CN108789357B - A large-scale structural parts processing device based on force-controlled hybrid robot - Google Patents
A large-scale structural parts processing device based on force-controlled hybrid robot Download PDFInfo
- Publication number
- CN108789357B CN108789357B CN201810581017.9A CN201810581017A CN108789357B CN 108789357 B CN108789357 B CN 108789357B CN 201810581017 A CN201810581017 A CN 201810581017A CN 108789357 B CN108789357 B CN 108789357B
- Authority
- CN
- China
- Prior art keywords
- force
- freedom
- degree
- hybrid
- controlled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/005—Manipulators for mechanical processing tasks
- B25J11/0065—Polishing or grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0072—Programme-controlled manipulators having parallel kinematics of the hybrid type, i.e. having different kinematics chains
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种基于力控混联机器人的大型结构件加工装置,包括:无人搬运车,用于保证机器人的大移动行程;直线导轨,用于在无人搬运车停车时控制混联机器人的移动;平面两自由度混联机械臂,用于控制平面内两自由度运动;三自由度力控并联加工模块,用于控制一个移动自由度和两个转动自由度,并控制末端执行器上正压力。该装置将三自由度力控并联加工模块安装在平面两自由度混联机械臂末端配合无人搬运车,增大了机器人优质工作空间范围,一次装卡即可完成对全部型面的加工作业,有效提升加工作业效率,同时三自由度力控并联加工模块能够在加工作业时实现对末端执行器作用力的控制以保证加工质量。
The invention discloses a large-scale structural part processing device based on a force-controlled hybrid robot, comprising: an unmanned truck, which is used to ensure a large moving stroke of the robot; a linear guide rail, which is used to control the hybrid when the unmanned truck stops The movement of the robot; the plane two-degree-of-freedom hybrid manipulator is used to control the two-degree-of-freedom motion in the plane; the three-degree-of-freedom force-controlled parallel processing module is used to control one movement degree of freedom and two rotation degrees of freedom, and control the end execution positive pressure on the device. The device installs the three-degree-of-freedom force-controlled parallel processing module at the end of the plane two-degree-of-freedom hybrid manipulator to cooperate with the unmanned truck, which increases the range of the robot's high-quality working space, and can complete the processing of all profiles in one installation. , effectively improve the efficiency of processing operations, and the three-degree-of-freedom force-controlled parallel processing module can control the force of the end effector during processing operations to ensure processing quality.
Description
技术领域technical field
本发明涉及数控装置制造技术领域,特别涉及一种基于力控混联机器人的大型结构件加工装置。The invention relates to the technical field of numerical control device manufacturing, in particular to a large-scale structural part processing device based on a force-controlled hybrid robot.
背景技术Background technique
随着航空航天领域技术的不断发展与结构设计水平的不断提升,对于结构减重的需求日益突出,这也带来了对结构件加工的新要求。为了充分利用材料的力学性能,大型整体结构件的形式所占比重上升,但是这也为加工行业带来了新的挑战,大型结构件的一体化加工仍是亟待解决的技术难题。同时目前化石能源枯竭与环境污染问题日益严重,诸多国家开始关注风能的开发与利用,由于风能蕴藏丰富且分布广泛因此表现出巨大的应用前景。随着风能利用的快速发展,对风电机组的需求也日益增加,叶片作为风力发电机组中的关键部件,其工作寿命如何长久有效维持正成为学术界与工业界关注的重点问题,由于叶片前缘在实际服役过程中极易受到污染而变得粗糙,这会极大降低风力发电机组的发电效率,因此对风电叶片进行及时加工就显得尤为重要。但是大型风电叶片尺寸巨大,人工加工作业难度大且加工过程产生大量粉尘,加工作业环境恶劣,因此利用机器人进行加工作业是保证加工效率与加工精度的最佳方式之一。With the continuous development of technology in the aerospace field and the continuous improvement of the level of structural design, the demand for structural weight reduction has become increasingly prominent, which has also brought new requirements for the processing of structural parts. In order to make full use of the mechanical properties of materials, the proportion of large-scale integral structural parts has increased, but this has also brought new challenges to the processing industry. The integrated processing of large-scale structural parts is still an urgent technical problem to be solved. At the same time, the problems of fossil energy depletion and environmental pollution are becoming more and more serious. Many countries have begun to pay attention to the development and utilization of wind energy. Because of its rich reserves and wide distribution, wind energy has shown great application prospects. With the rapid development of wind energy utilization, the demand for wind turbines is also increasing. As a key component of wind turbines, how to maintain the working life of blades for a long time is becoming a key issue in the academic and industrial circles. In the actual service process, it is very easy to be polluted and become rough, which will greatly reduce the power generation efficiency of the wind turbine. Therefore, it is particularly important to process the wind turbine blades in time. However, the size of large wind turbine blades is huge, the manual processing is difficult, and the processing generates a lot of dust, and the processing environment is harsh. Therefore, using robots for processing is one of the best ways to ensure processing efficiency and processing accuracy.
大型结构件与大型风电叶片尺寸巨大,要求加工装置具有较大的行程。同时加工曲面多为自由曲面,曲率变化情况复杂,要求加工装置能够实现五轴联动加工。传统的串联机器人由关节、连杆组合而成,其优点在于结构形式简单、工作空间大且较为灵活但是存在关节累积、末端刚度较差等问题。并联机构则是通过在定平台与动平台之间形成多个运动学支链构成闭环结构来保证末端动平台的高刚度并保证结构紧凑,但是其工作空间一般较小,亟待解决。通过将并联机构与串联机构有机结合构成混联机构则能够有效改善整体性能。Large-scale structural parts and large-scale wind turbine blades are huge in size, requiring a large stroke of the processing device. At the same time, most of the processed surfaces are free-form surfaces, and the curvature changes are complex, so the processing device is required to realize five-axis linkage processing. The traditional serial robot is composed of joints and connecting rods. The parallel mechanism forms a closed-loop structure by forming multiple kinematic branches between the fixed platform and the moving platform to ensure the high rigidity of the end moving platform and the compact structure, but its working space is generally small and needs to be solved urgently. By organically combining the parallel mechanism and the series mechanism to form a hybrid mechanism, the overall performance can be effectively improved.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。The present invention aims to solve one of the technical problems in the related art at least to a certain extent.
为此,本发明的目的在于提出一种基于力控混联机器人的大型结构件加工装置,该装置具有增大机器人优质工作空间范围、有效提升加工作业效率和保证加工质量的优点。Therefore, the purpose of the present invention is to provide a large-scale structural part processing device based on a force-controlled hybrid robot, which has the advantages of increasing the high-quality working space of the robot, effectively improving the processing efficiency and ensuring the processing quality.
为达到上述目的,本发明实施例提出了一种基于力控混联机器人的大型结构件加工装置,包括:无人搬运车,用于保证机器人的大移动行程;直线导轨,所述直线导轨用于在所述无人搬运车停车时控制混联机器人的移动;平面两自由度混联机械臂,用于控制平面内两自由度运动;三自由度力控并联加工模块,用于控制一个移动自由度和两个转动自由度,并控制末端执行器上正压力。In order to achieve the above purpose, the embodiment of the present invention proposes a large-scale structural part processing device based on a force-controlled hybrid robot, including: an unmanned truck, which is used to ensure the large moving stroke of the robot; It is used to control the movement of the hybrid robot when the unmanned vehicle is parked; the plane two-degree-of-freedom hybrid manipulator is used to control the movement of two degrees of freedom in the plane; the three-degree-of-freedom force-controlled parallel processing module is used to control a movement degrees of freedom and two rotational degrees of freedom, and controls the positive pressure on the end effector.
本发明实施例的基于力控混联机器人的大型结构件加工装置,通过将三自由度力控并联加工模块安装在平面两自由度混联机械臂末端配合无人搬运车,增大了机器人优质工作空间范围,一次装卡即可完成对全部型面的加工作业,有效提升加工作业效率,同时三自由度力控并联加工模块能够在加工作业时实现对末端执行器作用力的控制保证加工质量。The large-scale structural parts processing device based on the force-controlled hybrid robot in the embodiment of the present invention increases the quality of the robot by installing the three-degree-of-freedom force-controlled parallel processing module at the end of the plane two-degree-of-freedom hybrid robotic arm to cooperate with the unmanned truck. The scope of the working space, the processing of all profiles can be completed in one installation, which effectively improves the processing efficiency. At the same time, the three-degree-of-freedom force-controlled parallel processing module can control the force of the end effector during processing to ensure the processing quality. .
另外,根据本发明上述实施例的基于力控混联机器人的大型结构件加工装置还可以具有以下附加的技术特征:In addition, the large-scale structural parts processing device based on the force-controlled hybrid robot according to the above-mentioned embodiments of the present invention may also have the following additional technical features:
进一步地,在本发明的一个实施例中,所述平面两自由度混联机械臂包括:大臂,第一连杆组和所述机械臂大臂构成平行四边形机构,以实现由大臂驱动杆驱动的转动运动;小臂,第二连杆组和所述机械臂小臂构成平行四边形机构,以实现由小臂驱动杆驱动的转动运动。Further, in an embodiment of the present invention, the plane two-degree-of-freedom hybrid manipulator includes: a large arm, and the first link group and the large arm of the mechanical arm form a parallelogram mechanism, so as to realize driving by the large arm The rotary motion driven by the rod; the small arm, the second link group and the small arm of the mechanical arm form a parallelogram mechanism, so as to realize the rotary motion driven by the driving rod of the forearm.
进一步地,在本发明的一个实施例中,所述三自由度力控并联加工模块包括:并联模块定平台;并联模块动平台;末端执行器;力控制单元;第一支链,所述第一支链通过两个轴线互相垂直的转动副与所述并联模块定平台连接,通过一个转动副与所述并联模块动平台连接,所述第一支链包含一个由输入驱动的丝杠螺母运动副,以实现丝杠与螺母轴线之间的转动自由度以及丝杠沿支链的移动自由度;第二支链和第三支链,所述第二支链和所述第三支链与所述第一支链结构相同;所述第一支链、所述第二支链和所述第三支链分别连接在所述并联模块定平台和所述并联模块动平台之间,构成闭环并联结构,以保证动平台与末端执行器固定连接后有一个移动自由度与两个转动自由度。Further, in an embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module includes: a parallel module fixed platform; a parallel module movable platform; an end effector; a force control unit; A chain is connected to the fixed platform of the parallel module through two rotating pairs whose axes are perpendicular to each other, and is connected to the movable platform of the parallel module through a rotating pair. pair, in order to realize the rotational freedom between the screw and the nut axis and the freedom of movement of the screw along the branch chain; the second branch chain and the third branch chain, the second branch chain and the third branch chain and The first branch chain has the same structure; the first branch chain, the second branch chain and the third branch chain are respectively connected between the parallel modular fixed platform and the parallel modular movable platform to form a closed loop The parallel structure ensures that after the moving platform and the end effector are fixedly connected, there is one movement degree of freedom and two rotation degrees of freedom.
进一步地,在本发明的一个实施例中,所述三自由度力控并联加工模块安装在所述平面两自由度混联机械臂末端配合所述无人搬运车和所述直线导轨,以增大机器人优质工作空间范围;或直接搭载无人搬运车或全行程直线导轨,以增大机器人装置的移动行程。Further, in an embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module is installed at the end of the plane two-degree-of-freedom hybrid robotic arm to cooperate with the unmanned vehicle and the linear guide rail to increase Large robot high-quality working space range; or directly equipped with unmanned trucks or full-stroke linear guides to increase the moving stroke of the robot device.
进一步地,在本发明的一个实施例中,所述第一支链包括:第一电机,所述第一电机的一端通过一个虎克铰或两个轴线互相垂直的转动副与所述三自由度力控并联加工模块定平台相连;第一丝杠螺母副,所述第一丝杠螺母副中螺母与第一电机相固结,以构成圆柱运动副,实现丝杠相对于螺母的直线进给自由度与相对转动自由度,所述第一丝杠螺母副中的丝杠通过一个转动副实现与所述并联模块动平台相连。Further, in an embodiment of the present invention, the first branch chain includes: a first motor, and one end of the first motor is connected to the three freewheels through a Hooke hinge or two rotating pairs whose axes are perpendicular to each other. The degree force-controlled parallel processing module is connected to the fixed platform; the first lead screw nut pair, the nut in the first lead screw nut pair is consolidated with the first motor to form a cylindrical motion pair, which realizes the linear advance of the lead screw relative to the nut. Given the degrees of freedom and relative rotational degrees of freedom, the lead screw in the first lead screw nut pair is connected to the parallel modular moving platform through a rotating pair.
进一步地,在本发明的一个实施例中,所述力控制单元包括:力控制弹簧,所述力控制弹簧在作业过程中通过对位置控制以实现末端正压力的控制;减振阻尼器,所述减振阻尼器可通过与所述力控制弹簧的协调实现力控制条件下的振动抑制;单元外壳,所述单元外壳则可与并联加工模块本体结构相结合克服所述单元不能承受力矩的问题。Further, in an embodiment of the present invention, the force control unit includes: a force control spring, which controls the position of the force control spring to control the positive pressure at the end during operation; a vibration damper, so The vibration damping damper can achieve vibration suppression under force control conditions by coordinating with the force control spring; the unit housing, the unit housing can be combined with the parallel processing module body structure to overcome the problem that the unit cannot withstand torque .
进一步地,在本发明的一个实施例中,所述力控制单元设置在所述第一支链、所述第二支链以及所述第三支链中所述丝杠与所述转动副相连接的位置,以实现对所述第一支链、所述第二支链以及所述第三支链的力控制;所述力控制单元还设置在所述三自由度力控并联加工模块动平台与所述末端执行器相连接的位置,以实现对所述末端执行器上作用力的控制。Further, in an embodiment of the present invention, the force control unit is arranged in the first branch chain, the second branch chain and the third branch chain, the lead screw is in phase with the rotating pair The position of connection to realize the force control of the first branch chain, the second branch chain and the third branch chain; The position where the platform is connected with the end effector, so as to realize the control of the force on the end effector.
进一步地,在本发明的一个实施例中,所述三自由度力控并联加工模块通过搭载不同形式的末端执行器完成打磨作业、焊接作业和铣钻作业等加工作业。Further, in an embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module is equipped with different forms of end effectors to complete processing operations such as grinding operations, welding operations, and milling and drilling operations.
进一步地,在本发明的一个实施例中,所述三自由度力控并联加工模块力控制单元还包括:力传感器,所述力传感器在作业过程中对所作用正压力进行反馈,并通过力/位混合控制算法,根据所述力传感器反馈的数据对所述三自由度力控并联模块末端执行器实现力/位混合控制。Further, in an embodiment of the present invention, the force control unit of the three-degree-of-freedom force-controlled parallel processing module further includes: a force sensor, the force sensor feedbacks the applied positive pressure during the operation, and passes the force A/bit hybrid control algorithm, according to the data fed back by the force sensor, to realize force/bit hybrid control on the end effector of the three-degree-of-freedom force control parallel module.
进一步地,在本发明的一个实施例中,在本发明实施例的具体使用过程中根据加工作业需求选择无力控制单元的结构形式。Further, in an embodiment of the present invention, the structural form of the powerless control unit is selected according to the requirements of the processing operation during the specific use of the embodiment of the present invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1是根据本发明一个实施例的一种基于力控混联机器人的大型结构件加工装置的结构示意图;1 is a schematic structural diagram of a large-scale structural part processing device based on a force-controlled hybrid robot according to an embodiment of the present invention;
图2是根据本发明一个实施例的一种基于力控混联机器人的大型结构件加工装置的结构示意图;2 is a schematic structural diagram of a large-scale structural part processing device based on a force-controlled hybrid robot according to an embodiment of the present invention;
图3是根据本发明一个实施例的一种基于力控混联机器人的大型结构件加工装置的结构示意图;3 is a schematic structural diagram of a large-scale structural part processing device based on a force-controlled hybrid robot according to an embodiment of the present invention;
图4是根据本发明一个实施例的平面两自由度混联机械臂的结构示意图;4 is a schematic structural diagram of a planar two-degree-of-freedom hybrid manipulator according to an embodiment of the present invention;
图5是根据本发明一个实施例的三自由度力控并联加工模块的结构示意图;5 is a schematic structural diagram of a three-degree-of-freedom force-controlled parallel processing module according to an embodiment of the present invention;
图6是根据本发明的一个实施例的三自由度力控并联加工模块的第一支链、定平台和动平台的爆炸示意图;6 is an exploded schematic diagram of a first branch chain, a fixed platform and a moving platform of a three-degree-of-freedom force-controlled parallel processing module according to an embodiment of the present invention;
图7是根据本发明的另一个实施例的三自由度力控并联加工模块的第一支链、定平台和动平台的爆炸示意图。7 is an exploded schematic diagram of the first branch chain, the fixed platform and the moving platform of the three-degree-of-freedom force-controlled parallel processing module according to another embodiment of the present invention.
附图标记:Reference number:
在图1中,三自由度力控并联加工模块I;平面两自由度混联机械臂II;无人搬运车III-11;直线导轨III-12;In Figure 1, the three-degree-of-freedom force-controlled parallel processing module I; the plane two-degree-of-freedom hybrid manipulator II; the unmanned vehicle III-11; the linear guide III-12;
在图2中,三自由度力控并联加工模块I;平面两自由度混联机械臂II;无人搬运车III-2;In Figure 2, the three-degree-of-freedom force-controlled parallel processing module I; the plane two-degree-of-freedom hybrid manipulator II; the unmanned vehicle III-2;
在图3中,三自由度力控并联加工模块I;平面两自由度混联机械臂II;直线导轨III-3;In Figure 3, the three-degree-of-freedom force-controlled parallel processing module I; the plane two-degree-of-freedom hybrid manipulator II; the linear guide III-3;
机械臂底座21;机械臂大臂22;大臂驱动杆23;第一连杆组24;姿态调节部件25;小臂驱动杆26;机械臂小臂27;第二连杆组28;末端执行器29;
第一支链31;第二支链32;第三支链33;并联加工模块定平台34;并联加工模块动平台35;电动打磨头36;The
第一环形转动件411;第一电机412;第一丝杠413;第一力控制单元414;第一U形转动件415;并联模块定平台44;并联模块动平台45;末端电动打磨头46;The first annular rotating
第一环形转动件511;第一电机512;第一丝杠513;第一U形转动件514;并联模块定平台54;并联模块动平台55;打磨电机561;动平台力控制单元562;末端执行器安装法兰563;末端执行器564。The first annular rotating
具体实施方式Detailed ways
下面详细描述本发明的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
下面参照附图描述根据本发明实施例提出的基于力控混联机器人的大型结构件加工装置。The following describes a large-scale structural part processing device based on a force-controlled hybrid robot proposed according to an embodiment of the present invention with reference to the accompanying drawings.
在本发明的一个实施例的一种基于力控混联机器人的大型结构件加工装置中,末端执行器以电动打磨头为例,具体实施也可采用电主轴夹持刀具或焊接操作末端执行器等满足对应加工需求。In a large-scale structural part processing device based on a force-controlled hybrid robot according to an embodiment of the present invention, the end effector takes an electric grinding head as an example, and an electric spindle can also be used to clamp a tool or a welding operation end effector. And so on to meet the corresponding processing needs.
在本发明的实施例1中,如图1所示,一种基于力控混联机器人的大型结构件加工装置包括三自由度力控并联加工模块I;平面两自由度混联机械臂II;无人搬运车III-11;直线导轨III-12。In Embodiment 1 of the present invention, as shown in FIG. 1 , a large-scale structural part processing device based on a force-controlled hybrid robot includes a three-degree-of-freedom force-controlled parallel processing module I; a plane two-degree-of-freedom hybrid robotic arm II; Unmanned truck III-11; Linear guide III-12.
在本发明的实施例2中,如图2所示,一种基于力控混联机器人的大型结构件加工装置还可包括三自由度力控并联加工模块I;平面两自由度混联机械臂II;无人搬运车III-2。In
在本发明的实施例3中,如图3所示,一种基于力控混联机器人的大型结构件加工装置也可包括三自由度力控并联加工模块I;平面两自由度混联机械臂II;直线导轨III-3。In
无人搬运车与配套直线导轨均为成熟的商业化产品,可根据实际使用要求选购或定制,此处不再赘述。Both unmanned trucks and matching linear guides are mature commercial products, which can be purchased or customized according to actual use requirements, and will not be repeated here.
进一步地,如图4所示,平面两自由度混联机械臂包括机械臂底座21、机械臂大臂22、机械臂小臂27、末端执行器29、连杆组24、大臂驱动杆23、小臂驱动杆26、姿态调节部件25以及连杆组28,三自由度力控并联加工模块固定连接于两自由度平面并联机械臂末端执行器29,连杆组24与机械臂大臂22构成平行四边形机构,连杆组28与机械臂小臂27构成平行四边形机构,机械臂大臂22和机械臂小臂27分别由大臂驱动杆23和小臂驱动杆26驱动,采用驱动方式为直线进给驱动。Further, as shown in FIG. 4 , the planar two-degree-of-freedom hybrid manipulator includes a
如图5所示,三自由度力控并联加工模块III包括第一支链31、第二支链32、第三支链33、并联加工模块定平台34、并联加工模块动平台35和电动打磨头36。As shown in FIG. 5 , the three-degree-of-freedom force-controlled parallel processing module III includes a
第一支链31通过两个轴线相互垂直的转动副或一个虎克铰与并联加工模块定平台34相连,通过一个转动副与并联加工模块定平台35连接,并联加工模块动平台35和电动打磨头36固定连接;第二支链,第三支链与第一支链结构相同,三个支链均连接在定平台与动平台之间形成闭环结构,最终实现动平台与电动打磨头的一个平动自由度与两个转动自由度。The
具体的,如图6所示,第一支链包括第一环形转动件411、第一电机412、第一丝杠413、第一力控制单元414、第一U形转动件415。第一环形转动件411与并联加工模块定平台44连接,形成一个转动副;第一电机412安装于第一环形转动件411上,形成另一个转动副,两转动副轴线互相垂直形成一虎克铰;第一电机412的转子与第一滚珠丝杠副中的螺母固定连接,使得第一丝杠413具有绕螺母轴线的转动自由度以及沿轴线方向的直线移动自由度,构成圆柱副;第一丝杠413末端与第一力控制单元414固定连接;第一力控制单元414内嵌于第一U形转动件415内与之固定连接,实现对第一支链内力的控制;第一U形转动件415与并联模块动平台45连接形成一个转动副;第二支链、第三支链与第一支链结构相同,均实现各自支链内力的控制并构成并联闭环结构。动平台45与电动打磨头46固定连接。Specifically, as shown in FIG. 6 , the first branch chain includes a first annular rotating
在本发明的另一个实施例中,如图7所示,第一支链还可包括第一环形转动件511、第一电机512、第一丝杠513、第一U形转动件514;末端电动加工头包括打磨电机561;动平台力控制单元562;末端执行器安装法兰563;末端执行器564。第一环形转动件511与并联加工模块定平台54连接,形成一个转动副;第一电机512安装于第一环形转动件511上,形成另一个转动副,两转动副轴线互相垂直形成一虎克铰;第一电机512的转子与第一滚珠丝杠副中的螺母固定连接,使得第一丝杠513具有绕螺母轴线的转动自由度以及沿轴线方向的直线移动自由度,构成圆柱副;第一丝杠513末端与第一U形转动件514固定连接;第一U形转动件514与并联模块动平台55连接形成一个转动副;第二支链、第三支链与第一支链结构相同,实现并联模块定平台54与并联模块动平台55之间的连接并构成并联闭环结构。打磨电机561安装于并联模块动平台55,并联模块动平台55与动平台力控制单元562固定连接实现对末端电动打磨头作用外力的控制,末端执行器安装法兰563实现末端执行器564与打磨电机561之间的安装连接。In another embodiment of the present invention, as shown in FIG. 7 , the first branch chain may further include a first annular rotating
三自由度力控并联加工模块转角范围大,能够实现对复杂型面的加工作业。The three-degree-of-freedom force-controlled parallel processing module has a large rotation angle range, which can realize the processing of complex surfaces.
在本发明的一个实施例中,一种基于力控混联机器人的大型结构件加工装置具有较大的工作行程且具备五轴联动加工能力,可以在一次装卡过程中实现对大型结构件全部自由型面的加工作业。In an embodiment of the present invention, a large-scale structural part processing device based on a force-controlled hybrid robot has a large working stroke and a five-axis linkage processing capability, which can realize all large-scale structural parts in one card loading process. Machining of free-form surfaces.
在本发明的一个实施例中,三自由度力控并联加工模块、平面两自由度混联机械臂还可通过直接搭载无人搬运车或直接安装在全行程直线导轨上,实现一次装卡过程中实现对大型结构件全部型面的加工作业。In an embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module and the plane two-degree-of-freedom hybrid manipulator can also be directly mounted on an unmanned truck or directly installed on a full-stroke linear guide rail to realize a one-time card loading process It can realize the processing of all the profiles of large structural parts.
在本发明的一个实施例中,三自由度力控并联加工模块通过力控制单元可以实现在加工过程中对末端电动加工头进行式力/位混合控制,能够有效提升加工作业质量。In one embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module can realize the mixed force/position control of the end electric processing head during processing through the force control unit, which can effectively improve the quality of processing operations.
在本发明的一个实施例中,三自由度力控并联加工模块可以通过搭载不同形式的末端执行器完成如打磨作业、焊接作业、铣钻作业等不同种类的加工作业。In an embodiment of the present invention, the three-degree-of-freedom force-controlled parallel processing module can complete different types of processing operations such as grinding, welding, milling and drilling by carrying different forms of end effectors.
本发明实施例的基于力控混联机器人的大型结构件加工装置,通过将三自由度力控并联加工模块安装在平面两自由度混联机械臂末端配合无人搬运车,增大了机器人优质工作空间范围,一次装卡即可完成对全部型面的加工作业,有效提升加工作业效率,同时三自由度力控并联加工模块能够在加工作业时实现对末端执行器作用力的控制保证加工质量。The large-scale structural parts processing device based on the force-controlled hybrid robot in the embodiment of the present invention increases the quality of the robot by installing the three-degree-of-freedom force-controlled parallel processing module at the end of the plane two-degree-of-freedom hybrid robotic arm to cooperate with the unmanned truck. The scope of the working space, the processing of all profiles can be completed in one installation, which effectively improves the processing efficiency. At the same time, the three-degree-of-freedom force-controlled parallel processing module can control the force of the end effector during processing to ensure the processing quality. .
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", " Rear, Left, Right, Vertical, Horizontal, Top, Bottom, Inner, Outer, Clockwise, Counterclockwise, Axial, The orientations or positional relationships indicated by "radial direction", "circumferential direction", etc. are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the indicated devices or elements. It must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation of the present invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise expressly specified and limited, a first feature "on" or "under" a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810581017.9A CN108789357B (en) | 2018-06-05 | 2018-06-05 | A large-scale structural parts processing device based on force-controlled hybrid robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810581017.9A CN108789357B (en) | 2018-06-05 | 2018-06-05 | A large-scale structural parts processing device based on force-controlled hybrid robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108789357A CN108789357A (en) | 2018-11-13 |
CN108789357B true CN108789357B (en) | 2020-10-27 |
Family
ID=64087649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810581017.9A Active CN108789357B (en) | 2018-06-05 | 2018-06-05 | A large-scale structural parts processing device based on force-controlled hybrid robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108789357B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108608401B (en) * | 2018-04-11 | 2020-12-01 | 清华大学 | An orbital large-span foldable processing robot |
CN109623770A (en) * | 2018-12-13 | 2019-04-16 | 清华大学 | A kind of Li Kong construction and installation robot based on hybrid mechanism |
CN109623784A (en) * | 2018-12-13 | 2019-04-16 | 清华大学 | A kind of movable building mounting robot |
CN111215758B (en) * | 2020-03-16 | 2022-03-18 | 兰州理工大学 | Laser marking device |
CN111376235B (en) * | 2020-03-31 | 2022-07-15 | 哈尔滨工业大学 | A heavy-duty four-degree-of-freedom four-parallel four-link actuator |
CN114633270B (en) * | 2022-05-06 | 2023-08-15 | 中国石油大学(华东) | Laser repairing robot capable of switching working surfaces |
CN114850989B (en) * | 2022-05-27 | 2023-04-28 | 清华大学 | Multi-machine collaborative compliant machining device for inner wall of large-scale rotary part and control method |
CN114749943B (en) * | 2022-05-27 | 2023-03-21 | 清华大学 | Multi-robot processing system and control method for inner wall of large rotary thin-walled structural parts |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105459109A (en) * | 2016-01-11 | 2016-04-06 | 安徽工业大学 | Movable five-axis robot |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348386C (en) * | 2005-09-15 | 2007-11-14 | 天津大学 | Multi-coordinate serioparallel robot with redundant freedom |
CN201073766Y (en) * | 2007-04-25 | 2008-06-18 | 大连理工大学 | Long-arm manipulator for curved steel sheet processing |
CN102490179A (en) * | 2011-12-13 | 2012-06-13 | 天津大学 | Parallel mechanism with three rotational degrees of freedom and one translational degree of freedom |
CN104923431A (en) * | 2014-03-18 | 2015-09-23 | 上海飞机制造有限公司 | Spraying robot driven by multiple parallelogram links in parallel |
CN106078698B (en) * | 2016-08-14 | 2018-02-09 | 吉林大学 | A kind of multi-freedom parallel connection follower mechanism and its driving method |
CN206568159U (en) * | 2017-03-02 | 2017-10-20 | 成都信息工程大学 | Mechanical handing system |
-
2018
- 2018-06-05 CN CN201810581017.9A patent/CN108789357B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105459109A (en) * | 2016-01-11 | 2016-04-06 | 安徽工业大学 | Movable five-axis robot |
Non-Patent Citations (1)
Title |
---|
3-UCR并联机构的瞬态运动学研究;程刚等;《光学 精密工程》;20080131;第16卷(第1期);正文第108-112页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108789357A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108789358B (en) | Mobile series-parallel processing robot based on three-degree-of-freedom force control parallel module | |
CN108789357B (en) | A large-scale structural parts processing device based on force-controlled hybrid robot | |
CN108748086B (en) | Large-stroke hybrid processing robot device for complex curved surface | |
CN108544475B (en) | Large-stroke force-control machining robot based on planar two-degree-of-freedom series-parallel mechanical arm | |
CN108340167B (en) | A kind of overhead system processing unit (plant) based on the full parallel module of portable five degree of freedom | |
CN108621114B (en) | A mobile robot for processing large structural parts | |
CN108621128B (en) | A mobile processing robot with large-scale positioning and flexible attitude adjustment | |
CN202185919U (en) | Driving module for building underwater electric manipulator | |
CN101579828B (en) | Parallel 3-DOF drive mechanism of spindle head | |
CN114918939B (en) | Large-scale bent plate movable type machining robot device | |
Bai et al. | Design of mechanical presses driven by multi-servomotor | |
CN112317776A (en) | Novel numerical control polyhedron center | |
CN202861305U (en) | Transfer robot used for high-temperature hot die forging workpiece clamping | |
CN209868599U (en) | Rigid-flexible hybrid force control end effector driven by gas and electricity | |
CN100439050C (en) | Precise micro-motion parallel three-dimensional moving mechanism with screw pair | |
CN114851233A (en) | End execution device for industrial robot machining and execution method thereof | |
CN110000757A (en) | Parallel institution with a two mobile rotations and a two mobile screw modes | |
CN206140499U (en) | SCARA robot | |
CN206105843U (en) | Four degree of freedom parallel robots | |
CN209077809U (en) | A kind of five degree of freedom fast servo tool micromotion platform | |
CN209289282U (en) | A SCARA robot | |
CN106625591A (en) | Five-degrees-of-freedom parallel mechanism achieving three-degrees-of-freedom translational motion and two-degrees-of-freedom rotational motion | |
CN211332579U (en) | Grinding mechanism based on series-parallel connection | |
CN110000755A (en) | Parallel institution with a two mobile spirals and a two mobile rotational motion modes | |
CN115138966A (en) | Three-branch five-degree-of-freedom ultra-large working space laser processing robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |