal PAS corresponding to the current cycle of the secondary side SEC of the power converter 100 according to the control signal CS corresponding to the previous cycle;

步骤506:脉冲产生器3044根据对应电源转换器100的二次侧SEC的当下周期的预衰减信号PAS,产生对应电源转换器100的二次侧SEC的当下周期的预衰减脉冲PAP;Step 506: The pulse generator 3044 generates a pre-attenuation pulse PAP corresponding to the current period of the secondary side SEC of the power converter 100 according to the pre-attenuation signal PAS of the current period corresponding to the secondary side SEC of the power converter 100;

步骤508:下拉电路3046根据对应电源转换器100的二次侧SEC的当下周期的预衰减脉冲PAP,预衰减对应电源转换器100的二次侧SEC的当下周期的栅极控制信号GCS,跳回步骤502。Step 508: The pull-down circuit 3046 pre-attenuates the gate control signal GCS corresponding to the current cycle of the secondary side SEC of the power converter 100 according to the pre-attenuation pulse PAP corresponding to the current cycle of the secondary side SEC of the power converter 100, and jumps back to Step 502.

在步骤502中,当电源转换器100的二次侧SEC在电源转换器100的二次侧SEC的前一周期开启时,控制信号产生电路302是通过同步整流器300的引脚308接收对应所述前一周期的检测电压VDET。在控制信号产生电路302接收对应所述前一周期的检测电压VDET后,控制信号产生电路302可根据对应所述前一周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应所述前一周期的控制信号CS。同理,当电源转换器100的二次侧SEC在电源转换器100的二次侧SEC的当下周期开启时,控制信号产生电路302也可根据对应所述当下周期的检测电压VDET、第一参考电压VREF1和第二参考电压VREF2,产生对应所述当下周期的控制信号CS。In step 502, when the secondary side SEC of the power converter 100 is turned on in the previous cycle of the secondary side SEC of the power converter 100, the control signal generating circuit 302 receives the corresponding signal through the pin 308 of the synchronous rectifier 300 The detection voltage VDET of the previous cycle. After the control signal generation circuit 302 receives the detection voltage VDET corresponding to the previous cycle, the control signal generation circuit 302 can generate the detection voltage VDET corresponding to the previous cycle, the first reference voltage VREF1 and the second reference voltage VREF2 according to the detection voltage VDET corresponding to the previous cycle. Corresponds to the control signal CS of the previous cycle. Similarly, when the secondary side SEC of the power converter 100 is turned on in the current cycle of the secondary side SEC of the power converter 100, the control signal generating circuit 302 can also be based on the detection voltage VDET corresponding to the current cycle, the first reference The voltage VREF1 and the second reference voltage VREF2 generate the control signal CS corresponding to the current period.

在步骤504中,如图3所示,预衰减信号产生器3042可根据对应电源转换器100的二次侧SEC的前一周期的放电时间(对应电源转换器100的二次侧SEC的前一周期的控制信号CS),产生对应所述当下周期的当下预衰减时间CT(如图4所示)和对应当下预衰减时间CT的预衰减信号PAS。因此,预衰减信号产生器3042根据对应电源转换器100的二次侧SEC的前一周期的放电时间所产生的对应电源转换器100的二次侧SEC的当下周期的当下预衰减时间CT会逐渐趋近于对应电源转换器100的二次侧SEC的前一周期的放电时间,但预衰减信号产生器3042会使如图4所示的伪死区时间PDT不小于所述预定时间区间。In step 504 , as shown in FIG. 3 , the pre-attenuation signal generator 3042 can be based on the discharge time of the previous cycle corresponding to the secondary side SEC of the power converter 100 (corresponding to the previous cycle of the secondary side SEC of the power converter 100 ) Periodic control signal CS) to generate a current pre-attenuation time CT (as shown in FIG. 4 ) corresponding to the current period and a pre-attenuation signal PAS corresponding to the current pre-attenuation time CT. Therefore, the current pre-attenuation time CT of the current cycle corresponding to the secondary side SEC of the power converter 100 generated by the pre-attenuation signal generator 3042 according to the discharge time of the previous cycle corresponding to the secondary side SEC of the power converter 100 will gradually Approaching the discharge time corresponding to the previous cycle of the secondary side SEC of the power converter 100, but the pre-attenuation signal generator 3042 makes the pseudo dead time PDT as shown in FIG. 4 not less than the predetermined time interval.

在步骤506和步骤508中,如图4所示,脉冲产生器3044根据对应所述当下周期的预衰减信号PAS,于时间T3产生对应所述当下周期的预衰减脉冲PAP。因此,如图3所示,在脉冲产生器3044产生对应所述当下周期的预衰减脉冲PAP后,第一N型金属氧化物半导体晶体管30462开启,因为栅极驱动电路306停止驱动对应所述当下周期的栅极控制信号GCS,所以对应所述当下周期的栅极控制信号GCS将会被预衰减(如图4所示)。另外,因为开关30466根据对应所述当下周期的预衰减信号PAS开启,所以第二N型金属氧化物半导体晶体管30464会根据第三参考电压VREF3开启,导致对应所述当下周期的栅极控制信号GCS被稳压在预定电压值PV(如图4所示)。In steps 506 and 508 , as shown in FIG. 4 , the pulse generator 3044 generates a pre-attenuation pulse PAP corresponding to the current period at time T3 according to the pre-attenuation signal PAS corresponding to the current period. Therefore, as shown in FIG. 3, after the pulse generator 3044 generates the pre-attenuation pulse PAP corresponding to the current period, the first NMOS transistor 30462 is turned on because the gate driving circuit 306 stops driving the current period corresponding to the current period. period of the gate control signal GCS, so the gate control signal GCS corresponding to the current period will be pre-attenuated (as shown in FIG. 4 ). In addition, because the switch 30466 is turned on according to the pre-attenuation signal PAS corresponding to the current period, the second NMOS transistor 30464 is turned on according to the third reference voltage VREF3, resulting in the gate control signal GCS corresponding to the current period is regulated at a predetermined voltage value PV (as shown in Figure 4).

另外,如图3、4所示,栅极驱动电路306可根据对应所述当下周期的控制信号CS,驱动对应所述当下周期的栅极控制信号GCS,以及在预衰减信号产生器3042产生对应所述当下周期的预衰减信号PAS后,栅极驱动电路306将会停止驱动对应所述当下周期的栅极控制信号GCS。In addition, as shown in FIGS. 3 and 4 , the gate driving circuit 306 can drive the gate control signal GCS corresponding to the current period according to the control signal CS corresponding to the current period, and generate a corresponding signal in the pre-attenuation signal generator 3042 After the pre-attenuation signal PAS of the current period, the gate driving circuit 306 will stop driving the gate control signal GCS corresponding to the current period.

综上所述,本发明所公开的应用于电源转换器的同步整流器及其操作方法是利用所述控制信号产生电路于所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压、所述第一参考电压和所述第二参考电压,产生对应所述前一周期的控制信号,以及利用所述预衰减电路根据对应所述前一周期的放电时间(对应所述前一周期的控制信号),预衰减对应所述二次侧的当下周期的栅极控制信号。因为所述同步整流器及所述操作方法是根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号,所以当耦接于所述电源转换器的二次侧的负载是轻载时,所述同步整流器不会提早预衰减对应所述当下周期的栅极控制信号以避免所述同步开关大部分时间操作在三极管区,以及当所述负载是非常重载时,所述同步整流器也不必直接关闭对应所述当下周期的栅极控制信号。To sum up, the synchronous rectifier applied to the power converter and the operation method thereof disclosed in the present invention utilize the control signal generating circuit when the secondary side of the power converter is turned on, according to the corresponding secondary side The detection voltage of the previous cycle, the first reference voltage and the second reference voltage, generate a control signal corresponding to the previous cycle, and use the pre-attenuation circuit according to the discharge time corresponding to the previous cycle. (corresponding to the control signal of the previous cycle), pre-attenuate the gate control signal corresponding to the current cycle of the secondary side. Because the synchronous rectifier and the operating method pre-attenuate the gate control signal corresponding to the current cycle according to the discharge time corresponding to the previous cycle, when the power converter is coupled to the secondary side of the power converter When the load is light, the synchronous rectifier does not pre-damp the gate control signal corresponding to the current period in advance to avoid the synchronous switch operating in the triode region most of the time, and when the load is very heavy, The synchronous rectifier does not need to directly turn off the gate control signal corresponding to the current period.

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.

Claims (9)

1.一种应用于电源转换器的同步整流器,其特征在于包含:1. a synchronous rectifier applied to a power converter is characterized in that comprising: 一控制信号产生电路,用于当所述电源转换器的二次侧开启时,根据对应所述二次侧的前一周期的检测电压和一第一参考电压开启对应所述前一周期的控制信号,以及根据对应所述二次侧的前一周期的检测电压和一第二参考电压关闭对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述前一周期的放电时间;a control signal generating circuit for turning on the control corresponding to the previous cycle according to the detection voltage corresponding to the previous cycle of the secondary side and a first reference voltage when the secondary side of the power converter is turned on signal, and turn off the control signal corresponding to the previous cycle according to the detection voltage corresponding to the previous cycle of the secondary side and a second reference voltage, wherein the control signal corresponding to the previous cycle is the control signal corresponding to the previous cycle the discharge time of the cycle; 一预衰减电路,耦接于所述控制信号产生电路,用于根据对应所述前一周期的控制信号,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号;及a pre-attenuation circuit, coupled to the control signal generating circuit, configured to pre-attenuate the gate control signal corresponding to the current cycle of the secondary side and generate a gate control signal corresponding to the current cycle according to the control signal corresponding to the previous cycle a periodic pre-attenuated signal; and 一栅极驱动电路,耦接于所述控制信号产生电路和所述预衰减电路,用于根据对应所述当下周期的控制信号,驱动对应所述当下周期的栅极控制信号,以及根据对应所述当下周期的预衰减信号,停止驱动对应所述当下周期的栅极控制信号。a gate driving circuit, coupled to the control signal generating circuit and the pre-attenuation circuit, for driving the gate control signal corresponding to the current period according to the control signal corresponding to the current period, and according to the control signal corresponding to the current period The pre-attenuation signal of the current period is described below, and the gate control signal corresponding to the current period is stopped from driving. 2.如权利要求1所述的同步整流器,其特征在于:所述检测电压是所述二次侧的同步开关的源极电压。2 . The synchronous rectifier of claim 1 , wherein the detection voltage is the source voltage of the synchronous switch on the secondary side. 3 . 3.如权利要求1所述的同步整流器,其特征在于:所述当下周期的栅极控制信号是用于控制所述二次侧的同步开关的开启与关闭。3 . The synchronous rectifier according to claim 1 , wherein the gate control signal of the current period is used to control the opening and closing of the synchronous switch of the secondary side. 4 . 4.如权利要求1所述的同步整流器,其特征在于:所述预衰减电路包含:4. The synchronous rectifier of claim 1, wherein the pre-attenuation circuit comprises: 一预衰减信号产生器,耦接于所述控制信号产生电路,用于根据对应所述前一周期的控制信号,产生对应所述当下周期的预衰减信号;a pre-attenuation signal generator, coupled to the control signal generating circuit, for generating a pre-attenuation signal corresponding to the current period according to the control signal corresponding to the previous period; 一脉冲产生器,耦接于所述预衰减信号产生器,用于根据对应所述当下周期的预衰减信号,产生对应所述当下周期的预衰减脉冲;及a pulse generator, coupled to the pre-attenuation signal generator, for generating a pre-attenuation pulse corresponding to the current period according to the pre-attenuation signal corresponding to the current period; and 一下拉电路,耦接于所述脉冲产生器和所述预衰减信号产生器,用于根据对应所述当下周期的预衰减脉冲,预衰减对应所述当下周期的栅极控制信号。A pull-down circuit, coupled to the pulse generator and the pre-attenuation signal generator, is configured to pre-attenuate the gate control signal corresponding to the current period according to the pre-attenuation pulse corresponding to the current period. 5.一种应用于电源转换器的同步整流器的操作方法,其中所述同步整流器包含一控制信号产生电路、一预衰减电路及一栅极驱动电路,其特征在于包含:5. An operation method of a synchronous rectifier applied to a power converter, wherein the synchronous rectifier comprises a control signal generating circuit, a pre-attenuation circuit and a gate drive circuit, characterized by comprising: 当所述电源转换器的二次侧开启时,所述控制信号产生电路根据对应所述二次侧的前一周期的检测电压和一第一参考电压开启对应所述前一周期的控制信号,以及根据对应所述二次侧的前一周期的检测电压和一第二参考电压关闭对应所述前一周期的控制信号,其中对应所述前一周期的控制信号是对应所述二次侧的前一周期的放电时间;及When the secondary side of the power converter is turned on, the control signal generating circuit turns on the control signal corresponding to the previous cycle according to the detection voltage corresponding to the previous cycle of the secondary side and a first reference voltage, and turn off the control signal corresponding to the previous cycle according to the detection voltage corresponding to the previous cycle of the secondary side and a second reference voltage, wherein the control signal corresponding to the previous cycle is corresponding to the secondary side the discharge time of the previous cycle; and 所述预衰减电路根据对应所述前一周期的控制信号,预衰减对应所述二次侧的当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号。The pre-attenuation circuit pre-attenuates the gate control signal corresponding to the current period of the secondary side and generates a pre-attenuation signal corresponding to the current period according to the control signal corresponding to the previous period. 6.如权利要求5所述的操作方法,其特征在于另包含:6. operating method as claimed in claim 5 is characterized in that additionally comprising: 所述栅极驱动电路根据对应所述当下周期的控制信号,驱动对应所述当下周期的栅极控制信号;及The gate driving circuit drives the gate control signal corresponding to the current period according to the control signal corresponding to the current period; and 所述栅极驱动电路根据对应所述当下周期的预衰减信号,停止驱动对应所述当下周期的栅极控制信号。The gate driving circuit stops driving the gate control signal corresponding to the current period according to the pre-attenuation signal corresponding to the current period. 7.如权利要求5所述的操作方法,其中所述检测电压是所述二次侧的同步开关的源极电压。7. The operating method of claim 5, wherein the detection voltage is a source voltage of a synchronous switch of the secondary side. 8.如权利要求5所述的操作方法,其特征在于:所述当下周期的栅极控制信号是用于控制所述二次侧的同步开关的开启与关闭。8 . The operation method of claim 5 , wherein the gate control signal of the current period is used to control the opening and closing of the synchronous switch of the secondary side. 9 . 9.如权利要求5所述的操作方法,其特征在于:所述预衰减电路根据对应所述前一周期的放电时间,预衰减对应所述当下周期的栅极控制信号和产生对应所述当下周期的预衰减信号包含:9 . The operation method of claim 5 , wherein the pre-attenuation circuit pre-attenuates the gate control signal corresponding to the current period and generates a gate control signal corresponding to the current period according to the discharge time corresponding to the previous period. 10 . The periodic pre-attenuated signal contains: 所述预衰减电路的预衰减信号产生器根据对应所述前一周期的控制信号,产生对应所述当下周期的预衰减信号;The pre-attenuation signal generator of the pre-attenuation circuit generates a pre-attenuation signal corresponding to the current period according to the control signal corresponding to the previous period; 所述预衰减电路的脉冲产生器根据对应所述当下周期的预衰减信号,产生对应所述当下周期的预衰减脉冲;及The pulse generator of the pre-attenuation circuit generates a pre-attenuation pulse corresponding to the current period according to the pre-attenuation signal corresponding to the current period; and 所述预衰减电路的下拉电路根据对应所述当下周期的预衰减脉冲,预衰减对应所述当下周期的栅极控制信号。The pull-down circuit of the pre-attenuation circuit pre-attenuates the gate control signal corresponding to the current period according to the pre-attenuation pulse corresponding to the current period.
CN201710302246.8A 2017-05-02 2017-05-02 Synchronous rectifier applied to power converter and method of operation thereof Active CN108809097B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302246.8A CN108809097B (en) 2017-05-02 2017-05-02 Synchronous rectifier applied to power converter and method of operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710302246.8A CN108809097B (en) 2017-05-02 2017-05-02 Synchronous rectifier applied to power converter and method of operation thereof

Publications (2)

Publication Number Publication Date
CN108809097A CN108809097A (en) 2018-11-13
CN108809097B true CN108809097B (en) 2020-08-11

Family

ID=64054159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710302246.8A Active CN108809097B (en) 2017-05-02 2017-05-02 Synchronous rectifier applied to power converter and method of operation thereof

Country Status (1)

Country Link
CN (1) CN108809097B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173835B1 (en) * 2005-11-16 2007-02-06 System General Corp. Control circuit associated with saturable inductor operated as synchronous rectifier forward power converter
CN101572485A (en) * 2008-04-30 2009-11-04 杭州茂力半导体技术有限公司 Intelligent driving control method and device for secondary synchronous rectifier
CN103746566A (en) * 2014-01-21 2014-04-23 成都芯源系统有限公司 Primary side controlled switching power supply and control method thereof
CN105743349A (en) * 2014-12-24 2016-07-06 罗姆股份有限公司 DC/DC converter, synchronous rectification controller and control method thereof, power device, power adaptor and electronic device
CN106533207A (en) * 2015-09-15 2017-03-22 通嘉科技股份有限公司 Synchronous rectifier applied to power converter and operation method thereof
CN206060573U (en) * 2016-08-31 2017-03-29 广州金升阳科技有限公司 Synchronous commutating control circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173835B1 (en) * 2005-11-16 2007-02-06 System General Corp. Control circuit associated with saturable inductor operated as synchronous rectifier forward power converter
CN101572485A (en) * 2008-04-30 2009-11-04 杭州茂力半导体技术有限公司 Intelligent driving control method and device for secondary synchronous rectifier
CN103746566A (en) * 2014-01-21 2014-04-23 成都芯源系统有限公司 Primary side controlled switching power supply and control method thereof
CN105743349A (en) * 2014-12-24 2016-07-06 罗姆股份有限公司 DC/DC converter, synchronous rectification controller and control method thereof, power device, power adaptor and electronic device
CN106533207A (en) * 2015-09-15 2017-03-22 通嘉科技股份有限公司 Synchronous rectifier applied to power converter and operation method thereof
CN206060573U (en) * 2016-08-31 2017-03-29 广州金升阳科技有限公司 Synchronous commutating control circuit

Also Published As

Publication number Publication date
CN108809097A (en) 2018-11-13

Similar Documents

Publication Publication Date Title
CN112838772B (en) Flyback switching power supply and its control method
US9614448B2 (en) Switching power-supply device
JP5811246B1 (en) DC-DC converter
US8649129B2 (en) Method and apparatus of providing over-temperature protection for power converters
US20150381056A1 (en) Switched-mode power supply device
TW201642569A (en) Power converter with synchronous control function and control method thereof
US10361636B2 (en) Synchronous rectifier applied to a power converter and operation method thereof
JP2009284667A (en) Power supply device, its control method, and semiconductor device
JP2014202632A (en) Zero-crossing detection circuit
JP2017153350A5 (en)
CN106953518B (en) Multi-mode controller applied to power converter and operation method thereof
TWI673589B (en) System and method for controlling power converter
US9391501B2 (en) VCC charge and free-wheeling detection via source controlled MOS transistor
JP2016010186A (en) DC-DC converter
JP6142917B2 (en) Power device drive circuit
JP2017169268A (en) Full-wave rectification circuit
CN107888092A (en) Power supply conversion device
JP4548484B2 (en) Synchronous rectification forward converter
CN104795983B (en) Overpower compensating circuit, control system and power supply for Width funtion power supply
TWI422132B (en) Controllers, power converters and method for providing over-temperature protection
JP6053235B2 (en) Power supply
CN108322065A (en) Semiconductor devices and its operating method
US10004118B1 (en) LED control circuit and method therefor
CN108809097B (en) Synchronous rectifier applied to power converter and method of operation thereof
TWI395515B (en) Switching control circuit with voltage sensing function and photo-flash capacitor charger thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant