CN108807572B - A kind of silver indium gallium selenide thin film and its preparation method and application - Google Patents
A kind of silver indium gallium selenide thin film and its preparation method and application Download PDFInfo
- Publication number
- CN108807572B CN108807572B CN201810568149.8A CN201810568149A CN108807572B CN 108807572 B CN108807572 B CN 108807572B CN 201810568149 A CN201810568149 A CN 201810568149A CN 108807572 B CN108807572 B CN 108807572B
- Authority
- CN
- China
- Prior art keywords
- nanoparticles
- slurry
- indium gallium
- gallium selenide
- silver indium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- ZZEMEJKDTZOXOI-UHFFFAOYSA-N digallium;selenium(2-) Chemical compound [Ga+3].[Ga+3].[Se-2].[Se-2].[Se-2] ZZEMEJKDTZOXOI-UHFFFAOYSA-N 0.000 title claims abstract description 55
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 239000010409 thin film Substances 0.000 title claims abstract description 41
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000002105 nanoparticle Substances 0.000 claims abstract description 170
- 239000002002 slurry Substances 0.000 claims abstract description 85
- 239000000758 substrate Substances 0.000 claims abstract description 54
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 238000000227 grinding Methods 0.000 claims abstract description 18
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims abstract description 12
- 238000000137 annealing Methods 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 239000010408 film Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 11
- 238000004528 spin coating Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 239000005416 organic matter Substances 0.000 claims description 3
- QQGISFDJEJMKIL-JAIQZWGSSA-N (5z)-5-[[3-(hydroxymethyl)thiophen-2-yl]methylidene]-10-methoxy-2,2,4-trimethyl-1h-chromeno[3,4-f]quinolin-9-ol Chemical compound C1=CC=2NC(C)(C)C=C(C)C=2C2=C1C=1C(OC)=C(O)C=CC=1O\C2=C/C=1SC=CC=1CO QQGISFDJEJMKIL-JAIQZWGSSA-N 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 238000000151 deposition Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1694—Thin semiconductor films on metallic or insulating substrates the films including Group I-III-VI materials, e.g. CIS or CIGS
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
- H10F77/126—Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种银铟镓硒薄膜,包括衬底,衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层。该银铟镓硒薄膜具有电子漂移饱和速度高、介电常数小、导电性能好的特点,同时,采用它制作的光伏电池具有光电转换效率高,开路电压大的特点。本发明还公开了该银铟镓硒薄膜的制备方法及应用。该银铟镓硒薄膜的制备方法通过研磨步骤,配置浆料步骤,涂覆步骤,加热及退火处理步骤制备得到,首次采用非真空方法制备银铟镓硒薄膜,与传统的真空方法相比,具有制备过程简单,制备效率高,价格低廉等优点,适合大面积制备AIGS薄膜。The invention discloses a silver indium gallium selenide thin film, comprising a substrate, and the surface of the substrate is sequentially coated with a Ag 2 Se nanoparticle layer, a Ga2Se3 nanoparticle layer and an In2Se3 nanoparticle layer. The silver indium gallium selenide thin film has the characteristics of high electron drift saturation speed, small dielectric constant and good electrical conductivity, and meanwhile, the photovoltaic cell produced by using it has the characteristics of high photoelectric conversion efficiency and high open circuit voltage. The invention also discloses a preparation method and application of the silver indium gallium selenide thin film. The preparation method of the silver indium gallium selenide thin film is prepared through the grinding step, the slurry configuration step, the coating step, the heating and the annealing treatment steps. The invention has the advantages of simple preparation process, high preparation efficiency, low price and the like, and is suitable for large-area preparation of AIGS thin films.
Description
技术领域technical field
本发明涉及一种半导体材料,具体来说是涉及一种银铟镓硒薄膜及其制备方法和应用。The invention relates to a semiconductor material, in particular to a silver indium gallium selenide thin film and a preparation method and application thereof.
背景技术Background technique
宽禁带半导体材料也被称为第三代半导体材料(一代和二代分别为硅、锗),其带隙大于或等于2.3eV。宽禁带半导体材料一般具有电子漂移饱和速度高、介电常数小、导电性能好等特点,受到了研究者广泛研究。传统的宽禁带半导体有SiC、GaN、ZnO和Ga2O3等,以及其他II-VI组化合物材料。这类宽禁带材料具有短波吸收、高击穿电压等特点,因此在发光二极管(LEDs)与激光二极管(LDs)领域具有巨大的应用前景。此外,随着近些年太阳能电池(SCs)的迅猛发展,宽禁带半导体材料开始在太阳能电池领域发挥重要作用。比如研究者开发了许多宽禁带有机聚合物半导体材料广泛应用于聚合物太阳能电池,也有研究者将许多宽禁带材料(如ZnO、NiO和MoO3等)薄膜应用于钙钛矿太阳能电池充当电子/空穴传输层。Wide-bandgap semiconductor materials are also called third-generation semiconductor materials (the first and second generations are silicon and germanium, respectively), and their band gap is greater than or equal to 2.3 eV. Wide-bandgap semiconductor materials generally have the characteristics of high electron drift saturation velocity, low dielectric constant, and good electrical conductivity, which have been widely studied by researchers. Traditional wide bandgap semiconductors include SiC, GaN, ZnO, Ga 2 O 3 , etc., as well as other II-VI group compound materials. Such wide-bandgap materials have the characteristics of short-wave absorption and high breakdown voltage, so they have great application prospects in the fields of light-emitting diodes (LEDs) and laser diodes (LDs). In addition, with the rapid development of solar cells (SCs) in recent years, wide-bandgap semiconductor materials have begun to play an important role in the field of solar cells. For example, researchers have developed many wide-bandgap organic polymer semiconductor materials that are widely used in polymer solar cells, and some researchers have applied many wide-bandgap materials (such as ZnO, NiO, and MoO3) thin films to perovskite solar cells. Electron/hole transport layer.
银铟镓硒薄膜是一种宽禁带半导体材料,非常适合用做黄铜矿基叠层薄膜太阳能电池的顶层,但是现有技术中的制备方法主要有真空法和非真空法。真空法主要分为共蒸法和两步法。共蒸法需要对每种元素的蒸发速率和沉积量进行精确控制,要求设备具有很高的控制精度,设备的技术难度和造价均很高。溅射金属预置膜+硒化两步法的靶材利用率低,成膜时间长,硒化工艺难以控制,投资成本和电池成本均较高。Silver indium gallium selenide thin film is a wide bandgap semiconductor material, which is very suitable for the top layer of chalcopyrite-based tandem thin film solar cells, but the preparation methods in the prior art mainly include vacuum method and non-vacuum method. The vacuum method is mainly divided into co-evaporation method and two-step method. The co-evaporation method requires precise control of the evaporation rate and deposition amount of each element, and requires equipment with high control precision, and the technical difficulty and cost of the equipment are high. The target utilization rate of the sputtering metal pre-film + selenization two-step method is low, the film formation time is long, the selenization process is difficult to control, and the investment cost and battery cost are high.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明的第一个目的在于提供一种银铟镓硒薄膜,它具有电子漂移饱和速度高、介电常数小、导电性能好的特点,同时,采用它制作的光伏电池具有光电转换效率高,开路电压大的特点。In view of the deficiencies of the prior art, the first object of the present invention is to provide a silver indium gallium selenide thin film, which has the characteristics of high electron drift saturation speed, low dielectric constant and good electrical conductivity, and at the same time, the photovoltaic produced by using it The battery has the characteristics of high photoelectric conversion efficiency and large open circuit voltage.
本发明的第二个目的是为了提供一种银铟镓硒薄膜的制备方法,本发明首次采用非真空方法制备银铟镓硒薄膜(简称为AIGS薄膜),与传统的真空方法相比,具有制备过程简单,制备效率高,价格低廉等优点,适合大面积制备AIGS薄膜。The second object of the present invention is to provide a method for preparing a silver indium gallium selenide film. The present invention adopts a non-vacuum method to prepare a silver indium gallium selenide film (referred to as AIGS film for short) for the first time. Compared with the traditional vacuum method, it has The preparation process is simple, the preparation efficiency is high, and the price is low.
本发明的第三个目的是为了提供一种银铟镓硒薄膜在光伏电池中的应用,该光伏电池具有光电转换效率高,开路电压大的特点。The third object of the present invention is to provide an application of a silver indium gallium selenide thin film in a photovoltaic cell, the photovoltaic cell has the characteristics of high photoelectric conversion efficiency and large open circuit voltage.
实现本发明的第一个目的可以通过采取如下技术方案达到:Realize the first purpose of the present invention can be achieved by adopting the following technical solutions:
一种银铟镓硒薄膜,包括衬底,其特征在于,所述衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层。A silver indium gallium selenide thin film, comprising a substrate, is characterized in that, the surface of the substrate is sequentially coated with an Ag 2 Se nanoparticle layer, a Ga2Se3 nanoparticle layer and an In2Se3 nanoparticle layer.
作为优选,Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的总厚度为1.6-2.2微米。Preferably, the total thickness of the Ag 2 Se nano-particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer is 1.6-2.2 μm.
作为优选,Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.6-0.8微米,0.8-1.0微米,0.2-0.4微米。Preferably, the thicknesses of the Ag 2 Se nanoparticle layer, the Ga 2 Se 3 nanoparticle layer and the In 2 Se 3 nanoparticle layer are 0.6-0.8 microns, 0.8-1.0 microns, and 0.2-0.4 microns, respectively.
作为优选,Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.7微米,0.9微米,0.3微米。Preferably, the thicknesses of the Ag 2 Se nano-particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer are 0.7 μm, 0.9 μm, and 0.3 μm, respectively.
作为优选,所述衬底为镀有Mo的玻璃基底。Preferably, the substrate is a glass substrate plated with Mo.
实现本发明的第二个目的可以通过采取如下技术方案达到:The second object of the present invention can be achieved by adopting the following technical solutions:
一种银铟镓硒薄膜的制备方法,其特征在于,包括:A method for preparing a silver indium gallium selenide thin film, comprising:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Grinding step: respectively grind the Ag 2 Se bulk, Ga 2 Se 3 bulk and In 2 Se 3 bulk to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles, respectively;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry;
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在惰性气体环境中进行加热及退火处理,具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜。Heating and annealing treatment steps: The coated substrate is heated and annealed in an inert gas environment. The specific process is: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C ; 120-140min, the temperature drops to 200 ℃, obtains the silver indium gallium selenide thin film.
作为优选,研磨步骤中,Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒的平均粒径小于2微米。Preferably, in the grinding step, the average particle size of the Ag 2 Se nanoparticles, the Ga 2 Se 3 nanoparticles and the In 2 Se 3 nanoparticles is less than 2 microns.
作为优选,配置浆料步骤中,Ag2Se浆料的浓度为每克酒精中含有3-5mgAg2Se纳米颗粒,Ga2Se3浆料的浓度为每克酒精中含有3-5mgAg2Se纳米颗粒,In2Se3浆料的浓度为每克酒精中含有3-5mgAg2Se纳米颗粒。Preferably, in the step of preparing the slurry, the concentration of the Ag 2 Se slurry is 3-5 mg Ag 2 Se nanoparticles per gram of alcohol, and the concentration of the Ga 2 Se 3 slurry is 3-5 mg Ag 2 Se nano particles per gram of alcohol The particle, In 2 Se 3 slurry has a concentration of 3-5 mg Ag 2 Se nanoparticles per gram of alcohol.
实现本发明的第三个目的可以通过采取如下技术方案达到:Realize the 3rd object of the present invention can be achieved by adopting the following technical solutions:
一种银铟镓硒薄膜的应用,其特征在于,该银铟镓硒薄膜在光伏电池中的应用。An application of silver indium gallium selenide thin film, characterized in that the silver indium gallium selenide thin film is used in photovoltaic cells.
作为优选,所述光伏电池的制备方法,包括:Preferably, the preparation method of the photovoltaic cell includes:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Grinding step: respectively grind the Ag 2 Se bulk, Ga 2 Se 3 bulk and In 2 Se 3 bulk to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles, respectively;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry;
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在惰性气体环境中进行加热及退火处理,具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜;Heating and annealing treatment steps: The coated substrate is heated and annealed in an inert gas environment. The specific process is: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C ; 120-140min, the temperature is reduced to 200 ℃, and the silver indium gallium selenide film is obtained;
CdS制作步骤:采用CBD的方式在银铟镓硒薄膜上制备一层CdS;CdS production steps: a layer of CdS is prepared on the silver indium gallium selenide film by CBD method;
窗口层制作步骤:采用MOCVD的方式在CdS上制作窗口层;具体过程如下:首先在MOCVD设备的腔体内通入Zn的金属有机物和水,二者反应生成i-ZnO,待厚度达到50nm之后,增加B的化合物,三者发生反应生成ZnO:B;其中,i-ZnO中i的含义是指没有掺杂的条件下获得的ZnO;ZnO:B是指掺杂有B的ZnO;Window layer fabrication steps: A window layer is fabricated on CdS by MOCVD; the specific process is as follows: First, the metal organics of Zn and water are introduced into the cavity of the MOCVD equipment, and the two react to generate i-ZnO. After the thickness reaches 50 nm, The compound with the addition of B, the three react to form ZnO:B; among them, the meaning of i in i-ZnO refers to the ZnO obtained without doping; ZnO:B refers to the ZnO doped with B;
Al栅极制作步骤:采用蒸发的方式在窗口层上沉积Al栅极,得到光伏电池;Al gate fabrication step: depositing an Al gate on the window layer by evaporation to obtain a photovoltaic cell;
CdS制作步骤:采用CBD(化学水浴沉积)的方式在银铟镓硒薄膜上制备一层CdS;CdS production steps: a layer of CdS is prepared on the silver indium gallium selenide film by CBD (chemical water bath deposition);
窗口层制作步骤:采用MOCVD(有机金属化学气相沉积)的方式在CdS上制作窗口层;具体过程如下:首先在MOCVD设备的腔体内通入Zn的金属有机物和水,二者反应生成i-ZnO,待厚度达到50nm之后,增加B的化合物,三者发生反应生成ZnO:B;其中,i-ZnO中i的含义是指没有掺杂的条件下获得的ZnO;ZnO:B是指掺杂有B的ZnO;Window layer fabrication steps: The window layer is fabricated on CdS by MOCVD (Organic Metal Chemical Vapor Deposition); the specific process is as follows: First, the metal organic matter of Zn and water are introduced into the cavity of the MOCVD equipment, and the two react to generate i-ZnO , after the thickness reaches 50nm, the compound of B is added, and the three react to form ZnO:B; among them, the meaning of i in i-ZnO refers to the ZnO obtained without doping; ZnO:B refers to the doped ZnO:B ZnO of B;
Al栅极制作步骤:采用蒸发的方式在窗口层上沉积Al栅极,得到光伏电池。Al gate fabrication step: depositing an Al gate on the window layer by evaporation to obtain a photovoltaic cell.
本发明的有益效果在于:The beneficial effects of the present invention are:
1、本发明通过在衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层,同时优化了各纳米颗粒层的厚度,使得银铟镓硒薄膜具有电子漂移饱和速度高、介电常数小、导电性能好的特点,同时,采用它制作的光伏电池具有光电转换效率高,开路电压大的特点。1. The present invention sequentially coats the surface of the substrate with the Ag 2 Se nano-particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer, and at the same time optimizes the thickness of each nano-particle layer, so that the silver The indium gallium selenide thin film has the characteristics of high electron drift saturation speed, small dielectric constant and good electrical conductivity. At the same time, the photovoltaic cell made with it has the characteristics of high photoelectric conversion efficiency and large open circuit voltage.
2、本发明通过研磨步骤,配置浆料步骤,涂覆步骤,加热及退火处理步骤制备得到银铟镓硒薄膜,优化了各步骤的参数,首次采用非真空方法制备银铟镓硒薄膜,与传统的真空方法相比,具有制备过程简单,制备效率高,价格低廉等优点,适合大面积制备AIGS薄膜。2. In the present invention, the silver indium gallium selenide film is prepared through the grinding step, the slurry configuration step, the coating step, and the heating and annealing treatment steps, and the parameters of each step are optimized. For the first time, the non-vacuum method is used to prepare the silver indium gallium selenide film. Compared with the traditional vacuum method, it has the advantages of simple preparation process, high preparation efficiency and low price, and is suitable for large-area preparation of AIGS thin films.
3、本发明提供一种银铟镓硒薄膜在光伏电池中的应用,该光伏电池具有光电转换效率高,开路电压大的特点,该光伏电池的光电转换效率为6%,开路电压可以达到0.9V。3. The present invention provides the application of a silver indium gallium selenide thin film in a photovoltaic cell. The photovoltaic cell has the characteristics of high photoelectric conversion efficiency and large open circuit voltage. The photoelectric conversion efficiency of the photovoltaic cell is 6%, and the open circuit voltage can reach 0.9 V.
具体实施方式Detailed ways
下面,结合具体实施方式,对本发明做进一步描述,除特殊说明外,以下实施例中所采用的原料均可从市场购得。The present invention will be further described below with reference to the specific embodiments. Unless otherwise specified, the raw materials used in the following examples can be purchased from the market.
研磨步骤采用日本长尾系统公司的B015-05型球磨机。The grinding step adopts a B015-05 ball mill from Nagao Systems, Japan.
实施例1:Example 1:
一种银铟镓硒薄膜,包括衬底,所述衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.7微米,0.9微米,0.3微米。所述衬底为镀有Mo的玻璃基底。A silver indium gallium selenide thin film, comprising a substrate, the surface of the substrate is sequentially coated with a Ag 2 Se nanoparticle layer, a Ga 2 Se3 nanoparticle layer and an In 2 Se3 nanoparticle layer ; The thicknesses of the particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer are 0.7 μm, 0.9 μm, and 0.3 μm, respectively. The substrate is a glass substrate plated with Mo.
一种银铟镓硒薄膜的制备方法,包括以下步骤:A preparation method of silver indium gallium selenide thin film, comprising the following steps:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒的平均粒径小于2微米;Grinding step: grinding the Ag 2 Se bulk, Ga 2 Se 3 bulk and In 2 Se 3 bulk, respectively, to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles; Ag 2 The average particle size of Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles is less than 2 microns;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Ag2Se浆料的浓度为每克酒精中含有4mgAg2Se纳米颗粒,Ga2Se3浆料的浓度为每克酒精中含有4mgAg2Se纳米颗粒,In2Se3浆料的浓度为每克酒精中含有4mgAg2Se纳米颗粒。Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 Slurry; Ag 2 Se slurry has a concentration of 4 mg Ag 2 Se nanoparticles per gram of alcohol, Ga 2 Se 3 slurry has a concentration of 4 mg Ag 2 Se nanoparticles per gram of alcohol, and In 2 Se 3 slurry has a concentration of 4 mg per gram of alcohol 4 mg of Ag 2 Se nanoparticles per gram of alcohol.
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在氮气环境中进行加热及退火处理,氮气浓度为99.9%。具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜。Heating and annealing treatment steps: the coated substrate is heated and annealed in a nitrogen atmosphere, and the nitrogen concentration is 99.9%. The specific process is as follows: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C; 120-140min, the temperature is lowered to 200°C to obtain the silver indium gallium selenide thin film.
实施例2:Example 2:
一种银铟镓硒薄膜,包括衬底,所述衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.6微米,0.8微米,0.2微米。所述衬底为镀有Mo的玻璃基底。A silver indium gallium selenide thin film, comprising a substrate, the surface of the substrate is sequentially coated with a Ag 2 Se nanoparticle layer, a Ga 2 Se3 nanoparticle layer and an In 2 Se3 nanoparticle layer ; The thicknesses of the particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer are 0.6 μm, 0.8 μm, and 0.2 μm, respectively. The substrate is a glass substrate plated with Mo.
一种银铟镓硒薄膜的制备方法,包括以下步骤:A preparation method of silver indium gallium selenide thin film, comprising the following steps:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒的平均粒径小于1微米;Grinding step: grinding the Ag 2 Se bulk, Ga 2 Se 3 bulk and In 2 Se 3 bulk, respectively, to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles; Ag 2 The average particle size of Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles is less than 1 micron;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Ag2Se浆料的浓度为每克酒精中含有3mgAg2Se纳米颗粒,Ga2Se3浆料的浓度为每克酒精中含有3mgAg2Se纳米颗粒,In2Se3浆料的浓度为每克酒精中含有3mgAg2Se纳米颗粒。Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 Slurry; Ag 2 Se slurry has a concentration of 3 mg Ag 2 Se nanoparticles per gram of alcohol, Ga 2 Se 3 slurry has a concentration of 3 mg Ag 2 Se nanoparticles per gram of alcohol, and In 2 Se 3 slurry has a concentration of 3 mg per gram of alcohol 3 mg of Ag 2 Se nanoparticles per gram of alcohol.
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在氮气环境中进行加热及退火处理,具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜。Heating and annealing treatment steps: the coated substrate is heated and annealed in a nitrogen environment. The specific process is: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C; For 120-140 min, the temperature was lowered to 200° C. to obtain a silver indium gallium selenide thin film.
实施例3:Example 3:
一种银铟镓硒薄膜,包括衬底,所述衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.8微米,1.0微米,0.4微米。所述衬底为镀有Mo的玻璃基底。A silver indium gallium selenide thin film, comprising a substrate, the surface of the substrate is sequentially coated with a Ag 2 Se nanoparticle layer, a Ga 2 Se3 nanoparticle layer and an In 2 Se3 nanoparticle layer ; The thicknesses of the particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer are 0.8 μm, 1.0 μm, and 0.4 μm, respectively. The substrate is a glass substrate plated with Mo.
一种银铟镓硒薄膜的制备方法,包括以下步骤:A preparation method of silver indium gallium selenide thin film, comprising the following steps:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒的平均粒径小于2微米;Grinding step: grinding the Ag 2 Se bulk, Ga 2 Se 3 bulk and In 2 Se 3 bulk, respectively, to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles; Ag 2 The average particle size of Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles is less than 2 microns;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Ag2Se浆料的浓度为每克酒精中含有5mgAg2Se纳米颗粒,Ga2Se3浆料的浓度为每克酒精中含有5mgAg2Se纳米颗粒,In2Se3浆料的浓度为每克酒精中含有5mgAg2Se纳米颗粒。Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 Slurry; Ag 2 Se slurry has a concentration of 5 mg Ag 2 Se nanoparticles per gram of alcohol, Ga 2 Se 3 slurry has a concentration of 5 mg Ag 2 Se nanoparticles per gram of alcohol, and In 2 Se 3 slurry has a concentration of 5 mg per gram of alcohol 5 mg of Ag 2 Se nanoparticles per gram of alcohol.
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在氮气环境中进行加热及退火处理,具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜。Heating and annealing treatment steps: the coated substrate is heated and annealed in a nitrogen environment. The specific process is: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C; For 120-140 min, the temperature was lowered to 200° C. to obtain a silver indium gallium selenide thin film.
实施例4:Example 4:
一种银铟镓硒薄膜,包括衬底,所述衬底的表面上依次涂覆有Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层的厚度分别为0.7微米,0.9微米,0.4微米。所述衬底为镀有Mo的玻璃基底。A silver indium gallium selenide thin film, comprising a substrate, the surface of the substrate is sequentially coated with a Ag 2 Se nanoparticle layer, a Ga 2 Se3 nanoparticle layer and an In 2 Se3 nanoparticle layer ; The thicknesses of the particle layer, the Ga 2 Se 3 nano-particle layer and the In 2 Se 3 nano-particle layer are 0.7 μm, 0.9 μm, and 0.4 μm, respectively. The substrate is a glass substrate plated with Mo.
一种银铟镓硒薄膜的制备方法,包括以下步骤:A preparation method of silver indium gallium selenide thin film, comprising the following steps:
研磨步骤:分别将Ag2Se块体、Ga2Se3块体及In2Se3块体进行研磨,分别得到Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒;Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒的平均粒径小于1微米;Grinding step: Grinding the Ag2Se bulk, Ga2Se3 bulk and In2Se3 bulk, respectively, to obtain Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles; Ag 2 Se nanoparticles, Ga 2 Se nanoparticles The average particle size of 3 nanoparticles and In 2 Se 3 nanoparticles is less than 1 micron;
配置浆料步骤:分别将Ag2Se纳米颗粒、Ga2Se3纳米颗粒及In2Se3纳米颗粒溶解于酒精中,分别得到Ag2Se浆料、Ga2Se3浆料及In2Se3浆料;Ag2Se浆料的浓度为每克酒精中含有3mgAg2Se纳米颗粒,Ga2Se3浆料的浓度为每克酒精中含有4mgAg2Se纳米颗粒,In2Se3浆料的浓度为每克酒精中含有5mgAg2Se纳米颗粒。Steps of preparing the slurry: Dissolving Ag 2 Se nanoparticles, Ga 2 Se 3 nanoparticles and In 2 Se 3 nanoparticles in alcohol, respectively, to obtain Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 Slurry; Ag 2 Se slurry has a concentration of 3 mg Ag 2 Se nanoparticles per gram of alcohol, Ga 2 Se 3 slurry has a concentration of 4 mg Ag 2 Se nanoparticles per gram of alcohol, and In 2 Se 3 slurry has a concentration of 4 mg per gram of alcohol 5 mg of Ag 2 Se nanoparticles per gram of alcohol.
涂覆步骤:在衬底的表面上采用旋转涂布的方式依次涂覆Ag2Se浆料、Ga2Se3浆料及In2Se3浆料,使得在衬底的表面依次形成Ag2Se纳米颗粒层、Ga2Se3纳米颗粒层及In2Se3纳米颗粒层;Coating step: sequentially coat Ag 2 Se slurry, Ga 2 Se 3 slurry and In 2 Se 3 slurry on the surface of the substrate by means of spin coating, so that Ag 2 Se is sequentially formed on the surface of the substrate Nanoparticle layer, Ga 2 Se 3 nano particle layer and In 2 Se 3 nano particle layer;
加热及退火处理步骤:将涂覆后的衬底在氮气环境中进行加热及退火处理,具体过程为:0-15min,加热温度由室温升高到580℃;15-120min,保持580℃;120-140min,温度降至200℃,得到银铟镓硒薄膜。Heating and annealing treatment steps: the coated substrate is heated and annealed in a nitrogen environment. The specific process is: 0-15min, the heating temperature is raised from room temperature to 580°C; 15-120min, maintained at 580°C; For 120-140 min, the temperature was lowered to 200° C. to obtain a silver indium gallium selenide thin film.
实施例5Example 5
一种银铟镓硒薄膜的应用,该银铟镓硒薄膜在光伏电池中的应用。An application of silver indium gallium selenide thin film in photovoltaic cells.
所述光伏电池的制备方法,包括:The preparation method of the photovoltaic cell, comprising:
银铟镓硒薄膜的制备步骤:采用如实施例1所述的银铟镓硒薄膜的制备方法,得到银铟镓硒薄膜;The preparation steps of the silver indium gallium selenide film: adopt the preparation method of the silver indium gallium selenide film as described in Example 1 to obtain the silver indium gallium selenide film;
CdS制作步骤:采用CBD(化学水浴沉积)的方式在银铟镓硒薄膜上制备一层CdS;CdS production steps: a layer of CdS is prepared on the silver indium gallium selenide film by CBD (chemical water bath deposition);
窗口层制作步骤:采用MOCVD(有机金属化学气相沉积)的方式在CdS上制作窗口层;具体过程如下:首先在MOCVD设备的腔体内通入Zn的金属有机物和水,二者反应生成i-ZnO,待厚度达到50nm之后,增加B的化合物,三者发生反应生成ZnO:B;其中,i-ZnO中i的含义是指没有掺杂的条件下获得的ZnO;ZnO:B是指掺杂有B的ZnO;Window layer fabrication steps: The window layer is fabricated on CdS by MOCVD (Organic Metal Chemical Vapor Deposition); the specific process is as follows: First, the metal organic matter of Zn and water are introduced into the cavity of the MOCVD equipment, and the two react to generate i-ZnO , after the thickness reaches 50nm, the compound of B is added, and the three react to form ZnO:B; among them, the meaning of i in i-ZnO refers to the ZnO obtained without doping; ZnO:B refers to the doped ZnO:B ZnO of B;
Al栅极制作步骤:采用蒸发的方式在窗口层上沉积Al栅极,得到光伏电池。Al gate fabrication step: depositing an Al gate on the window layer by evaporation to obtain a photovoltaic cell.
采用本实施例5制备得到光伏电池,光电转换效率为6%,开路电压可以达到0.9V。The photovoltaic cell prepared by this example 5 has a photoelectric conversion efficiency of 6% and an open circuit voltage of 0.9V.
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。For those skilled in the art, various other corresponding changes and deformations can be made according to the technical solutions and concepts described above, and all these changes and deformations should fall within the protection scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810568149.8A CN108807572B (en) | 2018-06-05 | 2018-06-05 | A kind of silver indium gallium selenide thin film and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810568149.8A CN108807572B (en) | 2018-06-05 | 2018-06-05 | A kind of silver indium gallium selenide thin film and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108807572A CN108807572A (en) | 2018-11-13 |
CN108807572B true CN108807572B (en) | 2020-01-17 |
Family
ID=64088568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810568149.8A Active CN108807572B (en) | 2018-06-05 | 2018-06-05 | A kind of silver indium gallium selenide thin film and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108807572B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113353897B (en) * | 2020-03-04 | 2024-03-26 | 武汉理工大学 | Superplastic Ag 2 Preparation method of Se nanometer superfine crystal thermoelectric material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101245443A (en) * | 2007-02-17 | 2008-08-20 | 光洋应用材料科技股份有限公司 | Target material and film manufactured by the target material |
KR101034146B1 (en) * | 2009-11-09 | 2011-05-13 | 엘지이노텍 주식회사 | Solar cell and manufacturing method thereof |
CN102074592A (en) * | 2009-11-20 | 2011-05-25 | 正峰新能源股份有限公司 | Light-absorbing layer of a copper indium gallium selenide solar cell and manufacturing method thereof |
CN102763230A (en) * | 2010-02-22 | 2012-10-31 | 太阳能光电股份公司 | Method and device for producing a semiconductor layer |
CN104916734A (en) * | 2014-03-11 | 2015-09-16 | 台积太阳能股份有限公司 | Method of CIGS absorber formation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8067262B2 (en) * | 2009-08-04 | 2011-11-29 | Precursor Energetics, Inc. | Polymeric precursors for CAIGS silver-containing photovoltaics |
KR20120080045A (en) * | 2011-01-06 | 2012-07-16 | 한국전자통신연구원 | Manufacturing method of solar cell |
-
2018
- 2018-06-05 CN CN201810568149.8A patent/CN108807572B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101245443A (en) * | 2007-02-17 | 2008-08-20 | 光洋应用材料科技股份有限公司 | Target material and film manufactured by the target material |
KR101034146B1 (en) * | 2009-11-09 | 2011-05-13 | 엘지이노텍 주식회사 | Solar cell and manufacturing method thereof |
CN102074592A (en) * | 2009-11-20 | 2011-05-25 | 正峰新能源股份有限公司 | Light-absorbing layer of a copper indium gallium selenide solar cell and manufacturing method thereof |
CN102763230A (en) * | 2010-02-22 | 2012-10-31 | 太阳能光电股份公司 | Method and device for producing a semiconductor layer |
CN104916734A (en) * | 2014-03-11 | 2015-09-16 | 台积太阳能股份有限公司 | Method of CIGS absorber formation |
Also Published As
Publication number | Publication date |
---|---|
CN108807572A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dejam et al. | Structural and optical characterization of ZnO and AZO thin films: the influence of post-annealing | |
Gayen et al. | Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration | |
Sun et al. | Self-assembled nanometer-scale ZnS structure at the CZTS/ZnCdS heterointerface for high-efficiency wide band gap Cu2ZnSnS4 solar cells | |
CN105140319B (en) | A kind of thin-film solar cells and preparation method thereof | |
US10693071B2 (en) | Efficient and stable perovskite solar cells with all solution processed metal oxide transporting layers | |
Liu et al. | Solution processed CdTe/CdSe nanocrystal solar cells with more than 5.5% efficiency by using an inverted device structure | |
Wang et al. | A 4.92% efficiency Cu 2 ZnSnS 4 solar cell from nanoparticle ink and molecular solution | |
Tamilselvan et al. | Planar heterojunction solar cell employing a single-source precursor solution-processed Sb2S3 thin film as the light absorber | |
CN104025309A (en) | Solar cell and method of fabricating the same | |
CN104465807B (en) | A kind of CZTS nano-array thin film solar photovoltaic cell and preparation method thereof | |
CN104362186B (en) | One is applied to efficient film photronic double-decker Window layer | |
Ji et al. | Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction | |
CN107579123A (en) | A kind of antimony selenide thin film solar cell and preparation method thereof | |
KR20200048037A (en) | Perovskite solar cell and manufacturing methodmethod of same | |
CN108807572B (en) | A kind of silver indium gallium selenide thin film and its preparation method and application | |
TWI502762B (en) | Method for producing compound solar cell and sulfide single crystal nano particle film | |
CN102544213B (en) | The method manufacturing cadmium sulfide layer | |
WO2015046876A2 (en) | Solar cell having three-dimensional p-n junction structure and method for manufacturing same | |
JP2018110242A (en) | PV DEVICE ADJUSTED WITH PARTICLE SIZE AND S:Se RATIO | |
Kumar et al. | Optimization of annealing temperature on the formation CZTSe absorber layer | |
Yu et al. | Effect of annealing temperature on structural and electrical properties of Al/Nb-doped TiO2 Schottky diodes on Pt–Si substrates | |
KR101582121B1 (en) | Method for preparing CIS based film, the CIS based film prepared therefrom, and film solar cell including the CIS based film | |
KR100996162B1 (en) | Thin film type solar cell, manufacturing method thereof, and light absorbing layer manufacturing method of thin film type solar cell | |
Li et al. | Conformal Charge Transport Layers for Perovskite Solar Cells and Tandem Devices | |
KR101924538B1 (en) | Chalcogenide solar cell having a transparent conductive oxide back electrode and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190418 Address after: 528400 No. 1 College Road, Shiqi District, Zhongshan City, Guangdong Province Applicant after: Zhongshan College, Electronic Science &. Technology Univ. Address before: 510000 Bus 504 and 505 cards on the 5th floor of No. 6 Number Trade Building, Xiangxing Road, Zhongshan Torch Development Zone, Guangdong Province Applicant before: Zhongshan Ma Lai Robot Technology Co., Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant |