[go: up one dir, main page]

CN108775718A - The linear Fresnel mirror design method of biaxial tracker maximum focusing ratio - Google Patents

The linear Fresnel mirror design method of biaxial tracker maximum focusing ratio Download PDF

Info

Publication number
CN108775718A
CN108775718A CN201810251634.2A CN201810251634A CN108775718A CN 108775718 A CN108775718 A CN 108775718A CN 201810251634 A CN201810251634 A CN 201810251634A CN 108775718 A CN108775718 A CN 108775718A
Authority
CN
China
Prior art keywords
linear fresnel
fresnel reflector
collector
horizontal distance
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810251634.2A
Other languages
Chinese (zh)
Other versions
CN108775718B (en
Inventor
童超
白建波
李俊阳
姚命宏
曹飞
刘升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201810251634.2A priority Critical patent/CN108775718B/en
Publication of CN108775718A publication Critical patent/CN108775718A/en
Application granted granted Critical
Publication of CN108775718B publication Critical patent/CN108775718B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

本发明涉及一种双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,按以下步骤进行:确定第一个线性菲涅尔反射镜与集热器中心轴线的水平距离;根据反射定律求得镜片与镜场平面之间的夹角与集热器中心和镜片中心之间的连线与镜场平面的夹角的对应关系;根据三角形正弦定理求得线性菲涅尔反射镜的宽度;根据第一个线性菲涅尔反射镜与中心轴线的水平距离确定第二个线性菲涅尔反射镜的与集热器中心轴线的水平距离,以此类推。本发明通过准确计算镜场中各个线性菲涅尔反射镜的位置参数、宽度以及倾斜角,从而最大程度上利用镜场空间实现了最大聚光比,使有限空间内的太阳光得到了最大利用,提高了集热性能。

The invention relates to a method for designing a linear Fresnel reflector with a maximum concentration ratio of a dual-axis tracker. The corresponding relationship between the angle between the mirror and the mirror field plane and the connection line between the collector center and the mirror center and the mirror field plane is obtained according to the law; the linear Fresnel reflector is obtained according to the triangle sine law Width; determine the horizontal distance between the second linear Fresnel reflector and the central axis of the collector according to the horizontal distance between the first linear Fresnel reflector and the central axis, and so on. The present invention accurately calculates the position parameters, width, and inclination angle of each linear Fresnel reflector in the mirror field, thereby utilizing the mirror field space to the greatest extent to realize the maximum concentration ratio, and maximizing the use of sunlight in the limited space , improved heat collection performance.

Description

双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法Design method of linear Fresnel mirror with maximum concentration ratio for dual-axis tracker

技术领域technical field

本发明涉及双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,属于几何光学领域。The invention relates to a design method of a linear Fresnel reflector with a maximum concentration ratio of a biaxial tracker, and belongs to the field of geometric optics.

背景技术Background technique

能源是人类社会发展的原动力,也是人类赖以生存的基础。由于能源紧缺,开发新能源、发展新能源技术,成为了全球各国寻求可持续发展之路必须面临的问题和挑战。Energy is the driving force behind the development of human society and the basis for human survival. Due to the shortage of energy sources, the development of new energy sources and new energy technologies has become a problem and challenge that countries all over the world must face in pursuit of sustainable development.

太阳能作为一种可再生的清洁能源蕴藏着巨大能量,世界各国都非常重视太阳能利用技的研发。太阳能利用技术指的是采用太阳能集热器,收集转换和贮存太阳能辐射能,供用户使用,其转化方式主要有太阳能光电转换和太阳能光热转换,此外还有太阳能光化学转换和太阳能采光,但主要的利用方式是太阳能光热利用。太阳能集热器是将太阳能转化为工质能量的一种装置。而线性菲涅尔反射式集热器是线性集热器的一种,相比与已经得到商业化利用的槽式集热器,线性菲涅尔反射器具有造价低、场地利用率高、反射镜风载低、控制系统简单等优点。不过线性菲涅尔反射器的一个技术难题是相邻镜片存在阴影和遮挡问题,从而限制了线性菲涅尔反射器的商业化利用。As a renewable clean energy source, solar energy contains enormous energy, and all countries in the world attach great importance to the research and development of solar energy utilization technology. Solar energy utilization technology refers to the use of solar collectors to collect, convert, and store solar radiant energy for use by users. The conversion methods mainly include solar photoelectric conversion and solar photothermal conversion. The most common way of utilization is solar thermal utilization. A solar collector is a device that converts solar energy into working fluid energy. The linear Fresnel reflective collector is a kind of linear collector. Compared with the trough collectors that have been commercially used, the linear Fresnel reflector has low cost, high site utilization, and high reflectivity. The mirror wind load is low, the control system is simple and so on. However, a technical problem of linear Fresnel reflectors is that adjacent mirrors have shadow and occlusion problems, which limits the commercial utilization of linear Fresnel reflectors.

发明内容Contents of the invention

为了解决这个难题,本发明提供了基于双轴跟踪器上线性菲涅尔反射镜求最大聚光比的方法,在不遮挡反射光线的前提下,合理的计算镜场中每个线性菲涅尔反射镜的宽度、倾角以及相邻镜片之间的距离,从而实现有限空间的最大聚光。In order to solve this problem, the present invention provides a method based on the linear Fresnel reflector on the dual-axis tracker to obtain the maximum concentration ratio. Under the premise of not blocking the reflected light, the reasonable calculation of each linear Fresnel in the mirror field The width, inclination angle and distance between adjacent mirrors can be adjusted to achieve the maximum concentration of light in a limited space.

双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,包括以下步骤:A method for designing a linear Fresnel reflector with a maximum concentration ratio of a dual-axis tracker, comprising the following steps:

1)确定第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,以及第一个线性菲涅尔反射镜的倾斜角α1,其中,倾斜角为线性菲涅尔反射镜的镜片与镜场平面之间的夹角;1) Determine the horizontal distance between the first linear Fresnel reflector and the central axis of the collector as Q 1 , and the inclination angle α 1 of the first linear Fresnel reflector, where the inclination angle is linear Fresnel The angle between the lens of the mirror and the mirror field plane;

2)根据反射定律求得第n个线性菲涅尔反射镜的倾斜角αn与集热器中心和镜片中心之间的连线与镜场平面的夹角βn的对应关系;2) According to the law of reflection, obtain the corresponding relationship between the inclination angle α n of the nth linear Fresnel reflector and the angle β n between the connection line between the center of the collector and the center of the lens and the plane of the mirror field;

3)根据三角形正弦定理求得第n个线性菲涅尔反射镜的宽度Ln3) obtain the width L n of the nth linear Fresnel reflector according to the triangular sine law;

4)根据步骤1)确定的第一个线性菲涅尔反射镜与集热器中心轴线的水平距离Q1以及第一个线性菲涅尔反射镜的倾斜角α1,并结合步骤2)和3)计算第二个线性菲涅尔反射镜与集热器中心轴线的水平距离Q2、第二个线性菲涅尔反射镜宽度L2以及倾斜角α2,依此类推,第n个线性菲涅尔反射镜的与集热器中心轴线的水平距离Qn、宽度Ln以及倾斜角αn由第n-1个线性菲涅尔反射镜与集热器中心轴线的水平距离Qn-1和第n-1个线性菲涅尔反射镜的倾斜角αn-1确定。4) The horizontal distance Q 1 between the first linear Fresnel reflector and the central axis of the collector determined according to step 1) and the inclination angle α 1 of the first linear Fresnel reflector, combined with step 2) and 3) Calculate the horizontal distance Q 2 between the second linear Fresnel reflector and the central axis of the collector, the width L 2 of the second linear Fresnel reflector and the inclination angle α 2 , and so on, the nth linear Fresnel reflector The horizontal distance Q n of the Fresnel reflector to the central axis of the collector, the width L n and the inclination angle α n are determined by the horizontal distance Q n- The inclination angle α n-1 of the 1 and n-1th linear Fresnel mirrors is determined.

优选地,步骤2)中太阳光垂直射入镜场,第n个线性菲涅尔反射镜的倾斜角αn与集热器中心和镜片中心连线与镜场平面的夹角βn的对应关系如公式(1)所示: Preferably, in step 2), sunlight is vertically incident on the mirror field, and the inclination angle α n of the nth linear Fresnel reflector corresponds to the angle β n between the line connecting the center of the collector and the center of the lens and the plane of the mirror field The relationship is shown in formula (1):

优选地,步骤3)中根据三角形正弦定理计算第n个线性菲涅尔反射镜的宽度Ln,如公式(2)所示:其中,L0为双轴跟踪器宽度的二分之一,n≥1。Preferably, in step 3), the width L n of the nth linear Fresnel reflector is calculated according to the triangular sine law, as shown in formula (2): which is Among them, L 0 is half of the width of the dual-axis tracker, and n≥1.

优选地,其特征在于,步骤4)中设第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,设第二个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q2,以此类推,设第n-1个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn-1,设第n个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn,在第n个线性菲涅尔反射镜的镜片宽度不遮挡第n-1个线性菲涅尔反射镜反射光线的前提下,根据下述公式(1)(2)(3)(4)所计算得出的线性菲涅尔反射镜的镜片参数使聚光比最大,公式(3)和(4)如下所示:Preferably, it is characterized in that in step 4), set the horizontal distance between the first linear Fresnel reflector and the central axis of the heat collector as Q 1 , and set the distance between the second linear Fresnel reflector and the central axis of the heat collector The horizontal distance is Q 2 , and so on, the horizontal distance between the n-1th linear Fresnel reflector and the central axis of the collector is Q n-1 , and the n-th linear Fresnel reflector and the collector The horizontal distance of the central axis of the heater is Q n . On the premise that the lens width of the nth linear Fresnel reflector does not block the light reflected by the n-1th linear Fresnel reflector, according to the following formula (1) (2)(3)(4) The calculated lens parameters of the linear Fresnel reflector maximize the concentration ratio, and the formulas (3) and (4) are as follows:

其中,n>1; Among them, n>1;

其中,H为集热器与镜场平面的垂直距离。 Among them, H is the vertical distance between the collector and the mirror field plane.

有益效果:本发明提供了一种双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,最大程度上利用镜场空间实现了最大聚光比,使有限空间内的太阳光得到了最大利用,提高了集热性能,同时镜片设计简单,价格合适,装置易于控制,有利于推动线性菲涅尔集热器的发展。Beneficial effects: the present invention provides a design method for a linear Fresnel reflector with a maximum light concentration ratio of a dual-axis tracker, which utilizes the mirror field space to the greatest extent to achieve a maximum light concentration ratio, so that sunlight in a limited space can be obtained The maximum utilization improves the heat collection performance. At the same time, the lens design is simple, the price is reasonable, and the device is easy to control, which is conducive to promoting the development of linear Fresnel heat collectors.

附图说明Description of drawings

图1为本发明的设计说明图。Fig. 1 is a design explanatory diagram of the present invention.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本申请中的技术方案,下面对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。In order to enable those skilled in the art to better understand the technical solutions in the application, the technical solutions in the embodiments of the application are clearly and completely described below. Obviously, the described embodiments are only part of the embodiments of the application, and Not all examples. Based on the embodiments in this application, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection of this application.

双轴跟踪器最大聚光比的线性菲涅尔反射镜装置包括支架、角钢、挟持件、线性菲涅尔反射镜,其中,如图1所示,线性菲涅尔反射镜的设计方法包括以下步骤:The linear Fresnel reflector device with the maximum concentration ratio of the dual-axis tracker includes a bracket, an angle steel, a holding piece, and a linear Fresnel reflector. As shown in Figure 1, the design method of the linear Fresnel reflector includes the following step:

1)确定第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,以及第一个线性菲涅尔反射镜的倾斜角α1,其中,倾斜角为线性菲涅尔反射镜的镜片与镜场平面之间的夹角;1) Determine the horizontal distance between the first linear Fresnel reflector and the central axis of the collector as Q 1 , and the inclination angle α 1 of the first linear Fresnel reflector, where the inclination angle is linear Fresnel The angle between the lens of the mirror and the mirror field plane;

2)根据反射定律求得第n个线性菲涅尔反射镜的倾斜角αn与集热器中心到镜片中心连线与镜场平面的夹角βn的对应关系如公式(1)所示:其中n≥1;2) According to the law of reflection, the corresponding relationship between the inclination angle α n of the nth linear Fresnel reflector and the angle β n between the line connecting the center of the collector to the center of the mirror and the plane of the mirror field is obtained, as shown in formula (1) : where n≥1;

3)根据三角形正弦定理求得第n个线性菲涅尔反射镜的宽度Ln,如公式(2)所示:其中,L0为双轴跟踪器宽度的二分之一,n≥1;3) Obtain the width L n of the nth linear Fresnel reflector according to the triangular sine law, as shown in formula (2): which is Among them, L 0 is half of the width of the dual-axis tracker, n≥1;

4)设第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,设第二个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q2,由于第二块镜片从最开始第一块镜片位置向左移动的过程中,镜片宽度从原来的遮挡第一块镜片末端的反射光线到不遮挡第一块镜片末端的反射光线,在不考虑遮挡的前提下,我们选择了当第二块镜片宽度恰好不遮挡第一块镜片末端反射光线这一特殊位置进行计算,得到又根据公式(2)可得,令公式(5)和(6)两式相等得到以此类推,设第n-1个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn-1,设第n个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn,在第n个线性菲涅尔反射镜的镜片宽度不遮挡第n-1个线性菲涅尔反射镜反射光线的前提下,满足下式:其中,H为集热器与镜场平面的垂直距离;再根据前面公式(1)和(3)可以依次算出每个线性菲涅尔反射镜的镜片的倾斜角α和距离Q。4) Set the horizontal distance between the first linear Fresnel reflector and the central axis of the heat collector as Q 1 , and set the horizontal distance between the second linear Fresnel reflector and the central axis of the heat collector as Q 2 , since the first When the two lenses move to the left from the position of the first lens, the width of the lens changes from blocking the reflected light at the end of the first lens to not blocking the reflected light at the end of the first lens, without considering the occlusion Next, we choose the special position where the width of the second lens just does not block the reflected light at the end of the first lens for calculation, and we get And according to formula (2), we can get, Make formulas (5) and (6) equal to get By analogy, set the horizontal distance between the n-1th linear Fresnel reflector and the central axis of the collector as Q n-1 , and set the horizontal distance between the n-th linear Fresnel reflector and the central axis of the collector is Q n , under the premise that the lens width of the nth linear Fresnel reflector does not block the light reflected by the n-1th linear Fresnel reflector, the following formula is satisfied: and Among them, H is the vertical distance between the heat collector and the mirror field plane; then according to the previous formulas (1) and (3), the inclination angle α and the distance Q of each linear Fresnel reflector can be calculated in turn.

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Modifications to these embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Therefore, the present invention will not be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (4)

1.双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,其特征在于,包括以下步骤:1. The linear Fresnel reflector design method of the maximum concentration ratio of the biaxial tracker is characterized in that, comprising the following steps: 1)确定第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,以及第一个线性菲涅尔反射镜的倾斜角α1,其中,倾斜角为线性菲涅尔反射镜的镜片与镜场平面之间的夹角;1) Determine the horizontal distance between the first linear Fresnel reflector and the central axis of the collector as Q 1 , and the inclination angle α 1 of the first linear Fresnel reflector, where the inclination angle is linear Fresnel The angle between the lens of the mirror and the mirror field plane; 2)根据反射定律求得第n个线性菲涅尔反射镜的倾斜角αn与集热器中心和镜片中心之间的连线与镜场平面的夹角βn的对应关系;2) According to the law of reflection, obtain the corresponding relationship between the inclination angle α n of the nth linear Fresnel reflector and the angle β n between the connection line between the center of the collector and the center of the lens and the plane of the mirror field; 3)根据三角形正弦定理求得第n个线性菲涅尔反射镜的宽度Ln3) obtain the width L n of the nth linear Fresnel reflector according to the triangular sine law; 4)根据步骤1)确定的第一个线性菲涅尔反射镜与集热器中心轴线的水平距离Q1以及第一个线性菲涅尔反射镜的倾斜角α1,并结合步骤2)和3)计算第二个线性菲涅尔反射镜与集热器中心轴线的水平距离Q2、第二个线性菲涅尔反射镜宽度L2以及倾斜角α2,依此类推,第n个线性菲涅尔反射镜的与集热器中心轴线的水平距离Qn、宽度Ln以及倾斜角αn由第n-1个线性菲涅尔反射镜与集热器中心轴线的水平距离Qn-1和第n-1个线性菲涅尔反射镜的倾斜角αn-1确定。4) The horizontal distance Q 1 between the first linear Fresnel reflector and the central axis of the collector determined according to step 1) and the inclination angle α 1 of the first linear Fresnel reflector, combined with step 2) and 3) Calculate the horizontal distance Q 2 between the second linear Fresnel reflector and the central axis of the collector, the width L 2 of the second linear Fresnel reflector and the inclination angle α 2 , and so on, the nth linear Fresnel reflector The horizontal distance Q n of the Fresnel reflector to the central axis of the collector, the width L n and the inclination angle α n are determined by the horizontal distance Q n- The inclination angle α n-1 of the 1 and n-1th linear Fresnel mirrors is determined. 2.根据权利要求1所述的双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,其特征在于:步骤2)中太阳光垂直射入镜场,第n个线性菲涅尔反射镜的倾斜角αn与集热器中心和镜片中心连线与镜场平面的夹角βn的对应关系如公式(1)所示: 2. the linear Fresnel reflector design method of the maximum concentration ratio of the biaxial tracker according to claim 1, is characterized in that: in step 2), sunlight is vertically injected into the mirror field, and the nth linear Fresnel The corresponding relationship between the inclination angle α n of the reflector and the angle β n between the line connecting the center of the collector and the center of the mirror and the plane of the mirror field is shown in formula (1): 3.根据权利要求2所述的双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,其特征在于,步骤3)中根据三角形正弦定理计算第n个线性菲涅尔反射镜的宽度Ln,如公式(2)所示:其中,L0为双轴跟踪器宽度的二分之一,n≥1。3. the linear Fresnel reflector design method of the maximum concentration ratio of the biaxial tracker according to claim 2, is characterized in that, in step 3), calculate the nth linear Fresnel reflector according to the triangular sine law Width L n , as shown in formula (2): which is Among them, L 0 is half of the width of the dual-axis tracker, and n≥1. 4.根据权利要求3所述的双轴跟踪器最大聚光比的线性菲涅尔反射镜设计方法,其特征在于,步骤4)中设第一个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q1,设第二个线性菲涅尔反射镜与集热器中心轴线的水平距离为Q2,以此类推,设第n-1个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn-1,设第n个线性菲涅尔反射镜与集热器中心轴线的水平距离为Qn,在第n个线性菲涅尔反射镜的镜片宽度不遮挡第n-1个线性菲涅尔反射镜反射光线的前提下,根据下述公式(1)(2)(3)(4)所计算得出的线性菲涅尔反射镜的镜片参数使聚光比最大,公式(3)和(4)如下所示:4. the linear Fresnel reflector design method of the maximum concentration ratio of the biaxial tracker according to claim 3, is characterized in that, step 4) establishes the first linear Fresnel reflector and the heat collector center The horizontal distance of the axis is Q 1 , and the horizontal distance between the second linear Fresnel reflector and the central axis of the collector is Q 2 , and so on, assuming that the n-1th linear Fresnel reflector and the collector The horizontal distance of the central axis of the collector is Q n -1 , and the horizontal distance between the nth linear Fresnel reflector and the central axis of the collector is Qn, and the lens width of the nth linear Fresnel reflector does not block Under the premise that the n-1th linear Fresnel reflector reflects light, the lens parameters of the linear Fresnel reflector calculated according to the following formula (1)(2)(3)(4) make the light concentrating than the maximum, formulas (3) and (4) are as follows: 其中,n>1; Among them, n>1; 其中,H为集热器与镜场平面的垂直距离。 Among them, H is the vertical distance between the collector and the mirror field plane.
CN201810251634.2A 2018-03-26 2018-03-26 Design method of linear Fresnel reflector with maximum condensing ratio of biaxial tracker Active CN108775718B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810251634.2A CN108775718B (en) 2018-03-26 2018-03-26 Design method of linear Fresnel reflector with maximum condensing ratio of biaxial tracker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810251634.2A CN108775718B (en) 2018-03-26 2018-03-26 Design method of linear Fresnel reflector with maximum condensing ratio of biaxial tracker

Publications (2)

Publication Number Publication Date
CN108775718A true CN108775718A (en) 2018-11-09
CN108775718B CN108775718B (en) 2020-03-17

Family

ID=64033645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810251634.2A Active CN108775718B (en) 2018-03-26 2018-03-26 Design method of linear Fresnel reflector with maximum condensing ratio of biaxial tracker

Country Status (1)

Country Link
CN (1) CN108775718B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2801691A1 (en) * 1978-01-16 1979-07-19 Koester Helmut Solar energy collector using buoyant reference platforms - increasing accuracy of concentrating system by shortening reflection lengths
US5002379A (en) * 1989-04-12 1991-03-26 Murtha R Michael Bypass mirrors
CN103591703A (en) * 2012-08-14 2014-02-19 北京兆阳光热技术有限公司 Solar energy gathering system
CN104236122A (en) * 2014-10-14 2014-12-24 兰州大成科技股份有限公司 Optimized layout method for mirror field of linear Fresnel concentration system
CN107388599A (en) * 2017-08-02 2017-11-24 兰州交通大学 A kind of shade of linear Fresnel formula light condenser field and sheltering analysis optimization distribution method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2801691A1 (en) * 1978-01-16 1979-07-19 Koester Helmut Solar energy collector using buoyant reference platforms - increasing accuracy of concentrating system by shortening reflection lengths
US5002379A (en) * 1989-04-12 1991-03-26 Murtha R Michael Bypass mirrors
CN103591703A (en) * 2012-08-14 2014-02-19 北京兆阳光热技术有限公司 Solar energy gathering system
CN104236122A (en) * 2014-10-14 2014-12-24 兰州大成科技股份有限公司 Optimized layout method for mirror field of linear Fresnel concentration system
CN107388599A (en) * 2017-08-02 2017-11-24 兰州交通大学 A kind of shade of linear Fresnel formula light condenser field and sheltering analysis optimization distribution method

Also Published As

Publication number Publication date
CN108775718B (en) 2020-03-17

Similar Documents

Publication Publication Date Title
CN102620442B (en) Solar heat collector based on groove type parabolic mirror and artificial blackbody
CN101769643B (en) Follow-up large-scale Fresnel lens point focusing solar system
CN104456980B (en) A kind of secondary condensation reflection and transmission type parabolic trough type solar thermal collector
CN107919848B (en) Annular linear Fresnel high-power condenser
CN108880459B (en) Double-sided photovoltaic module system based on double-shaft solar tracker and back utilization method of double-sided photovoltaic module
CN103199743A (en) Controllable double-state light-reflection light-gathering solar heat collection generating set
CN204610160U (en) A kind of convergent lens power generation system
CN208365843U (en) A kind of equal receptions escape half-angle solar light-condensing and heat-collecting device
CN108775718B (en) Design method of linear Fresnel reflector with maximum condensing ratio of biaxial tracker
CN108981190B (en) Omnibearing tracking parabolic mirror heat energy absorption system
CN207849791U (en) A kind of novel dish type optical collector structure
CN102914064B (en) Tower bottom reflecting type solar focusing heat collector
CN105577105B (en) Asymmetric concentrating photovoltaic photo-thermal system capable of being fixedly installed
CN108645056A (en) A kind of equal receptions escape half-angle solar light-condensing and heat-collecting device
CN202182968U (en) Super light gathering equipment
CN202870380U (en) Sectional groove type solar concentrator
TW201026998A (en) Static concentrator
WO2017206140A1 (en) Sun tracking solar system
CN103644658B (en) Solar trough concentrating system
CN102455499A (en) Manufacturing method and device of super light-gathering device
CN107062636B (en) Composite condenser suitable for solar heat utilization
CN113865114B (en) A solar energy comprehensive utilization device for concentrating heat and generating electricity
CN203813729U (en) Multiple-reflection concentrating photovoltaic power generation system
CN102608742B (en) Solar strip-type parallel light ultrathin condenser
CN202485242U (en) Solar thermal collector based on slot-type parabolic reflector and artificial blackbody

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant