CN108807281B - Semiconductor device and method of forming the same - Google Patents
Semiconductor device and method of forming the same Download PDFInfo
- Publication number
- CN108807281B CN108807281B CN201810689887.8A CN201810689887A CN108807281B CN 108807281 B CN108807281 B CN 108807281B CN 201810689887 A CN201810689887 A CN 201810689887A CN 108807281 B CN108807281 B CN 108807281B
- Authority
- CN
- China
- Prior art keywords
- region
- well region
- forming
- ion
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 151
- 238000000034 method Methods 0.000 title claims abstract description 111
- 150000002500 ions Chemical class 0.000 claims abstract description 205
- 239000000758 substrate Substances 0.000 claims abstract description 93
- 238000005468 ion implantation Methods 0.000 claims description 106
- 230000008569 process Effects 0.000 claims description 59
- 239000000463 material Substances 0.000 claims description 36
- 238000005530 etching Methods 0.000 claims description 8
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims 4
- 239000010410 layer Substances 0.000 description 208
- -1 boron ions Chemical class 0.000 description 21
- 238000000059 patterning Methods 0.000 description 17
- 238000002513 implantation Methods 0.000 description 16
- 230000004888 barrier function Effects 0.000 description 13
- 239000002019 doping agent Substances 0.000 description 12
- 229910052796 boron Inorganic materials 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 229910001439 antimony ion Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910001449 indium ion Inorganic materials 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- HAYXDMNJJFVXCI-UHFFFAOYSA-N arsenic(5+) Chemical compound [As+5] HAYXDMNJJFVXCI-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种半导体器件及其形成方法,方法包括:提供半导体衬底,半导体衬底包括第一区、第二区和第三区,第二区位于第一区和第三区之间;对半导体衬底进行第一离子掺杂,在半导体衬底内形成第一阱区,第一阱区内掺杂有第一离子;在半导体衬底上形成覆盖第三区表面的初始栅层;之后,对第二区和第三区的半导体衬底进行第二离子掺杂,将第二区内的第一阱区反型为第二阱区,将第三区内的第一阱区反型为第三阱区,第二阱区和第三阱区内掺杂有第二离子,第二离子与第一离子导电类型相反,第二阱区的离子浓度大于第三阱区的离子浓度;在第二阱区上形成第一栅极结构;刻蚀初始栅层,在第三阱区上形成第二栅极结构。所述方法减少了掩膜次数,降低了成本。
A semiconductor device and a method for forming the same, the method comprising: providing a semiconductor substrate, the semiconductor substrate includes a first region, a second region and a third region, the second region is located between the first region and the third region; first ion doping is performed on the bottom of the semiconductor substrate, a first well region is formed in the semiconductor substrate, and the first well region is doped with first ions; an initial gate layer covering the surface of the third region is formed on the semiconductor substrate; The semiconductor substrates in the second region and the third region are subjected to second ion doping, the first well region in the second region is inverted into the second well region, and the first well region in the third region is inverted into the first well region. In the triple well region, the second well region and the third well region are doped with second ions, the conductivity type of the second ions is opposite to that of the first ions, and the ion concentration of the second well region is greater than that of the third well region; A first gate structure is formed on the second well region; the initial gate layer is etched to form a second gate structure on the third well region. The method reduces the number of masks and costs.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a method for forming the same.
背景技术Background technique
随着半导体技术的不断进步,半导体器件的集成度不断提高,这就要求在一块芯片上能够形成更多的晶体管。With the continuous advancement of semiconductor technology, the integration level of semiconductor devices is continuously improved, which requires that more transistors can be formed on a chip.
阈值电压是晶体管的重要性质,对晶体管的性能具有重要影响。不同功能的晶体管往往对阈值电压具有不同的要求,在形成不同晶体管的过程中,需要对不同晶体管的阈值电压进行调节。Threshold voltage is an important property of a transistor and has a significant impact on the performance of the transistor. Transistors with different functions often have different requirements on threshold voltages, and in the process of forming different transistors, the threshold voltages of different transistors need to be adjusted.
为了对不同晶体管的阈值电压进行调节,会在晶体管的沟道区进行掺杂,形成阈值电压调节区。高阈值电压晶体管的阈值电压调节离子的浓度低于低阈值电压晶体管的阈值电压调节离子的浓度。可以通过在不同晶体管中形成不同浓度的阈值电压调节离子对晶体管的阈值电压进行调节。In order to adjust the threshold voltage of different transistors, the channel region of the transistor is doped to form a threshold voltage adjustment region. The concentration of threshold voltage adjusting ions of the high threshold voltage transistor is lower than the concentration of threshold voltage adjusting ions of the low threshold voltage transistor. The threshold voltage of a transistor can be adjusted by forming different concentrations of threshold voltage adjusting ions in different transistors.
然而,现有技术形成的多阈值电压晶体管工艺流程复杂,图形化工艺使用次数多,成本高。However, the multi-threshold voltage transistors formed in the prior art are complicated in process flow, the patterning process is used many times, and the cost is high.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种半导体器件及其形成方法,简化工艺流程,减少图形化工艺使用次数,降低成本。The technical problem solved by the present invention is to provide a semiconductor device and a method for forming the same, which can simplify the process flow, reduce the usage times of the patterning process, and reduce the cost.
为解决上述技术问题,本发明实施例提供一种半导体器件的形成方法,包括:提供半导体衬底,所述半导体衬底包括第一区、第二区和第三区,所述第二区位于所述第一区和所述第三区之间;对所述半导体衬底的第一区、第二区和第三区进行第一离子掺杂,在第一区、第二区和第三区半导体衬底内形成第一阱区,所述第一阱区内掺杂有第一离子;在所述半导体衬底第三区上形成初始栅层;在形成所述初始栅层之后,对第二区和第三区的半导体衬底进行第二离子掺杂,将第二区内的第一阱区反型为第二阱区,将第三区内第一阱区反型为第三阱区,所述第二阱区和第三阱区内掺杂有第二离子,所述第二离子与第一离子导电类型相反,第二阱区的第二离子掺杂浓度大于第三阱区的第二离子掺杂浓度;在半导体衬底上形成第一栅极结构,至少一个第一栅极结构位于第二阱区上;形成第一栅极结构后,刻蚀所述初始栅层,在所述第三阱区上形成第二栅极结构。In order to solve the above technical problem, an embodiment of the present invention provides a method for forming a semiconductor device, including: providing a semiconductor substrate, the semiconductor substrate includes a first region, a second region and a third region, and the second region is located in the between the first region and the third region; first ion doping is performed on the first region, the second region and the third region of the semiconductor substrate, in the first region, the second region and the third region A first well region is formed in the semiconductor substrate, and the first well region is doped with first ions; an initial gate layer is formed on the third region of the semiconductor substrate; after the initial gate layer is formed, the The semiconductor substrates in the second region and the third region are subjected to second ion doping, the first well region in the second region is inverted into the second well region, and the first well region in the third region is inverted into the third well region a well region, the second well region and the third well region are doped with second ions, the conductivity type of the second ions is opposite to that of the first ions, and the doping concentration of the second ions in the second well region is greater than that of the third well region the second ion doping concentration in the region; a first gate structure is formed on the semiconductor substrate, and at least one first gate structure is located on the second well region; after the first gate structure is formed, the initial gate layer is etched , forming a second gate structure on the third well region.
可选的,所述第一区与所述第二区和所述第三区形成的器件类型不同;Optionally, the types of devices formed in the first region, the second region and the third region are different;
可选的,所述第二离子掺杂的方法包括:进行第一次离子注入,所述第一次离子注入的深度小于初始栅层的厚度;在第一次离子注入之后,进行第二次离子注入,所述第二次离子注入的深度大于初始栅层的厚度。Optionally, the second ion doping method includes: performing a first ion implantation, where the depth of the first ion implantation is less than the thickness of the initial gate layer; after the first ion implantation, performing a second ion implantation Ion implantation, the depth of the second ion implantation is greater than the thickness of the initial gate layer.
可选的,所述第二离子掺杂的方法还包括:在所述第二次离子注入之后,进行至少一次第三次离子注入,所述第三次离子注入的深度大于初始栅层的厚度。Optionally, the second ion doping method further includes: after the second ion implantation, at least one third ion implantation is performed, and the depth of the third ion implantation is greater than the thickness of the initial gate layer .
可选的,所述第一次离子注入的注入离子剂量大于第二次离子注入的注入离子剂量。Optionally, the implanted ion dose of the first ion implantation is greater than the implanted ion dose of the second ion implantation.
可选的,所述第三次离子注入的注入离子剂量大于第二次离子注入的注入离子剂量。Optionally, the implanted ion dose of the third ion implantation is greater than the implanted ion dose of the second ion implantation.
可选的,所述第二次离子注入的注入离子能量大于第一次离子注入的注入离子能量。Optionally, the implanted ion energy of the second ion implantation is greater than the implanted ion energy of the first ion implantation.
可选的,所述第三次离子注入的注入离子剂量大于第二次离子注入的注入离子剂量。Optionally, the implanted ion dose of the third ion implantation is greater than the implanted ion dose of the second ion implantation.
可选的,所述初始栅层的材料包括:多晶硅、非晶硅、微晶硅、非晶锗或金属栅极材料。Optionally, the material of the initial gate layer includes: polysilicon, amorphous silicon, microcrystalline silicon, amorphous germanium or metal gate material.
可选的,第二离子掺杂前,还包括在第一阱区表面形成第一掩膜层;以所述初始栅层和第一掩膜层为掩膜对第二区的半导体衬底进行第二离子掺杂。Optionally, before the second ion doping, the method further includes forming a first mask layer on the surface of the first well region; using the initial gate layer and the first mask layer as masks to perform masking on the semiconductor substrate in the second region. The second ion doping.
可选的,所述第一离子掺杂工艺包括离子注入工艺或固态源掺杂工艺。Optionally, the first ion doping process includes an ion implantation process or a solid state source doping process.
可选的,所述第一离子掺杂后,初始栅层形成前,还包括:在所述半导体衬底第一区、第二区和第三区表面形成栅介质层,所述初始栅层位于栅介质层表面。Optionally, after the first ion doping and before forming the initial gate layer, the method further includes: forming a gate dielectric layer on the surfaces of the first region, the second region and the third region of the semiconductor substrate, the initial gate layer on the surface of the gate dielectric layer.
可选的,所述第一栅极结构的形成方法包括:去除第二阱区表面的栅介质层,暴露出第二阱区表面;在第二阱区表面形成第一栅介质层;在第一栅介质层表面形成第一栅极膜;在第一栅极膜表面形成第二掩膜层,以所述第二掩膜层为掩膜,刻蚀所述第一栅极膜,在第二阱区表面形成第一栅极层,形成所述第一栅极结构。Optionally, the method for forming the first gate structure includes: removing the gate dielectric layer on the surface of the second well region to expose the surface of the second well region; forming a first gate dielectric layer on the surface of the second well region; A first gate film is formed on the surface of a gate dielectric layer; a second mask layer is formed on the surface of the first gate film, and the second mask layer is used as a mask to etch the first gate film; A first gate layer is formed on the surface of the two well regions to form the first gate structure.
可选的,所述第二栅极结构的形成方法包括:形成第一栅极结构后,刻蚀所述初始栅层和栅介质层,在所述第三阱区上形成第二栅极结构。Optionally, the method for forming the second gate structure includes: after forming the first gate structure, etching the initial gate layer and the gate dielectric layer, and forming a second gate structure on the third well region .
可选的,还包括:在所述第一区半导体衬底内形成第四阱区,所述第四阱区与第一阱区相邻,所述第四阱区内具有第一离子,所述第四阱区离子浓度高于第一阱区离子浓度。Optionally, it further includes: forming a fourth well region in the semiconductor substrate of the first region, the fourth well region is adjacent to the first well region, and the fourth well region has first ions, so The ion concentration in the fourth well region is higher than the ion concentration in the first well region.
可选的,所述第四阱区的形成方法包括:在进行第二离子掺杂前,在部分第一区和第二区的半导体衬底内进行第三离子掺杂,在第一区内形成第四阱区。Optionally, the method for forming the fourth well region includes: before performing the second ion doping, performing third ion doping in part of the semiconductor substrate of the first region and the second region, and performing third ion doping in the first region A fourth well region is formed.
可选的,还包括:在第一阱区上形成所述第二栅极结构,在第四阱区上形成所述第一栅极结构。Optionally, the method further includes: forming the second gate structure on the first well region, and forming the first gate structure on the fourth well region.
相应的,本发明还提供一种采用上述任意一项方法所形成的半导体器件。Correspondingly, the present invention also provides a semiconductor device formed by any one of the above methods.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的半导体器件的形成方法中,通过第一离子掺杂在半导体衬底第一区、第二区和第三区内掺杂第一离子,在半导体衬底第一区、第二区和第三区内形成第一阱区;对半导体衬底第二区和第三区进行第二离子掺杂,第二掺杂的掺杂离子为第二离子,第二离子与第一离子导电类型相反,使得第二区和第三区半导体衬底实现反型,此时需要保护第一半导体衬底第一区,需要一次图形化工艺;同时通过初始栅层作为第二离子掺杂的掩膜层,利用初始栅层的高度差在半导体衬底第二区内第二阱区,在半导体衬底第三区内第三阱区,初始栅层的形成需要一次图形化工艺;第一阱区的掺杂离子导电类型与第二阱区和第三阱区的掺杂离子导电类型类型不同,第二阱区和第三阱区的掺杂离子导电类型类型相同,第二阱区和第三阱区的阱区掺杂离子浓度不同,故形成第一阱区、第二阱区和第三阱区仅需要两次图形化工艺,在第二阱区上形成第一栅极结构和在第三阱区上第二栅极结构时各需要一次图形化工艺,减小了图形化工艺的次数,对半导体衬底的损伤较少,同时简化了工艺流程,提高了半导体器件的性能,优化了工艺流程。In the method for forming a semiconductor device provided by the technical solution of the present invention, the first region, the second region and the third region of the semiconductor substrate are doped with the first ions by the first ion doping, and the first region, the second region and the third region of the semiconductor substrate are doped with the first ions. A first well region is formed in the second region and the third region; the second region and the third region of the semiconductor substrate are doped with second ions. The ion conductivity types are opposite, so that the semiconductor substrates in the second region and the third region realize inversion. At this time, the first region of the first semiconductor substrate needs to be protected, and a patterning process is required; at the same time, the initial gate layer is used as the second ion doping The second well region in the second region of the semiconductor substrate and the third well region in the third region of the semiconductor substrate are used by using the height difference of the initial gate layer. The formation of the initial gate layer requires a patterning process; The doped ion conductivity type of one well region is different from that of the second well region and the third well region, the doped ion conductivity type of the second well region and the third well region is the same, the second well region It is different from the doping ion concentration of the well region of the third well region, so only two patterning processes are required to form the first well region, the second well region and the third well region, and the first gate structure is formed on the second well region and the second gate structure on the third well region each requires a patterning process, which reduces the number of patterning processes, causes less damage to the semiconductor substrate, simplifies the process flow, and improves the performance of the semiconductor device. , optimize the process flow.
进一步,所述半导体器件还包括第四阱区,利用初始栅层为掩膜,通过第三离子注入形成第四阱区;通过第一掩膜层为掩膜,进行第二离子注入,形成第二阱区和第三阱区;故形成四个阱区需要两次掩膜,进行了两次图像化工艺,减小了图形化的次数,对半导体衬底的损伤较少,同时节约了工艺流程,提高了半导体器件的性能,优化了工艺流程。Further, the semiconductor device further includes a fourth well region, using the initial gate layer as a mask, and forming the fourth well region through the third ion implantation; using the first mask layer as a mask, performing the second ion implantation to form the fourth well region The second well region and the third well region; therefore, the formation of the four well regions requires two masks, and two patterning processes are performed, which reduces the number of patterning times, causes less damage to the semiconductor substrate, and saves the process. The process improves the performance of semiconductor devices and optimizes the process flow.
附图说明Description of drawings
图1是一种半导体器件的结构示意图;1 is a schematic structural diagram of a semiconductor device;
图2至图14是本发明一实施例中半导体器件形成过程的结构示意图。2 to 14 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术的半导体器件的性能较差。As mentioned in the background, prior art semiconductor devices have poor performance.
图1是一种半导体器件的结构示意图。FIG. 1 is a schematic structural diagram of a semiconductor device.
参考图1,半导体衬底100,位于半导体衬底100内的第一阱区111、第二阱区112、第三阱区113和第四阱区114,所述第一阱区111和第二阱区112内具有第一阱离子,第一阱区111的离子浓度大于第二阱区112的离子浓度,所述第三阱区113和第四阱区114内具有第二阱离子,第二阱离子与第一阱离子导电类型相反,所述第三阱区113的离子浓度大于第四阱区114的离子浓度;位于所述第一阱区上的第一栅极结构;位于所述第二阱区上的第二栅极结构;位于所述第三阱区上的第三栅极结构;位于第四阱区上的第四栅极结构。1, a
其中,所述第一阱区用于形成低阈值电压PMOS晶体管;所述第二阱区用于形成高阈值电压PMOS晶体管;所述第三阱区用于形成低阈值电压NMOS晶体管;所述第四阱区用于形成高阈值电压NMOS晶体管。Wherein, the first well region is used to form a low threshold voltage PMOS transistor; the second well region is used to form a high threshold voltage PMOS transistor; the third well region is used to form a low threshold voltage NMOS transistor; The quad well region is used to form a high threshold voltage NMOS transistor.
在所述半导体衬底100内形成第一阱区111、第二阱区112、第三阱区113和第四阱区114时,在每个阱区形成过程中,均需要形成一次图形化,形成四个阱区需要进行四次图形化。在所述四个阱区上分别形成四个栅极结构,所述栅极结构均包括栅介质层和栅极层。为了在不同区域形成厚度不同的栅介质层,需要对形成栅介质层的材料层进行至少一次的图形化。为了在不同栅介质层上分别形成栅极层,需要至少进行一次图形化,则所述半导体形成过程中至少需要六次图形化,过多的图形化工艺,工艺复杂,且对半导体衬底刻蚀过多,从而导致半导体器件形成较差。When forming the
本发明实施例,通过初始栅层为掩膜使得不同阱区的掺杂浓度不同,同时作为后续栅极结构的材料层,所述方法中图形化次数较少,对半导体衬底损伤较少,提高了半导体器件的性能,且简化了工艺。In the embodiment of the present invention, the doping concentration of different well regions is different by using the initial gate layer as a mask, and at the same time as the material layer of the subsequent gate structure, the method has less patterning times and less damage to the semiconductor substrate. The performance of the semiconductor device is improved and the process is simplified.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图2至图14是本发明一实施例中半导体器件形成过程的结构示意图。2 to 14 are schematic structural diagrams of a semiconductor device forming process in an embodiment of the present invention.
请参考图2,提供半导体衬底200。Referring to FIG. 2 , a
所述半导体衬底200包括第一区A、第二区B和第三区C,所述第二区B位于所述第一区A和所述第三区C之间;第一区A与第二区B和第三区C形成的器件类型不同。The
当所述第一区A用于形成P型器件,所述第二区B和第三区C用于形成N型器件;当所述第一区A用于形成N型器件,所述第二区B和第三区C用于形成P型器件。When the first area A is used to form P-type devices, the second area B and the third area C are used to form N-type devices; when the first area A is used to form N-type devices, the second area B and the third area C are used to form N-type devices. Region B and third region C are used to form P-type devices.
本实施例中,所述第一区A用于形成N型器件,第二区B和第三区C用于形成P型器件。In this embodiment, the first region A is used to form N-type devices, and the second region B and the third region C are used to form P-type devices.
在一实施例中,所述第一区A用于形成P型器件,第二区B和第三区C用于形成N型器件。In one embodiment, the first region A is used to form P-type devices, and the second region B and the third region C are used to form N-type devices.
本实施例中,所述半导体衬底200的材料为单晶硅。所述半导体衬底200还可以是多晶硅或非晶硅。所述半导体衬底200的材料还可以为锗、锗化硅、砷化镓等半导体材料。所述半导体衬底200还能够是绝缘体上半导体结构,所述绝缘体上半导体结构包括绝缘体及位于绝缘体上的半导体材料层,所述半导体材料层的材料包括硅、锗、硅锗、砷化镓或铟镓砷等半导体材料。In this embodiment, the material of the
继续参考图2,对所述半导体衬底200进行第一离子掺杂,在第一区A、第二区B和第三区C内形成第一阱区211,所述掺杂离子为第一离子。Continuing to refer to FIG. 2 , first ion doping is performed on the
所述第一离子掺杂为形成第一阱区和后续的第四阱区提供掺杂离子。The first ion doping provides dopant ions for forming the first well region and the subsequent fourth well region.
当所述第一区A用于形成N型器件时,所述第一离子为P型离子,所述第一离子包括:硼离子、BF2-离子或铟离子。When the first region A is used to form an N-type device, the first ions are P-type ions, and the first ions include: boron ions, BF 2- ions or indium ions.
当所述第一区A用于形成P型器件时,所述第一离子为N型离子,所述第一离子包括:磷离子、砷离子或锑离子。When the first region A is used to form a P-type device, the first ions are N-type ions, and the first ions include phosphorus ions, arsenic ions or antimony ions.
本实施例中,所述第一区A用于形成N型器件,所述第一离子为硼离子。In this embodiment, the first region A is used to form an N-type device, and the first ions are boron ions.
在一实施例中,所述第一区A用于形成P型器件,所述第一离子为磷离子。In one embodiment, the first region A is used to form a P-type device, and the first ions are phosphorus ions.
所述第一离子掺杂工艺包括离子注入工艺或固态源掺杂工艺。The first ion doping process includes an ion implantation process or a solid state source doping process.
本实施例中,所述第一离子掺杂的工艺为离子注入工艺,所述离子注入的参数包括:注入离子为硼离子,注入能量为100KeV到200KeV,注入深度0.3微米到0.6微米,注入剂量范围为5.0×1012atom/cm2~5.0×1013atom/cm2。In this embodiment, the first ion doping process is an ion implantation process, and the ion implantation parameters include: the implanted ions are boron ions, the implantation energy is 100KeV to 200KeV, the implantation depth is 0.3 μm to 0.6 μm, and the implantation dose The range is 5.0×10 12 atom/cm 2 to 5.0×10 13 atom/cm 2 .
请参考图3,在半导体衬底200上形成初始栅材料层240;在初始栅材料层240上形成图形化层205。Referring to FIG. 3 , an initial
所述图形化层205覆盖部分初始栅材料层240表面。The patterned
所述图形化层205为形成初始栅层的掩膜层。The patterned
所述图形化层205的材料包括光刻胶。The material of the patterned
本实施例中,初始栅层材料层240形成前,还包括:在所述半导体衬底200表面形成栅介质层241,所述初始栅层材料层240位于栅介质层241表面。In this embodiment, before forming the initial gate
所述栅介质层241的材料包括:氧化硅,氮氧化硅或高介电常数材料。The material of the
所述栅介质层241为后续形成第二栅极结构的栅介质层提供材料,且作为离子注入时的保护层。The
请参考图4,以所述图形化层205为掩膜刻蚀所述初始栅材料层240,在半导体衬底200表面形成初始栅层242,所述初始栅层242覆盖第三区的半导体衬底表面。Referring to FIG. 4 , the initial
本实施例中,所述初始栅层241还覆盖部分第一区A的半导体衬底表面。In this embodiment, the
所述初始栅层242为后续形成第二栅极结构提供栅极层,同时作为后续第二离子掺杂和第三离子掺杂的掩膜层。The
所述初始栅层242的材料包括:多晶硅、非晶硅、微晶硅、非晶锗或金属栅极材料。The material of the
所述金属栅极材料包括:铝、钽、钨、氮化钽或氮化钛。The metal gate material includes: aluminum, tantalum, tungsten, tantalum nitride or titanium nitride.
本实施例中,所述初始栅层242的材料为多晶硅。In this embodiment, the material of the
所述初始栅层242的厚度为0.1微米至0.2微米。The thickness of the
所述初始栅层242的厚度决定了后续的第一次离子注入、第二次离子注入和第三次离子注入的注入离子的深度,第一次离子注入的注入离子深度小于初始栅层的厚度,第二次离子注入和第三次离子注入的注入离子的深度需要大于初始栅层的厚度。初始栅层242厚度过低,无法保证第一次离子注入的质量;初始栅层242厚度过厚,第二次离子注入和第三次离子注入的注入离子能量需要过高,工艺难度较高,且对半导体衬底损伤较大,不利于器件的性能。The thickness of the
本实施例中,所述初始栅层242表面还形成有阻挡层,所述阻挡层作为离子注入时的阻挡层和后续刻蚀的停止层。In this embodiment, a barrier layer is also formed on the surface of the
所述阻挡层的材料包括:氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the barrier layer includes: silicon nitride, silicon nitride carbide, silicon boron nitride, silicon oxycarbide or silicon oxynitride.
本实施例中,所述阻挡层的材料为氮化硅。In this embodiment, the material of the barrier layer is silicon nitride.
其他实施例中,不在初始栅层242表面形成阻挡层。In other embodiments, the barrier layer is not formed on the surface of the
本实施例中,还包括:在所述第一区A的半导体衬底200内形成第四阱区,所述第四阱区与第一阱区相邻,所述第四阱区内具有第一离子。In this embodiment, the method further includes: forming a fourth well region in the
本实施例中,所述第一阱区用于形成低阈值电压PMOS晶体管;所述第二阱区用于形成高阈值电压PMOS晶体管;所述第三阱区用于形成低阈值电压NMOS晶体管;所述第四阱区用于形成高阈值电压NMOS晶体管。In this embodiment, the first well region is used to form a low threshold voltage PMOS transistor; the second well region is used to form a high threshold voltage PMOS transistor; the third well region is used to form a low threshold voltage NMOS transistor; The fourth well region is used to form a high threshold voltage NMOS transistor.
请参考图5,形成初始栅层242后,在所述第一区A半导体衬底200内形成第四阱区214。Referring to FIG. 5 , after the
所述第四阱区214的形成方法包括:对部分第一区A和第二区B的半导体衬底进行第三离子掺杂,所述掺杂离子为第一离子,在第一区A内形成第四阱区214。The method for forming the
所述第三离子掺杂工艺包括离子注入工艺或固态源掺杂工艺。The third ion doping process includes an ion implantation process or a solid state source doping process.
本实施例中,所述第三离子掺杂工艺为离子注入工艺。In this embodiment, the third ion doping process is an ion implantation process.
具体的,以所述初始栅层242为掩膜对部分第一区A和第二区B的半导体衬底进行第三离子掺杂,所述第三离子掺杂为第四阱区214阈值电压离子掺杂。Specifically, using the
所述第三离子注入的深度小于初始栅层242的厚度,控制离子注入的深度,使得第三离子掺杂的离子不能到达位于初始栅层242下方的第一阱区211内,仅在第一区A暴露出的第一阱区211内和第二区B的第一阱区211内形成掺杂区。The depth of the third ion implantation is smaller than the thickness of the
所述第三离子掺杂后,在第一区A内形成第四阱区214,所述第四阱区214的离子浓度高于所述第一阱区211的离子浓度;在第二区B内形成中间第二阱区202,所述中间第二阱区202的离子浓度与第四阱区214离子浓度相等,大于第一阱区211的离子浓度。After the third ion doping, a
所述第一阱区211和第四阱区214所形成的半导体器件类型相同,但功能不同。The semiconductor devices formed by the
本实施例中,所述第一阱区211用于形成高阈值电压半导体器件,所述第四阱区214用于形成低阈值电压半导体器件。In this embodiment, the
高阈值电压半导体器件的阱区掺杂离子浓度低于低阈值电压半导体器件的阱区掺杂离子浓度。The dopant ion concentration of the well region of the high threshold voltage semiconductor device is lower than the dopant ion concentration of the well region of the low threshold voltage semiconductor device.
所述第三离子掺杂为第四阱区阈值电压离子掺杂,为形成第四阱区的阈值电压调节区。The third ion doping is the threshold voltage ion doping of the fourth well region, which forms the threshold voltage adjustment region of the fourth well region.
本实施例中,所述第一区A用于形成N型器件,所述第一离子为硼离子。In this embodiment, the first region A is used to form an N-type device, and the first ions are boron ions.
本实施例中,所述第三离子掺杂工艺包括离子注入工艺,所述离子注入的参数包括:注入离子为硼离子,注入能量为10KeV到30KeV,注入深度0.03微米到0.1微米,注入剂量范围为1.0×1012atom/cm2~1.0×1013atom/cm2。In this embodiment, the third ion doping process includes an ion implantation process, and the parameters of the ion implantation include: the implanted ions are boron ions, the implantation energy is 10KeV to 30KeV, the implantation depth is 0.03 μm to 0.1 μm, and the implantation dose range is It is 1.0×10 12 atom/cm 2 to 1.0×10 13 atom/cm 2 .
形成第一阱区211和第四阱区214后,在半导体衬底200第二区B形成第二阱区,在半导体衬底200第三区C形成第三阱区,所述第二阱区和第三阱区的形成方法包括:在形成所述初始栅层242之后,对第二区B和第三区C的半导体衬底200进行第二离子掺杂,将第二区B内的第一阱区反型为第二阱区212,将第三区C内第一阱区211反型为第三阱区213,所述第二阱区212和第三阱区213内掺杂有第二离子,所述第二离子与第一离子导电类型相反,第二阱区212的第二离子掺杂浓度大于第三阱区213的第二离子掺杂浓度。After forming the
所述第二离子掺杂工艺包括离子注入工艺。The second ion doping process includes an ion implantation process.
所述第二离子掺杂的方法包括:进行第一次离子注入,所述第一次离子注入的深度小于初始栅层242的厚度;在第一次离子注入之后,进行第二次离子注入,所述第二次离子注入的深度大于初始栅层242的厚度。The method for the second ion doping includes: performing a first ion implantation, where the depth of the first ion implantation is smaller than the thickness of the
所述第二离子掺杂的方法还包括:在所述第二次离子注入之后,进行至少一次第三次离子注入,所述第三次离子注入的深度大于初始栅层的厚度。The second ion doping method further includes: after the second ion implantation, at least one third ion implantation is performed, and the depth of the third ion implantation is greater than the thickness of the initial gate layer.
具体的所述第二阱区212和第三阱区213的形成方法请参考图6至图8。For specific methods of forming the
请参考图6,形成第一阱区211和第四阱区214后,以所述初始栅层242为掩膜对第二区B的半导体衬底200进行第一次离子注入,所述注入离子为第二离子,所述第二离子与第一离子导电类型相反。Referring to FIG. 6 , after the
具体的,以所述初始栅层242为掩膜对中间第二阱区202进行第一次离子注入,使得部分中间第二阱区202反型,在第二区B半导体衬底200内形成第一掺杂区207。Specifically, the first ion implantation is performed on the middle second
本实施例中,进行第一次离子注入之前,还包括:在第一区A的半导体衬底上形成第一掩膜层206,所述第一掩膜层206覆盖第一阱区211表面的初始栅层242。In this embodiment, before the first ion implantation, the method further includes: forming a
所述第一掩膜层206为第二离子掺杂的掩膜层,在第二离子掺杂时保护第一阱区211和第四阱区214。The
所述第一掩膜层206的材料为光刻胶。The material of the
在一实施例中,不形成所述第一掩膜层206,采用选择性离子注入对第二区B的半导体衬底200进行离子注入。In one embodiment, the
所述第一掺杂区207的导电离子类型与第二离子导电类型相同。The conductive ion type of the first
所述第一次离子注入为第二阱区阈值电压离子注入,为形成第二阱区的阈值电压区。The first ion implantation is the threshold voltage ion implantation of the second well region, which is to form the threshold voltage region of the second well region.
所述第二区B所形成的半导体器件类型与第一区A所形成的半导体器件类型不同,则第一区A内的阱区与第二区B内的阱区的掺杂离子类型不同。The type of the semiconductor device formed in the second region B is different from that of the semiconductor device formed in the first region A, and the well region in the first region A and the well region in the second region B have different types of doped ions.
当所述第一离子的导电类型为N型时,所述第二离子的导电类型为P型,所述第二离子包括:磷离子、砷离子或锑离子。When the conductivity type of the first ion is N type, the conductivity type of the second ion is P type, and the second ion includes phosphorus ion, arsenic ion or antimony ion.
当所述第一离子的导电类型为P型时,所述第二离子的导电类型为N型,所述第二离子包括:硼离子、BF2-离子或铟离子。When the conductivity type of the first ion is P type, the conductivity type of the second ion is N type, and the second ion includes: boron ion, BF 2- ion or indium ion.
本实施例中,所述第一区A用于形成N型器件,所述第一离子为硼离子,则第二离子的类型为N型离子,所述第二离子为磷离子。In this embodiment, the first region A is used to form an N-type device, the first ions are boron ions, the type of the second ions is N-type ions, and the second ions are phosphorus ions.
在一实施例中,所述第一区A用于形成P型器件,所述第一离子为磷离子,则第二离子的类型为P型离子,所述第二离子为硼离子。In one embodiment, the first region A is used to form a P-type device, the first ions are phosphorus ions, the type of the second ions is P-type ions, and the second ions are boron ions.
本实施例中,所述中间第二阱区202内的掺杂离子为磷离子,中间第二阱区202的掺杂离子导电类型为P型。所述第一次离子注入的注入离子为第二离子,第二离子的导电类型为N型离子,对中间第二阱区202进行第一次离子注入,即对部分中间第二阱区202的部分离子进行反掺杂,使得中间第二阱区202内的第一掺杂区207的掺杂离子导电类型为N型。In this embodiment, the dopant ions in the middle second
由于初始栅层241位于半导体衬底200第三区C表面,在进行第一次离子注入时,控制第一次离子注入的深度,使得第一次离子注入的注入离子不能到达半导体衬底200第三区C表面,仅在中间第二阱区202内形成第一掺杂区207。Since the
所述第一次离子注入的参数包括:注入离子为砷离子,注入能量为30KeV到150KeV,注入深度0.02微米到0.08微米,注入剂量范围为5.0×1012atom/cm2~5.0×1013atom/cm2。The parameters of the first ion implantation include: the implanted ions are arsenic ions, the implantation energy is 30KeV to 150KeV, the implantation depth is 0.02 μm to 0.08 μm, and the implantation dose range is 5.0×10 12 atom/cm 2 ~5.0×10 13 atom /cm 2 .
请参考图7,第一次离子注入后,对第二区B和第三区C的半导体衬底200进行第二次离子注入,所述注入离子为第二离子。Referring to FIG. 7 , after the first ion implantation, a second ion implantation is performed on the
所述第二次离子注入为第三阱区阈值电压离子注入,为形成第三阱区的阈值电压区。The second ion implantation is the threshold voltage ion implantation of the third well region, which is to form the threshold voltage region of the third well region.
具体的,对中间第二阱区202和第三区C内的第一阱区211进行第二次离子注入,使得第三区C内的部分第一阱区211反型,在第三区C的半导体衬底内形成第三掺杂区209,同时使得部分中间第二阱区202反型,在第二区B的半导体衬底内形成第二掺杂区208。Specifically, the second ion implantation is performed on the middle second
所述第三掺杂区209为第三阱区的阈值电压掺杂区。The
所述第三掺杂区209的导电离子类型与第二离子导电类型相同。The conductive ion type of the third
所述第二掺杂区208的导电离子类型与第二离子导电类型相同。The conductivity ion type of the second
本实施例中,所述第三区C内的第一阱区211内的掺杂离子为磷离子,第三区C内的第一阱区211的掺杂离子导电类型为P型。所述第二次离子注入的注入离子为第二离子,第二离子的导电类型为N型离子,对第三区C内的第一阱区211进行第二次离子注入,即对部分第三区C内的第一阱区211的部分离子进行反掺杂,使得第三区C内的部分第一阱区211反型,形成第三掺杂区209,第三掺杂区209的掺杂离子导电类型为N型。In this embodiment, the dopant ions in the
对中间第二阱区202进行第二次离子注入,即对部分中间第二阱区202的部分离子继续进行反掺杂,使得第二区B的半导体衬底内的第二掺杂区208的掺杂离子导电类型为N型。The second ion implantation is performed on the middle second
第一掺杂区207为后续形成的第二阱区内的阈值电压掺杂区,所述第三掺杂区209为后续形成的第三阱区内的阈值电压掺杂区。The
所述第二阱区和第三阱区所形成的半导体器件类型相同,但功能不同。The semiconductor devices formed by the second well region and the third well region are of the same type, but have different functions.
本实施例中,所述第二阱区用于形成低阈值电压半导体器件,所述第三阱区用于形成高阈值电压半导体器件。In this embodiment, the second well region is used to form a low threshold voltage semiconductor device, and the third well region is used to form a high threshold voltage semiconductor device.
高阈值电压半导体器件的阱区掺杂离子浓度低于低阈值电压半导体器件的阱区掺杂离子浓度。The dopant ion concentration of the well region of the high threshold voltage semiconductor device is lower than the dopant ion concentration of the well region of the low threshold voltage semiconductor device.
所述第一次离子注入的注入离子剂量大于第二次离子注入的注入离子剂量,使得第一掺杂区207的第二离子浓度大于第三掺杂区209的第二离子浓度。The implanted ion dose of the first ion implantation is greater than the implanted ion dose of the second ion implantation, so that the second ion concentration of the first
第二次离子注入的注入离子深度高于初始栅层的厚度,使得第二离子进入到中间第三阱区203内。The implanted ion depth of the second ion implantation is higher than the thickness of the initial gate layer, so that the second ions enter into the middle third well region 203 .
所述第二次离子注入的注入离子能量大于第一次离子注入的注入离子能量,使得第二次离子注入的注入离子穿透初始栅层到达中间第三阱区。The implanted ion energy of the second ion implantation is greater than the implanted ion energy of the first ion implantation, so that the implanted ions of the second ion implantation penetrate the initial gate layer and reach the middle third well region.
所述第二次离子注入的参数包括:注入离子为磷离子,注入能量为100KeV到300KeV,注入深度0.03微米到0.07微米,注入剂量范围为1.0×1012atom/cm2~1.0×1013atom/cm2。The parameters of the second ion implantation include: the implanted ions are phosphorus ions, the implantation energy is 100KeV to 300KeV, the implantation depth is 0.03 μm to 0.07 μm, and the implantation dose range is 1.0×10 12 atom/cm 2 ~1.0×10 13 atom /cm 2 .
请参考图8,第二次离子注入后,对第二区B和第三区C的半导体衬底200进行第三次离子注入,所述注入离子为第二离子,将所述中间第二阱区202反型为第二阱区212,将所述第三区C内的第一阱区211反型为第三阱区213。Referring to FIG. 8 , after the second ion implantation, a third ion implantation is performed on the
所述第三次离子注入为形成第二阱区212和第三阱区213的阱注入,所述第二阱区212和第三阱区213的阱离子导电类型与第二离子导电类型相同。The third ion implantation is a well implantation for forming the
本实施例中,所述第三区C内的第一阱区211的掺杂离子为磷离子,第三区C的第一阱区211的掺杂离子导电类型为P型。所述第三次离子注入的注入离子为第二离子,第二离子的导电类型为N型离子,所述第二离子为硼离子。In this embodiment, the dopant ions of the
对第二区B和第三区C的半导体衬底200进行第三次离子注入,即对中间第二阱区202和第三区C内的第一阱区211的离子进行反掺杂,使得第二区B内半导体衬底200的掺杂离子导电类型为N型,形成第二阱区212;使得第三区C内半导体衬底200的掺杂离子导电类型为N型,形成第三阱区213。The third ion implantation is performed on the
第三次离子注入的注入离子深度高于初始栅层242的厚度,使得第二离子进入到第三区C的第一阱区211内。The implanted ion depth of the third ion implantation is higher than the thickness of the
所述第三次离子注入可以为多次离子注入。The third ion implantation may be multiple ion implantations.
第三次离子注入参数包括:注入离子为磷离子,注入能量为400KeV到600KeV,注入深度0.05微米到1.2微米,注入剂量范围为1.0×1013atom/cm2~1.0×1014atom/cm2。The third ion implantation parameters include: the implanted ions are phosphorus ions, the implantation energy is 400KeV to 600KeV, the implantation depth is 0.05μm to 1.2μm, and the implantation dose range is 1.0×10 13 atom/cm 2 ~1.0×10 14 atom/cm 2 .
所述第三次离子注入的注入离子能量大于第二次离子注入的注入离子能量,使得第三次离子注入的注入离子能够到达第二掺杂区208的下方的中间第二阱区202内,以及第三掺杂区209下方的第三区C的第一阱区211内。The implanted ion energy of the third ion implantation is greater than the implanted ion energy of the second ion implantation, so that the implanted ions of the third ion implantation can reach the middle second
形成第二阱区212和第三阱区213后,去除所述第一掩膜层206,After the
去除所述第一掩膜层206的工艺为灰化工艺或者湿法工艺。The process of removing the
形成所述第一阱区211、第四阱区214、第二阱区212和第三阱区213,仅形成两次掩膜层,进行两次图形化工艺,对半导体衬底的损伤较少,同时节约了工艺流程,提高了半导体器件的性能,优化了工艺流程。The
形成第一阱区211、第四阱区214、第二阱区212和第三阱区213后,在半导体衬底上形成第一栅极结构,至少一个第一栅极结构位于第二阱区上;形成第一栅极结构后,刻蚀所述初始栅层,在所述第三阱区上形成第二栅极结构。After forming the
本实施例中,还包括:在第一阱区上形成所述第二栅极结构,在第四阱区上形成所述第一栅极结构。In this embodiment, the method further includes: forming the second gate structure on the first well region, and forming the first gate structure on the fourth well region.
其他实施例中,在第一阱区上形成第一栅极结构;在第二阱区上形成第二栅极结构;在第三阱区上形成第三栅极结构;在第四阱区上形成第四栅极结构。In other embodiments, the first gate structure is formed on the first well region; the second gate structure is formed on the second well region; the third gate structure is formed on the third well region; A fourth gate structure is formed.
形成第二阱区212和第三阱区213后,在第二阱区表面形成第二栅极结构。After the
请参考图9,形成第二阱区212和第三阱区213后,去除第二阱区212表面的栅介质层241;在第二阱区212表面形成第一栅介质层251,在第一栅介质层251表面形成第一栅极膜252,所述第一栅极膜252还覆盖初始栅层242顶部表面。Referring to FIG. 9, after forming the
本实施例中,所述第二阱区212用于形成低阈值电压P型半导体器件,所述第三阱区213用于形成高阈值电压P型半导体器件。In this embodiment, the
由于高阈值电压半导体器件的电压较高,为保证器件的性能,高阈值电压半导体器件的栅介质层相较于低阈值电压半导体器件的栅介质层较厚。Since the voltage of the high threshold voltage semiconductor device is higher, in order to ensure the performance of the device, the gate dielectric layer of the high threshold voltage semiconductor device is thicker than that of the low threshold voltage semiconductor device.
本实施例中,所述第二阱区212用于形成低阈值电压半导体器件,所述第三阱区213用于形成高阈值电压半导体器件,第一栅极结构的栅介质层厚度低于第二栅极结构的栅介质层厚度,故需要在第二阱区212表面形成第一栅极结构的栅介质层。In this embodiment, the
所述第一栅介质层251的形成方法包括:去除第二阱区212表面的栅介质层241,暴露出第二阱区212顶部表面;采用氧化工艺在第二阱区212表面形成第一栅介质层251。The method for forming the first
本实施例中,半导体衬底200还包括第一阱区211和第四阱区214,第一阱区用于形成高阈值电压N型半导体器件,第四阱区214用于形成低阈值电压N型半导体器件;即第二阱区212和第四阱区214用于形成低阈值电压半导体器件,第一阱区211和第三阱区213用于形成高阈值电压半导体器件。In this embodiment, the
本实施例中,去除第二阱区212表面的栅介质层的同时去除第四阱区214表面的栅介质层,暴露出第四阱区214顶部表面;采用氧化工艺在第二阱区212表面形成第一栅介质层的同时在第四阱区214表面形成第一栅介质层251,位于第四阱区214表面的第一栅介质层为第四栅极结构的栅介质层。In this embodiment, the gate dielectric layer on the surface of the
本实施例中,所述初始栅层242表面具有阻挡层,所述阻挡层能保护初始栅层顶部不被氧化,但初始栅层242侧壁被氧化,形成氧化层。In this embodiment, the surface of the
其他实施例中,所述初始栅层242表面未形成阻挡层,在氧化形成第一栅介质层的同时,在第一阱区和第三阱区上方的初始栅层242顶部表面和侧壁表面也会形成氧化层,该氧化层会作为后续刻蚀第一栅极膜252时的刻蚀停止层,用于保护初始栅层242。In other embodiments, the barrier layer is not formed on the surface of the
请参考图10,形成第一栅极膜252后,在第一栅极膜252表面形成第二掩膜层260,所述第二掩膜层260覆盖部分第二阱区212表面的第一栅极膜252表面。Referring to FIG. 10 , after the
本实施例中,所述第二掩膜层260覆盖部分第四阱区214表面的第一栅极膜252表面。In this embodiment, the
所述第二掩膜层260为后续形成第一栅极结构和第四栅极结构提供掩膜层。The
所述第二掩膜层260的材料包括:光刻胶。The material of the
形成所述第二掩膜层260的工艺过程包括:在半导体衬底200上旋涂形成初始第二掩膜层(未图示),所述初始第二掩膜层覆盖第一栅极膜252表面;对所述初始第二掩膜层进行曝光处理,所述曝光过程中的曝光模板暴露出部分初始第二掩膜层,对曝光后的初始第二掩膜层进行显影处理,暴露出第一栅极膜252部分表面,形成所述第二掩膜层260。The process of forming the
请参考图11,以所述第一掩膜层260为掩膜刻蚀所述第一栅极膜252和第一栅介质层251,直至暴露出第二阱区212顶部表面,在所述第二阱区212表面形成第一栅极结构。Referring to FIG. 11 , the
本实施例中,还包括第四阱区214,第一栅极膜252和第一栅介质层251还位于第四阱区214表面,第一掩膜层260也位于第四阱区214上的第一栅极膜252表面。In this embodiment, the
以所述第一掩膜层260为掩膜刻蚀所述第一栅极膜252和第一栅介质层251,形成第一栅极结构的同时,也刻蚀第四阱区表面的第一栅极膜252和第一栅介质层251,在第四阱区214表面形成第一栅极结构,同时,刻蚀去除在第一阱区211和第三阱区213的初始栅层242表面的第一栅极膜252,暴露出初始栅层242顶部的阻挡层的表面。Using the
其他实施例中,未形成阻挡层,刻蚀去除在第一阱区211和第三阱区213的初始栅层242表面的第一栅极膜252和初始栅层242表面的氧化层,暴露出初始栅层242顶部表面。In other embodiments, the barrier layer is not formed, the
请参考图12,形成第一栅极结构后,在半导体衬底上形成第三掩膜层270,所述第三掩膜层270覆盖部分初始栅层242顶部表面。Referring to FIG. 12 , after the first gate structure is formed, a
所述第三掩膜层270还覆盖第一栅极结构侧壁和顶部表面。The
所述第三掩膜层270为后续形成第二栅极结构的掩膜层。The
所述第三掩膜层270的材料包括光刻胶。The material of the
形成所述第三掩膜层270的工艺过程包括:在半导体衬底200上旋涂形成初始第三掩膜层(未图示),所述初始第三掩膜层覆盖第一栅极结构侧壁和顶部表面以及初始栅层242顶部和侧壁表面;对所述初始第三掩膜层进行曝光处理,所述曝光过程中的曝光模板暴露出部分初始第三掩膜层,对曝光后的初始第三掩膜层进行显影处理,暴露出初始栅层242部分表面,形成所述第三掩膜层270。The process of forming the
请参考图13,以所述第三掩膜层270为掩膜,刻蚀第三阱区213表面的初始栅层242和栅介质层241,直至暴露出第三阱区213部分顶部表面,在第三阱区213表面形成第二栅极结构。Referring to FIG. 13 , using the
本实施例中,所述初始栅层242还位于第一阱区表面,所述第三掩膜层270也位于第二阱区的初始栅层242表面,刻蚀第三阱区表面的初始栅层242和栅介质层241的同时也刻蚀第一阱区211表面的初始栅层242和栅介质层241,暴露出第一阱区211部分表面,在第一阱区211表面形成第二栅极结构。In this embodiment, the
本实施例中,所述初始栅层242表面具有阻挡层,刻蚀第三阱区213表面的初始栅层242和栅介质层241之前,还包括刻蚀初始栅层242表面的阻挡层。In this embodiment, the surface of the
本实施例中,所述第一阱区和第三阱区均用于形成低阈值电压半导体器件,在同一工艺中形成所述第二栅极结构,能够节约工艺流程。In this embodiment, both the first well region and the third well region are used to form a low threshold voltage semiconductor device, and the second gate structure is formed in the same process, which can save process flow.
由于初始栅层为第二栅极结构和第一栅极结构的栅极层的材料层,因此形成第一栅极结构和第二栅极结构的过程中,仅需要形成两次掩膜,利用初始栅层为掩膜,通过第三离子注入形成第四阱区;通过第一掩膜层为掩膜,进行第二离子注入,形成第二阱区和第三阱区;故形成第一阱区、第二阱区、第三阱区和第四阱区需要两次掩膜,因此,在半导体衬底内形成四个阱区和分别位于四个阱区上的四个栅极结构,需要四次掩膜,进行四次图形化,减小了图形化工艺的次数,对半导体衬底的损伤较少,同时节约了工艺流程,提高了半导体器件的性能,优化了工艺流程。Since the initial gate layer is the material layer of the second gate structure and the gate layer of the first gate structure, in the process of forming the first gate structure and the second gate structure, only two masks need to be formed, using The initial gate layer is a mask, and the fourth well region is formed by the third ion implantation; the second ion implantation is performed by using the first mask layer as a mask to form the second well region and the third well region; therefore, the first well is formed The mask region, the second well region, the third well region and the fourth well region need to be masked twice. Therefore, to form four well regions and four gate structures respectively located on the four well regions in the semiconductor substrate, it is necessary to Four times of masking and four times of patterning are performed, which reduces the number of patterning processes, causes less damage to the semiconductor substrate, saves the process flow, improves the performance of the semiconductor device, and optimizes the process flow.
请参考图14,形成第二栅极结构后,在所述第一栅极结构和第二栅极结构侧壁形成侧墙,所述侧墙覆盖第一栅极结构侧壁和第二栅极结构侧壁;形成侧墙后,在第一栅极结构两侧的半导体衬底200内形成第二源漏掺杂区;在第二栅极结构两侧的半导体衬底200内形成第三源漏掺杂区。Referring to FIG. 14 , after the second gate structure is formed, spacers are formed on the sidewalls of the first gate structure and the second gate structure, and the spacers cover the sidewalls of the first gate structure and the second gate structure sidewalls; after forming the sidewalls, a second source-drain doped region is formed in the
所述侧墙的形成方法包括:在所述半导体衬底200上形成侧墙材料层,所述侧墙材料层覆盖第一栅极结构侧壁和顶部表面以及第二栅极结构侧壁和顶部表面;回刻蚀所述侧墙材料层,直至暴露出半导体衬底200顶部表面,在第一栅极结构和第二栅极结构侧壁形成所述侧墙。The method for forming the spacers includes: forming a spacer material layer on the
本实施例中,还包括:在第一阱区211的第二栅极结构两侧半导体衬底200内形成第一源漏掺杂区;在在第四阱区214的第一栅极结构两侧半导体衬底200内形成第四源漏掺杂区。In this embodiment, the method further includes: forming a first source-drain doped region in the
形成侧墙之前,还包括对第二阱区212和第三阱区213进行轻掺杂,在第二阱区212上的第一栅极结构两侧形成第二轻掺杂区,在第三阱区213上的第二栅极结构两侧形成第三轻掺杂区。Before forming the sidewall spacers, it also includes lightly doping the
本实施例中,还包括对第一阱区211和第四阱区214进行轻掺杂,在第一阱区211上的第二栅极结构两侧半导体衬底200内形成第一轻掺杂区,在第四阱区214上的第一栅极结构两侧半导体衬底200内形成第四轻掺杂区。In this embodiment, the
相应的,本实施例还提供一种采用上述方法形成的半导体器件。Correspondingly, this embodiment also provides a semiconductor device formed by the above method.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810689887.8A CN108807281B (en) | 2018-06-28 | 2018-06-28 | Semiconductor device and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810689887.8A CN108807281B (en) | 2018-06-28 | 2018-06-28 | Semiconductor device and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108807281A CN108807281A (en) | 2018-11-13 |
CN108807281B true CN108807281B (en) | 2020-09-01 |
Family
ID=64072424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810689887.8A Active CN108807281B (en) | 2018-06-28 | 2018-06-28 | Semiconductor device and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108807281B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111697073B (en) * | 2019-03-15 | 2023-07-14 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structures and methods of forming them |
CN111834228B (en) * | 2020-07-30 | 2024-03-29 | 上海华虹宏力半导体制造有限公司 | Preparation method of LDMOS device |
CN115020343B (en) * | 2022-07-19 | 2023-01-31 | 合肥晶合集成电路股份有限公司 | A method of manufacturing a semiconductor device |
CN116053274B (en) * | 2023-01-28 | 2023-06-27 | 合肥晶合集成电路股份有限公司 | Semiconductor integrated device and manufacturing method thereof |
CN116864450A (en) * | 2023-09-05 | 2023-10-10 | 合肥晶合集成电路股份有限公司 | Preparation method of MOS transistor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5648288A (en) * | 1992-03-20 | 1997-07-15 | Siliconix Incorporated | Threshold adjustment in field effect semiconductor devices |
US6090652A (en) * | 1996-12-28 | 2000-07-18 | Hyundai Electronics Industries Co., Ltd. | Method of manufacturing a semiconductor device including implanting threshold voltage adjustment ions |
CN101842898A (en) * | 2007-10-30 | 2010-09-22 | 国际商业机器公司 | Method for enabling multiple vt devices using high-k metal gate stacks |
CN103026485A (en) * | 2010-08-17 | 2013-04-03 | 德州仪器公司 | CMOS transistor fabrication with different threshold voltages |
CN103730419A (en) * | 2012-10-12 | 2014-04-16 | 北大方正集团有限公司 | Threshold voltage adjusting method |
-
2018
- 2018-06-28 CN CN201810689887.8A patent/CN108807281B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5648288A (en) * | 1992-03-20 | 1997-07-15 | Siliconix Incorporated | Threshold adjustment in field effect semiconductor devices |
US6090652A (en) * | 1996-12-28 | 2000-07-18 | Hyundai Electronics Industries Co., Ltd. | Method of manufacturing a semiconductor device including implanting threshold voltage adjustment ions |
CN101842898A (en) * | 2007-10-30 | 2010-09-22 | 国际商业机器公司 | Method for enabling multiple vt devices using high-k metal gate stacks |
CN103026485A (en) * | 2010-08-17 | 2013-04-03 | 德州仪器公司 | CMOS transistor fabrication with different threshold voltages |
CN103730419A (en) * | 2012-10-12 | 2014-04-16 | 北大方正集团有限公司 | Threshold voltage adjusting method |
Also Published As
Publication number | Publication date |
---|---|
CN108807281A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108807281B (en) | Semiconductor device and method of forming the same | |
US4342149A (en) | Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation | |
KR101558038B1 (en) | Method and structure to boost mosfet performance and nbti | |
KR100299553B1 (en) | Semiconductor device and manufacturing method of the same | |
JP3122403B2 (en) | Semiconductor device and manufacturing method thereof | |
US10692731B2 (en) | Semiconductor structure and fabrication method with precise patterning thereof | |
CN107275400B (en) | Semiconductor structures and methods of forming them | |
CN103545206B (en) | MOS device and forming method thereof | |
CN108305830A (en) | Semiconductor structure and forming method thereof | |
US10727130B2 (en) | Semiconductor device and fabrication method thereof | |
US7351627B2 (en) | Method of manufacturing semiconductor device using gate-through ion implantation | |
KR20050009482A (en) | Method of manufacturing a semiconductor device | |
JPH0637106A (en) | Manufacture of semiconductor device | |
KR100587608B1 (en) | Manufacturing Method of CMOS Image Sensor | |
KR100521439B1 (en) | Method for fabricating the p-channel MOS transistor | |
JPH0472770A (en) | Manufacture of semiconductor device | |
JPS63275179A (en) | Mis type semiconductor integrated circuit device | |
KR100236073B1 (en) | Manufacturing method of semiconductor device | |
KR100439102B1 (en) | Method for manufacturing a semiconductor device | |
CN117174659A (en) | Method for manufacturing transistor | |
KR100898257B1 (en) | Manufacturing method of semiconductor device | |
CN116169027A (en) | Method for manufacturing semiconductor device | |
KR100231479B1 (en) | Method of fabricating field transistor | |
CN114695552A (en) | Method for forming semiconductor structure | |
CN112750835A (en) | Anti-fuse structure and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |