CN108807625A - A kind of AlN buffer layer structures and preparation method thereof - Google Patents
A kind of AlN buffer layer structures and preparation method thereof Download PDFInfo
- Publication number
- CN108807625A CN108807625A CN201810374639.4A CN201810374639A CN108807625A CN 108807625 A CN108807625 A CN 108807625A CN 201810374639 A CN201810374639 A CN 201810374639A CN 108807625 A CN108807625 A CN 108807625A
- Authority
- CN
- China
- Prior art keywords
- gan
- layer
- buffer layer
- aln
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 45
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000003491 array Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 48
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 36
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 35
- 230000004888 barrier function Effects 0.000 claims description 28
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 23
- 239000011777 magnesium Substances 0.000 claims description 15
- 238000005229 chemical vapour deposition Methods 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 229910052594 sapphire Inorganic materials 0.000 claims description 7
- 239000010980 sapphire Substances 0.000 claims description 7
- 229910000077 silane Inorganic materials 0.000 claims description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 claims description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910010936 LiGaO2 Inorganic materials 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- 235000010210 aluminium Nutrition 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 230000003252 repetitive effect Effects 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 18
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 6
- 239000002061 nanopillar Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 14
- 239000010408 film Substances 0.000 description 14
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Led Devices (AREA)
Abstract
本发明公开了一种AlN缓冲层结构,包括衬底、AlN纳米柱阵列缓冲层、AlGaN缓冲层、n‑GaN层、多量子阱、电子阻挡层、P‑GaN。其中,AlN缓冲层结构为纳米柱阵列结构。相对于薄膜型缓冲层,纳米柱阵列缓冲层与衬底的接触面积小,应力容易得到释放,可大大缩短裂纹长度;纳米柱材料有缺陷自排除效应,可大大降低缺陷密度。基于以上两点,以AlN纳米柱阵列作为缓冲材料,更易获得无裂纹高质量的GaN薄膜,进而提升GaN基LED器件的整体性能。同时,本发明还公开了AlN缓冲层结构制备方法,采用两步法制备LED外延片,先用PECVD生长AlN纳米阵列缓冲层,再用MOCVD生长后续材料,明显提高了LED外延片的制备效率。
The invention discloses an AlN buffer layer structure, which comprises a substrate, an AlN nano column array buffer layer, an AlGaN buffer layer, an n-GaN layer, multiple quantum wells, an electron blocking layer and a P-GaN. Wherein, the AlN buffer layer structure is a nano-column array structure. Compared with the film-type buffer layer, the contact area between the nano-pillar array buffer layer and the substrate is small, the stress is easily released, and the crack length can be greatly shortened; the nano-pillar material has a defect self-exclusion effect, which can greatly reduce the defect density. Based on the above two points, using AlN nanocolumn arrays as a buffer material makes it easier to obtain crack-free and high-quality GaN films, thereby improving the overall performance of GaN-based LED devices. At the same time, the invention also discloses a method for preparing the structure of the AlN buffer layer, which adopts a two-step method to prepare the LED epitaxial wafer, first grows the AlN nano-array buffer layer by PECVD, and then grows the subsequent material by MOCVD, which obviously improves the preparation efficiency of the LED epitaxial wafer.
Description
技术领域technical field
本发明属于半导体技术领域,涉及一种AlN缓冲层及其制备方法,尤其涉及一种Si衬底上GaN基发光二极管的AlN缓冲层结构及其制备方法。The invention belongs to the technical field of semiconductors, and relates to an AlN buffer layer and a preparation method thereof, in particular to an AlN buffer layer structure of a GaN-based light-emitting diode on a Si substrate and a preparation method thereof.
背景技术Background technique
发光二极管(light-emitting diode,LED)因具有高效、节能环保、长寿命、体积小等优点,有望代替传统的白炽灯、荧光灯及气体放电灯成为新一代的照明光源,引起了产业及科研领域的广泛关注。自1962年第一只LED诞生至今,LED的各方面性能都得到了极大的提升,应用领域也越来越广。Light-emitting diodes (light-emitting diodes, LEDs) are expected to replace traditional incandescent lamps, fluorescent lamps and gas discharge lamps as a new generation of lighting sources due to their advantages of high efficiency, energy saving and environmental protection, long life, and small size. widespread attention. Since the first LED was born in 1962, the performance of LEDs has been greatly improved in all aspects, and the application fields have become wider and wider.
目前,LED要真正实现大规模广泛应用,需要进一步提高LED芯片的发光效率。然而商业化的LED发光效率仍然有待提高,这主要是因为采用蓝宝石衬底上外延生长造成的。一方面,由于蓝宝石与GaN的晶格失配高达13.3%,导致外延GaN薄膜过程中形成很高的位错密度,从而降低了材料的载流子迁移率,缩短了载流子寿命,最终影响了GaN基器件的性能。另一方面,由于室温下蓝宝石(热膨胀系数6.63×10-6K-1)与GaN(热膨胀系数5.6×10-6K-1)之间的热失配度高,当外延层生长结束后,器件从外延生长的高温冷却至室温过程会产生很大的压应力,容易导致薄膜和衬底的龟裂。此外,由于蓝宝石的热导率低,室温下是25W/m·K,很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。At present, if LEDs are to be widely used on a large scale, it is necessary to further improve the luminous efficiency of LED chips. However, the luminous efficiency of commercial LEDs still needs to be improved, which is mainly due to the use of epitaxial growth on sapphire substrates. On the one hand, due to the lattice mismatch between sapphire and GaN as high as 13.3%, a high dislocation density is formed during the epitaxial GaN film process, which reduces the carrier mobility of the material and shortens the carrier lifetime, which ultimately affects performance of GaN-based devices. On the other hand, due to the high thermal mismatch between sapphire (thermal expansion coefficient 6.63×10 -6 K -1 ) and GaN (thermal expansion coefficient 5.6×10 -6 K -1 ) at room temperature, after the growth of the epitaxial layer is completed, The process of cooling the device from the high temperature of epitaxial growth to room temperature will generate a lot of compressive stress, which will easily lead to cracks in the film and substrate. In addition, due to the low thermal conductivity of sapphire, which is 25W/m·K at room temperature, it is difficult to discharge the heat generated in the chip in time, resulting in heat accumulation, which reduces the internal quantum efficiency of the device and ultimately affects the performance of the device.
在此背景下,生产工艺成熟且可用较低成本获得大面积高质量的Si衬底可以有效降低LED的制造成本,同时也十分适合于制备大功率的LED器件。在Si衬底LED发展的前期,由于Si衬底与GaN存在热失配、晶格失配与回融刻蚀等问题,无裂纹高质量的GaN薄膜的难以获得。针对这个难题,一般的思路是插入AlN和AlGaN薄膜缓冲层来综合控制GaN生长的形核过程与应力状态,但获得的GaN薄膜质量依旧不能令人满意。In this context, a large-area high-quality Si substrate with a mature production process and low cost can effectively reduce the manufacturing cost of LEDs, and is also very suitable for the preparation of high-power LED devices. In the early stage of the development of Si substrate LEDs, due to the problems of thermal mismatch, lattice mismatch and remelting etching between Si substrate and GaN, it is difficult to obtain high-quality GaN films without cracks. To solve this problem, the general idea is to insert AlN and AlGaN film buffer layers to comprehensively control the nucleation process and stress state of GaN growth, but the quality of the obtained GaN film is still not satisfactory.
发明内容Contents of the invention
为了克服现有技术的不足,本发明的目的之一在于提供一种AlN缓冲层结构,它采用AlN纳米柱阵列缓冲层,相对于薄膜型缓冲层,纳米柱阵列缓冲层与衬底的接触面积小,应力容易得到释放,可大大缩短裂纹长度;纳米柱材料有缺陷自排除效应,可大大降低缺陷密度。基于以上两点,以AlN纳米柱阵列作为缓冲材料,更易获得无裂纹高质量的GaN薄膜,进而提升GaN基LED器件的整体性能。In order to overcome the deficiencies in the prior art, one of the purposes of the present invention is to provide a kind of AlN buffer layer structure, it adopts AlN nano-column array buffer layer, with respect to thin-film type buffer layer, the contact area of nano-column array buffer layer and substrate Small, the stress is easily released, which can greatly shorten the crack length; the nano-column material has a defect self-exclusion effect, which can greatly reduce the defect density. Based on the above two points, using AlN nanocolumn arrays as a buffer material makes it easier to obtain crack-free and high-quality GaN films, thereby improving the overall performance of GaN-based LED devices.
本发明的目的之二在于提供一种AlN缓冲层结构的制备方法,采用两步法制备LED外延片,先用PECVD生长AlN纳米阵列缓冲层,再用MOCVD生长后续材料,明显提高了LED外延片的制备效率。The second object of the present invention is to provide a method for preparing an AlN buffer layer structure. A two-step method is used to prepare LED epitaxial wafers. First, PECVD is used to grow AlN nano-array buffer layers, and then MOCVD is used to grow subsequent materials, which significantly improves the performance of LED epitaxial wafers. production efficiency.
本发明的目的之一采用如下技术方案实现:One of purpose of the present invention adopts following technical scheme to realize:
一种AlN缓冲层结构,其特征在于,其包括衬底,在衬底上依次生长出AlN纳米柱阵列缓冲层、AlGaN缓冲层、GaN三维层、n-GaN层、InGaN/GaN多量子阱层、电子阻挡层及p-GaN层。A kind of AlN buffer layer structure, it is characterized in that, it comprises substrate, grows AlN nanocolumn array buffer layer, AlGaN buffer layer, GaN three-dimensional layer, n-GaN layer, InGaN/GaN multiple quantum well layer sequentially on substrate , an electron blocking layer and a p-GaN layer.
进一步地,所述衬底包括蓝宝石、Si、SiC、GaN、ZnO、LiGaO2、LaSrAlTaO6、Al或Cu。Further, the substrate includes sapphire, Si, SiC, GaN, ZnO, LiGaO 2 , LaSrAlTaO 6 , Al or Cu.
进一步地,所述AlN纳米柱阵列缓冲层的高度为200-400nm。Further, the height of the AlN nanocolumn array buffer layer is 200-400nm.
进一步地,所述AlGaN缓冲层的厚度分别为400-500nm,其中,Al组分所占的摩尔比例为10%-90%;所述GaN三维层的厚度为500-1500nm。Further, the thickness of the AlGaN buffer layer is 400-500 nm, wherein the molar ratio of the Al component is 10%-90%; the thickness of the GaN three-dimensional layer is 500-1500 nm.
进一步地,所述n-GaN层的厚度为1500-3000nm,Si掺杂浓度为1×1017-1×1019cm-3。Further, the thickness of the n-GaN layer is 1500-3000 nm, and the Si doping concentration is 1×10 17 -1×10 19 cm −3 .
进一步地,所述InGaN/GaN多量子阱层为多周期重复结构,每一周期由量子垒层和量子阱层组成;量子垒层的材料为GaN、InGaN、AlGaN或AlInGaN,量子阱层的材料为InGaN;量子垒层材料的带隙比量子阱层材料的带隙大;量子垒层的厚度比量子阱层的厚度大;多量子阱的周期数为3-20;该多量子阱最后一层为量子垒层。Further, the InGaN/GaN multi-quantum well layer is a multi-period repeating structure, and each period is composed of a quantum barrier layer and a quantum well layer; the material of the quantum barrier layer is GaN, InGaN, AlGaN or AlInGaN, and the material of the quantum well layer is It is InGaN; the band gap of the quantum barrier layer material is larger than that of the quantum well layer material; the thickness of the quantum barrier layer is larger than the thickness of the quantum well layer; the number of periods of the multi-quantum well is 3-20; the last multi-quantum well layer is a quantum barrier layer.
进一步地,所述电子阻挡层的材料为AlGaN、InAlN或AlInGaN,厚度为20-50nm,Mg掺杂浓度为1×1017-1×1019cm-3。Further, the material of the electron blocking layer is AlGaN, InAlN or AlInGaN, the thickness is 20-50 nm, and the Mg doping concentration is 1×10 17 -1×10 19 cm −3 .
进一步地,所述p-GaN层的厚度为200-300nm,Mg掺杂浓度为1×1017-1×1019cm-3。Further, the thickness of the p-GaN layer is 200-300 nm, and the Mg doping concentration is 1×10 17 -1×10 19 cm -3 .
本发明的目的之二采用如下技术方案实现:Two of the purpose of the present invention adopts following technical scheme to realize:
一种AlN缓冲层结构的制备方法,其特征在于,包括:A method for preparing an AlN buffer layer structure, characterized in that it comprises:
1)AlN纳米柱阵列缓冲层的生长步骤:采用等离子增强化学气相沉积工艺在衬底上生长AlN纳米柱阵列缓冲层;1) The growth step of the AlN nanocolumn array buffer layer: the AlN nanocolumn array buffer layer is grown on the substrate by a plasma-enhanced chemical vapor deposition process;
2)AlGaN缓冲层、GaN三维层、n-GaN层的生长步骤:采用金属有机化学气相沉积工艺在AlN纳米柱阵列缓冲层上依次生长AlGaN缓冲层、GaN三维层、n-GaN层;2) The growth steps of AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer: using metal organic chemical vapor deposition process to sequentially grow AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer on the AlN nanocolumn array buffer layer;
3)InGaN/GaN多量子阱层生长步骤:采用金属有机化学气相沉积工艺在n-GaN层生长InGaN/GaN多量子阱层;3) InGaN/GaN multi-quantum well layer growth step: growing an InGaN/GaN multi-quantum well layer on the n-GaN layer by metal-organic chemical vapor deposition;
4)电子阻挡层、p-GaN层的生长步骤:采用金属有机化学气相沉积工艺在多量子阱层上依次生长电子阻挡层、p-GaN层。4) The step of growing the electron blocking layer and the p-GaN layer: the electron blocking layer and the p-GaN layer are sequentially grown on the multi-quantum well layer by metal organic chemical vapor deposition process.
进一步地,further,
步骤1)中,具体工艺条件如下:反应室温度保持为750℃,射频功率150W,AlCl粉末的加入量为0.500g,通入100sccm的氨气和30sccm的氩气;In step 1), the specific process conditions are as follows: the temperature of the reaction chamber is maintained at 750° C., the radio frequency power is 150 W, the amount of AlCl powder added is 0.500 g, and 100 sccm of ammonia gas and 30 sccm of argon gas are introduced;
步骤2)中,具体工艺条件如下:Step 2) in, concrete processing condition is as follows:
AlGaN缓冲层的工艺条件为:反应室温度为1000℃,反应室压力为100Torr,通入180sccm的氨气、60sccm的氢气、300sccm的三甲基镓和250sccm的三甲基铝;;The process conditions of the AlGaN buffer layer are: the temperature of the reaction chamber is 1000°C, the pressure of the reaction chamber is 100Torr, 180sccm of ammonia gas, 60sccm of hydrogen gas, 300sccm of trimethylgallium and 250sccm of trimethylaluminum are introduced;
u-GaN层的工艺条件为:反应室温度为800℃,反应室压力为200Torr,通入200sccm氨气、100sccm氮气和380sccm三甲基镓;n-GaN层的工艺条件为:反应室温度为1000℃,反应室压力为200Torr,通入60sccm的硅烷、200sccm的氨气、100sccm的氮气、380sccm的三甲基镓;步骤3)中,具体工艺条件如下:The process conditions of the u-GaN layer are: the temperature of the reaction chamber is 800°C, the pressure of the reaction chamber is 200Torr, 200sccm ammonia gas, 100sccm nitrogen gas and 380sccm trimethylgallium are introduced; the process conditions of the n-GaN layer are: the reaction chamber temperature is 1000°C, the reaction chamber pressure is 200 Torr, 60 sccm of silane, 200 sccm of ammonia gas, 100 sccm of nitrogen gas, and 380 sccm of trimethylgallium are introduced; in step 3), the specific process conditions are as follows:
3-1)反应室温度保持为850℃,气压保持为100Torr,通入60sccm硅烷、250sccm氨气、100sccm氮气和380sccm三甲基镓,在n-GaN层上生长GaN势垒层;3-1) The temperature of the reaction chamber is kept at 850° C., the air pressure is kept at 100 Torr, and 60 sccm of silane, 250 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are introduced to grow a GaN barrier layer on the n-GaN layer;
3-2)反应室温度保持为750℃,气压保持为200Torr,通入250sccm氨气、100sccm氮气、380sccm三甲基镓和80sccm三甲基铟,在GaN势垒层上生长InGaN势阱层;3-2) The temperature of the reaction chamber is kept at 750° C., the air pressure is kept at 200 Torr, 250 sccm of ammonia gas, 100 sccm of nitrogen gas, 380 sccm of trimethylgallium and 80 sccm of trimethylindium are fed into the reaction chamber, and an InGaN potential well layer is grown on the GaN barrier layer;
3-3)按照设定的循环次数依次循环重复步骤3-1)和步骤3-2),得到InGaN/GaN多量子阱;3-3) repeat step 3-1) and step 3-2) sequentially according to the set number of cycles to obtain InGaN/GaN multiple quantum wells;
步骤4)中,具体工艺条件如下:Step 4) in, concrete processing condition is as follows:
电子阻挡层的工艺条件为:反应室温度为900℃,反应室压力为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气、380sccm三甲基镓和150sccm三甲基铝;The process conditions of the electron blocking layer are: the temperature of the reaction chamber is 900° C., the pressure of the reaction chamber is 100 Torr, and 50 sccm of magnesium, 250 sccm of ammonia, 100 sccm of nitrogen, 380 sccm of trimethylgallium and 150 sccm of trimethylaluminum are introduced;
p-GaN层的工艺条件为:反应室温度为900℃,反应室压力为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气和380sccm三甲基镓。相比现有技术,本发明的有益效果在于:The process conditions of the p-GaN layer are as follows: the temperature of the reaction chamber is 900° C., the pressure of the reaction chamber is 100 Torr, and 50 sccm magnesium, 250 sccm ammonia, 100 sccm nitrogen and 380 sccm trimethylgallium are fed. Compared with the prior art, the beneficial effects of the present invention are:
本发明以AlN纳米柱阵列作为缓冲层,相对于薄膜型缓冲层,纳米柱阵列缓冲层与衬底的接触面积小,应力容易得到释放,可大大缩短裂纹长度;纳米柱材料有缺陷自排除效应,可大大降低缺陷密度。基于以上两点,以AlN纳米柱阵列作为缓冲材料,更易获得无裂纹高质量的GaN薄膜,进而提升GaN基LED器件的电学性能。同时,采用两步法制备LED外延片,先用PECVD生长AlN纳米阵列缓冲层,再用MOCVD生长后续材料,明显提高了LED外延片的制备效率。The present invention uses the AlN nano-column array as the buffer layer. Compared with the thin-film buffer layer, the contact area between the nano-column array buffer layer and the substrate is small, the stress is easily released, and the crack length can be greatly shortened; the nano-column material has a defect self-exclusion effect , can greatly reduce the defect density. Based on the above two points, using the AlN nanopillar array as a buffer material, it is easier to obtain a crack-free and high-quality GaN film, thereby improving the electrical performance of GaN-based LED devices. At the same time, a two-step method is used to prepare LED epitaxial wafers. First, PECVD is used to grow the AlN nano-array buffer layer, and then MOCVD is used to grow subsequent materials, which significantly improves the preparation efficiency of LED epitaxial wafers.
附图说明Description of drawings
图1为实施例1中的AlN缓冲层结构的结构示意图;Fig. 1 is the structural representation of the AlN buffer layer structure in embodiment 1;
图1中:1、衬底;2、AlN纳米柱阵列缓冲层;3、AlGaN缓冲层;4、GaN三维层;5、n-GaN层;6、InGaN/GaN多量子阱层;61、InGaN势阱层;62、GaN势垒层;7、电子阻挡层;8、P-GaN层。In Figure 1: 1. Substrate; 2. AlN nanocolumn array buffer layer; 3. AlGaN buffer layer; 4. GaN three-dimensional layer; 5. n-GaN layer; 6. InGaN/GaN multiple quantum well layer; 61. InGaN Potential well layer; 62, GaN barrier layer; 7, electron blocking layer; 8, P-GaN layer.
图2为实施例1中AlN纳米柱阵列缓冲层的俯视图。FIG. 2 is a top view of the buffer layer of the AlN nanocolumn array in Embodiment 1.
图3为采用AlN纳米柱阵列缓冲层的GAN(0002)的x射线衍射图谱。Fig. 3 is an x-ray diffraction pattern of GAN (0002) using an AlN nanocolumn array buffer layer.
图4为采用AlN薄膜缓冲层的GAN(0002)的x射线衍射图谱。Fig. 4 is an x-ray diffraction pattern of GAN (0002) using an AlN film buffer layer.
图5为采用AlN纳米柱阵列缓冲层的GAN(1012)的x射线衍射图谱。Fig. 5 is an x-ray diffraction pattern of GAN (1012) using an AlN nanocolumn array buffer layer.
图6为采用AlN薄膜缓冲层的GAN(1012)的x射线衍射图谱。Fig. 6 is an x-ray diffraction pattern of GAN (1012) using an AlN film buffer layer.
图7为采用AlN纳米柱阵列缓冲层的LED芯片电性测试结果图。FIG. 7 is a graph showing the electrical test results of an LED chip using an AlN nanocolumn array buffer layer.
图8为采用AlN薄膜缓冲层的LED芯片电性测试结果图。FIG. 8 is a graph showing the electrical test results of an LED chip using an AlN film buffer layer.
具体实施例方式Specific embodiments
下面,结合附图以及具体实施例方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。除特殊说明的之外,本实施例中所采用到的材料及设备均可从市场购得。In the following, the present invention will be further described in conjunction with the accompanying drawings and specific embodiments. It should be noted that, on the premise of not conflicting, the various embodiments or technical features described below can be combined arbitrarily to form new implementations. example. Unless otherwise specified, the materials and equipment used in this embodiment can be purchased from the market.
一种AlN缓冲层结构,其包括衬底,在衬底上依次生长出AlN纳米柱阵列缓冲层、AlGaN缓冲层、GaN三维层、n-GaN层、InGaN/GaN多量子阱层、电子阻挡层及p-GaN层。An AlN buffer layer structure, which includes a substrate, on which an AlN nanocolumn array buffer layer, an AlGaN buffer layer, a GaN three-dimensional layer, an n-GaN layer, an InGaN/GaN multi-quantum well layer, and an electron blocking layer are sequentially grown And p-GaN layer.
作为优选的实施方式,所述衬底包括蓝宝石、Si、SiC、GaN、ZnO、LiGaO2、LaSrAlTaO6、Al或Cu。As a preferred embodiment, the substrate includes sapphire, Si, SiC, GaN, ZnO, LiGaO 2 , LaSrAlTaO 6 , Al or Cu.
作为优选的实施方式,所述AlN纳米柱阵列缓冲层的高度为200-400nm。As a preferred embodiment, the buffer layer of the AlN nanocolumn array has a height of 200-400 nm.
作为优选的实施方式,所述AlGaN缓冲层的厚度分别为400-500nm,其中,Al组分所占的摩尔比例为10%-90%。As a preferred embodiment, the thickness of the AlGaN buffer layer is 400-500nm respectively, wherein the molar proportion of the Al component is 10%-90%.
作为优选的实施方式,所述GaN三维层的厚度为500-1500nm。As a preferred implementation manner, the thickness of the GaN three-dimensional layer is 500-1500 nm.
作为优选的实施方式,所述n-GaN层的厚度为1500-3000nm,Si掺杂浓度为1×1017-1×1019cm-3。As a preferred embodiment, the thickness of the n-GaN layer is 1500-3000 nm, and the Si doping concentration is 1×10 17 -1×10 19 cm -3 .
作为优选的实施方式,所述InGaN/GaN多量子阱层为多周期重复结构,每一周期由量子垒层和量子阱层组成;量子垒层的材料为GaN、InGaN、AlGaN或AlInGaN,量子阱层的材料为InGaN;量子垒层材料的带隙比量子阱层材料的带隙大;量子垒层的厚度比量子阱层的厚度大;多量子阱的周期数为3-20;该多量子阱最后一层为量子垒层。As a preferred embodiment, the InGaN/GaN multi-quantum well layer is a multi-period repeating structure, and each period is composed of a quantum barrier layer and a quantum well layer; the material of the quantum barrier layer is GaN, InGaN, AlGaN or AlInGaN, and the quantum well The material of the layer is InGaN; the band gap of the quantum barrier layer material is larger than that of the quantum well layer material; the thickness of the quantum barrier layer is larger than the thickness of the quantum well layer; the period number of the multi-quantum well is 3-20; the multi-quantum The last layer of the well is the quantum barrier layer.
作为优选的实施方式,所述电子阻挡层的材料为AlGaN、InAlN或AlInGaN,厚度为20-50nm,Mg掺杂浓度为1×1017-1×1019cm-3。As a preferred embodiment, the material of the electron blocking layer is AlGaN, InAlN or AlInGaN, the thickness is 20-50 nm, and the Mg doping concentration is 1×10 17 -1×10 19 cm -3 .
作为优选的实施方式,所述p-GaN层的厚度为200-300nm,Mg掺杂浓度为1×1017-1×1019cm-3。As a preferred embodiment, the thickness of the p-GaN layer is 200-300 nm, and the Mg doping concentration is 1×10 17 -1×10 19 cm -3 .
一种AlN缓冲层结构的制备方法,其特征在于,包括:A method for preparing an AlN buffer layer structure, characterized in that it comprises:
1)AlN纳米柱阵列缓冲层的生长步骤:采用等离子增强化学气相沉积工艺在衬底上生长AlN纳米柱阵列缓冲层;1) The growth step of the AlN nanocolumn array buffer layer: the AlN nanocolumn array buffer layer is grown on the substrate by a plasma-enhanced chemical vapor deposition process;
2)AlGaN缓冲层、GaN三维层、n-GaN层的生长步骤:采用金属有机化学气相沉积工艺在AlN纳米柱阵列缓冲层上依次生长AlGaN缓冲层、GaN三维层、n-GaN层;2) The growth steps of AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer: using metal organic chemical vapor deposition process to sequentially grow AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer on the AlN nanocolumn array buffer layer;
3)InGaN/GaN多量子阱层生长步骤:采用金属有机化学气相沉积工艺在n-GaN层生长InGaN/GaN多量子阱层;3) InGaN/GaN multi-quantum well layer growth step: growing an InGaN/GaN multi-quantum well layer on the n-GaN layer by metal-organic chemical vapor deposition;
4)电子阻挡层、p-GaN层的生长步骤:采用金属有机化学气相沉积工艺在多量子阱层上依次生长电子阻挡层、p-GaN层。4) The step of growing the electron blocking layer and the p-GaN layer: the electron blocking layer and the p-GaN layer are sequentially grown on the multi-quantum well layer by metal organic chemical vapor deposition process.
作为优选的实施方式,As a preferred embodiment,
步骤1)中,具体工艺条件如下:反应室温度保持为750℃,射频功率150W,AlCl粉末的加入量为0.500g,通入100sccm的氨气和30sccm的氩气;In step 1), the specific process conditions are as follows: the temperature of the reaction chamber is maintained at 750° C., the radio frequency power is 150 W, the amount of AlCl powder added is 0.500 g, and 100 sccm of ammonia gas and 30 sccm of argon gas are introduced;
步骤2)中,具体工艺条件如下:Step 2) in, concrete processing condition is as follows:
AlGaN缓冲层的工艺条件为:反应室温度为1000℃,反应室压力为100Torr,通入180sccm的氨气、60sccm的氢气、300sccm的三甲基镓和250sccm的三甲基铝;The process conditions of the AlGaN buffer layer are as follows: the temperature of the reaction chamber is 1000°C, the pressure of the reaction chamber is 100Torr, 180sccm of ammonia gas, 60sccm of hydrogen gas, 300sccm of trimethylgallium and 250sccm of trimethylaluminum are introduced;
u-GaN层的工艺条件为:反应室温度为800℃,反应室压力为200Torr,通入200sccm氨气、100sccm氮气和380sccm三甲基镓;The process conditions of the u-GaN layer are: the temperature of the reaction chamber is 800°C, the pressure of the reaction chamber is 200Torr, and 200sccm ammonia gas, 100sccm nitrogen gas and 380sccm trimethylgallium are introduced;
n-GaN层的工艺条件为:反应室温度为1000℃,反应室压力为200Torr,通入60sccm的硅烷、200sccm的氨气、100sccm的氮气、380sccm的三甲基镓;步骤3)中,具体工艺条件如下:The process conditions of the n-GaN layer are: the temperature of the reaction chamber is 1000° C., the pressure of the reaction chamber is 200 Torr, 60 sccm of silane, 200 sccm of ammonia gas, 100 sccm of nitrogen gas, and 380 sccm of trimethylgallium are introduced; in step 3), specifically The process conditions are as follows:
3-1)反应室温度保持为850℃,气压保持为100Torr,通入60sccm硅烷、250sccm氨气、100sccm氮气和380sccm三甲基镓,在n-GaN层上生长GaN势垒层;3-1) The temperature of the reaction chamber is kept at 850° C., the air pressure is kept at 100 Torr, and 60 sccm of silane, 250 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are introduced to grow a GaN barrier layer on the n-GaN layer;
3-2)反应室温度保持为750℃,气压保持为200Torr,通入250sccm氨气、100sccm氮气、380sccm三甲基镓和80sccm三甲基铟,在GaN势垒层上生长InGaN势阱层;3-2) The temperature of the reaction chamber is kept at 750° C., the air pressure is kept at 200 Torr, 250 sccm of ammonia gas, 100 sccm of nitrogen gas, 380 sccm of trimethylgallium and 80 sccm of trimethylindium are fed into the reaction chamber, and an InGaN potential well layer is grown on the GaN barrier layer;
3-3)按照设定的循环次数依次循环重复步骤3-1)和步骤3-2),得到InGaN/GaN多量子阱;3-3) repeat step 3-1) and step 3-2) sequentially according to the set number of cycles to obtain InGaN/GaN multiple quantum wells;
步骤4)中,具体工艺条件如下:Step 4) in, concrete processing condition is as follows:
电子阻挡层的工艺条件为:反应室温度为900℃,反应室压力为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气、380sccm三甲基镓和150sccm三甲基铝;p-GaN层的工艺条件为:反应室温度为900℃,反应室压力为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气和380sccm三甲基镓。实施例1:The process conditions of the electron blocking layer are as follows: the temperature of the reaction chamber is 900°C, the pressure of the reaction chamber is 100Torr, and 50sccm magnesium, 250sccm ammonia, 100sccm nitrogen, 380sccm trimethylgallium and 150sccm trimethylaluminum are introduced; p-GaN The process conditions of the layer are: the temperature of the reaction chamber is 900° C., the pressure of the reaction chamber is 100 Torr, and 50 sccm of magnesocene, 250 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are fed. Example 1:
参照图1,本发明提供了一种AlN缓冲层结构,其包括衬底,在衬底上依次生长出AlN纳米柱阵列缓冲层、AlGaN缓冲层、GaN三维层、n-GaN层、InGaN/GaN多量子阱层、电子阻挡层及p-GaN层。Referring to Fig. 1, the present invention provides an AlN buffer layer structure, which includes a substrate on which an AlN nanocolumn array buffer layer, an AlGaN buffer layer, a GaN three-dimensional layer, an n-GaN layer, and an InGaN/GaN layer are sequentially grown. Multi-quantum well layer, electron blocking layer and p-GaN layer.
本实施例公开了通过以AlN纳米柱阵列作为缓冲层来增加GaN外延膜的晶体质量和电学性能的LED外延片结构,其包括Si衬底1、高度为300nm的AlN纳米柱阵列缓冲层2、厚度为400nm的Al0.7Ga0.3N缓冲层3、厚度为500nm的GaN三维层4、厚度为1.5μm、Si掺杂浓度为1×1018cm-3的n-GaN层5、总厚度为100nm的InGaN/GaN多量子阱层6(其中,GaN多量子阱势垒层61的厚度为12nm,In0.15Ga0.85N多量子阱势阱层62的厚度为8nm,生长5周期的多量子阱)、20nm厚的、Mg掺杂浓度为1×1018cm-3的Al0.15Ga0.85N电子阻挡层7和厚度为200nm厚的、Mg掺杂浓度为1×1018cm-3的p-GaN层8。This embodiment discloses an LED epitaxial wafer structure that increases the crystal quality and electrical properties of a GaN epitaxial film by using an AlN nanocolumn array as a buffer layer, which includes a Si substrate 1, an AlN nanocolumn array buffer layer 2 with a height of 300nm, Al 0.7 Ga 0.3 N buffer layer 3 with a thickness of 400nm, GaN three-dimensional layer 4 with a thickness of 500nm, n-GaN layer 5 with a thickness of 1.5μm and a Si doping concentration of 1×10 18 cm -3 , with a total thickness of 100nm InGaN/GaN multi-quantum well layer 6 (wherein, the thickness of the GaN multi-quantum well barrier layer 61 is 12nm, the thickness of the In 0.15 Ga 0.85 N multi-quantum well layer 62 is 8nm, and the multi-quantum well of 5 cycles is grown) , 20nm thick Al 0.15 Ga 0.85 N electron blocking layer 7 with a Mg doping concentration of 1×10 18 cm -3 and a 200 nm thick p-GaN with a Mg doping concentration of 1×10 18 cm -3 Layer 8.
一种AlN缓冲层结构的制备方法,包括步骤如下:A method for preparing an AlN buffer layer structure, comprising the following steps:
1)AlN纳米柱阵列缓冲层的生长步骤:采用等离子增强化学气相沉积工艺在衬底上生长AlN纳米柱阵列缓冲层;1) The growth step of the AlN nanocolumn array buffer layer: the AlN nanocolumn array buffer layer is grown on the substrate by a plasma-enhanced chemical vapor deposition process;
在室温下,将单晶Si(111)衬底放入10%氢氟酸溶液中超声清洗30秒,再用去离子水超声清洗60秒,最后将其放入甩干机中用高纯干燥氮气吹干备用;将单晶Si(111)衬底送入PECVD反应室中,反应室温度保持为750℃,射频功率150W,AlCl粉末0.500g,通入100sccm的氨气和30sccm的氩气,在衬底上生长AlN纳米柱阵列缓冲层2,厚度300nm;At room temperature, put the single crystal Si(111) substrate into a 10% hydrofluoric acid solution and ultrasonically clean it for 30 seconds, then ultrasonically clean it with deionized water for 60 seconds, and finally put it into a spin dryer and dry it with high purity. Blow dry with nitrogen for later use; send the single crystal Si(111) substrate into the PECVD reaction chamber, keep the reaction chamber temperature at 750°C, radio frequency power 150W, AlCl powder 0.500g, feed 100sccm of ammonia gas and 30sccm of argon gas, growing an AlN nanocolumn array buffer layer 2 on the substrate with a thickness of 300nm;
2)AlGaN缓冲层、GaN三维层、n-GaN层的生长步骤:采用金属有机化学气相沉积工艺在AlN纳米柱阵列缓冲层上依次生长AlGaN缓冲层、GaN三维层、n-GaN层;2) The growth steps of AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer: using metal organic chemical vapor deposition process to sequentially grow AlGaN buffer layer, GaN three-dimensional layer and n-GaN layer on the AlN nanocolumn array buffer layer;
反应室温度保持为1000℃,气压保持为100Torr,通入180sccm的氨气、60sccm的氢气、300sccm的三甲基镓和250sccm的三甲基铝,在AlN纳米柱阵列缓冲层2上生长Al0.7Ga0.3N缓冲层3,厚度为400nm;The temperature of the reaction chamber was kept at 1000° C., the air pressure was kept at 100 Torr, and 180 sccm of ammonia gas, 60 sccm of hydrogen gas, 300 sccm of trimethylgallium and 250 sccm of trimethylaluminum were injected to grow Al 0.7 on the AlN nanocolumn array buffer layer 2 Ga 0.3 N buffer layer 3 with a thickness of 400nm;
反应室温度保持为800℃,气压保持为200Torr,通入200sccm氨气、100sccm氮气和380sccm三甲基镓,在AlGaN缓冲层3上生长GaN三维层4,厚度为500nm;The temperature of the reaction chamber is kept at 800° C., the air pressure is kept at 200 Torr, 200 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are fed into the reaction chamber, and a GaN three-dimensional layer 4 is grown on the AlGaN buffer layer 3 with a thickness of 500 nm;
应室温度保持为1000℃,气压保持为100Torr,通入60sccm硅烷、250sccm氨气、100sccm氮气、380sccm三甲基镓,在GaN三维层4上生长n-GaN层5,厚度为1.5μm,Si掺杂浓度为1×1018cm-3。The chamber temperature is kept at 1000°C, the air pressure is kept at 100 Torr, and 60 sccm of silane, 250 sccm of ammonia gas, 100 sccm of nitrogen gas, and 380 sccm of trimethylgallium are fed into the chamber, and an n-GaN layer 5 is grown on the GaN three-dimensional layer 4 with a thickness of 1.5 μm. The doping concentration is 1×10 18 cm -3 .
3)InGaN/GaN多量子阱层生长步骤:采用金属有机化学气相沉积工艺在n-GaN层生长InGaN/GaN多量子阱层;3) InGaN/GaN multi-quantum well layer growth step: growing an InGaN/GaN multi-quantum well layer on the n-GaN layer by metal-organic chemical vapor deposition;
3-1)反应室温度保持为850℃,气压保持为100Torr,通入60sccm硅烷、250sccm氨气、100sccm氮气和380sccm三甲基镓,在n-GaN层5上生长GaN势垒层61,厚度为3.0nm,Si掺杂浓度为1×1018cm-3;3-1) The temperature of the reaction chamber is kept at 850° C., the air pressure is kept at 100 Torr, 60 sccm of silane, 250 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are fed into the reaction chamber, and a GaN barrier layer 61 is grown on the n-GaN layer 5 with a thickness of 3.0nm, Si doping concentration is 1×10 18 cm -3 ;
3-2)反应室温度保持为750℃,气压保持为200Torr,通入250sccm氨气、100sccm氮气、380sccm三甲基镓和80sccm三甲基铟,在GaN势垒层61上生长In0.15Ga0.85N势阱层62,厚度为8nm;3-2) The temperature of the reaction chamber is kept at 750° C., the air pressure is kept at 200 Torr, and 250 sccm of ammonia gas, 100 sccm of nitrogen gas, 380 sccm of trimethylgallium and 80 sccm of trimethyl indium are fed into the reaction chamber to grow In 0.15 Ga 0.85 on the GaN barrier layer 61 The N potential well layer 62 has a thickness of 8nm;
依次循环重复步骤3-1)和3-2)各5次,得到InGaN/GaN多量子阱6;Steps 3-1) and 3-2) are repeated 5 times in sequence to obtain InGaN/GaN multiple quantum wells 6;
4)电子阻挡层、p-GaN层的生长步骤:采用金属有机化学气相沉积工艺在多量子阱层上依次生长电子阻挡层、p-GaN层。4) The step of growing the electron blocking layer and the p-GaN layer: the electron blocking layer and the p-GaN layer are sequentially grown on the multi-quantum well layer by metal organic chemical vapor deposition process.
反应室温度保持为900℃,气压保持为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气、380sccm三甲基镓和150sccm三甲基铝;在步骤8所述的InGaN/GaN多量子阱6上生长Al0.15Ga0.85N电子阻挡层7,厚度为20nm,掺杂浓度1×1018cm-3;The temperature of the reaction chamber is kept at 900°C, the air pressure is kept at 100Torr, and 50sccm of magnesium, 250sccm of ammonia, 100sccm of nitrogen, 380sccm of trimethylgallium and 150sccm of trimethylaluminum are introduced; the InGaN/GaN multi-quantum An Al 0.15 Ga 0.85 N electron blocking layer 7 is grown on the well 6 with a thickness of 20 nm and a doping concentration of 1×10 18 cm -3 ;
反应室温度保持900℃,气压保持为100Torr,通入50sccm二茂镁、250sccm氨气、100sccm氮气和380sccm三甲基镓,在Al0.15Ga0.85N电子阻挡层7上生长p-GaN层8,厚度为200nm,Mg掺杂浓度为1×1018cm-3。The temperature of the reaction chamber is kept at 900° C., the air pressure is kept at 100 Torr, 50 sccm of magnesocene, 250 sccm of ammonia gas, 100 sccm of nitrogen gas and 380 sccm of trimethylgallium are fed into the reaction chamber, and a p-GaN layer 8 is grown on the Al 0.15 Ga 0.85 N electron blocking layer 7, The thickness is 200nm, and the Mg doping concentration is 1×10 18 cm -3 .
n-GaN层5是LED外延片的核心,制备无裂纹高质量的GaN层是高效GaN基LED外延片的基础。常用AlN、AlGaN薄膜材料作为缓冲层,虽可以规避Si衬底与GaN热失配、晶格失配及回融刻蚀等问题,但因此GaN外延膜的晶体质量和电学性能则受到了AlN及AlGaN薄膜的质量制约。The n-GaN layer 5 is the core of the LED epitaxial wafer, and the preparation of a crack-free and high-quality GaN layer is the basis of a high-efficiency GaN-based LED epitaxial wafer. AlN and AlGaN thin film materials are commonly used as buffer layers. Although they can avoid problems such as thermal mismatch between Si substrate and GaN, lattice mismatch and remelt etching, the crystal quality and electrical properties of GaN epitaxial films are affected by AlN and GaN. Quality constraints of AlGaN thin films.
实施例2:Example 2:
本实施例的特点是:步骤3)中,生长6周期的多量子阱;其它与实施例1相同。The characteristics of this embodiment are: in step 3), multiple quantum wells of 6 periods are grown; other is the same as that of embodiment 1.
实施例3:Example 3:
本实施例的特点是:步骤3)中,生长7周期的多量子阱;其它与实施例1相同。The characteristics of this embodiment are: in step 3), multi-quantum wells of 7 periods are grown; others are the same as in embodiment 1.
实施例4:Example 4:
本实施例的特点是:步骤3)中,生长10周期的多量子阱;其它与实施例1相同。The characteristics of this embodiment are: in step 3), multiple quantum wells of 10 periods are grown; other is the same as that of embodiment 1.
对比例1:Comparative example 1:
本实施例的特点是:采用AlN薄膜替换AlN纳米柱阵列缓冲层,其它与实施例1相同。The feature of this embodiment is that the buffer layer of the AlN nano-column array is replaced by an AlN thin film, and the others are the same as in Embodiment 1.
性能检测:Performance testing:
1、XRD,即X-ray diffraction的缩写,是X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,获得材料的成分、材料内部原子或分子的结构或形态等信息的研究手段。1. XRD, the abbreviation of X-ray diffraction, is X-ray diffraction, which is a research method for obtaining information such as the composition of materials, the structure or shape of atoms or molecules inside materials, and the like by analyzing X-ray diffraction patterns of materials.
参照图3-6,相对于对比例1采用AlN薄膜作为缓冲层,实施例1采用AlN纳米柱阵列作为缓冲层之后,GaN薄膜的晶体质量有了显著的提升:GaN(0002)提升了200arcsec,GaN(1012)提升了321arcsec,说明采用AlN纳米柱阵列作为缓冲层更易获得高质量的GaN薄膜。Referring to Figures 3-6, compared with Comparative Example 1 using the AlN film as the buffer layer, after Example 1 uses the AlN nanopillar array as the buffer layer, the crystal quality of the GaN film has been significantly improved: GaN (0002) has increased by 200arcsec, GaN (1012) has increased by 321arcsec, indicating that it is easier to obtain high-quality GaN thin films using AlN nanopillar arrays as a buffer layer.
2.LED芯片电学性能测试:采用LED点测机进行测试:2. LED chip electrical performance test: use LED spot tester to test:
参照图7-8,相对于对比例1采用AlN薄膜作为缓冲层,实施例1采用AlN纳米柱阵列作为缓冲层之后,在@5.0000mA的测试条件下,且发光波长均接近449nm时,相同尺寸的LED芯片的平均发光强度提升了83mW左右,有了显著的提升说明采用AlN纳米柱阵列作为缓冲层可以显著提高LED的电学性能。Referring to Figures 7-8, compared to Comparative Example 1 using the AlN thin film as the buffer layer, and Example 1 using the AlN nanocolumn array as the buffer layer, under the test conditions of @5.0000mA, and when the emission wavelength is close to 449nm, the same size The average luminous intensity of the LED chip has increased by about 83mW, which shows that the electrical performance of the LED can be significantly improved by using the AlN nanopillar array as a buffer layer.
上述实施方式仅为本发明的优选实施例方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。The above-mentioned embodiments are only preferred embodiments of the present invention, and cannot be used to limit the protection scope of the present invention. Any insubstantial changes and substitutions made by those skilled in the art on the basis of the present invention belong to the present invention scope of protection claimed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810374639.4A CN108807625A (en) | 2018-04-24 | 2018-04-24 | A kind of AlN buffer layer structures and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810374639.4A CN108807625A (en) | 2018-04-24 | 2018-04-24 | A kind of AlN buffer layer structures and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108807625A true CN108807625A (en) | 2018-11-13 |
Family
ID=64093801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810374639.4A Pending CN108807625A (en) | 2018-04-24 | 2018-04-24 | A kind of AlN buffer layer structures and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108807625A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524519A (en) * | 2018-12-18 | 2019-03-26 | 南通大学 | A kind of nitride quantum well structure light-emitting diode |
CN109802003A (en) * | 2018-12-27 | 2019-05-24 | 华南理工大学 | A kind of AlN nanostructure and preparation method thereof |
CN110246942A (en) * | 2019-06-14 | 2019-09-17 | 佛山市国星半导体技术有限公司 | A kind of epitaxial structure of high-crystal quality |
CN110335926A (en) * | 2019-05-13 | 2019-10-15 | 夕心科技(上海)有限公司 | A GaN-based LED epitaxial wafer and its preparation method |
CN112271240A (en) * | 2020-11-24 | 2021-01-26 | 深圳市昂德环球科技有限公司 | AlGaN-based deep ultraviolet LED epitaxial wafer and preparation method thereof |
CN112614918A (en) * | 2020-12-01 | 2021-04-06 | 木昇半导体科技(苏州)有限公司 | Epitaxial material growth method with high internal quantum rate |
CN115842077A (en) * | 2023-02-10 | 2023-03-24 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103548117A (en) * | 2011-05-20 | 2014-01-29 | 应用材料公司 | Method for Improved Group III Nitride Buffer Layer Growth |
CN103548124A (en) * | 2011-05-20 | 2014-01-29 | 应用材料公司 | Improved method for growing III-nitride semiconductors |
CN203910840U (en) * | 2014-06-10 | 2014-10-29 | 广州市众拓光电科技有限公司 | LED epitaxial wafer grown on Si patterned substrate |
CN104143593A (en) * | 2014-07-16 | 2014-11-12 | 中国科学院半导体研究所 | Manufacturing method of GaN-based LED with light guiding layer formed on SiC substrate |
CN104659164A (en) * | 2015-01-21 | 2015-05-27 | 西安神光皓瑞光电科技有限公司 | Method for growing photoelectric material and device through two-step method |
CN105140360A (en) * | 2015-09-01 | 2015-12-09 | 天津三安光电有限公司 | Nitride light-emitting diode and preparation method therefor |
CN205863161U (en) * | 2016-06-28 | 2017-01-04 | 中国电子科技集团公司第十三研究所 | Aluminium nitride multi-layer ceramics pin grid array encapsulating shell |
US20170054055A1 (en) * | 2015-08-18 | 2017-02-23 | Samsung Electronics Co., Ltd. | Semiconductor ultraviolet light emitting device |
CN106784188A (en) * | 2016-12-23 | 2017-05-31 | 东莞市中镓半导体科技有限公司 | A kind of preparation method of near-ultraviolet LED with composite electron blocking layer |
CN107644900A (en) * | 2017-10-18 | 2018-01-30 | 五邑大学 | A kind of p AlN/i AlN/n ZnO structures and preparation method thereof, application |
CN107689406A (en) * | 2016-08-03 | 2018-02-13 | 南通同方半导体有限公司 | A kind of deep ultraviolet LED epitaxial structure using composite electron barrier layer |
CN107799633A (en) * | 2017-09-19 | 2018-03-13 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and manufacturing method thereof |
-
2018
- 2018-04-24 CN CN201810374639.4A patent/CN108807625A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103548117A (en) * | 2011-05-20 | 2014-01-29 | 应用材料公司 | Method for Improved Group III Nitride Buffer Layer Growth |
CN103548124A (en) * | 2011-05-20 | 2014-01-29 | 应用材料公司 | Improved method for growing III-nitride semiconductors |
CN203910840U (en) * | 2014-06-10 | 2014-10-29 | 广州市众拓光电科技有限公司 | LED epitaxial wafer grown on Si patterned substrate |
CN104143593A (en) * | 2014-07-16 | 2014-11-12 | 中国科学院半导体研究所 | Manufacturing method of GaN-based LED with light guiding layer formed on SiC substrate |
CN104659164A (en) * | 2015-01-21 | 2015-05-27 | 西安神光皓瑞光电科技有限公司 | Method for growing photoelectric material and device through two-step method |
US20170054055A1 (en) * | 2015-08-18 | 2017-02-23 | Samsung Electronics Co., Ltd. | Semiconductor ultraviolet light emitting device |
CN105140360A (en) * | 2015-09-01 | 2015-12-09 | 天津三安光电有限公司 | Nitride light-emitting diode and preparation method therefor |
CN205863161U (en) * | 2016-06-28 | 2017-01-04 | 中国电子科技集团公司第十三研究所 | Aluminium nitride multi-layer ceramics pin grid array encapsulating shell |
CN107689406A (en) * | 2016-08-03 | 2018-02-13 | 南通同方半导体有限公司 | A kind of deep ultraviolet LED epitaxial structure using composite electron barrier layer |
CN106784188A (en) * | 2016-12-23 | 2017-05-31 | 东莞市中镓半导体科技有限公司 | A kind of preparation method of near-ultraviolet LED with composite electron blocking layer |
CN107799633A (en) * | 2017-09-19 | 2018-03-13 | 华灿光电(浙江)有限公司 | Light emitting diode epitaxial wafer and manufacturing method thereof |
CN107644900A (en) * | 2017-10-18 | 2018-01-30 | 五邑大学 | A kind of p AlN/i AlN/n ZnO structures and preparation method thereof, application |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109524519A (en) * | 2018-12-18 | 2019-03-26 | 南通大学 | A kind of nitride quantum well structure light-emitting diode |
CN109524519B (en) * | 2018-12-18 | 2020-12-25 | 南通大学 | Nitride quantum well structure light-emitting diode |
CN109802003A (en) * | 2018-12-27 | 2019-05-24 | 华南理工大学 | A kind of AlN nanostructure and preparation method thereof |
CN110335926A (en) * | 2019-05-13 | 2019-10-15 | 夕心科技(上海)有限公司 | A GaN-based LED epitaxial wafer and its preparation method |
CN110246942A (en) * | 2019-06-14 | 2019-09-17 | 佛山市国星半导体技术有限公司 | A kind of epitaxial structure of high-crystal quality |
CN110246942B (en) * | 2019-06-14 | 2025-01-17 | 佛山市国星半导体技术有限公司 | Epitaxial structure with high crystal quality |
CN112271240A (en) * | 2020-11-24 | 2021-01-26 | 深圳市昂德环球科技有限公司 | AlGaN-based deep ultraviolet LED epitaxial wafer and preparation method thereof |
CN112271240B (en) * | 2020-11-24 | 2024-11-19 | 深圳市昂德环球科技有限公司 | AlGaN-based deep ultraviolet LED epitaxial wafer and preparation method thereof |
CN112614918A (en) * | 2020-12-01 | 2021-04-06 | 木昇半导体科技(苏州)有限公司 | Epitaxial material growth method with high internal quantum rate |
CN115842077A (en) * | 2023-02-10 | 2023-03-24 | 江西兆驰半导体有限公司 | Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode |
CN115842077B (en) * | 2023-02-10 | 2023-04-28 | 江西兆驰半导体有限公司 | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108807625A (en) | A kind of AlN buffer layer structures and preparation method thereof | |
CN102945898B (en) | Growth AlN film on metal A g substrate and preparation method thereof, application | |
CN104037284B (en) | A kind of GaN thin film grown on Si substrate and preparation method thereof | |
CN101645480A (en) | Method for enhancing antistatic ability of GaN-based light-emitting diode | |
CN113782651B (en) | Patterned deep ultraviolet LED epitaxial structure and preparation method thereof | |
CN104037288B (en) | A kind of LED grown on a si substrate and preparation method thereof | |
CN105914270B (en) | The manufacturing method of silicon based gallium nitride LED epitaxial structure | |
CN103996610B (en) | AlN thin film growing on metal aluminum substrate and preparing method and application thereof | |
CN106098874B (en) | Epitaxial wafer of light emitting diode and preparation method | |
CN106206888B (en) | The InGaN/GaN Quantum Well and preparation method thereof being grown on magnesium aluminate scandium substrate | |
CN116230824B (en) | High-efficiency light-emitting diode epitaxial wafer, preparation method thereof, and LED chip | |
CN103296157B (en) | Grow the LED on strontium aluminate tantalum lanthanum substrate and preparation method | |
CN106169523A (en) | LED that a kind of L of employing MBE and MOCVD technology grow on a si substrate and preparation method thereof | |
CN117577748A (en) | LED epitaxial wafer, preparation method thereof and LED | |
CN206225392U (en) | It is grown in the InGaN/GaN nano-pillar MQWs on strontium aluminate tantalum lanthanum substrate | |
CN106384761A (en) | InGaN/GaN nano-pillar multiple quantum well grown on strontium tantalum lanthanum aluminate substrate and preparation method thereof | |
CN103296159B (en) | Grow the InGaN/GaN Multiple Quantum Well on strontium aluminate tantalum lanthanum substrate and preparation method | |
CN104157756A (en) | LED epitaxial wafer growing on Zr substrate and preparation method thereof | |
CN105742424B (en) | A kind of GaN film and preparation method thereof of the epitaxial growth on metal Al substrates | |
WO2020228336A1 (en) | Gan-based led epitaxial wafer and preparation method therefor | |
CN206225395U (en) | It is grown in the InGaN/GaN SQWs on magnesium aluminate scandium substrate | |
CN203983321U (en) | Be grown in the LED epitaxial wafer on Zr substrate | |
CN104157754B (en) | InGaN/GaN multiple quantum well growing on W substrate and preparation method thereof | |
CN110517950A (en) | A method of preparing Zinc-Blende GaN film on a diamond substrate | |
CN203983319U (en) | LED epitaxial wafer grown on W substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181113 |