CN108802152A - A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide - Google Patents
A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide Download PDFInfo
- Publication number
- CN108802152A CN108802152A CN201810310976.7A CN201810310976A CN108802152A CN 108802152 A CN108802152 A CN 108802152A CN 201810310976 A CN201810310976 A CN 201810310976A CN 108802152 A CN108802152 A CN 108802152A
- Authority
- CN
- China
- Prior art keywords
- layer
- oxide
- polymer
- effect transistor
- gas sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 22
- 230000005669 field effect Effects 0.000 title claims abstract description 15
- 239000002159 nanocrystal Substances 0.000 title claims abstract description 12
- 150000001875 compounds Chemical class 0.000 title description 2
- 238000002360 preparation method Methods 0.000 title 1
- 239000002131 composite material Substances 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000004528 spin coating Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 8
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 8
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001179 sorption measurement Methods 0.000 abstract description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 3
- 239000010931 gold Substances 0.000 abstract description 3
- 229910052737 gold Inorganic materials 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 239000010409 thin film Substances 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 2
- 238000001704 evaporation Methods 0.000 abstract description 2
- 238000003795 desorption Methods 0.000 abstract 2
- 238000009413 insulation Methods 0.000 abstract 1
- 230000004043 responsiveness Effects 0.000 abstract 1
- 239000004408 titanium dioxide Substances 0.000 abstract 1
- 238000001771 vacuum deposition Methods 0.000 abstract 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 17
- 239000007789 gas Substances 0.000 description 9
- 238000011084 recovery Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 206010015943 Eye inflammation Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001872 inorganic gas Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/414—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
- G01N27/4141—Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for gases
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/468—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
- H10K10/474—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
- H10K10/476—Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure comprising at least one organic layer and at least one inorganic layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明是一种聚合物/氧化物复合有机纳晶场效应晶体管气体传感器制备方法,在衬底(1)上覆盖二氧化硅的氧化物层(2)和聚合物层(3)构成复合绝缘层,聚合物层对氧化物层起保护作用,使NO2分子不会深陷于二氧化硅中,有利于NO2分子的解吸附。采用旋涂法将二氧化钛溶液制成薄膜作为氧化物缓冲层(4),在氧化物缓冲层(4)上先后以快速、慢速、再快速的蒸镀速率真空沉积生长六噻吩柱状纳米晶体构成有机纳晶层(5),然后继续旋涂氧化物缓冲层(6),最后蒸镀金电极(8)。氧化物缓冲层使电子传输速率大大增加,提高对NO2分子的敏感性和响应度。六噻吩柱状纳米晶体构成的有机纳晶层具有三维吸附和解吸附特点,提高传感器的灵敏度。
The invention relates to a method for preparing a polymer/oxide composite organic nanocrystal field-effect transistor gas sensor, in which a substrate (1) is covered with an oxide layer (2) of silicon dioxide and a polymer layer (3) to form a composite insulation Layer, the polymer layer protects the oxide layer, so that NO2 molecules will not be deeply trapped in the silicon dioxide , which is conducive to the desorption of NO2 molecules. The titanium dioxide solution is made into a thin film by spin coating as the oxide buffer layer (4), and hexathiophene columnar nanocrystals are formed by vacuum deposition and growth on the oxide buffer layer (4) at fast, slow, and fast evaporation rates. An organic nanocrystalline layer (5), and then continue to spin-coat an oxide buffer layer (6), and finally vapor-deposit a gold electrode (8). The oxide buffer layer greatly increases the electron transport rate and improves the sensitivity and responsiveness to NO2 molecules. The organic nanocrystalline layer composed of hexathiophene columnar nanocrystals has the characteristics of three-dimensional adsorption and desorption, which improves the sensitivity of the sensor.
Description
技术领域technical field
本发明涉及一种聚合物/氧化物复合有机纳晶场效应晶体管气体传感器制备方法,属于有机半导体领域。The invention relates to a method for preparing a polymer/oxide composite organic nanocrystal field effect transistor gas sensor, belonging to the field of organic semiconductors.
背景技术Background technique
由于空气污染严重,气体传感器的环境监测非常有意义。二氧化氮(NO2)是燃烧燃料引起的主要污染物,可能导致光化学烟雾、急性肺炎、酸雨、水肿和眼部发炎,甚至可能会导致癌症。无机NO2传感器通常体积大,选择性低,功耗高。因此,开发具有高敏感性和选择性、重量轻、功耗低的新型气体传感器是非常重要的。Due to serious air pollution, environmental monitoring with gas sensors is very meaningful. Nitrogen dioxide (NO 2 ) is the main pollutant caused by burning fuel, which may cause photochemical smog, acute pneumonia, acid rain, edema and eye inflammation, and may even cause cancer. Inorganic NO2 sensors are usually bulky, have low selectivity and high power consumption. Therefore, it is of great importance to develop novel gas sensors with high sensitivity and selectivity, light weight, and low power consumption.
有机场效应晶体管传感器是一种利用有机半导体作为有源层的新型气体传感器。一方面,有机场效应晶体管传感器是现代电子学的关键组成部分,与无机气体传感器相比,在分子设计多样性、低成本、重量轻、机械柔性、低工作电压等方面具有显著的优势。另一方面,有机场效应晶体管传感器被认为是用于高质量的有机薄膜环境监测重要方案。The organic field effect transistor sensor is a new type of gas sensor that uses organic semiconductors as the active layer. On the one hand, organic field-effect transistor sensors, a key component of modern electronics, have significant advantages over inorganic gas sensors in terms of molecular design diversity, low cost, light weight, mechanical flexibility, and low operating voltage. On the other hand, organic field-effect transistor sensors are considered to be an important solution for high-quality organic thin film environmental monitoring.
因此本发明将聚合物PVP溶液旋涂于二氧化硅SiO2绝缘层之上构成聚合物/氧化物复合绝缘层,降低了NO2分子在SiO2绝缘层中的吸附作用,优化了探测气体NO2分子的吸附/解吸附过程。通过快速、慢速、再快速的连续蒸镀速率的方法制备出具有柱状结构的六噻吩有机纳晶层,实现对NO2分子的三维吸附。并且通过增加氧化物缓冲层结构降低接触面电阻,大大优化了载流子传输速率,有利于对NO2分子的高度敏感反应和传感器的快速回复。Therefore, in the present invention, the polymer PVP solution is spin-coated on the silicon dioxide SiO 2 insulating layer to form a polymer/ oxide composite insulating layer, which reduces the adsorption of NO molecules in the SiO 2 insulating layer, and optimizes the detection of gas NO. 2 Molecular adsorption/desorption process. A hexathiophene organic nanocrystal layer with a columnar structure was prepared by fast, slow, and fast continuous evaporation rates to achieve three - dimensional adsorption of NO molecules. And by increasing the oxide buffer layer structure to reduce the contact surface resistance, the carrier transport rate is greatly optimized, which is conducive to the highly sensitive reaction to NO2 molecules and the rapid recovery of the sensor.
发明内容Contents of the invention
本发明提供一种聚合物/氧化物复合有机纳晶场效应晶体管气体传感器制备方法。聚合物/氧化物复合有机纳晶场效应晶体管结构如图1。在衬底(1)上覆盖的复合绝缘层包括氧化物层(2)、PVP聚合物层(3),氧化物层(2)由SiO2组成,厚度在200-220 nm之间。用乙醇溶剂溶解PVP制成浓度为5 mg/ml的溶液,然后在室温下采用旋涂法在前转400 r、6 s,后转1300 r、30 s的条件下制成聚合物层(3),厚度在200到300 nm之间。PVP的聚合物层(3)结构致密,对氧化物层(2)具有保护作用,使NO2分子不会深陷于氧化物层(2)中。将TiO2粉末溶于乙醇溶剂中,制成浓度为2 mg/ml的溶液,室温下采用旋涂法在前转500 r、6 s,后转1800 r、30 s的条件下制成薄膜,厚度在50到100 nm之间,作为氧化物缓冲层(4)和(6),降低了接触面的电阻,增大了载流子传输速率。The invention provides a method for preparing a polymer/oxide composite organic nanocrystal field effect transistor gas sensor. The structure of the polymer/oxide composite organic nanocrystalline field effect transistor is shown in Figure 1. The composite insulating layer covered on the substrate (1) includes an oxide layer (2), a PVP polymer layer (3), the oxide layer ( 2 ) is composed of SiO2, and has a thickness between 200-220 nm. Dissolve PVP with ethanol solvent to make a solution with a concentration of 5 mg/ml, and then use the spin coating method at room temperature to make a polymer layer (3 ), with a thickness between 200 and 300 nm. The polymer layer (3) of PVP has a dense structure and has a protective effect on the oxide layer ( 2 ), so that NO2 molecules will not be deeply trapped in the oxide layer (2). The TiO2 powder was dissolved in ethanol solvent to make a solution with a concentration of 2 mg/ml. At room temperature, the spin coating method was used to make a thin film under the conditions of forward rotation of 500 r and 6 s, and back rotation of 1800 r and 30 s. The thickness is between 50 and 100 nm, as oxide buffer layers (4) and (6), which reduce the resistance of the contact surface and increase the carrier transport rate.
在90℃的衬底温度、8×10-4 Pa的真空度下在氧化物缓冲层(4)上生长六噻吩有机纳晶层(5),厚度为20 nm,先后以快速0.5-1 nm/min、慢速0.1-0.2 nm/min、再快速0.5-1nm/min的蒸镀速率分别沉积10 min、60 min、10 min形成六噻吩柱状纳米晶体,构成有机纳晶层(5)。具有柱状结构,增加了与NO2分子的接触面积,从而实现对NO2分子的三维立体吸附,有利于对NO2分子的高度敏感反应和传感器的快速恢复。最后在氧化物缓冲层(6)上真空蒸镀金电极(8)构成聚合物/氧化物复合有机纳晶场效应晶体管气体传感器。At a substrate temperature of 90°C and a vacuum of 8×10 -4 Pa, a hexathiophene organic nanocrystalline layer (5) was grown on the oxide buffer layer (4) with a thickness of 20 nm, successively at a rapid rate of 0.5-1 nm /min, slow 0.1-0.2 nm/min, and fast 0.5-1nm/min vapor deposition rates for 10 min, 60 min, and 10 min, respectively, to form hexathiophene columnar nanocrystals, forming an organic nanocrystalline layer (5). It has a columnar structure, which increases the contact area with NO2 molecules, thereby realizing the three - dimensional adsorption of NO2 molecules, which is conducive to the highly sensitive reaction to NO2 molecules and the rapid recovery of the sensor. Finally, a gold electrode (8) is vacuum-evaporated on the oxide buffer layer (6) to form a polymer/oxide compound organic nanocrystal field effect transistor gas sensor.
NO2分子(9)首先与氧化物缓冲层(6)接触,产生反应,电子(7)发生转移,由于电荷传递效应,电子(7)经过氧化物缓冲层(6)转移到有机纳晶层(5),再在有机纳晶层(5)和氧化物缓冲层(4)之间传递。氧化物缓冲层(4)、(6)使载流子传输速率大大增加,柱状有机纳晶层能够对NO2分子进行高效吸附,从而能够实现对NO2分子(9)的高度敏感反应和传感器的快速恢复。本发明有利于提高有机传感器的快速响应性及快速回复性。The NO 2 molecules (9) first contact with the oxide buffer layer (6) to react, and the electrons (7) are transferred. Due to the charge transfer effect, the electrons (7) are transferred to the organic nanocrystalline layer through the oxide buffer layer (6) (5), and then transferred between the organic nanocrystalline layer (5) and the oxide buffer layer (4). The oxide buffer layer (4), (6) greatly increases the carrier transport rate, and the columnar organic nanocrystalline layer can efficiently adsorb NO2 molecules, thus enabling highly sensitive reactions and sensors for NO2 molecules ( 9 ) quick recovery. The invention is beneficial to improve the fast response and fast recovery of the organic sensor.
附图说明Description of drawings
图1. 聚合物/氧化物复合有机纳晶场效应晶体管气体传感器结构图。Figure 1. Structural diagram of polymer/oxide composite organic nanocrystalline field-effect transistor gas sensor.
具体实施方式Detailed ways
一种聚合物/氧化物复合有机纳晶场效应晶体管气体传感器制备方法具体实现过程:在衬底(1)上化学气相沉积二氧化硅(SiO2),厚度为200 nm。用聚乙烯吡咯烷酮(PVP)溶液旋涂制成形成聚合物层(3),乙醇为溶剂,溶液浓度为5 mg/ml,旋涂条件为前转400 r、6s,后转1300 r、30 s,厚度为260 nm。用二氧化钛(TiO2)溶液旋涂制成氧化物缓冲层(4)和(6),采用乙醇溶剂,溶液浓度为2 mg/ml,旋涂条件为前转500 r、6 s,后转1800 r、30 s,厚度在60 nm。在8×10-4 Pa真空度下,衬底温度为90 ℃,厚度为20 nm,先后以快速0.5 nm/min、慢速0.1 nm/min、再快速0.5 nm/min的蒸镀速率分别沉积10 min、60 min、10 min连续沉积六噻吩(α-6T)形成柱状纳米晶体构成有机纳晶层(5),最后蒸镀30 nm的金电极(8)。A specific realization process of a method for preparing a polymer/oxide composite organic nanocrystal field-effect transistor gas sensor: chemical vapor deposition of silicon dioxide (SiO 2 ) on a substrate (1) with a thickness of 200 nm. Polyvinylpyrrolidone (PVP) solution was spin-coated to form the polymer layer (3), ethanol was used as the solvent, the concentration of the solution was 5 mg/ml, and the spin-coating conditions were forward rotation 400 r, 6 s, back rotation 1300 r, 30 s , with a thickness of 260 nm. Titanium dioxide (TiO 2 ) solution was spin-coated to form oxide buffer layers (4) and (6), using ethanol solvent, the solution concentration was 2 mg/ml, and the spin-coating conditions were 500 r for 6 s, 1800 for back spin r, 30 s, the thickness is 60 nm. Under the vacuum degree of 8×10 -4 Pa, the substrate temperature is 90 ℃, and the thickness is 20 nm. The deposition rates are respectively fast 0.5 nm/min, slow 0.1 nm/min, and fast 0.5 nm/min. Hexathiophene (α-6T) was deposited continuously for 10 min, 60 min, and 10 min to form columnar nanocrystals to form an organic nanocrystalline layer (5), and finally a 30 nm gold electrode (8) was evaporated.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810310976.7A CN108802152A (en) | 2018-04-09 | 2018-04-09 | A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810310976.7A CN108802152A (en) | 2018-04-09 | 2018-04-09 | A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108802152A true CN108802152A (en) | 2018-11-13 |
Family
ID=64094687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810310976.7A Pending CN108802152A (en) | 2018-04-09 | 2018-04-09 | A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108802152A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110273146A (en) * | 2019-07-10 | 2019-09-24 | 长春工业大学 | A kind of Al2O3The highly sensitive NO of/PMMA two-layer dielectric OFETs2Gas sensor preparation method |
CN112531115A (en) * | 2020-12-14 | 2021-03-19 | 电子科技大学 | Nitrogen dioxide sensor based on organic field effect transistor and preparation method thereof |
CN114094015A (en) * | 2021-11-29 | 2022-02-25 | 长春工业大学 | A preparation method of a vertical diode-based gas sensor based on a flexible substrate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500798A (en) * | 2013-09-04 | 2014-01-08 | 中国科学院苏州纳米技术与纳米仿生研究所 | Gas sensor based on field effect transistor structure and preparation method thereof |
CN104132989A (en) * | 2014-08-01 | 2014-11-05 | 电子科技大学 | Organic field-effect tube gas sensor based on mixed insulating layer and preparation method thereof |
CN104677966A (en) * | 2015-01-23 | 2015-06-03 | 电子科技大学 | Nitrogen dioxide gas sensor and preparation and testing methods of nitrogen dioxide gas sensor |
-
2018
- 2018-04-09 CN CN201810310976.7A patent/CN108802152A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500798A (en) * | 2013-09-04 | 2014-01-08 | 中国科学院苏州纳米技术与纳米仿生研究所 | Gas sensor based on field effect transistor structure and preparation method thereof |
CN104132989A (en) * | 2014-08-01 | 2014-11-05 | 电子科技大学 | Organic field-effect tube gas sensor based on mixed insulating layer and preparation method thereof |
CN104677966A (en) * | 2015-01-23 | 2015-06-03 | 电子科技大学 | Nitrogen dioxide gas sensor and preparation and testing methods of nitrogen dioxide gas sensor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110273146A (en) * | 2019-07-10 | 2019-09-24 | 长春工业大学 | A kind of Al2O3The highly sensitive NO of/PMMA two-layer dielectric OFETs2Gas sensor preparation method |
CN112531115A (en) * | 2020-12-14 | 2021-03-19 | 电子科技大学 | Nitrogen dioxide sensor based on organic field effect transistor and preparation method thereof |
CN112531115B (en) * | 2020-12-14 | 2022-08-02 | 电子科技大学 | A kind of nitrogen dioxide sensor based on organic field effect transistor and preparation method thereof |
CN114094015A (en) * | 2021-11-29 | 2022-02-25 | 长春工业大学 | A preparation method of a vertical diode-based gas sensor based on a flexible substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103236443B (en) | Metal oxide thin film transistor and preparation method thereof | |
CN105070781B (en) | A kind of carbon nano tube flexible light-sensitive device and preparation method thereof | |
CN104445047B (en) | A kind of tungsten oxide/vanadium oxide heterojunction nano-wire array and preparation method thereof | |
CN108802152A (en) | A kind of compound organic nano-crystal field-effect transistor gas sensor preparation method of polymer/oxide | |
CN104597082B (en) | Preparation method of hybridized hierarchical structure sensitive thin-film sensing device based on two-dimensional material | |
Abdullah et al. | A review on zinc oxide nanostructures: Doping and gas sensing | |
KR20200066461A (en) | Photoactive gas sensor and method for manufacturing the same | |
CN104297320A (en) | Organic monolayer thin film field effect gas sensor and preparation method thereof | |
CN103413832A (en) | Metal oxide thin film transistor and preparation method thereof | |
CN114600255A (en) | Transparent electrode, method for manufacturing transparent electrode, and electronic device | |
CN107658387A (en) | It is a kind of to use solar cell of Multifunctional permeable prescribed electrode and preparation method thereof | |
CN102709399B (en) | Manufacturing method of high-efficiency nano antenna solar battery | |
CN109411606B (en) | A thin film preparation process and a gas sensor preparation method related to the process | |
CN111192964A (en) | A kind of perovskite quantum dot solar cell and preparation method thereof | |
CN109273543B (en) | Transistor with nano-particles coated on chalcogenide film, preparation method and application | |
CN111162173B (en) | An organic photodetector with a doped electron transport layer and its preparation method | |
CN110261461B (en) | Preparation method of ultrathin heterojunction composite film gas sensor based on OFETs | |
CN100555680C (en) | The preparation method who is used for the nanocrystalline thin-film device of ultraviolet detection | |
CN109950356B (en) | Photoelectric detector based on cesium, lead and iodine and preparation method | |
CN108508075A (en) | A kind of preparation method of modifying interface bottom contact electrode Organic Thin Film Transistors gas sensor | |
CN107271488B (en) | Preparation method of gas-sensitive material with nano composite structure | |
WO2018103646A1 (en) | Ch3nh3pbi3 material-based method for fabricating hemt/hhmt device | |
CN106226378A (en) | A kind of nitrogen dioxide sensor being embedded with fluoropolymer and preparation method thereof | |
CN114600202B (en) | Transparent electrode, method for manufacturing transparent electrode, and electronic device | |
CN101852763B (en) | A chiral sensor based on a field effect transistor and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181113 |