CN108805865A - 一种基于饱和度聚类的骨髓白细胞定位方法 - Google Patents
一种基于饱和度聚类的骨髓白细胞定位方法 Download PDFInfo
- Publication number
- CN108805865A CN108805865A CN201810495118.4A CN201810495118A CN108805865A CN 108805865 A CN108805865 A CN 108805865A CN 201810495118 A CN201810495118 A CN 201810495118A CN 108805865 A CN108805865 A CN 108805865A
- Authority
- CN
- China
- Prior art keywords
- leucocyte
- myeloplast
- saturation degree
- result
- picture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4015—Image demosaicing, e.g. colour filter arrays [CFA] or Bayer patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
- G06T5/30—Erosion or dilatation, e.g. thinning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/155—Segmentation; Edge detection involving morphological operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
- G06V10/763—Non-hierarchical techniques, e.g. based on statistics of modelling distributions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
- G06T2207/20032—Median filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20182—Noise reduction or smoothing in the temporal domain; Spatio-temporal filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Probability & Statistics with Applications (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Image Processing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (5)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810495118.4A CN108805865B (zh) | 2018-05-22 | 2018-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
US16/979,490 US11403481B2 (en) | 2018-05-22 | 2019-05-22 | Method for localization of bone marrow white blood cells based on saturation clustering |
EP19807105.2A EP3798972A4 (en) | 2018-05-22 | 2019-05-22 | Saturation clustering-based method for positioning bone marrow white blood cells |
KR1020207030282A KR20200135839A (ko) | 2018-05-22 | 2019-05-22 | 채도 클러스터에 의한 골수 백혈구 위치 결정 방법 |
AU2019273339A AU2019273339B2 (en) | 2018-05-22 | 2019-05-22 | Saturation clustering-based method for positioning bone marrow white blood cells |
TW108117724A TWI711008B (zh) | 2018-05-22 | 2019-05-22 | 一種基於飽和度聚類的骨髓白血球細胞定位方法 |
PCT/CN2019/087875 WO2019223706A1 (zh) | 2018-05-22 | 2019-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
JP2020547398A JP6994275B2 (ja) | 2018-05-22 | 2019-05-22 | 飽和度クラスタリングに基づく骨髄白血球の位置特定方法 |
RU2020133630A RU2755553C1 (ru) | 2018-05-22 | 2019-05-22 | Способ определения местонахождения лейкоцитов костного мозга на основе агрегации насыщения |
IL277040A IL277040A (en) | 2018-05-22 | 2020-08-31 | A method for the location of white blood cells from bone marrow based on saturation grouping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810495118.4A CN108805865B (zh) | 2018-05-22 | 2018-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108805865A true CN108805865A (zh) | 2018-11-13 |
CN108805865B CN108805865B (zh) | 2019-12-10 |
Family
ID=64091391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810495118.4A Active CN108805865B (zh) | 2018-05-22 | 2018-05-22 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11403481B2 (zh) |
EP (1) | EP3798972A4 (zh) |
JP (1) | JP6994275B2 (zh) |
KR (1) | KR20200135839A (zh) |
CN (1) | CN108805865B (zh) |
AU (1) | AU2019273339B2 (zh) |
IL (1) | IL277040A (zh) |
RU (1) | RU2755553C1 (zh) |
TW (1) | TWI711008B (zh) |
WO (1) | WO2019223706A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019223706A1 (zh) * | 2018-05-22 | 2019-11-28 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
CN110751196A (zh) * | 2019-10-12 | 2020-02-04 | 东北石油大学 | 一种油水两相流透明管壁内类油滴附着物识别方法 |
CN113902817A (zh) * | 2021-11-23 | 2022-01-07 | 杭州智微信息科技有限公司 | 一种基于灰度值的细胞图片拼接方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113570628B (zh) * | 2021-07-30 | 2024-04-02 | 西安科技大学 | 一种基于活动轮廓模型的白细胞分割方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040076984A1 (en) * | 2000-12-07 | 2004-04-22 | Roland Eils | Expert system for classification and prediction of generic diseases, and for association of molecular genetic parameters with clinical parameters |
US20080212868A1 (en) * | 2005-06-15 | 2008-09-04 | Tissue Gnostics Gmbh | Process for Segmenting Leukocytes |
CN102279146A (zh) * | 2011-03-11 | 2011-12-14 | 桂林优利特医疗电子有限公司 | 基于激光鞘流技术的血液细胞五分类方法 |
CN103020639A (zh) * | 2012-11-27 | 2013-04-03 | 河海大学 | 一种白细胞自动识别计数方法 |
CN103077529A (zh) * | 2013-02-27 | 2013-05-01 | 电子科技大学 | 基于图像扫描的植物叶片特征分析系统 |
CN103473739A (zh) * | 2013-08-15 | 2013-12-25 | 华中科技大学 | 一种基于支持向量机的白细胞图像精确分割方法与系统 |
CN104392460A (zh) * | 2014-12-12 | 2015-03-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
CN104484877A (zh) * | 2014-12-12 | 2015-04-01 | 山东大学 | 一种基于Meanshift聚类和形态学操作的AML细胞分割方法 |
JP2015088084A (ja) * | 2013-11-01 | 2015-05-07 | 株式会社ブレイン | 物品識別システムとそのプログラム |
CN106327490A (zh) * | 2016-08-22 | 2017-01-11 | 中国计量大学 | 一种基于白细胞检测的细胞核分割方法 |
CN107274444A (zh) * | 2017-05-15 | 2017-10-20 | 北京林业大学 | 球形类植物的计数方法及装置 |
CN107730499A (zh) * | 2017-10-31 | 2018-02-23 | 河海大学 | 一种基于nu‑支持向量机的白细胞分类方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2303812C2 (ru) * | 2004-12-29 | 2007-07-27 | Общество с ограниченной ответственностью "НПФ РЕНАМ" | Способ распознавания и подсчета клеток в биологических средах человека и животных и устройство для его осуществления |
RU2308745C1 (ru) * | 2006-10-09 | 2007-10-20 | Государственное образовательное учреждение высшего профессионального образования Московский инженерно-физический институт (государственный университет) | Способ микроскопического исследования образца, содержащего микрообъекты с разнородными зонами |
KR101191454B1 (ko) * | 2010-05-14 | 2012-10-16 | 계명대학교 산학협력단 | 비모수적 확률 모델과 질감 정보를 이용한 백혈구 분할 방법 |
CN102298700A (zh) * | 2011-06-09 | 2011-12-28 | 华东师范大学 | 一种骨髓病理图像中细胞识别与定位方法 |
US20130094750A1 (en) * | 2011-10-12 | 2013-04-18 | Tolga Tasdizen | Methods and systems for segmentation of cells for an automated differential counting system |
US9836839B2 (en) * | 2015-05-28 | 2017-12-05 | Tokitae Llc | Image analysis systems and related methods |
CN106248559B (zh) * | 2016-07-14 | 2018-10-23 | 中国计量大学 | 一种基于深度学习的白细胞五分类方法 |
EP3321851A3 (en) * | 2016-11-09 | 2018-08-01 | AmCad BioMed Corporation | Cytological image processing device, and method for quantifying characteristics of cytological image |
CN106780522B (zh) * | 2016-12-23 | 2019-08-30 | 杭州华卓信息科技有限公司 | 一种基于深度学习的骨髓液细胞分割方法 |
CN108805865B (zh) * | 2018-05-22 | 2019-12-10 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
-
2018
- 2018-05-22 CN CN201810495118.4A patent/CN108805865B/zh active Active
-
2019
- 2019-05-22 AU AU2019273339A patent/AU2019273339B2/en active Active
- 2019-05-22 US US16/979,490 patent/US11403481B2/en active Active
- 2019-05-22 TW TW108117724A patent/TWI711008B/zh active
- 2019-05-22 WO PCT/CN2019/087875 patent/WO2019223706A1/zh active Application Filing
- 2019-05-22 EP EP19807105.2A patent/EP3798972A4/en not_active Withdrawn
- 2019-05-22 KR KR1020207030282A patent/KR20200135839A/ko active Pending
- 2019-05-22 RU RU2020133630A patent/RU2755553C1/ru active
- 2019-05-22 JP JP2020547398A patent/JP6994275B2/ja active Active
-
2020
- 2020-08-31 IL IL277040A patent/IL277040A/en unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040076984A1 (en) * | 2000-12-07 | 2004-04-22 | Roland Eils | Expert system for classification and prediction of generic diseases, and for association of molecular genetic parameters with clinical parameters |
US20080212868A1 (en) * | 2005-06-15 | 2008-09-04 | Tissue Gnostics Gmbh | Process for Segmenting Leukocytes |
CN102279146A (zh) * | 2011-03-11 | 2011-12-14 | 桂林优利特医疗电子有限公司 | 基于激光鞘流技术的血液细胞五分类方法 |
CN103020639A (zh) * | 2012-11-27 | 2013-04-03 | 河海大学 | 一种白细胞自动识别计数方法 |
CN103077529A (zh) * | 2013-02-27 | 2013-05-01 | 电子科技大学 | 基于图像扫描的植物叶片特征分析系统 |
CN103473739A (zh) * | 2013-08-15 | 2013-12-25 | 华中科技大学 | 一种基于支持向量机的白细胞图像精确分割方法与系统 |
JP2015088084A (ja) * | 2013-11-01 | 2015-05-07 | 株式会社ブレイン | 物品識別システムとそのプログラム |
CN104392460A (zh) * | 2014-12-12 | 2015-03-04 | 山东大学 | 一种基于胞核标记分水岭变换的粘连白细胞分割方法 |
CN104484877A (zh) * | 2014-12-12 | 2015-04-01 | 山东大学 | 一种基于Meanshift聚类和形态学操作的AML细胞分割方法 |
CN106327490A (zh) * | 2016-08-22 | 2017-01-11 | 中国计量大学 | 一种基于白细胞检测的细胞核分割方法 |
CN107274444A (zh) * | 2017-05-15 | 2017-10-20 | 北京林业大学 | 球形类植物的计数方法及装置 |
CN107730499A (zh) * | 2017-10-31 | 2018-02-23 | 河海大学 | 一种基于nu‑支持向量机的白细胞分类方法 |
Non-Patent Citations (3)
Title |
---|
候慧: "基于距离变换的改进分水岭算法在白细胞图像分割中的应用", 《计算技术与自动化》 * |
庞春颖: "改进FCM和LFP相结合的白细胞图像分类", 《中国图像图形学报》 * |
王旭: "基于颜色和形态特征的痰涂片图像结核菌识别方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019223706A1 (zh) * | 2018-05-22 | 2019-11-28 | 杭州智微信息科技有限公司 | 一种基于饱和度聚类的骨髓白细胞定位方法 |
CN110751196A (zh) * | 2019-10-12 | 2020-02-04 | 东北石油大学 | 一种油水两相流透明管壁内类油滴附着物识别方法 |
CN110751196B (zh) * | 2019-10-12 | 2020-09-18 | 东北石油大学 | 一种油水两相流透明管壁内类油滴附着物识别方法 |
CN113902817A (zh) * | 2021-11-23 | 2022-01-07 | 杭州智微信息科技有限公司 | 一种基于灰度值的细胞图片拼接方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2021510831A (ja) | 2021-04-30 |
US20210004640A1 (en) | 2021-01-07 |
TW202004663A (zh) | 2020-01-16 |
CN108805865B (zh) | 2019-12-10 |
KR20200135839A (ko) | 2020-12-03 |
EP3798972A1 (en) | 2021-03-31 |
WO2019223706A1 (zh) | 2019-11-28 |
AU2019273339A1 (en) | 2020-08-27 |
US11403481B2 (en) | 2022-08-02 |
EP3798972A4 (en) | 2022-03-02 |
JP6994275B2 (ja) | 2022-02-04 |
RU2755553C1 (ru) | 2021-09-17 |
IL277040A (en) | 2020-10-29 |
AU2019273339B2 (en) | 2021-03-04 |
TWI711008B (zh) | 2020-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108805865A (zh) | 一种基于饱和度聚类的骨髓白细胞定位方法 | |
CN109636784B (zh) | 基于最大邻域和超像素分割的图像显著性目标检测方法 | |
Sarrafzadeh et al. | Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing | |
US8385654B2 (en) | Salience estimation for object-based visual attention model | |
CN106407917A (zh) | 基于动态尺度分配的视网膜血管提取方法及系统 | |
Marcial-Basilio et al. | Detection of pornographic digital images | |
CN108537239A (zh) | 一种图像显著性目标检测的方法 | |
CN110415255B (zh) | 一种免疫组化病理图像cd3阳性细胞核分割方法及系统 | |
CN108320289B (zh) | 一种基于稀疏表示和形态学操作的骨髓细胞分割方法 | |
Saxen et al. | Color-based skin segmentation: an evaluation of the state of the art | |
CN101655983A (zh) | 主颜色提取装置和方法 | |
CN103971367B (zh) | 水文资料图像分割方法 | |
CN109523524A (zh) | 一种基于集成学习的眼底图像硬性渗出检测方法 | |
CN115147746B (zh) | 基于无人机遥感图像的盐碱地质识别方法 | |
CN107180439A (zh) | 一种基于Lab色度空间的色偏特征提取和色偏检测方法 | |
CN113724235A (zh) | 镜下环境改变条件时半自动化的Ki67/ER/PR阴性、阳性细胞计数系统及方法 | |
CN103325101B (zh) | 彩色特征的提取方法及装置 | |
Lézoray et al. | Histogram and watershed based segmentation of color images | |
CN111080748A (zh) | 基于互联网的图片自动合成系统 | |
CN110020673A (zh) | 一种hsv色彩空间颜色识别与噪声过滤的方法 | |
CN106340038B (zh) | 一种基于单目图像中物体的深度次序推理方法 | |
KR101191454B1 (ko) | 비모수적 확률 모델과 질감 정보를 이용한 백혈구 분할 방법 | |
Nemane et al. | A novel method of white blood cell segmentation and counting | |
Cruz et al. | Morphological Image Processing and Blob Analysis for Red Blood Corpuscles Segmentation and Counting | |
Touria et al. | Interactive image segmentation based on graph cuts and automatic multilevel thresholding for brain images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: Room 112, building 4, 368 wangjiali, Chang'an village, Wenyan street, Xiaoshan District, Hangzhou, Zhejiang 311200 Patentee after: HANGZHOU ZHIWEI INFORMATION TECHNOLOGY Co.,Ltd. Address before: Room 509.510.511.512, 5 / F, building 4, Haichuang technology center, 1288 Wenyi West Road, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province, 310000 Patentee before: HANGZHOU ZHIWEI INFORMATION TECHNOLOGY Co.,Ltd. |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20181113 Assignee: Zhuji Zhiwei Information Technology Co.,Ltd. Assignor: HANGZHOU ZHIWEI INFORMATION TECHNOLOGY Co.,Ltd. Contract record no.: X2021330000051 Denomination of invention: A localization method of bone marrow leukocytes based on saturation clustering Granted publication date: 20191210 License type: Common License Record date: 20210616 |