CN108807929B - Preparation method of positive electrode material for reserve type lithium battery and product - Google Patents
Preparation method of positive electrode material for reserve type lithium battery and product Download PDFInfo
- Publication number
- CN108807929B CN108807929B CN201810664954.0A CN201810664954A CN108807929B CN 108807929 B CN108807929 B CN 108807929B CN 201810664954 A CN201810664954 A CN 201810664954A CN 108807929 B CN108807929 B CN 108807929B
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- electrode material
- lithium
- battery
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 55
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 32
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 239000000725 suspension Substances 0.000 claims abstract description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 18
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 238000005406 washing Methods 0.000 claims abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- -1 4-carboxybenzenesulfonyl Chemical group 0.000 claims description 11
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000003153 chemical reaction reagent Substances 0.000 claims description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 claims description 4
- 150000003949 imides Chemical class 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000000713 high-energy ball milling Methods 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 8
- 238000001035 drying Methods 0.000 abstract description 5
- 238000007599 discharging Methods 0.000 description 19
- 238000007600 charging Methods 0.000 description 18
- 239000013543 active substance Substances 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 5
- 239000010405 anode material Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 4
- YBDACTXVEXNYOU-UHFFFAOYSA-N C(F)(F)(F)F.[Li] Chemical compound C(F)(F)(F)F.[Li] YBDACTXVEXNYOU-UHFFFAOYSA-N 0.000 description 3
- 229910013872 LiPF Inorganic materials 0.000 description 3
- 101150058243 Lipf gene Proteins 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010277 constant-current charging Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 2
- FBDMJGHBCPNRGF-UHFFFAOYSA-M [OH-].[Li+].[O-2].[Mn+2] Chemical compound [OH-].[Li+].[O-2].[Mn+2] FBDMJGHBCPNRGF-UHFFFAOYSA-M 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229910012820 LiCoO Inorganic materials 0.000 description 1
- CJMMRHSQOBXFOG-UHFFFAOYSA-N [O--].[O--].[Al+3].[Ag+] Chemical compound [O--].[O--].[Al+3].[Ag+] CJMMRHSQOBXFOG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/5835—Comprising fluorine or fluoride salts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
The invention discloses a preparation method of a positive electrode material for a reserve type lithium battery, which comprises the steps of mixing a carbon fluoride material with LiPACA, NMP and a methanol solvent according to a certain mass ratio to obtain a mixture A; putting the mixture A into a high-energy ball mill to prepare suspension B; fully mixing the positive electrode material to be coated with lithium hydroxide according to the mass ratio of 95:5 to prepare a mixture C; adding the mixture C into the suspension B, then putting the suspension B into a high-energy ball mill, drying the suspension of the mixture, then washing and filtering the suspension, and drying the product to obtain the directly-used carbon fluoride material-coated positive electrode material for the lithium ion battery; the positive electrode material obtained by the method has better compatibility with electrolyte and keeps a stable charge state during storage, so that the battery containing the material has the excellent characteristics of long storage life and high rate performance, and the storage requirement of the special field on the battery is met.
Description
Technical Field
The invention belongs to the technical field of positive electrode materials of lithium primary batteries and lithium secondary batteries, and particularly relates to a preparation method of a positive electrode material of a lithium secondary battery with a layer of graphite fluoride material coated on the surface, and a reserve type lithium battery using the positive electrode material.
Background
With the continuous improvement of the equipment performance in special fields such as military weaponry, outdoor operation, escape capsule and the like, the demand for batteries serving as unique energy sources is higher and higher. When the battery is applied to the special fields, the battery is mainly characterized in that the battery is required to have certain storage performance, and the battery does not need to be used immediately after being prepared or charged, but can be taken out for use only under special conditions. In the process of storage waiting, the battery is required to have full-performance loading capacity at any time, and the battery is not in time to charge and nurse when in use, so that emergency discharging in emergency needs to be dealt with.
The energy density and rate capability of the primary battery systems such as currently adopted aluminum silver oxide, silver zinc, thionyl chloride, lithium manganese dioxide, lithium carbon fluoride and the like are difficult to be compatible: the system such as silver aluminum oxide, silver zinc, thionyl chloride and the like has high rate capability, but has lower energy density; lithium-manganese dioxide, lithium-carbon fluoride and the like have high energy density but low rate performance, and particularly, in a carbon fluoride lithium primary battery, because the electronic conductivity of carbon fluoride is low and lithium ions are a one-dimensional transmission path in the carbon fluoride, polarization is large during high-rate discharge, heat release is large, and the rate performance is poor.
In recent years, researchers have turned the hot point of innovation of reserve batteries to lithium secondary batteries with both energy density and rate capability. However, the biggest problem in using a lithium secondary battery as a reserve battery is that the self-discharge rate is fast, which is a typical level of commercial lithium secondary batteries, 1% per month, whereas in reserve batteries it is often necessary to store the battery for 5 years, 10 years or even longer. The improvement of the storage life of the lithium secondary battery is a core target for its use as a reserve battery.
Commercial lithium secondary battery positive electrode materials, such as lithium cobaltate, lithium iron phosphate, ternary (NCM, NCA), lithium-rich phase positive electrode material xLiMO2 · yLi2MnO3, high-voltage positive electrode material lini0.5mn1.5o4, and the like, can be optimized to have an energy density as high as 350Wh/kg and a rate capability exceeding 20C for discharge.
However, the charged anode material often reacts with the electrolyte during storage, and the metal ions are dissociated to the cathode for precipitation, and the lithium ions are dissociated to the anode by internal short circuit, so that the capacity of the conventional lithium secondary battery is rapidly reduced when the conventional lithium secondary battery is used as a reserve battery, and the requirement of long-term storage cannot be met.
Currently, the positive electrode material of commercial lithium secondary batteries has not been widely used in reserve batteries.
Disclosure of Invention
The invention provides a preparation method of a positive electrode material for a reserve type lithium battery with high multiplying power and low self-discharge performance, which is very simple to coat a layer of graphite fluoride material on the surface of the positive electrode material of a lithium secondary battery.
The technical scheme adopted by the invention for solving the technical problems is as follows: a preparation method of a positive electrode material for a reserve type lithium battery comprises the following steps:
a, mixing the carbon fluoride material with poly (bis (4-aminophenyl) ether-altMixing bis (4-methyl carboxyl benzenesulfonyl) imide) amide (LiPACA for short), N-methyl pyrrolidone (NMP for short) and a methanol solvent according to a certain mass ratio to obtain a mixture A; wherein the mass ratio content of the carbon fluoride material in the mixture A is 30-60%; and (3) LiPACA: NMP: the mass ratio of methanol is 1: 1: 3;
b, putting the mixture A into a high-energy ball mill to prepare a suspension B;
c, fully mixing the positive electrode material to be coated with lithium hydroxide (LiOH) according to the mass ratio of 95:5 to prepare a mixture C;
and d, adding the mixture C into the suspension B, then putting the suspension into a high-energy ball mill, drying the suspension of the mixture, then washing and filtering, and drying the product to obtain the directly-used carbon fluoride material-coated lithium ion battery positive electrode material.
The preparation method of the anode material for the reserve lithium battery is characterized in that the expression of the carbon fluoride material is CFx (x = 0.1-3).
According to the preparation method of the positive electrode material for the reserve type lithium battery, the positive electrode material is one or more of lithium cobaltate, lithium iron phosphate, a ternary material (abbreviated as NCM and NCA materials) which is conventionally called in the industry, a lithium-rich phase positive electrode material (xLiMO 2. yLi2MnO 3) and a high-pressure positive electrode material (LiNi0.5Mn1.5O4 and modified materials thereof).
Further, the thickness of the carbon fluoride material coating layer is 1-20 nm. Preferably 2 to 5 nm.
Further, in the step b, the high-energy grinding ball is maintained at the temperature of between 60 and 85 ℃ in the environment of 500 to 550R/min for 1 hour.
Further, in the step d, high-energy ball milling is carried out for 1.5 hours in an environment of 85-95 ℃ and 500-600R/min, then the suspension of the mixture is baked for 12-14 hours in an environment of 175-185 ℃ in vacuum under the protection of argon, then alcohol reagents are used for washing and filtering, and the product is baked for 8-10 hours in a vacuum oven at the temperature of 100-120 ℃ to obtain the anode material for the lithium ion battery.
The positive electrode material for the lithium ion battery coated by the carbon fluoride material prepared by the method.
A reserve type battery comprises the positive electrode material for the lithium ion battery coated by the carbon fluoride material prepared by the method.
The invention has the following positive beneficial effects:
the lithium secondary battery anode material obtained by the method has better compatibility with electrolyte in the storage process and keeps a stable charge state during storage, so that the battery containing the material has the excellent characteristics of long storage life and high rate performance, and the storage requirement of the special field on the battery is met.
Drawings
Fig. 1 is a graph showing discharge curves of B1 battery of example 3 of the present invention, B2 battery of example 4, and B3 of comparative example 1.
Detailed Description
The present invention will be described in further detail with reference to examples, but the present invention is not limited thereto.
Example 1
This example is used to illustrate the preparation method of the cathode material provided by the present invention:
(1) fluorinated Carbon (CF)0.8Japan Dajin) and poly (bis (4-aminophenyl) ether-alt-bis (4-carboxylphenylsulfonyl) imide) amide (LiPACA for short), N-methyl-pyrrolidone (NMP for short, national medicine), methanol (national medicine) solvent were mixed in the following mass ratio: 50%: 10%: 10%: 30% to obtainMixture A.
(2) And (3) putting the material A into a high-energy ball mill, and keeping the high-energy ball mill at the temperature of 60 ℃ for 1 hour in the environment of 500R/min to prepare suspension B.
(3) Subjecting the lithium cobaltate (LiCoO)2Xiamen tungsten industry) and lithium hydroxide (LiOH) in a mass ratio of 95:5 to prepare a mixture C.
(4) And adding C into the B, performing high-energy ball milling on the mixture in a high-energy ball mill for 1.5 hours in an environment of keeping the temperature at 85 ℃ and 500R/min stably, baking the suspension of the mixture in a vacuum drying oven under the protection of argon for 12-14 hours, washing and filtering the suspension by using an alcohol reagent, baking the product in the vacuum drying oven at the temperature of 100-185 ℃ for 8 hours to obtain the directly-used carbon fluoride material-coated lithium ion battery positive electrode material, wherein A1 is used, and the thickness of the carbon fluoride layer is measured to be between 2 and 4nm by using a transmission electron microscope (JEM-2010), and the performance of the carbon fluoride material is described in detail below.
Example 2
The difference from the examples is that x =3 in the raw material CFx in step (1), and the positive electrode material for a lithium ion battery prepared by the method in the examples is denoted as a 2.
Example 3
The material A1 obtained in example 1 was used as an active material, and mixed with carbon black and a solution of polyvinylidene fluoride (PVDF) in N, N-dimethylpyrrolidone (NMP) to prepare a uniform composite slurry, which was uniformly coated on an aluminum foil (15 μm) as a current collector and then dried at 100 ℃ to give a film having a thickness of 90 μm and a thickness of 1MPa × 1cm2Compacting under pressure and continuing the vacuum baking at 100 ℃ for 12 hours. In the dried pole piece, A1 accounts for 82wt% of the total coating, the adhesive accounts for 8wt% and the carbon black accounts for 10 wt%. Then cutting the obtained pole piece into pieces with the area of 1cm2The wafer of (3) serves as a positive electrode. Putting the dried pole piece into a battery shell in an argon glove box, putting a polypropylene porous membrane between the pole piece and a metal lithium piece, and dropwise adding a commercial electrolyte (1M LiPF) of the lithium ion battery6EC/DMC =3:7, Peking chemical reagent), to make the electrode plate completely infiltrate and assemble into a solidThe cell was tested, in which the negative electrode was metallic lithium, the separator was a polypropylene porous membrane (Celgard 2300), the cathode tab was next to the cathode sheet, and the anode tab was next to the lithium sheet.
After the experimental battery is prepared, the experimental battery is kept stand for 12 hours in an environment of 25 ℃, and is subjected to charging pretreatment on an automatic charging and discharging instrument (LAND, Wuhan Jinnuo science and technology Co., Ltd.), wherein the process is as follows: and calculating the current required by 0.02C charging according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, carrying out constant-current charging, starting charging from open-circuit voltage, wherein the cut-off voltage is 4.35V, and the charging temperature is stabilized at 25 ℃.
The charged experimental batteries are stored in a constant-temperature warehouse with the temperature of 25 ℃ and the humidity of less than 60 percent for 2 years. After 2 years, the experimental battery is taken out, the current required by 5C charging is calculated according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, constant-current discharging is carried out, discharging is started from the open-circuit voltage, the cut-off voltage is 2.5V, the discharging environment temperature is stabilized at 25 ℃, the discharging curve is labeled as B1, and the discharging capacity is labeled as C1.
Example 4
The material A2 of example 2 was used as an active material, and mixed with carbon black, N-dimethylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) to prepare a uniform composite slurry, which was uniformly coated on an aluminum foil (15 μm) as a current collector, and then dried at 100 ℃ to obtain a film having a thickness of 90 μm at 1MPa × 1cm2Compacting under pressure and continuing the vacuum baking at 100 ℃ for 12 hours. In the dried pole piece, A2 accounts for 82wt% of the total coating, the adhesive accounts for 8wt% and the carbon black accounts for 10 wt%. Then cutting the obtained pole piece into pieces with the area of 1cm2The wafer of (3) serves as a positive electrode. Putting the dried pole piece into a battery shell in an argon glove box, putting a polypropylene porous membrane between the pole piece and a metal lithium piece, and dropwise adding a commercial electrolyte (1M LiPF) of the lithium ion battery6EC/DMC =3:7 solvent, Beijing chemical reagent), so that the electrode plates are completely infiltrated, and an experimental battery is assembled, wherein the negative electrode in the battery is metallic lithium, and the diaphragmIs a polypropylene porous membrane (Celgard 2300) with the cathode head next to the cathode sheet and the anode head next to the lithium sheet.
After the experimental battery is prepared, the experimental battery is kept stand for 12 hours in an environment of 25 ℃, and is subjected to charging pretreatment on an automatic charging and discharging instrument (LAND, Wuhan Jinnuo science and technology Co., Ltd.), wherein the process is as follows: and calculating the current required by 0.02C charging according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, carrying out constant-current charging, starting charging from open-circuit voltage, wherein the cut-off voltage is 4.35V, and the charging temperature is stabilized at 25 ℃.
The charged experimental batteries are stored in a constant-temperature warehouse with the temperature of 25 ℃ and the humidity of less than 60 percent for 2 years. After 2 years, the experimental battery is taken out, the current required by 5C charging is calculated according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, constant-current discharging is carried out, discharging is started from the open-circuit voltage, the cut-off voltage is 2.5V, the discharging environment temperature is stabilized at 25 ℃, the discharging curve is labeled as B2, and the discharging capacity is labeled as C2.
Comparative example 1
Mixing commercial lithium cobaltate material (Xiamen tungsten industry) without coating carbon fluoride as active substance A3 with carbon black and N, N-dimethyl pyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) to prepare uniform composite slurry, uniformly coating the slurry on aluminum foil (15 μm) as current collector, drying at 100 deg.C to obtain film with thickness of 90 μm and thickness of 1MPa × 1cm2Compacting under pressure and baking at 100 ℃ for 12 hours. In the dried pole piece, A1 accounts for 82wt% of the total coating, the adhesive accounts for 8wt% and the carbon black accounts for 10 wt%. Then cutting the obtained pole piece into pieces with the area of 1cm2The wafer of (3) serves as a positive electrode. Putting the dried pole piece into a battery shell in an argon glove box, putting a polypropylene porous membrane between the pole piece and a metal lithium piece, and dropwise adding a commercial electrolyte (1M LiPF) of the lithium ion battery6EC/DMC =3:7 solvent, Beijing chemical reagent), so that the electrode plates are completely infiltrated, and an experimental battery is assembled, wherein the negative electrode in the battery is metal lithium, and the diaphragm is polypropylene multi-componentA porous membrane (Celgard 2300) with the cathode head next to the cathode sheet and the anode head next to the lithium sheet.
After the experimental battery is prepared, the experimental battery is kept stand for 12 hours in an environment of 25 ℃, and is subjected to charging pretreatment on an automatic charging and discharging instrument (LAND, Wuhan Jinnuo science and technology Co., Ltd.), wherein the process is as follows: and calculating the current required by 0.02C charging according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, carrying out constant-current charging, starting charging from open-circuit voltage, wherein the cut-off voltage is 4.35V, and the charging temperature is stabilized at 25 ℃.
The charged experimental batteries are stored in a constant-temperature warehouse with the temperature of 25 ℃ and the humidity of less than 60 percent for 2 years. After 2 years, the experimental battery is taken out, the current required by 5C charging is calculated according to the mass of the lithium cobaltate active substance in each pole piece by referring to the theoretical capacity density of the lithium cobaltate of 140mAh/g, constant-current discharging is carried out, discharging is started from the open-circuit voltage, the cut-off voltage is 2.5V, the discharging environment temperature is stabilized at 25 ℃, the discharging curve is labeled as B3, and the discharging capacity is labeled as C3.
Discharge capacity ratios of example 3, example 4 and comparative example 1 are shown in table 1:
discharge capacity ratios of example 3, example 4 and comparative example 1 are shown in fig. 1:
as can be seen from the discharge curve diagram 1 and the discharge capacity comparison table 1, under the same other conditions, the battery containing the lithium cobaltate cathode material prepared by the invention has better storage performance than the lithium cobaltate battery without the treatment of the invention: after two years of normal-temperature storage, the capacity retention rate of the battery provided by the invention is as high as 95.89% at a discharge rate of 5C, which shows that the prepared cathode material has good compatibility with common commercial electrolyte in a charge state, and can keep good surface and structural stability in long-time storage, so that the battery has higher storage performance than the traditional commercial lithium secondary battery, and can be used as a reserve battery.
It is also understood from the discharge graph 1 and the discharge capacity comparison table 1 that the storage property is improved when the value of x in CFx is increased, but the storage property of the positive electrode material B2 is lower than that of the battery prepared when the value of x is lower.
The above embodiments of the present invention illustrate that, during the storage process, when the thickness of the graphite fluoride coating layer is within the range found in the present invention, the positive electrode material prepared by the present invention has better compatibility with the electrolyte, and maintains a stable charge state during storage, so that the battery containing the material has longer storage life and high rate performance, and meets the storage requirement of the battery in the special field.
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are merely exemplary embodiments of the present invention, and are not intended to limit the scope of the present invention, and any modifications, equivalent substitutions, improvements and the like made within the spirit and principle of the present invention should be included in the scope of the present invention.
Claims (8)
1. A preparation method of a positive electrode material for a reserve type lithium battery is characterized by comprising the following steps:
a, mixing the carbon fluoride material with poly (bis (4-aminophenyl) ether-alt-bis (4-carboxybenzenesulfonyl) imide) amide, N-methyl-pyrrolidone and methanol solvent are mixed according to a certain mass ratio to obtain a mixture a;
wherein the mass ratio content of the carbon fluoride material in the mixture A is 30-60%;
poly (bis (4-aminophenyl) ether-alt-bis (4-carboxybenzenesulfonyl) imide) amide: n-methyl pyrrolidone: the mass ratio of methanol is 1: 1: 3;
b, putting the mixture A into a high-energy ball mill to prepare a suspension B;
c, fully mixing the positive electrode material and lithium hydroxide according to the mass ratio of 95:5 to prepare a mixture C;
and d, adding the mixture C into the suspension B, then placing the suspension B into a high-energy ball mill, keeping the suspension B stable at 85-95 ℃ and performing high-energy ball milling for 1.5 hours in an environment of 500-600R/min, then baking the suspension of the mixture in a vacuum protected by argon for 12-14 hours in an environment of 175-185 ℃, then washing and filtering the suspension by using an alcohol reagent, and baking the product in a vacuum oven for 8-10 hours at the temperature of 100-120 ℃ to obtain the directly-used carbon fluoride material-coated lithium ion battery positive electrode material.
2. The method as claimed in claim 1, wherein the carbon fluoride material is represented by CFx, x = 0.1-3.
3. The method as claimed in claim 1, wherein the positive electrode material is one or more of lithium cobaltate, lithium iron phosphate, ternary material, and lithium-rich phase positive electrode material.
4. The method of claim 1, wherein the carbon fluoride material has a coating thickness of 1-20 nm.
5. The method of claim 4, wherein the carbon fluoride material has a coating thickness of 2-5 nm.
6. The method for preparing a positive electrode material for a reserve lithium battery as claimed in claim 1, wherein the high energy grinding ball is maintained at 60-85 ℃ for 1 hour in an environment of 500-550R/min in the step b.
7. A positive electrode material for a lithium ion battery coated with a carbon fluoride-based material prepared by the method according to any one of claims 1 to 4.
8. A reserve battery comprising the positive electrode material for a lithium ion battery coated with the carbon fluoride-based material prepared by the method according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810664954.0A CN108807929B (en) | 2018-06-25 | 2018-06-25 | Preparation method of positive electrode material for reserve type lithium battery and product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810664954.0A CN108807929B (en) | 2018-06-25 | 2018-06-25 | Preparation method of positive electrode material for reserve type lithium battery and product |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108807929A CN108807929A (en) | 2018-11-13 |
CN108807929B true CN108807929B (en) | 2021-06-25 |
Family
ID=64070941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810664954.0A Active CN108807929B (en) | 2018-06-25 | 2018-06-25 | Preparation method of positive electrode material for reserve type lithium battery and product |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108807929B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782718B (en) * | 2021-08-30 | 2023-02-03 | 上海空间电源研究所 | High-voltage lithium ion battery material, lithium ion battery and preparation method thereof |
CN117712366A (en) * | 2024-02-05 | 2024-03-15 | 济南中瑞泰新材料科技有限公司 | Preparation method of coated electrode material, coated electrode material and lithium ion battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633313A (en) * | 2012-11-13 | 2014-03-12 | 天津锦美碳材科技发展有限公司 | Preparation method for graphite fluoride-lithium manganate composite material and application of same to prepare lithium ion battery as cathode material |
WO2014181778A1 (en) * | 2013-05-09 | 2014-11-13 | 旭硝子株式会社 | Positive-electrode material and manufacturing method therefor |
CN104425812A (en) * | 2013-09-06 | 2015-03-18 | 中国科学院大连化学物理研究所 | Transition metal oxide positive electrode material of lithium as well as preparation and application of transition metal oxide positive electrode material |
CN104577067A (en) * | 2015-01-11 | 2015-04-29 | 方美卿 | Method for preparing fluorinated carbon black coated lithium cobalt oxide cathode material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101693296B1 (en) * | 2011-12-23 | 2017-01-06 | 삼성에스디아이 주식회사 | Cathode active material and method of manufacturing the same and lithium secondary battery including the same |
-
2018
- 2018-06-25 CN CN201810664954.0A patent/CN108807929B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103633313A (en) * | 2012-11-13 | 2014-03-12 | 天津锦美碳材科技发展有限公司 | Preparation method for graphite fluoride-lithium manganate composite material and application of same to prepare lithium ion battery as cathode material |
WO2014181778A1 (en) * | 2013-05-09 | 2014-11-13 | 旭硝子株式会社 | Positive-electrode material and manufacturing method therefor |
CN104425812A (en) * | 2013-09-06 | 2015-03-18 | 中国科学院大连化学物理研究所 | Transition metal oxide positive electrode material of lithium as well as preparation and application of transition metal oxide positive electrode material |
CN104577067A (en) * | 2015-01-11 | 2015-04-29 | 方美卿 | Method for preparing fluorinated carbon black coated lithium cobalt oxide cathode material |
Also Published As
Publication number | Publication date |
---|---|
CN108807929A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220246903A1 (en) | Positive electrode, method for preparing the same and electrochemical device | |
CN113036106A (en) | Composite lithium supplement additive and preparation method and application thereof | |
US20220223859A1 (en) | Positive electrode lithium supplementing material, positive electrode containing positive electrode lithium supplementing material, and preparation method thereof | |
CN101515640B (en) | Cathode and lithium ion secondary battery containing same | |
JP5209964B2 (en) | Lithium secondary battery | |
EP4220754A1 (en) | Lithium metal negative electrode plate, electrochemical apparatus, and electronic device | |
CN102449811A (en) | Lithium secondary battery having high energy density | |
CN109449373A (en) | Negative pole piece and battery | |
CN111082038B (en) | Low-boron-content lithium-boron alloy electrode material for lithium battery and application | |
CN110212247B (en) | Battery cell | |
WO2020118884A1 (en) | Wound-type cell, lithium ion secondary battery and negative electrode plate | |
CN109786832B (en) | Electrolyte additives, electrolytes and lithium-ion secondary batteries | |
JP2014504436A (en) | For producing positive electrode material for lithium ion battery containing graphene oxide | |
CN105226256A (en) | For modified cathode material and the lithium titanate battery of lithium titanate battery | |
CN109659538B (en) | Preparation of rich lithium manganese-based oxide material based on coating of dopamine and lithium phosphate, product and application thereof | |
WO2023070769A1 (en) | Positive electrode, preparation method therefor, and lithium ion secondary battery | |
CN115133222A (en) | Double-coating diaphragm capable of simultaneously inhibiting lithium dendrite and transition metal dissolution, preparation method and lithium metal battery applying diaphragm | |
CN101197436A (en) | Positive plate of lithium ion secondary battery, and battery including the same | |
CN108807929B (en) | Preparation method of positive electrode material for reserve type lithium battery and product | |
CN112825371A (en) | Electrolyte for high-voltage lithium ion battery and lithium ion battery comprising same | |
WO2015060483A1 (en) | Non-crosslinked/crosslinked polymer hybrid binder, preparation method therefor, and anode active material composition for lithium secondary battery including same | |
WO2022198614A1 (en) | Negative electrode material, preparation method therefor, electrochemical device, and electronic device | |
CN117996215B (en) | Battery, preparation method thereof and electricity utilization device | |
CN113113579A (en) | Negative electrode active material, preparation method thereof and lithium ion battery | |
CN114613963B (en) | Negative electrode material, preparation method thereof, negative electrode sheet and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |