[go: up one dir, main page]

CN108764328A - The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing - Google Patents

The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing Download PDF

Info

Publication number
CN108764328A
CN108764328A CN201810507060.0A CN201810507060A CN108764328A CN 108764328 A CN108764328 A CN 108764328A CN 201810507060 A CN201810507060 A CN 201810507060A CN 108764328 A CN108764328 A CN 108764328A
Authority
CN
China
Prior art keywords
dangerous goods
image
terahertz
terahertz image
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810507060.0A
Other languages
Chinese (zh)
Inventor
程良伦
林芝峰
吴衡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201810507060.0A priority Critical patent/CN108764328A/en
Publication of CN108764328A publication Critical patent/CN108764328A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/05Recognition of patterns representing particular kinds of hidden objects, e.g. weapons, explosives, drugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

The invention discloses a kind of Terahertz image dangerous material recognition methods, and this approach includes the following steps:Terahertz image to be identified is pre-processed, and extracts the marginal information in Terahertz image;Using marginal information and default dangerous material comparison database, judge to whether there is dangerous material in Terahertz image;If it is, being split to the dangerous material edge in Terahertz image, obtains dangerous material and divide image;Sorter network is preset in dangerous material segmentation image input to handle, obtains classification information.The quantity that the Terahertz image for carrying out dangerous material identification can be reduced reduces the occupancy of computer resource, promotes recognition speed.The invention also discloses a kind of Terahertz image dangerous material identification device, equipment and readable storage medium storing program for executing, have corresponding technique effect.

Description

太赫兹图像危险品识别方法、装置、设备及可读存储介质Terahertz image dangerous goods identification method, device, equipment and readable storage medium

技术领域technical field

本发明涉及安全保障技术领域,特别是涉及一种太赫兹图像危险品识别方法、装置、设备及可读存储介质。The present invention relates to the technical field of safety assurance, in particular to a method, device, equipment and a readable storage medium for identifying dangerous goods in a terahertz image.

背景技术Background technique

目前比较受欢迎的新型安检方式为利用太赫兹成像算法和太赫兹图像危险品提取、识别方法的太赫兹光谱技术识别危险品。At present, the more popular new security inspection method is to use terahertz imaging algorithm and terahertz image dangerous goods extraction and identification method to identify dangerous goods.

在实时的安检过程中,太赫兹成像设备不断的生成待识别的太赫兹图像,然后处理器利用物体提取和识别算法对每一个太赫兹图像进行检测,最终输出识别结果。由于目前的物体提取、识别算法较为复杂,在对太赫兹图像进行检测时,耗时较长,进而导致安检速度较慢。在实际应用中,特别是车站或机场这种人流量较大的安检场所,当被检旅客搭乘时间迫在眉睫时,较慢的安检速度可能导致旅客无法顺利乘车或登机的情况。In the real-time security inspection process, the terahertz imaging device continuously generates terahertz images to be recognized, and then the processor uses object extraction and recognition algorithms to detect each terahertz image, and finally outputs the recognition result. Due to the complexity of the current object extraction and recognition algorithms, it takes a long time to detect terahertz images, which in turn leads to slow security checks. In practical applications, especially in security check places with a large flow of people such as stations or airports, when the boarding time of the passengers to be checked is imminent, the slow security check speed may cause passengers to fail to board the bus or board the plane smoothly.

综上所述,如何有效地提高太赫兹图像危险品识别的速度等问题,是目前本领域技术人员急需解决的技术问题。To sum up, how to effectively improve the speed of dangerous goods recognition in terahertz images is a technical problem urgently needed to be solved by those skilled in the art.

发明内容Contents of the invention

本发明的目的是提供一种太赫兹图像危险品识别方法、装置、设备及可读存储介质,以提高太赫兹图像危险品识别的速度。The object of the present invention is to provide a terahertz image dangerous goods identification method, device, equipment and readable storage medium, so as to improve the speed of terahertz image dangerous goods identification.

为解决上述技术问题,本发明提供如下技术方案:In order to solve the above technical problems, the present invention provides the following technical solutions:

一种太赫兹图像危险品识别方法,包括:A terahertz image dangerous goods identification method, comprising:

对待识别的太赫兹图像进行预处理,并提取所述太赫兹图像中的边缘信息;Preprocessing the terahertz image to be identified, and extracting edge information in the terahertz image;

利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品;Using the edge information and a preset dangerous goods comparison library to determine whether there are dangerous goods in the terahertz image;

如果是,则对所述太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;If so, segmenting the edge of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods;

将所述危险品分割图像输入预设分类网络进行处理,获得分类信息。Inputting the segmented image of dangerous goods into a preset classification network for processing to obtain classification information.

优选地,将所述危险品分割图像输入预设分类网络进行处理,获得分类信息,包括:Preferably, the dangerous goods segmentation image is input into a preset classification network for processing to obtain classification information, including:

将所述危险品分割图像作为ZFNet卷积神经网络的输入变量,获取所述ZFNet卷积神经网络输出的分类信息。The dangerous goods segmentation image is used as the input variable of the ZFNet convolutional neural network, and the classification information output by the ZFNet convolutional neural network is obtained.

优选地,在将所述危险品分割图像输入预设分类网络进行处理,获得分类信息之后,还包括:Preferably, after inputting the segmented image of dangerous goods into the preset classification network for processing and obtaining classification information, the method further includes:

将所述边缘信息中所述危险品边缘的位置信息和所述分类信息投影到所述太赫兹图像中。Projecting the position information of the dangerous goods edge and the classification information in the edge information into the terahertz image.

优选地,所述对待识别的太赫兹图像进行预处理,包括:Preferably, the preprocessing of the terahertz image to be identified includes:

对待识别的太赫兹图像进行灰度变换;Perform grayscale transformation on the terahertz image to be recognized;

利用中值滤波对所述太赫兹图像进行平滑处理。The terahertz image is smoothed by median filtering.

优选地,提取所述太赫兹图像中的边缘信息,包括:Preferably, extracting edge information in the terahertz image includes:

利用Canny边缘检测算子提取所述太赫兹图像的边缘信息。Using the Canny edge detection operator to extract the edge information of the terahertz image.

优选地,利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品,包括:Preferably, using the edge information and the preset dangerous goods comparison library to determine whether there are dangerous goods in the terahertz image includes:

将提取出的边缘信息中的几何特征与预设危险品对比库中的危险品边缘几何特征的统计学习结果进行相似度对比;Compare the similarity between the geometric features in the extracted edge information and the statistical learning results of the edge geometric features of dangerous goods in the preset dangerous goods comparison library;

当所述相似度大于预设阈值时,确定所述太赫兹图像中存在危险品。When the similarity is greater than a preset threshold, it is determined that dangerous goods exist in the terahertz image.

优选地,还包括:Preferably, it also includes:

获取危险品彩色图像;Obtain color images of dangerous goods;

提取所述危险品彩色图像的边缘轮廓信息;extracting edge contour information of the color image of the dangerous goods;

新建危险品对比库,并将所述边缘轮廓信息存入所述危险品对比库。Create a new dangerous goods comparison library, and store the edge profile information into the dangerous goods comparison library.

一种太赫兹图像危险品识别装置,包括:A terahertz image dangerous goods identification device, comprising:

边缘信息提取模块,用于对待识别的太赫兹图像进行预处理,并提取所述太赫兹图像中的边缘信息;An edge information extraction module, configured to preprocess the terahertz image to be identified, and extract edge information in the terahertz image;

判断模块,用于利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品;A judging module, configured to judge whether dangerous goods exist in the terahertz image by using the edge information and a preset dangerous goods comparison library;

分割模块,用于当所述太赫兹图像中存在危险品时,则对所述太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;A segmentation module, configured to segment the edge of the dangerous goods in the terahertz image to obtain a dangerous goods segmentation image when there are dangerous goods in the terahertz image;

分类信息确定模块,用于将所述危险品分割图像输入预设分类网络进行处理,获得分类信息。The classification information determination module is configured to input the segmented images of dangerous goods into a preset classification network for processing to obtain classification information.

一种太赫兹图像危险品识别设备,包括:A terahertz image dangerous goods identification device, comprising:

存储器,用于存储计算机程序;memory for storing computer programs;

处理器,用于执行所述计算机程序时实现上述太赫兹图像危险品识别方法的步骤。A processor, configured to implement the steps of the above-mentioned method for identifying dangerous goods with terahertz images when executing the computer program.

一种可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述太赫兹图像危险品识别方法的步骤。A readable storage medium, where a computer program is stored on the readable storage medium, and when the computer program is executed by a processor, the steps of the above-mentioned method for identifying dangerous goods in terahertz images are realized.

应用本发明实施例所提供的方法,对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息;利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品;如果是,则对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;将危险品分割图像输入预设分类网络进行处理,获得分类信息。在对太赫兹图像进行危险品识别之前,先利用边缘信息进行预判断,仅当在边缘信息中检测到危险品时,对太赫兹图像进行分割,然后将危险品分割图像输入预设分类网络进行处理,获得最终的分类信息,即识别结果。也就是说,当实际安检过程中,对于大量待识别的太赫兹图像,仅对存在危险品的太赫兹图像进行危险品的类别识别,对于不存在危险品的太赫兹图像无需进行危险品类别识别。如此,便可减少进行危险品识别的太赫兹图像的数量,减少计算机资源的占用,提升识别速度。Apply the method provided by the embodiment of the present invention to preprocess the terahertz image to be recognized, and extract the edge information in the terahertz image; use the edge information and the preset dangerous goods comparison library to judge whether there are dangerous goods in the terahertz image ; If so, segment the edge of the dangerous goods in the terahertz image to obtain the dangerous goods segmentation image; input the dangerous goods segmentation image into the preset classification network for processing to obtain the classification information. Before identifying dangerous goods on the terahertz image, the edge information is used for pre-judgment. Only when dangerous goods are detected in the edge information, the terahertz image is segmented, and then the dangerous goods segmented image is input into the preset classification network for classification. processing to obtain the final classification information, that is, the recognition result. That is to say, in the actual security inspection process, for a large number of terahertz images to be identified, only the terahertz images with dangerous goods are identified for the category of dangerous goods, and the category of dangerous goods for the terahertz images without dangerous goods does not need to be identified . In this way, the number of terahertz images for dangerous goods identification can be reduced, the occupation of computer resources can be reduced, and the identification speed can be improved.

相应地,本发明实施例还提供了与上述太赫兹图像危险品识别方法相对应的太赫兹图像危险品识别装置、设备和可读存储介质,具有上述技术效果,在此不再赘述。Correspondingly, the embodiments of the present invention also provide a terahertz image dangerous goods identification device, equipment, and readable storage medium corresponding to the above-mentioned terahertz image dangerous goods identification method, which have the above-mentioned technical effects and will not be repeated here.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.

图1为本发明实施例中一种太赫兹图像危险品识别方法的实施流程图;Fig. 1 is an implementation flow chart of a method for identifying dangerous goods in a terahertz image in an embodiment of the present invention;

图2为本发明实施例中另一种太赫兹图像危险品识别方法的结构示意图;FIG. 2 is a schematic structural diagram of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention;

图3为本发明实施例中另一种太赫兹图像危险品识别方法的结构示意图;FIG. 3 is a schematic structural diagram of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention;

图4为本发明实施例中另一种太赫兹图像危险品识别方法的结构示意图;FIG. 4 is a schematic structural diagram of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention;

图5为不同的边缘检测算子的边缘检测效果对比图;Fig. 5 is a comparison diagram of edge detection effects of different edge detection operators;

图6为应用本发明实施例所提供的技术方案后获得的太赫兹危险品识别结果示意图;Fig. 6 is a schematic diagram of the terahertz dangerous goods identification result obtained after applying the technical solution provided by the embodiment of the present invention;

图7为本发明实施例中太赫兹图像预处理滤波方式对比示意图;7 is a schematic diagram of a comparison of terahertz image preprocessing and filtering methods in an embodiment of the present invention;

图8为本发明实施例中一种太赫兹危险品识别方法的分类过程的示意图;Fig. 8 is a schematic diagram of the classification process of a terahertz dangerous goods identification method in an embodiment of the present invention;

图9为本发明实施例中一种太赫兹图像危险品识别方法的具体流程示意图;FIG. 9 is a schematic flowchart of a method for identifying dangerous goods in a terahertz image in an embodiment of the present invention;

图10为本发明实施例中一种太赫兹图像危险品识别装置的结构示意图;Fig. 10 is a schematic structural diagram of a terahertz image dangerous goods identification device in an embodiment of the present invention;

图11为本发明实施例中一种太赫兹图像危险品识别设备的结构示意图。Fig. 11 is a schematic structural diagram of a terahertz image dangerous goods identification device in an embodiment of the present invention.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例一:Embodiment one:

请参考图1,图1为本发明实施例中一种太赫兹图像危险品识别方法的流程图,该方法包括以下步骤:Please refer to FIG. 1. FIG. 1 is a flow chart of a method for identifying dangerous goods in a terahertz image in an embodiment of the present invention. The method includes the following steps:

S101、对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息。S101. Perform preprocessing on the terahertz image to be recognized, and extract edge information in the terahertz image.

其中,待识别的太赫兹图像可以为实时安检时获取到的太赫兹图像,也可以是对预先设置图像库中的太赫兹图像。对该待检测的太赫兹图像进行预处理可以为将其从非灰度图转换为灰度图、进行去噪处理或提升分辨率的处理等。Wherein, the terahertz image to be recognized may be a terahertz image obtained during real-time security inspection, or may be a terahertz image in a preset image library. The preprocessing of the terahertz image to be detected may be converting it from a non-grayscale image to a grayscale image, performing denoising processing, or processing to increase resolution, etc.

然后对进行预处理后的太赫兹图像提取边缘信息。其中,边缘指周围像素灰度有变化的那些像素的集合,主要表现为图像局部调整的不连续性,也就是通常说的信号发生歧义变化的地方。边缘信息可以包括图像边缘轮廓的几何形状,边缘在太赫兹图像中所处的位置,边缘的数目,闭合边缘的大小等信息。在本实施例中,可以采用常见如Roberts(一种利用局部差分算子寻找边缘的一阶微分算子)、Sobel(一种利用像素邻近区域的梯度值来计算像素梯度的一阶微分算子)、Prewitt(一种通过像素平均来抑制噪声的一阶微分算子)、Laplacian-Gauss(一种先进行高斯滤波再进行拉普拉斯检测的二阶微分算子)、Canny(一种不易受噪声干扰,对弱边缘敏感的算子)等边缘检测算子进行边缘检测,在此不再赘述如何提取边缘信息。Then the edge information is extracted from the preprocessed terahertz image. Among them, the edge refers to the collection of those pixels whose gray levels of the surrounding pixels change, which is mainly manifested as the discontinuity of the local adjustment of the image, that is, the place where the signal changes ambiguously. The edge information can include the geometric shape of the image edge contour, the position of the edge in the terahertz image, the number of edges, the size of the closed edge and other information. In this embodiment, common examples such as Roberts (a first-order differential operator that uses a local differential operator to find edges), Sobel (a first-order differential operator that uses the gradient value of a pixel adjacent area to calculate the pixel gradient ), Prewitt (a first-order differential operator that suppresses noise through pixel averaging), Laplacian-Gauss (a second-order differential operator that performs Gaussian filtering first and then Laplacian detection), Canny (a not easy Affected by noise, edge detection operators such as operators sensitive to weak edges) perform edge detection, and how to extract edge information will not be repeated here.

S102、利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品。S102. Using edge information and a preset dangerous goods comparison library to determine whether dangerous goods exist in the terahertz image.

在本实施例中,可以预先建立一个危险品对比库,并在危险品对比库中存储危险品的轮廓信息、大小信息、几何特征(如形状)等危险品的特征信息。In this embodiment, a dangerous goods comparison database can be established in advance, and the characteristic information of dangerous goods such as outline information, size information, and geometric features (such as shape) of dangerous goods can be stored in the dangerous goods comparison database.

获得边缘信息之后,可以将边缘信息与预先建立的危险品对比库中的危险品的特征信息进行比对,判断出该太赫兹图像中是否存在危险品。具体的,可以设置相应的阈值,例如当前边缘信息中的边缘轮廓与危险品对比库中的危险品的轮廓信息相似度大于预设的相似度阈值,则认为太赫兹图像中存在危险品。After the edge information is obtained, the edge information can be compared with the characteristic information of dangerous goods in the pre-established dangerous goods comparison library to determine whether there are dangerous goods in the terahertz image. Specifically, a corresponding threshold can be set, for example, if the similarity between the edge profile in the current edge information and the profile information of the dangerous goods in the dangerous goods comparison library is greater than the preset similarity threshold, it is considered that there are dangerous goods in the terahertz image.

当判断结果为是时,则执行步骤S103的操作,如果否,则对当前的太赫兹图像无操作。例如,当判断结果为否时,则可以对下一张太赫兹图像进行处理。When the judgment result is yes, the operation of step S103 is performed, and if no, no operation is performed on the current terahertz image. For example, when the judgment result is no, the next terahertz image can be processed.

S103、对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像。S103. Segment the edge of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods.

当在步骤S102中判断出太赫兹图像中存在危险品之后,即,当太赫兹图像中存在危险品时,则可以基于边缘信息确定该危险品在太赫兹图像中所处的位置。然后,对太赫兹图像进行分割,将危险品边缘所占的部分图像从太赫兹图像中分割处理,获得危险品分割图像。其中,危险品分割图像即为包括了危险品边缘的图像。在进行分割时,为了最大限度的将危险品边缘从太赫兹图像中分割出来,可以在危险品边缘所占据的最小面积的基础上做一定的延伸扩展后再进行分割。After it is determined in step S102 that there is a dangerous article in the terahertz image, that is, when there is a dangerous article in the terahertz image, the position of the dangerous article in the terahertz image can be determined based on the edge information. Then, the terahertz image is segmented, and the part of the image occupied by the edge of the dangerous goods is segmented from the terahertz image to obtain a segmented image of the dangerous goods. Wherein, the segmented image of dangerous goods is an image including edges of dangerous goods. When performing segmentation, in order to maximize the segmentation of the edge of dangerous goods from the terahertz image, a certain extension can be made on the basis of the minimum area occupied by the edge of dangerous goods before segmentation.

S104、将危险品分割图像输入预设分类网络进行处理,获得分类信息。S104. Inputting the segmented images of dangerous goods into a preset classification network for processing to obtain classification information.

在本实施例中,可以预先设置一个分类网络,以及建立与该分类网络对应的类别库。分类网络具体可以为Faster R-CNN、R-FCN、YOLO、SSD和ZFNet等常见的分类网络(分类算法)。在本实施例中,对于具体使用哪种分类网络进行分类处理并不做限定。In this embodiment, a classification network may be preset, and a class library corresponding to the classification network may be established. Specifically, the classification network can be a common classification network (classification algorithm) such as Faster R-CNN, R-FCN, YOLO, SSD, and ZFNet. In this embodiment, there is no limitation as to which classification network is specifically used to perform classification processing.

也就是说,得到危险品边缘图像之后,可以将该危险品分割图像输入预设的分类网络进行处理,以获得分类信息,即得到最终的识别结果。That is to say, after obtaining the edge image of dangerous goods, the segmented image of dangerous goods can be input into a preset classification network for processing to obtain classification information, that is, the final recognition result.

应用本发明实施例所提供的方法,对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息;利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品;如果是,则对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;将危险品分割图像输入预设分类网络进行处理,获得分类信息。在对太赫兹图像进行危险品识别之前,先利用边缘信息进行预判断,仅当在边缘信息中检测到危险品时,对太赫兹图像进行分割,然后将危险品分割图像输入预设分类网络进行处理,获得最终的分类信息,即识别结果。也就是说,当实际安检过程中,对于大量待识别的太赫兹图像,仅对存在危险品的太赫兹图像进行危险品的类别识别,对于不存在危险品的太赫兹图像无需进行危险品类别识别。如此,便可减少进行危险品识别的太赫兹图像的数量,减少计算机资源的占用,提升识别速度。Apply the method provided by the embodiment of the present invention to preprocess the terahertz image to be recognized, and extract the edge information in the terahertz image; use the edge information and the preset dangerous goods comparison library to judge whether there are dangerous goods in the terahertz image ; If so, segment the edge of the dangerous goods in the terahertz image to obtain the dangerous goods segmentation image; input the dangerous goods segmentation image into the preset classification network for processing to obtain the classification information. Before identifying dangerous goods on the terahertz image, the edge information is used for pre-judgment. Only when dangerous goods are detected in the edge information, the terahertz image is segmented, and then the dangerous goods segmented image is input into the preset classification network for classification. processing to obtain the final classification information, that is, the recognition result. That is to say, in the actual security inspection process, for a large number of terahertz images to be identified, only the terahertz images with dangerous goods are identified for the category of dangerous goods, and the category of dangerous goods for the terahertz images without dangerous goods does not need to be identified . In this way, the number of terahertz images for dangerous goods identification can be reduced, the occupation of computer resources can be reduced, and the identification speed can be improved.

需要说明的是,基于上述实施例一,本发明实施例还提供了相应的改进方案。在后续实施例中涉及与上述实施例一中相同步骤或相应步骤之间可相互参考,相应的有益效果也可相互参照,在下文的改进实施例中不再一一赘述。It should be noted that, based on the first embodiment above, the embodiment of the present invention also provides a corresponding improvement solution. In subsequent embodiments, the same steps as in the first embodiment above or corresponding steps may be referred to each other, and the corresponding beneficial effects may also be referred to each other, and will not be repeated in the improved embodiments below.

实施例二:Embodiment two:

请参考图2,图2为本发明实施例中另一种太赫兹图像危险品识别方法的流程图,该方法包括以下步骤:Please refer to FIG. 2. FIG. 2 is a flow chart of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention. The method includes the following steps:

S201、对待识别的太赫兹图像进行灰度变换。S201. Perform grayscale transformation on the terahertz image to be recognized.

当待识别的太赫兹图像非灰度图时,将该太赫兹图像进行灰度变换,即使用黑色调来展示该太赫兹图像。When the terahertz image to be recognized is not a grayscale image, the terahertz image is converted to grayscale, that is, the terahertz image is displayed with black tones.

S202、利用中值滤波对太赫兹图像进行平滑处理。S202. Perform smoothing processing on the terahertz image by using a median filter.

请参考图7,从该图中可以看出使用中值滤波后,图像中的像素点之间的变化较为平滑,相对于均值滤波而言,中值滤波可以保留原始图像的像素变化特征如图像边缘。因此,在本实施例中,利用中值滤波对该太赫兹图像进行平滑处理。具体的,利用自适应中值滤波以噪声图像的像素I′(i,j)为中心。Please refer to Figure 7. It can be seen from the figure that after using the median filter, the changes between the pixels in the image are relatively smooth. Compared with the mean filter, the median filter can retain the pixel change characteristics of the original image such as image edge. Therefore, in this embodiment, the terahertz image is smoothed by median filtering. Specifically, the pixel I'(i, j) of the noise image is centered by using adaptive median filtering.

因中值滤波会将选取像素窗口中心的像素点用选取像素窗口的像素点的均值代替,若选取像素窗口过大,可能会将边缘像素点模糊化,若选择像素窗口过小,则无法将噪音去除。优选地,在本实施例中,考虑到太赫兹图像具有混合噪声的特点以及实验数据表明,利用选取像素为3×3的窗口进行中值滤波,得到的平滑处理后的太赫兹图像更有利于危险品识别。当然,在本发明的其他实施例中,还可以根据实际情况选择其他大小的选取像素窗口。Because the median filter will replace the pixel in the center of the selected pixel window with the average value of the selected pixel window, if the selected pixel window is too large, the edge pixels may be blurred; if the selected pixel window is too small, it will not be possible to Noise removal. Preferably, in this embodiment, considering that the terahertz image has the characteristics of mixed noise and the experimental data show that using a window with selected pixels of 3×3 for median filtering, the smoothed terahertz image obtained is more conducive to Dangerous goods identification. Of course, in other embodiments of the present invention, other sizes of selected pixel windows may also be selected according to actual conditions.

基于混合噪声的特点,先对滤波窗内噪声模型进行判断,求出该窗内像素的方差:Based on the characteristics of mixed noise, first judge the noise model in the filtering window, and calculate the variance of the pixels in the window:

其中 in

其中,σ2为方差,M为滤波窗内的均值,当σ2大于阈值的时候才使用中值滤波,采用传统的中值滤波器:Among them, σ 2 is the variance, and M is the mean value in the filter window. When σ 2 is greater than the threshold, the median filter is used, and the traditional median filter is used:

其中,(s,t)∈Sxy即为经过中值滤波后的太赫兹图像,f(x,y)为中心像素灰度值,Sxy表示中心在(x,y),尺寸为m×n的矩形子图像窗口的坐标组。 where (s, t)∈S xy , That is, the terahertz image after median filtering, f(x, y) is the gray value of the center pixel, and S xy represents the coordinate group of a rectangular sub-image window whose center is at (x, y) and whose size is m×n.

S203、提取太赫兹图像中的边缘信息。S203. Extract edge information in the terahertz image.

S204、利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品。S204. Using edge information and a preset dangerous goods comparison library to determine whether there are dangerous goods in the terahertz image.

如果存在危险品,则执行步骤S205的操作,如果不存在危险品,则无操作。If there are dangerous goods, the operation of step S205 is performed, and if there are no dangerous goods, no operation is performed.

S205、对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像。S205. Segment the edges of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods.

S206、将危险品分割图像作为ZFNet卷积神经网络的输入变量,获取ZFNet卷积神经网络输出的分类信息。S206. Using the segmented image of the dangerous goods as an input variable of the ZFNet convolutional neural network to obtain classification information output by the ZFNet convolutional neural network.

其中,ZFNet卷积神经网络的层数远远小于VGG-16等其他流行的分类器网络,较小的卷积核和较少的层数使得训练和测试的计算量成倍降低,大大提升了分类速度,由于本发明实施例中的太赫兹图像经过预处理后,背景对分类处理的影响较小,因此较少的层数也能准确对危险品进行轮廓的分类。将危险品分割图像作为相对简单的ZFNet卷积神经网络的输入变量,可以快速的获得分类信息。Among them, the number of layers of the ZFNet convolutional neural network is much smaller than that of other popular classifier networks such as VGG-16. The smaller convolution kernel and fewer layers make the calculation amount of training and testing doubled, greatly improving the Classification speed. Since the terahertz image in the embodiment of the present invention is preprocessed, the background has less influence on the classification process, so fewer layers can accurately classify the contours of dangerous goods. Using the dangerous goods segmentation image as the input variable of the relatively simple ZFNet convolutional neural network, the classification information can be quickly obtained.

实施例三:Embodiment three:

请参考图3,图3为本发明实施例中另一种太赫兹图像危险品识别方法的流程图,该方法包括以下步骤:Please refer to FIG. 3. FIG. 3 is a flow chart of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention. The method includes the following steps:

S301、创建危险品对比库。S301. Create a dangerous goods comparison library.

基于可能存在太赫兹危险品图像数量不足的问题,因此,可以建立彩色危险品图像库,从彩色图像中提取危险品边缘轮廓信息。具体的,创建危险品对比库的实现过程包括以下步骤:Based on the possible insufficient number of terahertz dangerous goods images, a color dangerous goods image library can be established to extract dangerous goods edge contour information from color images. Specifically, the implementation process of creating a dangerous goods comparison library includes the following steps:

步骤一、获取危险品彩色图像;Step 1. Obtain a color image of dangerous goods;

步骤二、提取危险品彩色图像的边缘轮廓信息;Step 2, extracting the edge contour information of the color image of the dangerous goods;

步骤三、新建危险品对比库,并将边缘轮廓信息存入危险品对比库。Step 3: Create a new dangerous goods comparison library, and store the edge contour information into the dangerous goods comparison library.

为便于描述,下面将上述三个步骤结合起来进行说明。For ease of description, the above three steps will be described in combination below.

获取危险品彩色图像,该危险品彩色图像具体可以为常见的危险品的彩色照片,例如常见的管制器具的彩色图像。然后提取危险品彩色图像中的危险品的边缘轮廓信息,并将边缘轮廓信息存入创建的危险品对比库中,最终获得可用于危险品预判断的危险品对比库。其中,可采用常见的边缘信息提取算法对危险品彩色图像中的边缘轮廓信息进行提取,在此不再赘述。The color image of dangerous goods is acquired, and the color image of dangerous goods may specifically be a color photo of common dangerous goods, for example, a color image of common controlled appliances. Then extract the edge contour information of dangerous goods in the color image of dangerous goods, and store the edge contour information in the created dangerous goods comparison library, and finally obtain the dangerous goods comparison library that can be used for dangerous goods pre-judgment. Among them, the common edge information extraction algorithm can be used to extract the edge contour information in the color image of the dangerous goods, which will not be repeated here.

S302、对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息。S302. Perform preprocessing on the terahertz image to be recognized, and extract edge information in the terahertz image.

S303、将提取出的边缘信息中的几何特征与预设危险品对比库中的危险品边缘几何特征的统计学习结果进行相似度对比。S303. Compare the similarity between the geometric features in the extracted edge information and the statistical learning results of the edge geometric features of dangerous goods in the preset dangerous goods comparison library.

在本实施例中,进行危险品预判断时,主要利用边缘信息中的几何特征与危险品边缘几何特征的统计学习结果进行相似度对比。其中,该统计学习结果可以为对同一种危险品从多个危险品样本轮廓中进行统计学习后得到的几何特征。显然地,当相似度越高,该危险品边缘几何特征对应的太赫兹图像中出现与之相似度较高的危险品的可能就越大。In this embodiment, when pre-judging dangerous goods, the geometric features in the edge information are mainly used to compare the similarity with the statistical learning results of the edge geometric features of dangerous goods. Wherein, the statistical learning result may be a geometric feature obtained after performing statistical learning on the same dangerous goods from multiple dangerous goods sample contours. Obviously, when the similarity is higher, the possibility of dangerous goods with higher similarity appearing in the terahertz image corresponding to the edge geometric features of the dangerous goods is greater.

S304、当相似度大于预设阈值时,确定太赫兹图像中存在危险品。S304. When the similarity is greater than a preset threshold, it is determined that dangerous goods exist in the terahertz image.

在本实施例中,可以为危险品边缘预判断设置一个阈值,该阈值的具体大小可预先设置,也可以根据实际情况进行确定和调整,在此不做限定。In this embodiment, a threshold can be set for the edge pre-judgment of dangerous goods. The specific size of the threshold can be preset, or can be determined and adjusted according to the actual situation, which is not limited here.

当计算得到的相对度大于预设阈值时,可以认为太赫兹图像中存在危险品。When the calculated relative degree is greater than the preset threshold, it can be considered that dangerous goods exist in the terahertz image.

当然,在本发明的其他实施例中,采用阈值对太赫兹图像是否有可能存在危险品进行判断时,可以获取边缘检测图像中连通区域的值,计算连通区域的面积和连通区域的形状,基于以上面积和形状信息将其他边缘去除留下危险品边缘,并记录危险品边缘在图像中的位置信息,最后用绿色矩形框进行标记。部分代码如下:Of course, in other embodiments of the present invention, when the threshold value is used to judge whether there may be dangerous goods in the terahertz image, the value of the connected region in the edge detection image can be obtained, and the area and shape of the connected region can be calculated based on The above area and shape information will remove other edges to leave the edge of dangerous goods, and record the position information of the edge of dangerous goods in the image, and finally mark it with a green rectangular frame. Part of the code is as follows:

“[L,N]=bwlabel(Image_canny,4);%返回图像中的连通区域及其个数"[L,N]=bwlabel(Image_canny,4);% returns the connected regions and their numbers in the image

s=regionprops(L,'Area');%计算图像中各个区域的像素总个数s=regionprops(L,'Area');% Calculate the total number of pixels in each region of the image

Image_only_edge=ismember(L,find([s.Area]>=100&[s.Area]<=500));Image_only_edge = ismember(L, find([s.Area]>=100&[s.Area]<=500));

%通过设定范围来判断该连通区域是否为非人体轮廓% Determine whether the connected area is a non-human body contour by setting the range

[B,L,N]=bwboundaries(Image_only_edge);[B,L,N]=bwboundaries(Image_only_edge);

%将非人体轮廓进行筛选% Filter non-human body contours

rectangle('position',[left-5,top-5,right-left+10,bottom-top+10],'edgecol','g');rectangle('position',[left-5,top-5,right-left+10,bottom-top+10],'edgecol','g');

%在非人体轮廓外界画矩形框,方便之后进行相似度比对”。%Draw a rectangular frame outside the outline of the human body, which is convenient for similarity comparison later.”

其中,%为注释符合。Among them, % is a comment match.

对太赫兹图像进行是否存在危险品的预判断之后,能够对一些没有灰度突变的太赫兹图像进行过滤,可减少对太赫兹图像进行危险品类别识别的数量,减少计算量和能耗,进一步提升太赫兹图像危险品识别速度。After pre-judging whether there are dangerous goods in the terahertz image, some terahertz images without grayscale mutation can be filtered, which can reduce the number of dangerous goods category recognition for terahertz images, reduce the amount of calculation and energy consumption, and further Improve the speed of dangerous goods recognition in terahertz images.

S305、当太赫兹图像中存在危险品时,则对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像。S305. When there are dangerous goods in the terahertz image, segment the edge of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods.

S306、将危险品分割图像输入预设分类网络进行处理,获得分类信息。S306. Inputting the segmented images of dangerous goods into a preset classification network for processing to obtain classification information.

实施例四:Embodiment four:

请参考图4,图4为本发明实施例中另一种太赫兹图像危险品识别方法的流程图,该方法包括以下步骤:Please refer to Fig. 4, Fig. 4 is a flow chart of another method for identifying dangerous goods in a terahertz image in an embodiment of the present invention, the method includes the following steps:

S401、对待识别的太赫兹图像进行预处理,并利用Canny边缘检测算子提取太赫兹图像的边缘信息。S401. Perform preprocessing on the terahertz image to be recognized, and extract edge information of the terahertz image by using a Canny edge detection operator.

请参见图5,对待识别的太赫兹图像进行预处理之后,可以采用边缘检测效果相对较好Canny边缘检测算子对太赫兹图像进行边缘提取。具体的,可采用0.489为强弱边缘比例。当然,在本发明的其他实施例中,强弱边缘比例还可以为其他数值。Please refer to Figure 5. After the preprocessing of the terahertz image to be recognized, the Canny edge detection operator with relatively good edge detection effect can be used to extract the edge of the terahertz image. Specifically, 0.489 may be used as the ratio of strong and weak edges. Of course, in other embodiments of the present invention, the ratio of strong and weak edges may also be other values.

其中,Canny边缘检测算子的一阶微分卷积模板为:Among them, the first-order differential convolution template of the Canny edge detection operator is:

ρ[i,j]=(f[i,j+1]-f[i,j]+f[i+1,j+1]-f[i+1,j])/2;ρ[i,j]=(f[i,j+1]-f[i,j]+f[i+1,j+1]-f[i+1,j])/2;

Q[i,j]=(f[i+1,j]-f[i,j]+f[i+1,j+1]-f[i,j+1])/2;Q[i,j]=(f[i+1,j]-f[i,j]+f[i+1,j+1]-f[i,j+1])/2;

其中,ρx和ρy为偏导数矩阵,M[i,j]为梯度的幅值,θ梯度方向即角度,其中f为图像灰度值,P代表X方向梯度幅值,Q代表Y方向梯度幅值。对于Canny边缘检测算子具体如何进行边缘检测,可参照现有的Canny边缘检测算子的具体流程,在此不再赘述。Among them, ρ x and ρ y are partial derivative matrices, M[i, j] is the magnitude of the gradient, and the gradient direction of θ is the angle, where f is the gray value of the image, P represents the gradient magnitude in the X direction, and Q represents the Y direction Gradient magnitude. As for how the Canny edge detection operator performs edge detection specifically, refer to the specific process of the existing Canny edge detection operator, which will not be repeated here.

S402、利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品。S402. Using edge information and a preset dangerous goods comparison library to determine whether dangerous goods exist in the terahertz image.

当判断结果为是,则执行步骤S403的操作;如果否,则无操作。When the judgment result is yes, the operation of step S403 is performed; if no, no operation is performed.

S403、对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像。S403. Segment the edge of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods.

S404、将危险品分割图像输入预设分类网络进行处理,获得分类信息。S404. Inputting the segmented images of dangerous goods into a preset classification network for processing to obtain classification information.

S405、将边缘信息中危险品边缘的位置信息和分类信息投影到太赫兹图像中。S405. Project the location information and classification information of the edge of the dangerous goods in the edge information into the terahertz image.

在得到分类信息之后,为便于查看危险品识别结果,可以将边缘信息中危险品边缘的位置信息和分类信息投影到太赫兹图像中。具体的,请参考图6,其中“Gun”为类别信息,方框表示危险品的位置信息。当然,在实际应用中,投影到太赫兹图像中的位置信息和类别信息还可以使用其他颜色(非黑色调的其他颜色,如红色、绿色等)进行标记。After the classification information is obtained, in order to view the identification results of dangerous goods, the location information and classification information of the dangerous goods edge in the edge information can be projected into the terahertz image. Specifically, please refer to FIG. 6 , where "Gun" is the category information, and the boxes represent the location information of dangerous goods. Of course, in practical applications, the position information and category information projected into the terahertz image can also be marked with other colors (other colors other than black tone, such as red, green, etc.).

为便于本领域技术人员理解本发明实施例所提供的技术方案,下面结合实时安检的具体应用场景为例对上述实施例所提供的技术方案进行详细说明。In order to facilitate those skilled in the art to understand the technical solutions provided by the embodiments of the present invention, the technical solutions provided by the above embodiments will be described in detail below taking a specific application scenario of real-time security inspection as an example.

请参考图9,在实时安检时,获得太赫兹图像之后,首先对太赫兹图像进行预处理。然后使用Canny边缘检测算子对经过预处理后的太赫兹图像进行边缘检测,判断有无灰度突变,若不存在灰度突变则停止对该太赫兹椭图像的检测,继续处理下一张太赫兹图像,即对大量的太赫兹图像进行了起到筛选作用,减少对无危险品的太赫兹图像进行耗时的危险品识别。如果存在灰度突变,则标记灰度突变的位置信息,并设置分割或裁剪用的候选框。然后将候选框从太赫兹图像中裁剪下来。将裁剪后获得的图像输入到ZFNet分类网络中进行如图8所示的处理过程,获得分类信息。Please refer to FIG. 9 , during real-time security inspection, after the terahertz image is obtained, the terahertz image is firstly preprocessed. Then use the Canny edge detection operator to detect the edge of the preprocessed terahertz image to judge whether there is a gray-scale mutation. If there is no gray-scale mutation, stop the detection of the terahertz ellipse image and continue to process the next terahertz image. Hertzian images, that is, a large number of terahertz images are screened to reduce time-consuming dangerous goods identification for non-dangerous goods terahertz images. If there is a gray-scale mutation, mark the location information of the gray-scale mutation, and set a candidate frame for segmentation or cropping. The candidate boxes are then cropped from the terahertz image. Input the image obtained after cropping into the ZFNet classification network for processing as shown in Figure 8 to obtain classification information.

在得到分类信息和坐标信息之后,将分类信息和坐标信息投影到太赫兹图像中,即可获得如图6所示的处理结果图。安检人员看到该处理结果之后,可以对应采取相应的防护措施,以保障公众的生命财产安全。After the classification information and coordinate information are obtained, the classification information and coordinate information are projected into the terahertz image, and the processing result diagram shown in FIG. 6 can be obtained. After seeing the processing results, the security inspectors can take corresponding protective measures to protect the lives and property of the public.

在利用ZFNet分类网络对图像进行危险品识别之前,还可以预先建立一个RGB样本库对ZFNet分类网络进行训练。其中,RGB指RGB色彩模式,具体的,电脑屏幕上的所有颜色,都由红色、绿色和蓝色这三种色光按照不同的比例混合而成的。一组红色绿色和蓝色就是一个最小的显示单位。屏幕上的任何一个颜色都可以由一组RGB值来记录和表达。因此这红色绿色蓝色又称为三原色光,用英文表示就是R(red)、G(green)、B(blue)。也就是说,RGB危险品样品库即彩色图像的危险品样品库。然后对彩色图像进行预处理,利用Canny边缘图像对ZFNet分类网络进行训练。具体的,将Canny边缘图像输入到ZFNet分类网络中,采用反向传播等算法在GPU(Graphics Processing Unit,图像处理器)下进行训练。其中,反向传播算法(BP,Backpropagation algorithm)主要有两个环节(激励传播、权重更新)反复循环迭代,直到网络的对输入的响应达到预定的目标范围为止。Before using the ZFNet classification network to identify dangerous goods on the image, a RGB sample library can also be pre-established to train the ZFNet classification network. Among them, RGB refers to the RGB color mode. Specifically, all the colors on the computer screen are formed by mixing red, green and blue colors in different proportions. A group of red, green and blue is the smallest display unit. Any color on the screen can be recorded and represented by a set of RGB values. Therefore, red, green, and blue are also called the three primary colors, which are R (red), G (green), and B (blue) in English. That is to say, the RGB dangerous goods sample library is the dangerous goods sample library of color images. Then the color image is preprocessed, and the ZFNet classification network is trained using the Canny edge image. Specifically, the Canny edge image is input into the ZFNet classification network, and algorithms such as backpropagation are used to train under the GPU (Graphics Processing Unit, image processor). Among them, the backpropagation algorithm (BP, Backpropagation algorithm) mainly has two links (incentive propagation, weight update) repeated loop iterations until the response of the network to the input reaches the predetermined target range.

需要说明的是,对彩色样品库中的图像所做的预处理可以为进行灰度变换,去噪处理,然后进行边缘检测,得到Canny边缘图像。例如,将彩色图像转换为灰度图为常用公式是:Gray=R*0.299+G*0.587+B*0.114。It should be noted that the preprocessing of the images in the color sample library can be grayscale transformation, denoising processing, and then edge detection to obtain Canny edge images. For example, the common formula for converting a color image to a grayscale image is: Gray=R*0.299+G*0.587+B*0.114.

相应于上面的方法实施例,本发明实施例还提供了一种太赫兹图像危险品识别装置,下文描述的太赫兹图像危险品识别装置与上文描述的太赫兹图像危险品识别方法可相互对应参照。Corresponding to the above method embodiment, the embodiment of the present invention also provides a terahertz image dangerous goods identification device, the terahertz image dangerous goods identification device described below and the terahertz image dangerous goods identification method described above can correspond to each other refer to.

参见图10所示,该装置包括以下模块:Referring to shown in Figure 10, the device includes the following modules:

边缘信息提取模块101,用于对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息;An edge information extraction module 101, configured to preprocess the terahertz image to be identified, and extract edge information in the terahertz image;

判断模块102,用于利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品;The judging module 102 is used to judge whether there are dangerous goods in the terahertz image by using the edge information and the preset dangerous goods comparison library;

分割模块103,用于当太赫兹图像中存在危险品时,则对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;The segmentation module 103 is used to segment the edge of the dangerous goods in the terahertz image to obtain the dangerous goods segmentation image when there are dangerous goods in the terahertz image;

分类信息确定模块104,用于将危险品分割图像输入预设分类网络进行处理,获得分类信息。The classification information determination module 104 is configured to input the segmented image of dangerous goods into a preset classification network for processing to obtain classification information.

应用本发明实施例所提供的装置,对待识别的太赫兹图像进行预处理,并提取太赫兹图像中的边缘信息;利用边缘信息与预设危险品对比库,判断太赫兹图像中是否存在危险品;如果是,则对太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;将危险品分割图像输入预设分类网络进行处理,获得分类信息。在对太赫兹图像进行危险品识别之前,先利用边缘信息进行预判断,仅当在边缘信息中检测到危险品时,对太赫兹图像进行分割,然后将危险品分割图像输入预设分类网络进行处理,获得最终的分类信息,即识别结果。也就是说,当实际安检过程中,对于大量待识别的太赫兹图像,仅对存在危险品的太赫兹图像进行危险品的类别识别,对于不存在危险品的太赫兹图像无需进行危险品类别识别。如此,便可减少进行危险品识别的太赫兹图像的数量,减少计算机资源的占用,提升识别速度。Apply the device provided by the embodiment of the present invention to preprocess the terahertz image to be recognized, and extract the edge information in the terahertz image; use the edge information and the preset dangerous goods comparison library to judge whether there are dangerous goods in the terahertz image ; If so, segment the edge of the dangerous goods in the terahertz image to obtain the dangerous goods segmentation image; input the dangerous goods segmentation image into the preset classification network for processing to obtain the classification information. Before identifying dangerous goods on the terahertz image, the edge information is used for pre-judgment. Only when dangerous goods are detected in the edge information, the terahertz image is segmented, and then the dangerous goods segmented image is input into the preset classification network for classification. processing to obtain the final classification information, that is, the recognition result. That is to say, in the actual security inspection process, for a large number of terahertz images to be identified, only the terahertz images with dangerous goods are identified for the category of dangerous goods, and the category of dangerous goods for the terahertz images without dangerous goods does not need to be identified . In this way, the number of terahertz images for dangerous goods identification can be reduced, the occupation of computer resources can be reduced, and the identification speed can be improved.

在本发明的一种具体实施方式中,分类信息确定模块104,具体用于将危险品分割图像作为ZFNet卷积神经网络的输入变量,获取ZFNet卷积神经网络输出的分类信息。In a specific embodiment of the present invention, the classification information determination module 104 is specifically configured to use the segmented image of dangerous goods as an input variable of the ZFNet convolutional neural network, and obtain the classification information output by the ZFNet convolutional neural network.

在本发明的一种具体实施方式中,还包括:In a specific embodiment of the present invention, it also includes:

识别结果投影模块,用于在将危险品分割图像输入预设分类网络进行处理,获得分类信息之后,将边缘信息中危险品边缘的位置信息和分类信息投影到太赫兹图像中。The recognition result projection module is used to project the position information and classification information of the edge of the dangerous goods in the edge information to the terahertz image after inputting the dangerous goods segmentation image into the preset classification network for processing and obtaining the classification information.

在本发明的一种具体实施方式中,边缘信息提取模块101,具体包括:In a specific implementation manner of the present invention, the edge information extraction module 101 specifically includes:

灰度变换单元,用于对待识别的太赫兹图像进行灰度变换;A grayscale transformation unit, configured to perform grayscale transformation on the terahertz image to be recognized;

平滑处理单元,用于利用中值滤波对太赫兹图像进行平滑处理。The smoothing processing unit is used for smoothing the terahertz image by using a median filter.

在本发明的一种具体实施方式中,边缘信息提取模块101,具体包括:In a specific implementation manner of the present invention, the edge information extraction module 101 specifically includes:

边缘信息提取单元,用于利用Canny边缘检测算子提取太赫兹图像的边缘信息。The edge information extraction unit is used to extract the edge information of the terahertz image by using the Canny edge detection operator.

在本发明的一种具体实施方式中,判断模块102,具体包括:In a specific implementation manner of the present invention, the judging module 102 specifically includes:

相似度计算单元,用于将提取出的边缘信息中的几何特征与预设危险品对比库中的危险品边缘几何特征的统计学习结果进行相似度对比;The similarity calculation unit is used to compare the similarity between the geometric features in the extracted edge information and the statistical learning results of the edge geometric features of dangerous goods in the preset dangerous goods comparison library;

判断单元,用于当相似度大于预设阈值时,确定太赫兹图像中存在危险品。A judging unit, configured to determine that dangerous goods exist in the terahertz image when the similarity is greater than a preset threshold.

在本发明的一种具体实施方式中,还包括:In a specific embodiment of the present invention, it also includes:

危险品对比库创建模块,用于获取危险品彩色图像;提取危险品彩色图像的边缘轮廓信息;新建危险品对比库,并将边缘轮廓信息存入危险品对比库。The dangerous goods comparison library creation module is used to obtain the color image of dangerous goods; extract the edge contour information of the color image of dangerous goods; create a new dangerous goods comparison library, and store the edge contour information in the dangerous goods comparison library.

相应于上面的方法实施例,本发明实施例还提供了一种太赫兹图像危险品识别设备,下文描述的一种太赫兹图像危险品识别设备与上文描述的一种太赫兹图像危险品识别方法可相互对应参照。Corresponding to the above method embodiment, the embodiment of the present invention also provides a terahertz image dangerous goods recognition device, a terahertz image dangerous goods recognition device described below and a terahertz image dangerous goods recognition described above The methods can be referred to each other.

参见图11所示,该太赫兹图像危险品识别设备包括:As shown in Figure 11, the terahertz image dangerous goods identification equipment includes:

存储器D1,用于存储计算机程序;memory D1 for storing computer programs;

处理器D2,用于执行计算机程序时实现上述方法实施例的太赫兹图像危险品识别方法的步骤。The processor D2 is configured to implement the steps of the method for identifying dangerous goods in a terahertz image in the above method embodiment when executing a computer program.

相应于上面的方法实施例,本发明实施例还提供了一种可读存储介质,下文描述的一种可读存储介质与上文描述的一种太赫兹图像危险品识别方法可相互对应参照。Corresponding to the above method embodiment, the embodiment of the present invention also provides a readable storage medium, and a readable storage medium described below and a method for identifying dangerous goods in a terahertz image described above can be referred to in correspondence.

一种可读存储介质,可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例的太赫兹图像危险品识别方法的步骤。A readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for identifying dangerous goods by terahertz image in the above method embodiment are realized.

该可读存储介质具体可以为U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可存储程序代码的可读存储介质。Specifically, the readable storage medium may be a USB flash drive, a mobile hard disk, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like that can store program codes. readable storage media.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same or similar parts of each embodiment can be referred to each other. As for the device disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and for the related information, please refer to the description of the method part.

专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Professionals can further realize that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, computer software or a combination of the two. In order to clearly illustrate the possible For interchangeability, in the above description, the composition and steps of each example have been generally described according to their functions. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of the methods or algorithms described in connection with the embodiments disclosed herein may be directly implemented by hardware, software modules executed by a processor, or a combination of both. Software modules can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other Any other known storage medium.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。In this paper, specific examples are used to illustrate the principles and implementation methods of the present invention, and the descriptions of the above embodiments are only used to help understand the technical solutions and core ideas of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.

Claims (10)

1.一种太赫兹图像危险品识别方法,其特征在于,包括:1. A terahertz image dangerous goods identification method, characterized in that, comprising: 对待识别的太赫兹图像进行预处理,并提取所述太赫兹图像中的边缘信息;Preprocessing the terahertz image to be identified, and extracting edge information in the terahertz image; 利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品;Using the edge information and a preset dangerous goods comparison library to determine whether there are dangerous goods in the terahertz image; 如果是,则对所述太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;If so, segmenting the edge of the dangerous goods in the terahertz image to obtain a segmented image of the dangerous goods; 将所述危险品分割图像输入预设分类网络进行处理,获得分类信息。Inputting the segmented image of dangerous goods into a preset classification network for processing to obtain classification information. 2.根据权利要求1所述的太赫兹图像危险品识别方法,其特征在于,将所述危险品分割图像输入预设分类网络进行处理,获得分类信息,包括:2. The terahertz image dangerous goods identification method according to claim 1, wherein the dangerous goods segmentation image is input into a preset classification network for processing to obtain classification information, including: 将所述危险品分割图像作为ZFNet卷积神经网络的输入变量,获取所述ZFNet卷积神经网络输出的分类信息。The dangerous goods segmentation image is used as the input variable of the ZFNet convolutional neural network, and the classification information output by the ZFNet convolutional neural network is obtained. 3.根据权利要求1所述的太赫兹图像危险品识别方法,其特征在于,在将所述危险品分割图像输入预设分类网络进行处理,获得分类信息之后,还包括:3. The terahertz image dangerous goods identification method according to claim 1, characterized in that, after inputting the dangerous goods segmented image into a preset classification network for processing and obtaining classification information, the method further includes: 将所述边缘信息中所述危险品边缘的位置信息和所述分类信息投影到所述太赫兹图像中。Projecting the position information of the dangerous goods edge and the classification information in the edge information into the terahertz image. 4.根据权利要求1所述的太赫兹图像危险品识别方法,其特征在于,所述对待识别的太赫兹图像进行预处理,包括:4. The terahertz image dangerous article identification method according to claim 1, wherein the preprocessing of the terahertz image to be identified includes: 对待识别的太赫兹图像进行灰度变换;Perform grayscale transformation on the terahertz image to be recognized; 利用中值滤波对所述太赫兹图像进行平滑处理。The terahertz image is smoothed by median filtering. 5.根据权利要求1所述的太赫兹图像危险品识别方法,其特征在于,提取所述太赫兹图像中的边缘信息,包括:5. The method for identifying dangerous goods in terahertz images according to claim 1, wherein extracting edge information in the terahertz images includes: 利用Canny边缘检测算子提取所述太赫兹图像的边缘信息。Using the Canny edge detection operator to extract the edge information of the terahertz image. 6.根据权利要求1所述的太赫兹图像危险品识别方法,其特征在于,利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品,包括:6. The method for identifying dangerous articles in a terahertz image according to claim 1, wherein the edge information is compared with a preset dangerous article library to determine whether there are dangerous articles in the terahertz image, including: 将提取出的边缘信息中的几何特征与预设危险品对比库中的危险品边缘几何特征的统计学习结果进行相似度对比;Compare the similarity between the geometric features in the extracted edge information and the statistical learning results of the edge geometric features of dangerous goods in the preset dangerous goods comparison library; 当所述相似度大于预设阈值时,确定所述太赫兹图像中存在危险品。When the similarity is greater than a preset threshold, it is determined that dangerous goods exist in the terahertz image. 7.根据权利要求1至6任一项所述的太赫兹图像危险品识别方法,其特征在于,还包括:7. The terahertz image dangerous goods identification method according to any one of claims 1 to 6, further comprising: 获取危险品彩色图像;Obtain color images of dangerous goods; 提取所述危险品彩色图像的边缘轮廓信息;extracting edge contour information of the color image of the dangerous goods; 新建危险品对比库,并将所述边缘轮廓信息存入所述危险品对比库。Create a new dangerous goods comparison library, and store the edge profile information into the dangerous goods comparison library. 8.一种太赫兹图像危险品识别装置,其特征在于,包括:8. A terahertz image dangerous goods identification device, characterized in that it comprises: 边缘信息提取模块,用于对待识别的太赫兹图像进行预处理,并提取所述太赫兹图像中的边缘信息;An edge information extraction module, configured to preprocess the terahertz image to be identified, and extract edge information in the terahertz image; 判断模块,用于利用所述边缘信息与预设危险品对比库,判断所述太赫兹图像中是否存在危险品;A judging module, configured to judge whether dangerous goods exist in the terahertz image by using the edge information and a preset dangerous goods comparison library; 分割模块,用于当所述太赫兹图像中存在危险品时,则对所述太赫兹图像中的危险品边缘进行分割,获得危险品分割图像;A segmentation module, configured to segment the edge of the dangerous goods in the terahertz image to obtain a dangerous goods segmentation image when there are dangerous goods in the terahertz image; 分类信息确定模块,用于将所述危险品分割图像输入预设分类网络进行处理,获得分类信息。The classification information determination module is configured to input the segmented images of dangerous goods into a preset classification network for processing to obtain classification information. 9.一种太赫兹图像危险品识别设备,其特征在于,包括:9. A terahertz image dangerous goods identification device, characterized in that it comprises: 存储器,用于存储计算机程序;memory for storing computer programs; 处理器,用于执行所述计算机程序时实现如权利要求1至7任一项所述太赫兹图像危险品识别方法的步骤。A processor, configured to implement the steps of the method for identifying dangerous goods in terahertz images according to any one of claims 1 to 7 when executing the computer program. 10.一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述太赫兹图像危险品识别方法的步骤。10. A readable storage medium, characterized in that a computer program is stored on the readable storage medium, and when the computer program is executed by a processor, the terahertz image risk described in any one of claims 1 to 7 is realized. The steps of the product identification method.
CN201810507060.0A 2018-05-24 2018-05-24 The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing Pending CN108764328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810507060.0A CN108764328A (en) 2018-05-24 2018-05-24 The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810507060.0A CN108764328A (en) 2018-05-24 2018-05-24 The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing

Publications (1)

Publication Number Publication Date
CN108764328A true CN108764328A (en) 2018-11-06

Family

ID=64005333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810507060.0A Pending CN108764328A (en) 2018-05-24 2018-05-24 The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing

Country Status (1)

Country Link
CN (1) CN108764328A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799544A (en) * 2018-12-28 2019-05-24 深圳市华讯方舟太赫兹科技有限公司 Intelligent detecting method, device and storage device applied to millimeter wave safety check instrument
CN109886970A (en) * 2019-01-18 2019-06-14 南京航空航天大学 Detection and segmentation method of target objects in terahertz images and computer storage medium
CN109948527A (en) * 2019-03-18 2019-06-28 西安电子科技大学 Small sample terahertz image foreign object detection method based on integrated deep learning
CN109978892A (en) * 2019-03-21 2019-07-05 浙江啄云智能科技有限公司 A kind of intelligent safety inspection method based on terahertz imaging
CN110146933A (en) * 2019-05-23 2019-08-20 深圳市华讯方舟太赫兹科技有限公司 Terahertz detection system and its detection method
CN110390329A (en) * 2019-07-10 2019-10-29 博微太赫兹信息科技有限公司 A kind of terahertz image recognition methods and system based on deep learning
CN111126447A (en) * 2019-11-29 2020-05-08 中国船舶重工集团公司第七一三研究所 Intelligent passenger security check luggage image automatic identification method
CN111882507A (en) * 2020-09-03 2020-11-03 浙江长芯光电科技有限公司 Metal element identification method and device
CN118259368A (en) * 2024-03-27 2024-06-28 火眼晶晶科技有限公司 Millimeter wave-based dangerous goods identification method and system for human body security inspection

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696947A (en) * 2009-10-13 2010-04-21 公安部第一研究所 Intelligent method for fusing X-ray dual-energy transmission with Compton backscatter images
CN104517295A (en) * 2014-12-25 2015-04-15 深圳市一体太赫兹科技有限公司 Partition method and system for three-dimensional terahertz image
CN104574382A (en) * 2014-12-25 2015-04-29 深圳市一体太赫兹科技有限公司 Three-dimensional image segmentation method and system
CN105069805A (en) * 2015-08-25 2015-11-18 中国航天空气动力技术研究院 Passive terahertz image segmentation method
CN105856187A (en) * 2016-05-05 2016-08-17 宁波华狮智能科技有限公司 Microwave security inspection robot capable of automatically identifying hazardous articles
CN105956515A (en) * 2016-04-20 2016-09-21 西安电子科技大学 Stereo-hyperspectral human face recognition method based on auroral imaging
CN106203264A (en) * 2016-06-28 2016-12-07 深圳市元征科技股份有限公司 Dangerous goods detection method and device
CN106443815A (en) * 2016-09-05 2017-02-22 华讯方舟科技有限公司 Terahertz security check method and system
CN106886054A (en) * 2017-04-13 2017-06-23 西安邮电大学 Dangerous material automatic identification equipment and method based on 3 D X-ray imaging
CN107145898A (en) * 2017-04-14 2017-09-08 北京航星机器制造有限公司 A Classification Method of Ray Image Based on Neural Network

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696947A (en) * 2009-10-13 2010-04-21 公安部第一研究所 Intelligent method for fusing X-ray dual-energy transmission with Compton backscatter images
CN104517295A (en) * 2014-12-25 2015-04-15 深圳市一体太赫兹科技有限公司 Partition method and system for three-dimensional terahertz image
CN104574382A (en) * 2014-12-25 2015-04-29 深圳市一体太赫兹科技有限公司 Three-dimensional image segmentation method and system
CN105069805A (en) * 2015-08-25 2015-11-18 中国航天空气动力技术研究院 Passive terahertz image segmentation method
CN105956515A (en) * 2016-04-20 2016-09-21 西安电子科技大学 Stereo-hyperspectral human face recognition method based on auroral imaging
CN105856187A (en) * 2016-05-05 2016-08-17 宁波华狮智能科技有限公司 Microwave security inspection robot capable of automatically identifying hazardous articles
CN106203264A (en) * 2016-06-28 2016-12-07 深圳市元征科技股份有限公司 Dangerous goods detection method and device
CN106443815A (en) * 2016-09-05 2017-02-22 华讯方舟科技有限公司 Terahertz security check method and system
CN106886054A (en) * 2017-04-13 2017-06-23 西安邮电大学 Dangerous material automatic identification equipment and method based on 3 D X-ray imaging
CN107145898A (en) * 2017-04-14 2017-09-08 北京航星机器制造有限公司 A Classification Method of Ray Image Based on Neural Network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯艳平: ""人体隐蔽携带刀具、枪支危险物的THz图像识别"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799544B (en) * 2018-12-28 2021-03-19 深圳市重投华讯太赫兹科技有限公司 Intelligent detection method and device applied to millimeter wave security check instrument and storage device
CN109799544A (en) * 2018-12-28 2019-05-24 深圳市华讯方舟太赫兹科技有限公司 Intelligent detecting method, device and storage device applied to millimeter wave safety check instrument
CN109886970A (en) * 2019-01-18 2019-06-14 南京航空航天大学 Detection and segmentation method of target objects in terahertz images and computer storage medium
CN109886970B (en) * 2019-01-18 2023-06-09 南京航空航天大学 Detection segmentation method for target object in terahertz image and computer storage medium
CN109948527A (en) * 2019-03-18 2019-06-28 西安电子科技大学 Small sample terahertz image foreign object detection method based on integrated deep learning
CN109948527B (en) * 2019-03-18 2022-12-02 西安电子科技大学 Small sample terahertz image foreign matter detection method based on integrated deep learning
CN109978892A (en) * 2019-03-21 2019-07-05 浙江啄云智能科技有限公司 A kind of intelligent safety inspection method based on terahertz imaging
CN109978892B (en) * 2019-03-21 2021-03-16 浙江啄云智能科技有限公司 Intelligent security inspection method based on terahertz imaging
CN110146933A (en) * 2019-05-23 2019-08-20 深圳市华讯方舟太赫兹科技有限公司 Terahertz detection system and its detection method
CN110390329A (en) * 2019-07-10 2019-10-29 博微太赫兹信息科技有限公司 A kind of terahertz image recognition methods and system based on deep learning
CN111126447A (en) * 2019-11-29 2020-05-08 中国船舶重工集团公司第七一三研究所 Intelligent passenger security check luggage image automatic identification method
CN111882507A (en) * 2020-09-03 2020-11-03 浙江长芯光电科技有限公司 Metal element identification method and device
CN118259368A (en) * 2024-03-27 2024-06-28 火眼晶晶科技有限公司 Millimeter wave-based dangerous goods identification method and system for human body security inspection

Similar Documents

Publication Publication Date Title
CN108764328A (en) The recognition methods of Terahertz image dangerous material, device, equipment and readable storage medium storing program for executing
JP6719457B2 (en) Method and system for extracting main subject of image
CN106446952B (en) A kind of musical score image recognition methods and device
CN101620060B (en) Automatic detection method of particle size distribution
CN110930390B (en) Chip pin missing detection method based on semi-supervised deep learning
CN111915704A (en) Apple hierarchical identification method based on deep learning
CN106846316A (en) A kind of GIS inside typical defect automatic distinguishing method for image
CN103870818B (en) Smog detection method and device
TWI435288B (en) Image processing apparatus and method, and program product
US11263752B2 (en) Computer-implemented method of detecting foreign object on background object in an image, apparatus for detecting foreign object on background object in an image, and computer-program product
CN103824091B (en) A kind of licence plate recognition method for intelligent transportation system
CN111986183B (en) Chromosome scattered image automatic segmentation and identification system and device
CN103955949B (en) Moving target detecting method based on Mean-shift algorithm
CN111259878A (en) Method and equipment for detecting text
CN106096610A (en) A kind of file and picture binary coding method based on support vector machine
CN112396050B (en) Image processing method, device and storage medium
CN114067186B (en) Pedestrian detection method and device, electronic equipment and storage medium
CN103034852A (en) Specific color pedestrian detecting method in static video camera scene
CN104036521A (en) Novel retina eye fundus image segmenting method
CN118429242A (en) Image analysis method and system based on deep learning
CN111160194B (en) A still gesture image recognition method based on multi-feature fusion
CN113537037A (en) Pavement disease identification method, system, electronic device and storage medium
CN115171218A (en) Material sample feeding abnormal behavior recognition system based on image recognition technology
CN112907595A (en) Surface defect detection method and device
CN113901941A (en) Cargo vehicle checking method and device, electronic device and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication