CN108796491B - A kind of magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and preparation method thereof - Google Patents
A kind of magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and preparation method thereof Download PDFInfo
- Publication number
- CN108796491B CN108796491B CN201810731286.9A CN201810731286A CN108796491B CN 108796491 B CN108796491 B CN 108796491B CN 201810731286 A CN201810731286 A CN 201810731286A CN 108796491 B CN108796491 B CN 108796491B
- Authority
- CN
- China
- Prior art keywords
- magnesium
- conversion coating
- poly
- corrosion resistant
- highly corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 47
- 230000007797 corrosion Effects 0.000 title claims abstract description 45
- 238000007739 conversion coating Methods 0.000 title claims abstract description 43
- 239000011777 magnesium Substances 0.000 title claims abstract description 29
- 229910052749 magnesium Inorganic materials 0.000 title claims abstract description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 title description 16
- 239000002184 metal Substances 0.000 title description 16
- 238000006557 surface reaction Methods 0.000 title description 13
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000008367 deionised water Substances 0.000 claims abstract description 18
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 18
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- 230000008569 process Effects 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 13
- 239000011259 mixed solution Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 3
- 239000010953 base metal Substances 0.000 claims abstract 8
- 239000000126 substance Substances 0.000 claims abstract 4
- 230000005611 electricity Effects 0.000 claims abstract 3
- -1 magnesium rare earth Chemical class 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 10
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 8
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 5
- XMOCLSLCDHWDHP-UHFFFAOYSA-N L-Epigallocatechin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C1=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- DZYNKLUGCOSVKS-UHFFFAOYSA-N epigallocatechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3cc(O)c(O)c(O)c3 DZYNKLUGCOSVKS-UHFFFAOYSA-N 0.000 claims description 5
- 229920000669 heparin Polymers 0.000 claims description 5
- 229960002897 heparin Drugs 0.000 claims description 5
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 claims description 4
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical group C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 claims description 4
- LSHVYAFMTMFKBA-TZIWHRDSSA-N (-)-epicatechin-3-O-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=CC=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-TZIWHRDSSA-N 0.000 claims description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 4
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 claims description 4
- 229920001287 Chondroitin sulfate Polymers 0.000 claims description 4
- 229920002971 Heparan sulfate Polymers 0.000 claims description 4
- 229920002873 Polyethylenimine Polymers 0.000 claims description 4
- 229920002125 Sokalan® Polymers 0.000 claims description 4
- AIGAZQPHXLWMOJ-UHFFFAOYSA-N Tanshinone I Chemical compound C1=CC2=C(C)C=CC=C2C(C(=O)C2=O)=C1C1=C2C(C)=CO1 AIGAZQPHXLWMOJ-UHFFFAOYSA-N 0.000 claims description 4
- 229940059329 chondroitin sulfate Drugs 0.000 claims description 4
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 claims description 4
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 claims description 4
- 235000012734 epicatechin Nutrition 0.000 claims description 4
- 235000004515 gallic acid Nutrition 0.000 claims description 4
- 229940074391 gallic acid Drugs 0.000 claims description 4
- 229920002674 hyaluronan Polymers 0.000 claims description 4
- 229960003160 hyaluronic acid Drugs 0.000 claims description 4
- 150000002825 nitriles Chemical class 0.000 claims description 4
- 239000004584 polyacrylic acid Substances 0.000 claims description 4
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 3
- 229920001661 Chitosan Polymers 0.000 claims description 3
- 239000001263 FEMA 3042 Substances 0.000 claims description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 3
- 229920000724 poly(L-arginine) polymer Polymers 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 229920002258 tannic acid Polymers 0.000 claims description 3
- 235000015523 tannic acid Nutrition 0.000 claims description 3
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 claims description 3
- 229940033123 tannic acid Drugs 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 2
- 108010035532 Collagen Proteins 0.000 claims description 2
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 claims description 2
- 229920001503 Glucan Polymers 0.000 claims description 2
- 229920000288 Keratan sulfate Polymers 0.000 claims description 2
- 229920002518 Polyallylamine hydrochloride Polymers 0.000 claims description 2
- 108010020346 Polyglutamic Acid Proteins 0.000 claims description 2
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 claims description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 claims description 2
- 229930183118 Tanshinone Natural products 0.000 claims description 2
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 claims description 2
- 229930003471 Vitamin B2 Natural products 0.000 claims description 2
- 229920001436 collagen Polymers 0.000 claims description 2
- 229960005188 collagen Drugs 0.000 claims description 2
- 235000012754 curcumin Nutrition 0.000 claims description 2
- 239000004148 curcumin Substances 0.000 claims description 2
- 229940109262 curcumin Drugs 0.000 claims description 2
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 claims description 2
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 claims description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 claims description 2
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 2
- 229920002643 polyglutamic acid Polymers 0.000 claims description 2
- 235000021283 resveratrol Nutrition 0.000 claims description 2
- 229940016667 resveratrol Drugs 0.000 claims description 2
- 229960002477 riboflavin Drugs 0.000 claims description 2
- 239000011716 vitamin B2 Substances 0.000 claims description 2
- 235000019164 vitamin B2 Nutrition 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims 1
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical group OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 claims 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 claims 1
- 102000002322 Egg Proteins Human genes 0.000 claims 1
- 108010000912 Egg Proteins Proteins 0.000 claims 1
- 229910001051 Magnalium Inorganic materials 0.000 claims 1
- 241001593750 Turcica Species 0.000 claims 1
- 235000014103 egg white Nutrition 0.000 claims 1
- 210000000969 egg white Anatomy 0.000 claims 1
- 150000002148 esters Chemical class 0.000 claims 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims 1
- 229940059939 kayexalate Drugs 0.000 claims 1
- 150000002989 phenols Chemical class 0.000 claims 1
- 150000003839 salts Chemical class 0.000 claims 1
- 235000010413 sodium alginate Nutrition 0.000 claims 1
- 229940005550 sodium alginate Drugs 0.000 claims 1
- 239000000661 sodium alginate Substances 0.000 claims 1
- 238000011160 research Methods 0.000 abstract description 2
- 210000000988 bone and bone Anatomy 0.000 abstract 1
- 230000003100 immobilizing effect Effects 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 25
- 239000011248 coating agent Substances 0.000 description 23
- 238000001035 drying Methods 0.000 description 17
- 235000013824 polyphenols Nutrition 0.000 description 10
- 238000005406 washing Methods 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 238000005498 polishing Methods 0.000 description 8
- 238000001291 vacuum drying Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 150000008442 polyphenolic compounds Chemical class 0.000 description 6
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 description 5
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 229920000447 polyanionic polymer Polymers 0.000 description 4
- LSHVYAFMTMFKBA-UHFFFAOYSA-N ECG Natural products C=1C=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-UHFFFAOYSA-N 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000000840 electrochemical analysis Methods 0.000 description 3
- 229940030275 epigallocatechin gallate Drugs 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229920000045 Dermatan sulfate Polymers 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 229910000914 Mn alloy Inorganic materials 0.000 description 2
- HRZMCMIZSOGQJT-UHFFFAOYSA-N [Zn].[Mn].[Mg] Chemical compound [Zn].[Mn].[Mg] HRZMCMIZSOGQJT-UHFFFAOYSA-N 0.000 description 2
- 230000010100 anticoagulation Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 2
- 229940051593 dermatan sulfate Drugs 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 235000014620 theaflavin Nutrition 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910019064 Mg-Si Inorganic materials 0.000 description 1
- 229910019406 Mg—Si Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 230000002429 anti-coagulating effect Effects 0.000 description 1
- 230000000702 anti-platelet effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229930003935 flavonoid Natural products 0.000 description 1
- 235000017173 flavonoids Nutrition 0.000 description 1
- 150000002215 flavonoids Chemical class 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 1
- 229960002064 kanamycin sulfate Drugs 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/57—Treatment of magnesium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于医用材料领域,具体涉及一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层及其制备方法,可用于镁基全降解骨科植入材料和全降解镁基合金血管支架材料的改性研究。The invention belongs to the field of medical materials, in particular to a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and a preparation method thereof, which can be used for magnesium-based fully degradable orthopaedic implant materials and fully degradable magnesium-based alloy blood vessel stents Material modification research.
背景技术Background technique
与传统生物医用不锈钢、钛合金等金属材料对比,镁基金属材料具有良好的生物相容性、机械性能、生物可降解、低致栓性、低炎性反应等诸多优势,其被广泛研究期望应用于血液支架材料、骨科修复材料等。可降解镁合金虽然有其独特的优点,但其特别突出的问题就在于降解速率过快,在三个月时间内已基本降解完毕。与此同时,尽管可降解镁合金材料已经接近甚至优于惰性金属材料的物理化学性能和生物相容性,但长期服役在潮湿的生理环境中,镁合金过快的降解速率容易导致植入物过早失去应力支撑作用。镁合金在体内发生析氢腐蚀,机体组织局部pH升高,不利于周围组织的生长。Compared with traditional biomedical stainless steel, titanium alloy and other metal materials, magnesium-based metal materials have many advantages such as good biocompatibility, mechanical properties, biodegradability, low thrombogenicity, and low inflammatory response, which are widely expected to be studied. It is used in blood stent materials, orthopedic repair materials, etc. Although degradable magnesium alloy has its unique advantages, its special problem is that the degradation rate is too fast, and the degradation has been basically completed within three months. At the same time, although the physicochemical properties and biocompatibility of degradable magnesium alloy materials are close to or even better than those of inert metal materials, long-term service in a humid physiological environment, the rapid degradation rate of magnesium alloys can easily lead to implants. Premature loss of stress support. Hydrogen evolution corrosion occurs in magnesium alloys in the body, and the local pH of the body tissue increases, which is not conducive to the growth of surrounding tissues.
目前用于提高镁合金耐腐蚀性能的方法主要有块体改性(合金化和显微结构调整)和表面改性。其中块体改性主要通过在镁金属中掺入少量的微量元素如Zn、Ca、Mn等,其可以调节金属的晶相结构和晶粒大小等方式来有效提高合金的机械性能和耐腐蚀性能,该方法制备的合金具有良好的生物相容性,但是存在成本过大,可重复性不高等缺陷。表面改性是目前镁合金表面改性最有效的方法,可以兼顾镁合金腐蚀的控制和生物形容性。目前开发一种兼具良好耐腐蚀性和表面良好生物相容性的镁合金转化涂层仍然是全降解镁基金属支架材料亟待解决的难题。At present, the methods used to improve the corrosion resistance of magnesium alloys mainly include bulk modification (alloying and microstructure adjustment) and surface modification. The bulk modification is mainly by adding a small amount of trace elements such as Zn, Ca, Mn, etc. into the magnesium metal, which can effectively improve the mechanical properties and corrosion resistance of the alloy by adjusting the crystal phase structure and grain size of the metal. , the alloy prepared by this method has good biocompatibility, but there are defects such as excessive cost and low repeatability. Surface modification is currently the most effective method for surface modification of magnesium alloys, which can take into account the control of corrosion of magnesium alloys and biodegradability. At present, the development of a magnesium alloy conversion coating with good corrosion resistance and good surface biocompatibility is still an urgent problem to be solved for fully degradable magnesium-based metal stent materials.
常用的镁合金表面改性涂层为非共价键作用,具有易受环境pH、温度、盐离子等外部因素的影响,导致药物突释、涂层破坏、加速腐蚀、缩短植入物的服役寿命。Commonly used magnesium alloy surface modification coatings are non-covalent bonds, which are easily affected by external factors such as environmental pH, temperature, and salt ions, resulting in sudden drug release, coating damage, accelerated corrosion, and shortened implant service life. life.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的上述不足,本发明提供一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层及其制备方法,可有效解决现有镁基转化涂层易受潮湿环境影响腐蚀速率过快,导致应力断裂以及影响周围组织生长的问题。In view of the above deficiencies in the prior art, the present invention provides a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and a preparation method thereof, which can effectively solve the problem that the existing magnesium-based conversion coating is easily affected by a humid environment Corrosion rates are too fast, causing stress fractures and problems affecting surrounding tissue growth.
为实现上述目的,本发明解决其技术问题所采用的技术方案是:For realizing the above-mentioned purpose, the technical scheme that the present invention solves its technical problem adopts is:
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)预处理镁合金基底材料;(1) Pretreatment of magnesium alloy base material;
(2)将预处理后的镁合金置于0.01~1mM,pH值为4~10的聚阳电解质溶液中,于4~37℃反应1~30min后,取出并用去离子水清洗3~5次;(2) The pretreated magnesium alloy is placed in a polycationic electrolyte solution with a pH value of 0.01 to 1 mM and a pH of 4 to 10. After reacting at 4 to 37 ° C for 1 to 30 minutes, take it out and wash it with deionized water for 3 to 5 times. ;
(3)将步骤(2)中所得产物置于0.01~20mM,pH值为5.5~8.5的多酚化合物与聚阴电解质的混合溶液中,于4~37℃反应1~30min后,取出并用去离子水清洗3~5次;其中,所述多酚化合物和聚阴电解质的摩尔比为1~2:1~2;(3) The product obtained in step (2) is placed in a mixed solution of 0.01-20 mM polyphenol compound and polyanion electrolyte with a pH value of 5.5-8.5, reacted at 4-37 ° C for 1-30 min, taken out and used up Washing with ionized water 3 to 5 times; wherein, the molar ratio of the polyphenol compound and the polyanion electrolyte is 1 to 2: 1 to 2;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程10~100次,并用氮气干燥,得转化涂层。(4) Using the product obtained in step (3) as a substrate, repeating the process described in steps (2) to (3) for 10 to 100 times, and drying with nitrogen to obtain a conversion coating.
进一步地,步骤(1)中镁合金为纯镁、镁稀土系合金、新型生物医用镁合金或镁铝系合金。Further, in step (1), the magnesium alloy is pure magnesium, magnesium rare earth alloy, novel biomedical magnesium alloy or magnesium aluminum alloy.
其中,镁稀土系合金为AZ31镁合金、AZ91镁合金或WE43镁合金。Among them, the magnesium rare earth alloy is AZ31 magnesium alloy, AZ91 magnesium alloy or WE43 magnesium alloy.
其中,新型生物医用镁合金为AE21镁合金、Mg-Mn-Zn合金或Mg-Si合金。Among them, the new biomedical magnesium alloy is AE21 magnesium alloy, Mg-Mn-Zn alloy or Mg-Si alloy.
进一步地,步骤(2)中聚阳电解质为聚-L-赖氨酸氢溴酸盐、聚烯丙基胺盐酸盐、聚-L-精氨酸盐酸盐、聚乙烯亚胺、壳聚糖、聚己基紫腈或庆大霉素和硫酸卡那霉素。Further, in step (2), the polycation electrolyte is poly-L-lysine hydrobromide, polyallylamine hydrochloride, poly-L-arginine hydrochloride, polyethyleneimine, shell Glycans, polyhexyl violet nitrile or gentamicin and kanamycin sulfate.
进一步地,步骤(3)中多酚化合物和聚阴电解质的摩尔比为1:1。Further, the molar ratio of the polyphenol compound and the polyanion electrolyte in step (3) is 1:1.
进一步地,步骤(3)中多酚化合物为表儿茶素、表没食子儿茶素、表没食子儿茶素没食子酸酯、表儿茶素没食子酸酯、没食子酸、白藜芦醇、维生素B2、丹参酮、黄酮化合物、姜黄素或单宁酸。Further, in step (3), the polyphenolic compound is epicatechin, epigallocatechin, epigallocatechin gallate, epicatechin gallate, gallic acid, resveratrol, vitamin B2 , tanshinone, flavonoids, curcumin or tannins.
进一步地,步骤(3)中聚阴电解质为肝素、硫酸乙酰肝素、透明质酸、硫酸软骨素、胶原蛋白、葡聚糖、硫酸角质素、聚丙烯酸、聚苯乙烯磺酸钠盐、海藻酸钠、聚谷氨酸或脱氧核糖核酸。Further, in step (3), the polyanion electrolyte is heparin, heparan sulfate, hyaluronic acid, chondroitin sulfate, collagen, dextran, keratan sulfate, polyacrylic acid, polystyrene sulfonate sodium salt, alginic acid Sodium, polyglutamic acid or deoxyribonucleic acid.
进一步地,聚阳电解质浓度为0.01~1mM,pH值为7.4;所述混合溶液的浓度为0.001~20mM,pH值为7.2。Further, the concentration of the polycation electrolyte is 0.01-1 mM, and the pH is 7.4; the concentration of the mixed solution is 0.001-20 mM, and the pH is 7.2.
上述方法制备得到的具有高耐腐蚀性和表面功能化的镁基金属转化涂层。The magnesium-based metal conversion coating with high corrosion resistance and surface functionalization prepared by the above method.
本发明的有效果为:The effective effects of the present invention are:
1、由于多酚化合物可以与聚阳电解质、聚阴电解质通过氢键、π-π作用以及局部的共价键作用形成稳定的聚合物涂层,由此,本发明通过层层自组装原理与技术,使聚阳电解质、多酚/聚阴电解质复合物在镁合金材料表面形成致密均匀的交联网络涂层,制备得到的转化涂层与基底结合力强,并具有较好的抗蚀能力。1. Since polyphenolic compounds can form stable polymer coatings with polycationic electrolytes and polyanionic electrolytes through hydrogen bonding, π-π interaction and local covalent bonding, the present invention is based on the principle of layer-by-layer self-assembly. The technology enables the polycationic electrolyte and polyphenol/polyanionic electrolyte composite to form a dense and uniform cross-linked network coating on the surface of the magnesium alloy material. The prepared conversion coating has strong bonding force with the substrate and good corrosion resistance. .
2、多酚化合物的分子结构中含有大量的邻位酚羟基,可以与支架腐蚀产生的镁、锌、锰等离子发生螯合作用,辅助受腐蚀的此类金属离子在镁基材料表面有效的转化沉积,可有效的避免涂层被进一步的腐蚀。2. The molecular structure of polyphenol compounds contains a large number of vicinal phenolic hydroxyl groups, which can chelate with magnesium, zinc, manganese and other ions generated by the corrosion of stents, and assist the effective conversion of such metal ions that are corroded on the surface of magnesium-based materials Deposition can effectively avoid further corrosion of the coating.
3、多酚化合物特别是茶多酚类化合物由于其良好的抗氧化能力,可保护血管内皮细胞免受氧化应激损伤,在镁基材料降解过程中,具有抗氧化性能的多酚金属配合物游离释放,在一定范围内可以维持局部血管内正常的氧化还原平衡;同时,多酚化合物本身就具有较好的生物相容性,并且利用植物多酚介入有机转化层的构建,不仅可以有效提高涂层整体的抗蚀能力,同时可以引入多种官能团,利于后续载药及生物分子的固定。3. Polyphenolic compounds, especially tea polyphenols, can protect vascular endothelial cells from oxidative stress damage due to their good antioxidant capacity. In the process of magnesium-based material degradation, polyphenolic metal complexes with antioxidant properties Free release can maintain the normal redox balance in local blood vessels within a certain range; at the same time, polyphenol compounds themselves have good biocompatibility, and the use of plant polyphenols to intervene in the construction of organic transformation layers can not only effectively improve The overall corrosion resistance of the coating can also introduce a variety of functional groups, which is beneficial to the subsequent drug loading and immobilization of biomolecules.
4、本发明所需制备的涂层通常低于100nm,所得涂层均匀,制备涂层所需原料投入很少,原料掺入量易于调控,且制备得到的涂层可以在多种材料表面进行修饰,与传统的减缓腐蚀涂层技术相比,操作简单,成本较低,普适性广。4. The coating to be prepared in the present invention is usually less than 100 nm, the obtained coating is uniform, the input of raw materials required for preparing the coating is very small, the amount of raw materials added is easy to control, and the prepared coating can be applied on the surface of a variety of materials. Modification, compared with traditional corrosion mitigation coating technology, is simple to operate, low cost and widely applicable.
附图说明Description of drawings
图1是本发明所制备的转化涂层的原子力显微镜(Atomic Force Microscope,AFM)检测结果图;Fig. 1 is the atomic force microscope (Atomic Force Microscope, AFM) detection result figure of the conversion coating prepared by the present invention;
图2是用本发明制备的转化涂层的抗凝血性能检测图。Figure 2 is a graph showing the anticoagulant properties of the conversion coating prepared by the present invention.
具体实施方式Detailed ways
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。The specific embodiments of the present invention are described below to facilitate those skilled in the art to understand the present invention, but it should be clear that the present invention is not limited to the scope of the specific embodiments. For those of ordinary skill in the art, as long as various changes Such changes are obvious within the spirit and scope of the present invention as defined and determined by the appended claims, and all inventions and creations utilizing the inventive concept are within the scope of protection.
实施例1Example 1
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的纯镁材料进行抛光、清洗、干燥;(1) Polishing, cleaning and drying the pure magnesium material to be modified;
(2)将步骤(1)所得产物置于浓度为0.01mM,pH值为7.4的聚乙烯亚胺溶液中,于4℃反应2min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a polyethyleneimine solution with a concentration of 0.01 mM and a pH of 7.4, reacting at 4° C. for 2 min, then taking it out, and washing it with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.2mM,pH值为7.5的表儿茶素与硫酸乙酰肝素的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,表儿茶素与硫酸乙酰肝素的摩尔比为1:2;(3) the product obtained in step (2) is placed in a mixed solution of epicatechin and heparan sulfate with a concentration of 0.2 mM and a pH value of 7.5, reacted at 10 ° C for 5 min, then taken out, and washed with deionized water for 3 time; wherein, the mol ratio of epicatechin and heparan sulfate is 1:2;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程60次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 60 times, drying with nitrogen, and then storing in a vacuum drying oven, the conversion with corrosion resistance can be obtained. coating.
实施例2Example 2
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的镁锌锰合金进行抛光、清洗以及干燥处理;(1) Polishing, cleaning and drying the magnesium-zinc-manganese alloy to be modified;
(2)将步骤(1)所得产物置于浓度为0.01mM,pH值为7.5的聚己基紫腈溶液中,于5℃反应2min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a polyhexyl violet nitrile solution with a concentration of 0.01 mM and a pH value of 7.5, reacting at 5°C for 2 min, then taking it out, and washing with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.02mM,pH值为7.8的表没食子儿茶素没食子酸酯与硫酸皮肤素的混合溶液中,于15℃反应5min,然后取出,并用去离子水清洗3次;其中,表没食子儿茶素没食子酸酯与硫酸皮肤素的摩尔比为1:1;(3) the product obtained in step (2) is placed in a mixed solution of epigallocatechin gallate and dermatan sulfate with a concentration of 0.02 mM and a pH value of 7.8, reacted at 15° C. for 5 min, then taken out, and used for Ionized water was washed 3 times; wherein, the molar ratio of epigallocatechin gallate to dermatan sulfate was 1:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程3次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) 3 times, drying with nitrogen, and then storing in a vacuum drying oven, the conversion with corrosion resistance can be obtained. coating.
实施例3Example 3
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的WE43镁合金进行抛光、清洗以及干燥处理;(1) Polishing, cleaning and drying the WE43 magnesium alloy to be modified;
(2)将步骤(1)所得产物置于浓度为0.01mM,pH值为7.4的壳聚糖溶液中,于5℃反应2min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a chitosan solution with a concentration of 0.01 mM and a pH of 7.4, reacting at 5°C for 2 min, then taking it out, and washing it with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.05mM,pH值为7.2的表儿茶素没食子酸酯与硫酸软骨素的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,表儿茶素没食子酸酯与硫酸软骨素的摩尔比为1.5:2;(3) placing the product obtained in step (2) in a mixed solution of epicatechin gallate and chondroitin sulfate with a concentration of 0.05mM and a pH of 7.2, reacting at 10°C for 5min, then taking out, and deionized Washed with water 3 times; wherein, the molar ratio of epicatechin gallate to chondroitin sulfate is 1.5:2;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程5次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 5 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
实施例4Example 4
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的WE43镁合金进行抛光、清洗以及干燥处理,备用;(1) Polishing, cleaning and drying the WE43 magnesium alloy that needs to be modified for use;
(2)将步骤(1)所得产物置于浓度为0.05mM,pH值为7.6的聚己基紫腈溶液中,于5℃反应2min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a polyhexyl violet nitrile solution with a concentration of 0.05 mM and a pH value of 7.6, reacting at 5°C for 2 min, then taking out, and washing with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.4mM,pH值为7.4的没食子酸与葡聚糖的混合溶液中,于20℃反应5min,然后取出,并用去离子水清洗3次;其中,没食子酸与葡聚糖的摩尔比为2:1;(3) placing the product obtained in step (2) in a mixed solution of gallic acid and dextran with a concentration of 0.4 mM and a pH of 7.4, reacting at 20° C. for 5 min, then taking out, and washing with deionized water 3 times; Wherein, the molar ratio of gallic acid and glucan is 2:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程20次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 20 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
实施例5Example 5
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的WE43镁合金进行抛光、清洗以及干燥处理;(1) Polishing, cleaning and drying the WE43 magnesium alloy to be modified;
(2)将步骤(1)所得产物置于浓度为0.02mM,pH值为7.4的聚-L-精氨酸盐酸盐溶液中,于4℃反应1min,然后取出,并用去离子水清洗3次;(2) The product obtained in step (1) was placed in a poly-L-arginine hydrochloride solution with a concentration of 0.02 mM and a pH value of 7.4, reacted at 4°C for 1 min, then taken out, and washed with deionized water for 3 Second-rate;
(3)将步骤(2)所得产物置于浓度为0.002mM,pH值为7.4的茶黄素与聚苯乙烯磺酸钠盐的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,茶黄素与聚苯乙烯磺酸钠盐的摩尔比为1:1;(3) The product obtained in step (2) was placed in a mixed solution of theaflavins and polystyrene sulfonic acid sodium salt with a concentration of 0.002 mM and a pH value of 7.4, reacted at 10 ° C for 5 min, then taken out, and deionized Washed with water 3 times; wherein, the molar ratio of theaflavins to polystyrene sulfonic acid sodium salt is 1:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程5次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 5 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
实施例6Example 6
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的镁锌锰合金进行抛光、清洗以及干燥处理;(1) Polishing, cleaning and drying the magnesium-zinc-manganese alloy to be modified;
(2)将步骤(1)所得产物置于浓度为0.01mM,pH值为7.6的聚二烯丙基二甲基氯化铵溶液中,于4℃反应1min,然后取出,并用去离子水清洗3次;(2) The product obtained in step (1) was placed in a polydiallyldimethylammonium chloride solution with a concentration of 0.01 mM and a pH value of 7.6, reacted at 4°C for 1 min, then taken out and washed with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.002mM,pH值为7.4的表没食子儿茶素与聚丙烯酸的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,表没食子儿茶素与聚丙烯酸的摩尔比为1:1;(3) The product obtained in step (2) is placed in a mixed solution of epigallocatechin and polyacrylic acid with a concentration of 0.002 mM and a pH value of 7.4, reacted at 10 ° C for 5 min, then taken out, and washed with deionized water for 3 times; wherein, the mol ratio of epigallocatechin and polyacrylic acid is 1:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程5次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 5 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
实施例7Example 7
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的AZ31镁合金进行抛光、清洗以及干燥处理;(1) Polishing, cleaning and drying the AZ31 magnesium alloy to be modified;
(2)将步骤(1)所得产物置于浓度为0.02mM,pH值为7.8的聚乙烯亚胺溶液中,于4℃反应1min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a polyethyleneimine solution with a concentration of 0.02 mM and a pH value of 7.8, reacting at 4°C for 1 min, then taking out, and washing with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.001mM,pH值为7.2的EGCG与肝素的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,EGCG与肝素的摩尔比为1:1;(3) placing the product obtained in step (2) in a mixed solution of EGCG and heparin with a concentration of 0.001 mM and a pH of 7.2, reacting at 10° C. for 5 min, then taking it out, and washing it with deionized water 3 times; wherein, EGCG The molar ratio to heparin is 1:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程5次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 5 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
实施例8Example 8
一种具有高耐腐蚀性和表面功能化的镁基金属转化涂层的制备方法,包括以下步骤:A preparation method of a magnesium-based metal conversion coating with high corrosion resistance and surface functionalization, comprising the following steps:
(1)对需要改性的AZ31镁合金进行抛光、清洗以及干燥处理,备用;(1) Polishing, cleaning and drying the AZ31 magnesium alloy that needs to be modified for use;
(2)将步骤(1)所得产物置于浓度为0.01mM,pH值为7.4的壳聚糖溶液中,于4℃反应1min,然后取出,并用去离子水清洗3次;(2) placing the product obtained in step (1) in a chitosan solution with a concentration of 0.01 mM and a pH of 7.4, reacting at 4° C. for 1 min, then taking it out, and washing it with deionized water 3 times;
(3)将步骤(2)所得产物置于浓度为0.001mM,pH值为7.2的单宁酸与透明质酸的混合溶液中,于10℃反应5min,然后取出,并用去离子水清洗3次;其中,单宁酸与透明质酸的摩尔比为1:1;(3) The product obtained in step (2) was placed in a mixed solution of tannic acid and hyaluronic acid with a concentration of 0.001 mM and a pH value of 7.2, reacted at 10° C. for 5 min, then taken out and washed 3 times with deionized water ; Wherein, the molar ratio of tannic acid and hyaluronic acid is 1:1;
(4)以步骤(3)所得产物为底物,重复步骤(2)~(3)所述过程5次,并用氮气干燥,然后保存于真空干燥箱中,即可得到具有耐腐蚀性的转化涂层。(4) Using the product obtained in step (3) as the substrate, repeating the process described in steps (2) to (3) for 5 times, drying with nitrogen, and then storing in a vacuum drying oven, the transformation with corrosion resistance can be obtained. coating.
检测detect
分别对实施例7制备得到的转化涂层进行原子力显微镜(AFM)检测,以及抗凝血性能检测,其检测图谱分别见图1和图2。Atomic force microscopy (AFM) detection and anticoagulation performance detection were performed on the conversion coating prepared in Example 7, respectively, and the detection patterns are shown in Figures 1 and 2, respectively.
从图1中可看出,该转化涂层形成了交联网络致密结构,通过极端条件与长期PBS中浸泡实验,发现该图层具有良好的耐极端条件破坏与长期的稳定性。It can be seen from Figure 1 that the conversion coating forms a dense cross-linked network structure. Through extreme conditions and long-term immersion experiments in PBS, it is found that the coating has good resistance to extreme conditions and long-term stability.
从图2中可看出,转化涂层样品表面几乎没有出现血小板的富集,说明该转化涂层具有良好的抗血小板黏附与抗凝血功能;而且,该转化涂层中的多酚化合物具有超亲水功能,可以有效的阻止血液中的蛋白质在材料表面的聚集,另外,转化涂层中的肝素分子可以有效的防治血液中成分的激活与破坏。It can be seen from Figure 2 that there is almost no platelet enrichment on the surface of the conversion coating sample, indicating that the conversion coating has good anti-platelet adhesion and anticoagulation functions; moreover, the polyphenol compounds in the conversion coating have The super-hydrophilic function can effectively prevent the aggregation of proteins in the blood on the surface of the material. In addition, the heparin molecules in the conversion coating can effectively prevent the activation and destruction of components in the blood.
对实施例7制备得到的转化涂层进行PBS水溶液长期浸泡实验,其具体过程如下:A long-term immersion experiment in PBS aqueous solution was carried out to the conversion coating prepared in Example 7, and its concrete process was as follows:
首先用硅橡胶密封未改性镁合金面,只暴露改性过的涂层面;将四个直径为1cm的镁合金样品放入自制的测量氢气的装置中,加入400ml PBS溶液,密封装置,37℃条件下每12小时测量样品释放的氢气量,读取体积,释放氢气的速率反应了镁合金的腐蚀速率;通过上述检测发现,氢气释放速率非常低,表明,本发明制备得到的转化涂层,具有优良的耐腐蚀性能。First, the unmodified magnesium alloy surface was sealed with silicone rubber, and only the modified coating surface was exposed; four magnesium alloy samples with a diameter of 1 cm were put into a self-made device for measuring hydrogen, 400 ml of PBS solution was added, and the device was sealed. The amount of hydrogen released by the sample is measured every 12 hours under the condition of 37°C, the volume is read, and the rate of hydrogen release reflects the corrosion rate of the magnesium alloy; through the above detection, it is found that the hydrogen release rate is very low, indicating that the conversion coating prepared by the present invention. layer with excellent corrosion resistance.
分别对实施例7制备得到的转化涂层和传统涂层进行极端条件电化学测试,其具体过程如下:The conversion coating and traditional coating prepared in Example 7 were respectively subjected to extreme conditions electrochemical tests, and the specific process was as follows:
分别对实施例7制备得到的转化涂层和传统涂层进行极端条件电化学测试,其具体过程如下:The conversion coating and traditional coating prepared in Example 7 were respectively subjected to extreme conditions electrochemical tests, and the specific process was as follows:
首先将样品背面、铜片打磨抛光,然后用导电银胶将铜片与样品粘结起来,用硅橡胶将样品背面密封起来,过夜凝固用于电化学性能的测试;电化学测试在37℃条件下PBS溶液中,并检测该转化涂层的阻抗值以及自腐蚀电流大小;通过检测发现,本发明制备得到的转化涂层,其阻抗值远远高于传统涂层,同时,自腐蚀电流也远低于传统涂层,表明本发明制备得到的转化涂层具有优良的耐腐蚀性能。First grind and polish the back of the sample and the copper sheet, then bond the copper sheet and the sample with conductive silver glue, seal the back of the sample with silicone rubber, and solidify overnight for the electrochemical performance test; the electrochemical test is performed at 37 °C In the PBS solution, the resistance value and the self-corrosion current of the conversion coating were detected; through the detection, it was found that the resistance value of the conversion coating prepared by the present invention was much higher than that of the traditional coating, and at the same time, the self-corrosion current also increased. It is far lower than that of the traditional coating, indicating that the conversion coating prepared by the present invention has excellent corrosion resistance.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810731286.9A CN108796491B (en) | 2018-07-05 | 2018-07-05 | A kind of magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810731286.9A CN108796491B (en) | 2018-07-05 | 2018-07-05 | A kind of magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108796491A CN108796491A (en) | 2018-11-13 |
CN108796491B true CN108796491B (en) | 2019-07-09 |
Family
ID=64075054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810731286.9A Active CN108796491B (en) | 2018-07-05 | 2018-07-05 | A kind of magnesium-based metal conversion coating with high corrosion resistance and surface functionalization and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108796491B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114177365B (en) * | 2021-12-13 | 2022-09-23 | 潢川县鹏升畜产品有限公司 | A kind of heparin sodium combined with flavonoid glycosides self-assembled drug-coated stent and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195535A (en) * | 2014-08-12 | 2014-12-10 | 西南交通大学 | Modification method for improving corrosion resistance and surface functionalization of biomedical magnesium-based metal material |
CN105263536A (en) * | 2013-03-15 | 2016-01-20 | 巴克斯特国际公司 | Immobilization of active agent on a substrate |
CN109055926A (en) * | 2018-07-05 | 2018-12-21 | 四川大学 | A kind of magnesium-base metal material conversion film and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA011822B1 (en) * | 2003-09-29 | 2009-06-30 | Хемотек Аг | A medical product comprising a biocompatible biostable polysulfone coating, and method for applying said coating |
EP2616191B1 (en) * | 2010-09-13 | 2017-04-12 | Chemetall GmbH | Method for coating surfaces and use of the articles coated using said method |
DE102014213873A1 (en) * | 2013-07-18 | 2015-01-22 | Chemetall Gmbh | Silicate coating with releasable metal cations |
BR112016019705B1 (en) * | 2014-02-27 | 2022-03-22 | Chemetall Gmbh | METHOD OF COATING METALLIC SURFACES OF SUBSTRATES WITH AQUEOUS COMPOSITIONS IN THE FORM OF DISPERSION AND/OR SUSPENSION |
-
2018
- 2018-07-05 CN CN201810731286.9A patent/CN108796491B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105263536A (en) * | 2013-03-15 | 2016-01-20 | 巴克斯特国际公司 | Immobilization of active agent on a substrate |
CN104195535A (en) * | 2014-08-12 | 2014-12-10 | 西南交通大学 | Modification method for improving corrosion resistance and surface functionalization of biomedical magnesium-based metal material |
CN109055926A (en) * | 2018-07-05 | 2018-12-21 | 四川大学 | A kind of magnesium-base metal material conversion film and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108796491A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108785748B (en) | Multifunctional cardiovascular coating material with super-hydrophilic performance and preparation method thereof | |
Chen et al. | Application of phenol/amine copolymerized film modified magnesium alloys: anticorrosion and surface biofunctionalization | |
Heise et al. | Tackling Mg alloy corrosion by natural polymer coatings—A review | |
Wang et al. | A silk-based coating containing GREDVY peptide and heparin on Mg–Zn–Y–Nd alloy: Improved corrosion resistance, hemocompatibility and endothelialization | |
CN100400114C (en) | Biomedical implant material with controllable degradation rate and its application | |
Li et al. | Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility | |
Mao et al. | Enhanced bioactivity of Mg–Nd–Zn–Zr alloy achieved with nanoscale MgF2 surface for vascular stent application | |
CN100381182C (en) | Biomedical controllable degradation absorption polymer metal composite implant material and its application | |
Ostrowski et al. | Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys | |
CN108815552B (en) | A kind of multi-drug controllable loading and long-acting sustained release biomedical coating material and preparation method thereof | |
Abdal-Hay et al. | Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications | |
CN104208760A (en) | Preparation method of copper ion-mediated anticoagulant coating with in-situ catalytic NO release function | |
Liu et al. | Enhanced anti-corrosion ability and biocompatibility of PLGA coatings on MgZnYNd alloy by BTSE-APTES pre-treatment for cardiovascular stent | |
CN104208761A (en) | A preparation method of an anticoagulant material capable of inducing and catalyzing the release of endogenous NO | |
Liu et al. | A novel biodegradable and biologically functional arginine-based poly (ester urea urethane) coating for Mg–Zn–Y–Nd alloy: enhancement in corrosion resistance and biocompatibility | |
CN108815587A (en) | A kind of hydrogel coating and preparation method thereof with long-term antibacterial functions | |
WO2018196088A1 (en) | Method for preparing chitosan/heparinized graphene oxide composite multilayer film on medical magnesium alloy surface | |
CN110665772B (en) | Preparation method of composite coating containing metal organic framework MOF and polycaprolactone PCL on surface of degradable magnesium alloy | |
CN107185055B (en) | A kind of surface modification method of medical magnesium alloy | |
CN103739867A (en) | Preparation method of amino-enriched polymeric thin film | |
CN108686267A (en) | It is a kind of to have both anticoagulation, anti-inflammatory, anti-proliferate function coating and preparation method thereof | |
Liu et al. | A novel pseudo-protein-based biodegradable coating for magnesium substrates: in vitro corrosion phenomena and cytocompatibility | |
Low et al. | Tough hydrogel module towards an implantable remote and controlled release device | |
CN102793947B (en) | Degradable magnesium and surface modification method of alloy thereof | |
CN103191469A (en) | Method for preparing coating carrying growth factor on surface of bone injury repair material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |