CN108761485B - Fabry-Perot interferometer, interference device and Doppler wind lidar - Google Patents
Fabry-Perot interferometer, interference device and Doppler wind lidar Download PDFInfo
- Publication number
- CN108761485B CN108761485B CN201810487878.0A CN201810487878A CN108761485B CN 108761485 B CN108761485 B CN 108761485B CN 201810487878 A CN201810487878 A CN 201810487878A CN 108761485 B CN108761485 B CN 108761485B
- Authority
- CN
- China
- Prior art keywords
- fabry
- perot interferometer
- isosceles right
- light
- beam splitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000003595 spectral effect Effects 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims abstract description 16
- 238000001514 detection method Methods 0.000 claims description 20
- 238000002834 transmittance Methods 0.000 claims description 15
- 230000010287 polarization Effects 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 9
- 239000002241 glass-ceramic Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 abstract description 2
- 238000013461 design Methods 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000009897 systematic effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005316 response function Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000005437 stratosphere Substances 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及光学元件技术领域,更具体的说,涉及一种法布里-珀罗干涉仪、干涉装置及多普勒测风激光雷达。The invention relates to the technical field of optical elements, and more particularly, to a Fabry-Perot interferometer, an interference device and a Doppler wind-measuring laser radar.
背景技术Background technique
多普勒测风激光雷达以其高分辨率,高精度,大探测范围,能提供三维风场信息的能力,在气候研究和天气预报方面有着重要的应用,引起世界多国的关注,并投入了大量的人力、物力进行研究。按照探测方式不同,多普勒测风激光雷达技术可分为相干技术和非相干(直接探测)技术。其中直接技术是利用大气分子后向散射回波信号经鉴频器后的透过率高低来反演得到风速,可用于探测对流层和平流层的大气风场。With its high resolution, high precision, large detection range, and the ability to provide three-dimensional wind field information, Doppler wind Lidar has important applications in climate research and weather forecasting, attracting the attention of many countries in the world, and has invested in it. A lot of manpower and material resources for research. According to different detection methods, Doppler wind Lidar technology can be divided into coherent technology and incoherent (direct detection) technology. The direct technique is to use the transmittance of the backscattered echo signal of atmospheric molecules through the frequency discriminator to invert to obtain the wind speed, which can be used to detect the atmospheric wind field in the troposphere and stratosphere.
法布里-珀罗干涉仪作为直接探测多普勒测风激光雷达的核心部件,其性能的好坏直接影响了测量结果的准确性,现有的法布里-珀罗干涉仪技术主要有单通道和双通道(或称双边缘技术),其中双通道法布里-珀罗干涉仪因为具有更高的测量精度而成为目前研发的测风激光雷达主要使用的技术,然而干涉仪的结构形式及参数选取都会直接影响测量的精度以及工程应用中的便利程度,目前多普勒测风激光雷达中所使用的法布里-珀罗干涉仪存在工程应用难度大,易出现出射光频率无法锁定等问题。As the core component of the direct detection Doppler wind Lidar, the Fabry-Perot interferometer directly affects the accuracy of the measurement results. The existing Fabry-Perot interferometer technologies mainly include: Single-channel and dual-channel (or dual-edge technology), of which the dual-channel Fabry-Perot interferometer has become the main technology used in the currently developed wind measurement lidar because of its higher measurement accuracy. However, the structure of the interferometer The selection of form and parameters will directly affect the accuracy of measurement and the convenience in engineering applications. The Fabry-Perot interferometer used in the current Doppler wind measurement lidar is difficult to apply in engineering, and it is easy to appear that the frequency of the outgoing light cannot be used. locking, etc.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明技术方案提供了一种法布里-珀罗干涉仪、干涉装置及多普勒测风激光雷达,所述法布里-珀罗干涉仪结构简单,测量精度高,便于工程应用,避免了出现出射光频率无法锁定的问题。In order to solve the above problems, the technical solution of the present invention provides a Fabry-Perot interferometer, an interference device and a Doppler wind measurement lidar. The Fabry-Perot interferometer has a simple structure and high measurement accuracy. It is convenient for engineering application and avoids the problem that the frequency of the outgoing light cannot be locked.
为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
一种法布里-珀罗干涉仪,用于卫星搭载的多普勒测风激光雷达,所述法布里-珀罗干涉仪包括:A Fabry-Perot interferometer, used for a Doppler wind measurement lidar carried by a satellite, the Fabry-Perot interferometer comprising:
相对设置的第一透光基板以及第二透光基板;a first light-transmitting substrate and a second light-transmitting substrate arranged oppositely;
所述法布里-珀罗干涉仪具有两个光通道;The Fabry-Perot interferometer has two optical channels;
其中,所述法布里-珀罗干涉仪的自由谱间距等于卫星飞行引起的多普勒频移的1/n,n为大于1的正整数;所述法布里-珀罗干涉仪中两个通道的中心频率间隔等于所述自由谱间距的一半。Wherein, the free spectral spacing of the Fabry-Perot interferometer is equal to 1/n of the Doppler frequency shift caused by satellite flight, and n is a positive integer greater than 1; in the Fabry-Perot interferometer The center frequency separation of the two channels is equal to half the free spectral spacing.
优选的,在上述法布里-珀罗干涉仪中,所述第一透光基板与所述第二透光基板之间具有透光填充介质,所述透光填充介质的透过率大于99%,热膨胀系数小于0.5/MK。Preferably, in the above-mentioned Fabry-Perot interferometer, there is a light-transmitting filling medium between the first light-transmitting substrate and the second light-transmitting substrate, and the transmittance of the light-transmitting filling medium is greater than 99 %, the thermal expansion coefficient is less than 0.5/MK.
优选的,在上述法布里-珀罗干涉仪中,所述透光填充介质为微晶玻璃。Preferably, in the above Fabry-Perot interferometer, the light-transmitting filling medium is glass-ceramic.
优选的,在上述法布里-珀罗干涉仪中,所述法布里-珀罗干涉仪的自由谱间距等于10.95GHz,两个通道的中心频率间隔等于5.475GHz,透过率曲线的半高宽等于1.56GHz。Preferably, in the above-mentioned Fabry-Perot interferometer, the free spectral spacing of the Fabry-Perot interferometer is equal to 10.95 GHz, the center frequency spacing of the two channels is equal to 5.475 GHz, and the half of the transmittance curve is equal to 5.475 GHz. The height and width are equal to 1.56GHz.
本发明还提供了一种干涉装置,所述干涉装置包括:The present invention also provides an interference device, the interference device comprising:
1/4波片,所述1/4波片具有相对的第一面以及第二面;1/4 wave plate, the 1/4 wave plate has opposite first side and second side;
偏振分光棱镜组,所述偏振分光棱镜组与所述第一面相对设置;a polarizing beam splitting prism group, the polarizing beam splitting prism group is arranged opposite to the first surface;
双通道的法布里-珀罗干涉仪,所述法布里-珀罗干涉仪与所述第二面相对设置;A dual-channel Fabry-Perot interferometer, the Fabry-Perot interferometer is disposed opposite to the second surface;
其中,所述法布里-珀罗干涉仪为入权利要求1-4任一项所述的法布里-珀罗干涉仪。Wherein, the Fabry-Perot interferometer is the Fabry-Perot interferometer described in any one of claims 1-4.
优选的,在上述干涉装置中,所述偏振分光棱镜组具有三个相同的等腰直角三棱镜,所述等腰直角三棱镜具有一个斜边侧面以及两个相同的直边侧面;Preferably, in the above interference device, the polarizing beam splitting prism group has three identical isosceles right-angled prisms, and the isosceles right-angled prisms have one hypotenuse side and two identical straight side faces;
该三个等腰直角三棱镜依次为第一等腰直角三棱镜、第二等腰直角三棱镜以及第三等腰直角三棱镜;The three isosceles right-angle prisms are sequentially the first isosceles right-angle prism, the second isosceles right-angle prism and the third isosceles right-angle prism;
所述第一等腰直角三棱镜的斜边侧面与所述第二等腰直角三棱镜的斜边侧面贴合固定;二者形成一个立方体;The hypotenuse side of the first isosceles right angle prism is fixed with the hypotenuse side of the second isosceles right angle prism; the two form a cube;
所述第三等腰直角三棱镜一个直边侧面与所述第二等腰直角三棱镜一个直边侧面贴合固定,所述第三等腰直角三棱镜的斜边侧面与所述第二等腰直角三棱镜的斜边侧面垂直;A straight side surface of the third isosceles right angle prism is fixed with a straight side surface of the second isosceles right angle prism, and the hypotenuse side surface of the third isosceles right angle prism is connected to the second isosceles right angle prism. The side of the hypotenuse is vertical;
所述第三等腰直角三棱镜的另一个直边侧面与所述第二等腰直角三棱镜另一个直边侧面共平面,且该平面与所述第一面相对设置。The other straight side surface of the third isosceles right triangle prism and the other straight side surface of the second isosceles right triangle prism are coplanar, and the plane is arranged opposite to the first surface.
本发明还提供了一种多普勒测风激光雷达,所述多普勒激光测风雷达包括:The present invention also provides a Doppler wind measurement laser radar, and the Doppler laser wind measurement radar includes:
发射系统,所述发射系统用于发射检测激光;an emission system, the emission system is used to emit detection laser light;
接收系统,所述接收系统用于获取大气对所述检测激光的回波信号;所述接收系统包括如权利要求5或6任一项所述的干涉装置,具有偏振分光棱镜组、1/4波片以及双通道的法布里-珀罗干涉仪;A receiving system, which is used to obtain the echo signal of the detection laser from the atmosphere; the receiving system includes the interference device according to any one of claims 5 or 6, which has a polarizing beam splitting prism group, 1/4 Waveplates and dual-channel Fabry-Perot interferometers;
处理装置,所述处理装置用于基于所述回波信号测量大气风场;a processing device, the processing device is configured to measure the atmospheric wind field based on the echo signal;
其中,当所述多普勒测风激光雷达工作时,所述回波信号入射所述偏振分光棱镜组,一部分回波信号直接通过所述1/4波片后,通过所述法布里-珀罗干涉仪出射的一个通道直接出射,另一部分回波信号通过所述法布里-珀罗干涉仪反射回所述偏振分光棱镜组,在所述偏振分光棱镜组中经过两次反射后,通过所述偏振分光棱镜组出射,通过所述1/4波片入射所述法布里-珀罗干涉仪,通过所述法布里-珀罗干涉仪的另一个通道出射。Wherein, when the Doppler wind-measuring lidar works, the echo signal enters the polarization beam splitting prism group, and a part of the echo signal directly passes through the 1/4 wave plate, and then passes through the Fabry- One channel of the Perot interferometer exits directly, and the other part of the echo signal is reflected back to the polarization beam splitter prism group through the Fabry-Perot interferometer. After two reflections in the polarization beam splitter prism group, Outgoing through the polarizing beam splitting prism group, entering the Fabry-Perot interferometer through the quarter wave plate, and outgoing through another channel of the Fabry-Perot interferometer.
通过上述描述可知,本发明技术方案提供的法布里-珀罗干涉仪包括:相对设置的第一透光基板以及第二透光基板;所述法布里-珀罗干涉仪具有两个光通道;其中,所述法布里-珀罗干涉仪的自由谱间距等于卫星飞行引起的多普勒频移的1/n,n为大于1的正整数;所述法布里-珀罗干涉仪中两个通道的中心频率间隔等于所述自由谱间距的一半。所述法布里-珀罗干涉仪结构简单,测量精度高,便于工程应用,避免了出现出射光频率无法锁定的问题。采用所述法布里-珀罗干涉仪的多普勒测风激光雷达具有更高的测量精度以及可靠性。It can be seen from the above description that the Fabry-Perot interferometer provided by the technical solution of the present invention includes: a first light-transmitting substrate and a second light-transmitting substrate arranged oppositely; the Fabry-Perot interferometer has two optical channel; wherein, the free spectral spacing of the Fabry-Perot interferometer is equal to 1/n of the Doppler frequency shift caused by satellite flight, and n is a positive integer greater than 1; the Fabry-Perot interferometer The center frequency spacing of the two channels in the instrument is equal to half the free spectral spacing. The Fabry-Perot interferometer has a simple structure, high measurement accuracy, is convenient for engineering applications, and avoids the problem that the frequency of the outgoing light cannot be locked. The Doppler wind lidar using the Fabry-Perot interferometer has higher measurement accuracy and reliability.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only It is an embodiment of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without creative work.
图1为本发明实施例提供的一种法布里-珀罗干涉仪的结构示意图;1 is a schematic structural diagram of a Fabry-Perot interferometer provided by an embodiment of the present invention;
图2为本发明实施例提供的一种干涉装置的结构示意图。FIG. 2 is a schematic structural diagram of an interference device according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
参考图1,图1为本发明实施例提供的一种法布里-珀罗干涉仪的结构示意图,图1所示法布里-珀罗干涉仪13用于卫星搭载的多普勒测风激光雷达,该法布里-珀罗干涉仪13包括:相对设置的第一透光基板131以及第二透光基板132。Referring to FIG. 1, FIG. 1 is a schematic structural diagram of a Fabry-Perot interferometer according to an embodiment of the present invention, and the Fabry-
所述法布里-珀罗干涉仪13具有两个光通道。其中,所述法布里-珀罗干涉仪13的自由谱间距等于卫星飞行引起的多普勒频移的1/n,n为大于1的正整数;所述法布里-珀罗干涉仪13中两个通道的中心频率间隔等于所述自由谱间距的一半。具体的,所述法布里-珀罗干涉仪13的自由谱间距等于10.95GHz,两个通道的中心频率间隔等于5.475GHz,透过率曲线的半高宽等于1.56GHz。The Fabry-Perot
可选的,所述第一透光基板131与所述第二透光基板132之间具有透光填充介质133,所述透光填充介质133的透过率大于99%,热膨胀系数小于0.5/MK。具体的,所述透光填充介质133可以为微晶玻璃。透光填充介质133为固态物质。透光填充介质133具有非常小的热膨胀系数。通过所述透光填充介质可以使得两个基板之间的间距,不会受到温度影响而改变,具有较好的透光性,能够保证干涉仪的准确性。Optionally, there is a
本发明实施例所述技术方案基于特定的参数设计方法设计了一种新型的法布里-珀罗干涉仪13,并采用微晶玻璃等热膨胀系数非常小的固态物质作为腔内填充,腔长不可调谐,法布里-珀罗干涉仪13的参数经过特定设计,大大提高了鉴频精度以及稳定性。The technical solution described in the embodiment of the present invention designs a new type of Fabry-
本发明实施例所述法布里-珀罗干涉仪13的设计方案包括光学结构设计和干涉仪参数设计两方面。The design scheme of the Fabry-
1)光学结构设计1) Optical structure design
传统的用于直接探测的多普勒测风激光雷达的法布里-珀罗干涉仪由三个光通道组成,两个用于检测大气回波信号的信号通道以及一个用于锁定通道,该锁定通道中通过的光信号用于将出射检测激光的频率锁定在两个信号通道中对应信号的透过率曲线的交叉点处。这种结构的法布里珀罗干涉仪不仅结构复杂,制造成本高,而且在实际测量时候锁定通道也常常会因为精度较低带来较大的系统误差,降低测量精度。本发明实施例所述法布里-珀罗干涉仪由两个通道组成,出射检测激光频率和大气回波信号频率均由这两个通道进行测量,这两种信号光(检测激光和大气回波信号)在时域上分开,相比于传统的三通道设计方法,发明实施例所述法布里-珀罗干涉仪即可提高出射检测激光的测量精度,从而提高风速测量精度,也可消除用不同光路分别测量出射激光频率和回波信号频率带来的系统误差。The traditional Fabry-Perot interferometer for direct detection Doppler wind lidar consists of three optical channels, two signal channels for detecting atmospheric echo signals and one for locking channel. The optical signal passing through the locking channel is used to lock the frequency of the outgoing detection laser light at the intersection of the transmittance curves of the corresponding signals in the two signal channels. The Fabry-Perot interferometer with this structure is not only complicated in structure and high in manufacturing cost, but also in the actual measurement, the channel locking often leads to large systematic errors due to low precision, which reduces the measurement accuracy. The Fabry-Perot interferometer described in the embodiment of the present invention is composed of two channels, and both the outgoing detection laser frequency and the atmospheric echo signal frequency are measured by these two channels. Wave signals) are separated in the time domain. Compared with the traditional three-channel design method, the Fabry-Perot interferometer according to the embodiment of the invention can improve the measurement accuracy of the outgoing detection laser, thereby improving the wind speed measurement accuracy. Eliminate the systematic error caused by measuring the frequency of the outgoing laser and the frequency of the echo signal with different optical paths.
2)干涉仪参数设计2) Interferometer parameter design
对于双通道的法布里珀罗干涉仪的参数设计主要有三个参数,自由谱间距FSR,两个通道的中心频率间隔Δv,两个通道的透过率曲线半高宽FWHM。For the parameter design of the two-channel Fabry-Perot interferometer, there are mainly three parameters, the free spectral spacing FSR, the center frequency interval Δv of the two channels, and the transmittance curve FWHM of the two channels.
这三个参数的选取既要考虑到加工制造能力,同时又决定了干涉仪的频率检测精度。法布里珀罗干涉仪综合考虑以上两个因素,发明人根据实验室多年的激光雷达应用经验,提出了一种普遍适用于多普勒测风激光雷达的双通道的法布里珀罗干涉仪的参数优化方案,该方案具有较高的创新性。The selection of these three parameters not only takes into account the processing and manufacturing capabilities, but also determines the frequency detection accuracy of the interferometer. The Fabry-Perot interferometer comprehensively considers the above two factors, and the inventor proposes a dual-channel Fabry-Perot interferometer that is generally applicable to Doppler wind Lidar based on years of Lidar application experience in the laboratory. The parameter optimization scheme of the instrument is highly innovative.
首先,自由谱间距FSR的选取通常要考虑分子后向散射谱的谱宽以及多普勒测风激光雷达的工作状态,本次设计的法布里珀罗干涉仪用于卫星平台搭载,根据卫星平台运行的速度以及其运行轨道的分布可以计算得到卫星飞行引起的多普勒频移在激光出射方向的分量,为了消除此频移量对测量带来的误差,可自由谱间距FSR选取为卫星飞行引起的多普勒频移的1/n(n为正整数),n为大于1的正整数,结合法布里珀罗干涉仪加工精度的限制选取合适的n值,来选取恰当的自由谱间距FSR。First of all, the selection of the free spectral distance FSR usually takes into account the spectral width of the molecular backscattering spectrum and the working status of the Doppler wind lidar. The Fabry-Perot interferometer designed this time is used for satellite platforms. The speed of the platform and the distribution of its orbits can be calculated to obtain the component of the Doppler frequency shift caused by the satellite flight in the laser output direction. In order to eliminate the error caused by this frequency shift to the measurement, the free spectral spacing FSR can be selected as the satellite 1/n of the Doppler frequency shift caused by flight (n is a positive integer), n is a positive integer greater than 1, and an appropriate value of n is selected in combination with the limitation of the processing accuracy of the Fabry-Perot interferometer to select the appropriate freedom Spectral Spacing FSR.
其次,两个通道的间隔Δv选取为FSR的一半,此时两个通道的透过率曲线关于两曲线交叉点左右对称,从而在用可调谐的脉冲激光器来扫描法布里珀罗干涉仪的透过率曲线时,只需扫描1/2个FSR便可获得完整的透过率曲线,大大降低了对连续可调谐脉冲激光器的波长调谐范围要求,对于工程应用具有重要意义。Secondly, the interval Δv between the two channels is selected as half of the FSR. At this time, the transmittance curves of the two channels are symmetrical about the intersection of the two curves, so that the tunable pulsed laser is used to scan the Fabry-Perot interferometer. In the transmittance curve, only 1/2 of the FSR can be scanned to obtain a complete transmittance curve, which greatly reduces the wavelength tuning range requirements for the CW laser, which is of great significance for engineering applications.
最后,当FSR和Δv都确定以后,那么法布里珀罗干涉仪对风速测量造成的系统误差为半高宽FWHM的单值函数,选取使得误差最小的FWHM即为设计参数。Finally, when both FSR and Δv are determined, the systematic error caused by the Fabry-Perot interferometer for wind speed measurement is a single-valued function of FWHM, and the FWHM that minimizes the error is selected as the design parameter.
根据以上参数优化方案,本发明实施例设计了上述用于星载多普勒测风激光雷达的法布里珀罗干涉仪,参数如下:FSR为10.95GHz,通道1和通道2的峰值间隔δv为5.475GHz,透过率曲线的峰值半高宽FWHM为1.56GHz。According to the above parameter optimization scheme, the embodiment of the present invention designs the above-mentioned Fabry-Perot interferometer for spaceborne Doppler wind measurement lidar. The parameters are as follows: FSR is 10.95 GHz, and the peak interval δv of channel 1 and channel 2 is 5.475GHz, and the peak half-width FWHM of the transmittance curve is 1.56GHz.
本发明实施例所述法布里-珀罗干涉仪具有如下有点:The Fabry-Perot interferometer described in the embodiment of the present invention has the following advantages:
用两个信号通道实现了传统测风激光雷达系统三个通道法布里-珀罗干涉仪的测量功能,且精度更高。The measurement function of the traditional three-channel Fabry-Perot interferometer of the traditional wind-measuring lidar system is realized with two signal channels, and the accuracy is higher.
回波信号依次通过两个通道,相比于传统双通道法布里-珀罗干涉仪将信号光一分为二分别进入不同通道的做法,本发明实施例所述法布里-珀罗干涉仪将回波信号的利用率提高了一倍,提高了系统的信噪比。The echo signal passes through two channels in sequence. Compared with the traditional two-channel Fabry-Perot interferometer, which divides the signal light into two and enters different channels respectively, the Fabry-Perot interferometer according to the embodiment of the present invention The utilization rate of the echo signal is doubled, and the signal-to-noise ratio of the system is improved.
从工程应用和测量精度两方面综合考虑优化得到的法布里珀罗干涉仪的参数,使得干涉仪两个信号通道的透过率曲线关于两曲线交叉点对称,大大降低了对连续可调谐脉冲激光器的波长调谐范围的要求,更加有利于工程实现。The parameters of the optimized Fabry-Perot interferometer are comprehensively considered from the aspects of engineering application and measurement accuracy, so that the transmittance curves of the two signal channels of the interferometer are symmetrical about the intersection of the two curves, which greatly reduces the need for continuous tunable pulses. The requirements for the wavelength tuning range of the laser are more conducive to engineering implementation.
基于上述实施例所述法布里-珀罗干涉仪,本发明另一实施例还提供了一种干涉装置,如图2所示,图2为本发明实施例提供的一种干涉装置的结构示意图,图2所示干涉装置包括:1/4波片12,所述1/4波片12具有相对的第一面以及第二面;偏振分光棱镜组11,所述偏振分光棱镜组11与所述第一面相对设置;双通道的法布里-珀罗干涉仪13,所述法布里-珀罗干涉仪13与所述第二面相对设置。其中,所述法布里-珀罗干涉仪为上述实施例所述的法布里-珀罗干涉仪。Based on the Fabry-Perot interferometer described in the above embodiment, another embodiment of the present invention further provides an interference device, as shown in FIG. 2 , which is a structure of an interference device provided by an embodiment of the present invention Schematic diagram, the interference device shown in FIG. 2 includes: a
如图2所示,所述偏振分光棱镜组11具有三个相同的等腰直角三棱镜,所述等腰直角三棱镜具有一个斜边侧面以及两个相同的直边侧面,其顶面和底面为正对设置的两个相同的等腰直角三角形。该三个等腰直角三棱镜依次为第一等腰直角三棱镜111、第二等腰直角三棱镜112以及第三等腰直角三棱镜113。As shown in FIG. 2 , the polarizing beam splitting
所述第一等腰直角三棱镜111的斜边侧面与所述第二等腰直角三棱镜112的斜边侧面贴合固定,二者形成一个立方体。所述第三等腰直角三棱镜113一个直边侧面与所述第二等腰直角三棱镜112一个直边侧面贴合固定,所述第三等腰直角三棱镜113的斜边侧面与所述第二等腰直角三棱镜112的斜边侧面垂直。所述第三等腰直角三棱镜113的另一个直边侧面与所述第二等腰直角三棱镜112另一个直边侧面共平面,且该平面与所述第一面相对设置。The hypotenuse side surface of the first isosceles right angle
该干涉装置由光学粘结的偏振分光棱镜组11、1/4波片12以及法布里-珀罗干涉仪13组成。偏振分光棱镜组11中的等腰直角三棱镜的斜边侧面具有反射层。法布里-珀罗干涉仪13两个正对平行设置的基板之间具有固态填充物质。The interference device is composed of an optically bonded polarizing beam splitting
其工作过程为:初始入射的大气散射光(回波信号)及出射的检测激光均为线偏振光,偏振分光棱镜组11的角度与激光的偏振方向匹配,使得入射线偏振光可以透过偏振分光棱镜组11,透射的线偏振激光经过1/4波片12后变为圆偏振光,圆偏振光被法布里-珀罗干涉仪13的一个通道分为透射和反射两部分,透射和反射的比例与光的频率有关,透射部分进入后继光路被探测器捕捉到,反射部分的光再次经过1/4波片12,其偏振方向变为与初始入射光垂直,此时入射到偏振分光棱镜组11时,会在偏振分光棱镜组11内发生两次反射,两次反射后的光经过1/4波片12后入射法布里-珀罗干涉仪13的另一个通道,同样也会后一部分光透过,一部分光被反射,透过的光经过后继光路被探测器捕捉到,反射的光再次经过1/4波片12后变为偏振方向平行于纸面的线偏振光,会在偏振分光棱镜组11处发生透射,进入系统外部。The working process is as follows: the initial incident atmospheric scattered light (echo signal) and the outgoing detection laser are both linearly polarized light, and the angle of the polarized beam splitting
出射检测激光分离出来的参考激光和大气散射的回波信号这两种光依次按上述工作过程透过法布里珀罗干涉仪的两个通道,便可得到两种光透过法布里珀罗干涉仪两个通道的光强IR1和IR2、I1和I2,将IR1和IR2代入法布里-珀罗干涉仪13的激光脉冲频率响应函数,便可得到出射检测激光的频率vL,将I1和I2代入法布里-珀罗干涉仪13的瑞丽散射频率响应函数v,v-vL即为大气运动所引起的多普勒频移,从而可获得大气风速。IR1和IR2为检测激光在两个通道中分别对应的光强,I1和I2为回波信号在两个通道中分别对应的光。The two kinds of light, the reference laser separated by the outgoing detection laser and the echo signal scattered by the atmosphere, pass through the two channels of the Fabry-Perot interferometer in turn according to the above working process, and the two kinds of light can be obtained through the Fabry-Perot interferometer. The light intensities I R1 and I R2 , I 1 and I 2 of the two channels of the Rowe interferometer, and I R1 and I R2 are substituted into the laser pulse frequency response function of the Fabry-
传统的双边缘干涉仪中,大气回波信号光被一分为二,分别进入两个通道,而本发明实施例所述法布里-珀罗干涉仪13构成的干涉装置中,大气回波信号先全部入射到一个通道,其中一部分光在该通道透过法布里-珀罗干涉仪13进入后继光路,另一部分光在该通道被反射后,该部分光由于两次经过λ/4波片12,偏振态改变90度。另一部分光在该通道被反射后,第一次通过经过λ/4波片12后,进入偏振分光棱镜组11,会在偏振分光棱镜组11中经过两次反射,通过偏振分光棱镜组11出射后,入射λ/4波片12,第二次通过λ/4波片12后,入射法布里-珀罗干涉仪13的另一通道。如此一来,相比于传统的双通道法布里珀罗干涉仪,信号光的利用率提高了近1倍,从而提高了测量信号的信噪比,提高测量精度。In the traditional double-edge interferometer, the atmospheric echo signal light is divided into two and enters the two channels respectively. The signal is all incident on a channel first, and a part of the light enters the subsequent optical path through the Fabry-
该法布里-珀罗干涉仪采用全空间光路结构,用偏振分光棱镜组代替了以往的光纤分束结构,提高了干涉仪的稳定性。The Fabry-Perot interferometer adopts a full-space optical path structure, and a polarization beam splitting prism group is used to replace the previous fiber beam splitting structure, which improves the stability of the interferometer.
基于上述实施例所述法布里-珀罗干涉仪以及干涉装置,本发明另一实施例还提供了一种多普勒测风激光雷达,所述多普勒激光测风雷达包括:发射系统、接收系统以及处理装置。Based on the Fabry-Perot interferometer and the interferometric device described in the foregoing embodiments, another embodiment of the present invention further provides a Doppler wind measurement lidar, where the Doppler laser wind measurement radar includes: a transmitting system , receiving system and processing device.
所述发射系统用于发射检测激光。所述接收系统用于获取大气对所述检测激光的回波信号。所述接收系统包括上述实施例所述干涉装置,具有偏振分光棱镜组、1/4波片以及双通道的法布里-珀罗干涉仪。所述处理装置用于基于所述回波信号测量大气风场。所述处理装置可以为工控主机。The emitting system is used for emitting detection laser light. The receiving system is used for acquiring the echo signal of the detection laser from the atmosphere. The receiving system includes the interference device described in the above embodiment, which has a polarizing beam splitting prism group, a quarter-wave plate and a dual-channel Fabry-Perot interferometer. The processing device is used for measuring the atmospheric wind field based on the echo signal. The processing device may be an industrial control host.
其中,当所述多普勒测风激光雷达工作时,所述回波信号入射所述偏振分光棱镜组,一部分回波信号(如图2中直线箭头所示)直接通过所述1/4波片后,通过所述法布里-珀罗干涉仪出射的一个通道直接出射,另一部分回波信号(如图2中折现箭头所示)通过所述法布里-珀罗干涉仪反射回所述偏振分光棱镜组,在所述偏振分光棱镜组中经过两次反射后,通过所述偏振分光棱镜组出射,通过所述1/4波片入射所述法布里-珀罗干涉仪,通过所述法布里-珀罗干涉仪的另一个通道出射。Wherein, when the Doppler wind-measuring lidar is working, the echo signal enters the polarization beam splitting prism group, and a part of the echo signal (as shown by the straight arrow in FIG. 2 ) directly passes through the quarter wave After the film, one channel of the Fabry-Perot interferometer exits directly, and the other part of the echo signal (as shown by the folded arrow in Figure 2) is reflected back through the Fabry-Perot interferometer. The polarizing beam splitting prism group, after being reflected twice in the polarizing beam splitting prism group, exits through the polarizing beam splitting prism group, and enters the Fabry-Perot interferometer through the 1/4 wave plate, Exit through another channel of the Fabry-Perot interferometer.
本发明实施例所述多普勒测风激光雷达采用上述实施例法布里-珀罗干涉仪,具有更高的测量精度以及可靠性,便于工程应用,避免了出现出射光频率无法锁定的问题。The Doppler wind measurement lidar according to the embodiment of the present invention adopts the Fabry-Perot interferometer of the above embodiment, which has higher measurement accuracy and reliability, is convenient for engineering applications, and avoids the problem that the frequency of the outgoing light cannot be locked .
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的干涉装置及多普勒测风激光雷达而言,由于其与实施例公开的法布里-珀罗干涉仪相对应,所以描述的比较简单,相关之处参见法布里-珀罗干涉仪部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the interferometric device and the Doppler wind-measuring lidar disclosed in the embodiment, since they correspond to the Fabry-Perot interferometer disclosed in the embodiment, the description is relatively simple. The Perot Interferometer section can be explained.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810487878.0A CN108761485B (en) | 2018-05-21 | 2018-05-21 | Fabry-Perot interferometer, interference device and Doppler wind lidar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810487878.0A CN108761485B (en) | 2018-05-21 | 2018-05-21 | Fabry-Perot interferometer, interference device and Doppler wind lidar |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108761485A CN108761485A (en) | 2018-11-06 |
CN108761485B true CN108761485B (en) | 2020-08-28 |
Family
ID=64008640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810487878.0A Active CN108761485B (en) | 2018-05-21 | 2018-05-21 | Fabry-Perot interferometer, interference device and Doppler wind lidar |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108761485B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3935446B1 (en) * | 2019-03-08 | 2024-09-25 | RealD Inc. | Polarizing beam splitter assembly with diffracting element |
CN110865396B (en) * | 2019-11-25 | 2021-08-24 | 浙江大学 | A sweeping calibration device and method for high spectral resolution lidar |
CN113587962B (en) * | 2021-07-19 | 2022-04-19 | 武汉理工大学 | Single-fiber multi-dimensional F-P sensing device and measuring method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808193A (en) * | 2015-04-29 | 2015-07-29 | 中国科学技术大学 | Non-polarization beam splitter-based Rayleigh scattering Doppler frequency discriminator for F-P (Fabry-Perot) etalons |
CN107193015A (en) * | 2017-05-09 | 2017-09-22 | 盐城师范学院 | Ultraviolet three frequencies high spectral resolution lidar system and its detection method based on F P etalons |
CN107479046A (en) * | 2017-07-06 | 2017-12-15 | 北京空间机电研究所 | A kind of spaceborne tunable multichannel Fabry Perot frequency discriminator block |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10180496B2 (en) * | 2012-11-21 | 2019-01-15 | Nikon Corporation | Laser radar with remote local oscillator |
-
2018
- 2018-05-21 CN CN201810487878.0A patent/CN108761485B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808193A (en) * | 2015-04-29 | 2015-07-29 | 中国科学技术大学 | Non-polarization beam splitter-based Rayleigh scattering Doppler frequency discriminator for F-P (Fabry-Perot) etalons |
CN107193015A (en) * | 2017-05-09 | 2017-09-22 | 盐城师范学院 | Ultraviolet three frequencies high spectral resolution lidar system and its detection method based on F P etalons |
CN107479046A (en) * | 2017-07-06 | 2017-12-15 | 北京空间机电研究所 | A kind of spaceborne tunable multichannel Fabry Perot frequency discriminator block |
Also Published As
Publication number | Publication date |
---|---|
CN108761485A (en) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8558993B2 (en) | Optical frequency comb-based coherent LIDAR | |
US7139446B2 (en) | Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar | |
EP2329218B1 (en) | Compact fiber-optic geometry for a counter chirp fmcw coherent laser radar | |
CN101832821B (en) | Method and device for measuring laser wavelength based on bound wavelength | |
EP0194941A2 (en) | Heterodyne interferometer system | |
WO2018170478A1 (en) | Fmcw lidar methods and apparatuses including examples having feedback loops | |
CN108717194B (en) | Doppler wind measurement laser radar with composite system | |
CN108761485B (en) | Fabry-Perot interferometer, interference device and Doppler wind lidar | |
CN101581576A (en) | Method for measuring straightness accuracy and position thereof based on double frequency interference principle | |
CN106019313A (en) | Single-pixel detection wind measuring lidar based on polarization double edges | |
CN101581577A (en) | Method for measuring straightness accuracy and position thereof based on double frequency interference principle | |
CN104808193A (en) | Non-polarization beam splitter-based Rayleigh scattering Doppler frequency discriminator for F-P (Fabry-Perot) etalons | |
CN103592652B (en) | Bifrequency Doppler laser radar detection system based on single four marginal technology of solid FP etalons | |
CN110456383B (en) | A Molecular Scattering Coherent Lidar System | |
WO2022099838A1 (en) | Coherent receiving device and anemometry lidar system | |
CN106949842B (en) | Two-dimensional displacement measuring device and measuring method | |
EP3841401B1 (en) | Systems and methods for measuring a distance to a target and the complex reflectance ratio of a target | |
TW201122420A (en) | Multi-beam interferometric displacement measurement system utilized in the large measuring range | |
CN108732580A (en) | A kind of absolute distance measurement system and measurement method based on phase method Yu composite wave regular way | |
CN106019259B (en) | Laser frequency discrimination device and frequency discrimination method based on Mach-Zehnder interferometer | |
CN110864622A (en) | Partial dual-wavelength frequency modulation continuous wave laser interferometer | |
CN103809166B (en) | A kind of Michelson interference type spectral filter resonant frequency locking device and method | |
CN201637492U (en) | A Laser Wavelength Measuring Device Based on Synthetic Wavelength | |
US10480925B2 (en) | Inspecting a slab of material | |
CN107121071B (en) | Two-dimensional displacement measurer and measurement method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |