CN108761477A - A kind of contactless catenary's parameters harvester, measuring system and its measurement method using digital laser technology - Google Patents
A kind of contactless catenary's parameters harvester, measuring system and its measurement method using digital laser technology Download PDFInfo
- Publication number
- CN108761477A CN108761477A CN201810845270.0A CN201810845270A CN108761477A CN 108761477 A CN108761477 A CN 108761477A CN 201810845270 A CN201810845270 A CN 201810845270A CN 108761477 A CN108761477 A CN 108761477A
- Authority
- CN
- China
- Prior art keywords
- data
- real
- circuit unit
- time
- catenary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/46—Indirect determination of position data
- G01S17/48—Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明涉及轨道接触网检测设备技术领域,公开了一种采用数字激光技术的非接触式接触网参数采集装置、测量系统及其测量方法。通过本发明创造,可在不停止数据采集车的情况下,一方面根据接触网支柱杆识别结果和实时车程,自动确定最接近的接触网支柱杆的杆号数据,另一方还可以结合激光扫描仪、轨距传感器和倾角传感器,计算获取包含接触网导线拉出值和导线高度等的接触网参数,并可以自动进行数据存储、数据显示和通过数据超限检测来发现故障位置,进一步提高检测效率,并节省时间和降低人力成本。此外,通过内置测量数据回放软件系统,还可以实现对测量数据进行数据回放、数据分析和数据修正等应用目的,确保后期数据分析的自动化。
The invention relates to the technical field of track catenary detection equipment, and discloses a non-contact catenary parameter acquisition device, a measurement system and a measurement method using digital laser technology. Through the invention, without stopping the data collection vehicle, on the one hand, according to the recognition result of the catenary pole and the real-time driving distance, the pole number data of the nearest catenary pole can be automatically determined; on the other hand, it can also be combined with laser scanning meter, gauge sensor and inclination sensor, calculate and obtain the catenary parameters including the pull-out value of the catenary wire and the height of the wire, etc., and can automatically store and display data and find the fault location through data overrun detection to further improve detection efficiency, and save time and reduce labor costs. In addition, through the built-in measurement data playback software system, application purposes such as data playback, data analysis, and data correction of measurement data can also be realized to ensure the automation of later data analysis.
Description
技术领域technical field
本发明属于轨道接触网检测设备技术领域,具体涉及一种采用数字激光技术的非接触式接触网参数采集装置、测量系统及其测量方法。The invention belongs to the technical field of track catenary detection equipment, and in particular relates to a non-contact catenary parameter acquisition device, a measurement system and a measurement method using digital laser technology.
背景技术Background technique
近年来,我国铁路发展迅猛,安全是我国铁路运输生产过程之中一个衡量综合运营质量的最为重要指标,传统的数据检测设备难以适应高铁、普铁以及地铁等的安全发展需求,其中,对于接触网(其是沿铁路线上空架设的向电力机车供电的特殊形式的输电线路,主要由接触悬挂、支持装置、定位装置、支柱杆与固定基础几部分组成,其中,接触悬挂包括接触线、吊弦、承力索以及连接零件和绝缘子,接触悬挂通过支持装置架设在支柱上,其功用是将从牵引变电所获得的电能输送给电力机车)的多参数检测,例如对于接触网的导线拉出值(包括非支)、导线高度、承力索(距轨面距离)、锚段关节处、吊弦、跨距、轨距、外轨超高、侧面限界、导线坡度(定位与定位之间的高度差)、高差(定位与吊弦、吊弦与吊弦之间的导线高度差)、线岔(距线岔两端水平距离在500mm和800mm处两导线的高度差)、吊弦长度和杆号等参数的检测,这一问题尤为明显。In recent years, China's railways have developed rapidly, and safety is one of the most important indicators to measure the quality of comprehensive operation in the production process of China's railway transportation. Net (it is a special form of transmission line erected along the railway line to supply power to electric locomotives, mainly composed of contact suspension, support device, positioning device, pillar rod and fixed foundation, among which, contact suspension includes contact wire, suspension Strings, catenary cables and connecting parts and insulators, the contact suspension is erected on the pillar through the support device, and its function is to transmit the electric energy obtained from the traction substation to the electric locomotive) for multi-parameter detection, such as for the wire pull of the catenary Output value (including non-support), conductor height, catenary cable (distance from rail surface), anchor section joint, suspension string, span, gauge, outer rail superelevation, side limit, conductor slope (between positioning and positioning) height difference), height difference (the height difference between the positioning and the hanging string, and the height difference between the hanging string and the hanging string), the line fork (the height difference between the two wires at the horizontal distance of 500mm and 800mm from the two ends of the line fork), the hanging This problem is especially obvious in the detection of parameters such as chord length and rod number.
当前国内普遍采用基于点激光、红外线技术的便携式接触网检测设备(例如便携式轨距尺等接触网测量仪)来对接触网多参数进行人工测量,即在将便携式接触网检测设备搬移至接触网支柱杆位置时,按照如下步骤进行接触网多参数测量:(1)先确定支柱杆的杆号;(2)再蹲下放置接触网测量仪,根据定位器的位置调整测量仪的位置;(3)放置好测量仪之后,再需调整测量镜头,使检测光斑打到接触线上;(4)在测量仪上点击确认,读出数据。由此将会浪费很多时间,对工程进度影响大,耽误工期。同时由于铁路检修都是在天窗点,天窗点时间短暂,靠传统的检测手段,会进一步导致测量接触网参数耗时长,效率低和难以适应社会发展需求,尤其是随着我国铁路事业飞速发展,里程数不断增加,铁路建设的新线验收和日常检修工作量急剧增加。At present, portable catenary detection equipment based on point laser and infrared technology (such as portable gauge gauge and other catenary measuring instruments) is widely used in China to manually measure multiple parameters of the catenary, that is, the portable catenary detection equipment is moved to the catenary. When the position of the strut pole is used, the multi-parameter measurement of the catenary is carried out according to the following steps: (1) first determine the pole number of the strut pole; (2) squat down to place the catenary measuring instrument, and adjust the position of the measuring instrument according to the position of the locator; ( 3) After placing the measuring instrument, it is necessary to adjust the measuring lens so that the detection spot hits the contact line; (4) Click OK on the measuring instrument to read out the data. This will waste a lot of time, have a great impact on the progress of the project, and delay the construction period. At the same time, because the railway maintenance is at the skylight point, the time of the skylight point is short, relying on traditional detection methods will further lead to long time-consuming measurement of catenary parameters, low efficiency and difficulty in adapting to the needs of social development, especially with the rapid development of my country's railway industry, The mileage continues to increase, and the workload of new line inspection and daily maintenance of railway construction has increased sharply.
发明内容Contents of the invention
为了解决现有技术中所存在的数据检测自动化程度差、效率低和浪费时间的问题,本发明目的在于提供一种采用数字激光技术的非接触式接触网参数采集装置、测量系统及其测量方法。In order to solve the problems of poor automation, low efficiency and time-wasting of data detection existing in the prior art, the purpose of the present invention is to provide a non-contact catenary parameter acquisition device, measurement system and measurement method using digital laser technology .
本发明所采用的技术方案为:The technical scheme adopted in the present invention is:
一种采用数字激光技术的非接触式接触网参数采集装置,包括数据采集车、第一激光距离传感器、第一微分电路单元、第一单片机处理电路单元、脉冲编码器、时钟脉冲发生电路单元、运动方向判别电路单元、可逆计数电路单元、第二单片机处理电路单元和输出接口电路单元,其中,所述第一激光距离传感器的数目为两个且分别安装在所述数据采集车的行走方向两侧,并使它们的激光收发方向分别垂直朝上,所述脉冲编码器安装在所述数据采集车的行走轮转轴上;A non-contact catenary parameter acquisition device using digital laser technology, comprising a data acquisition vehicle, a first laser distance sensor, a first differential circuit unit, a first single-chip processing circuit unit, a pulse encoder, a clock pulse generation circuit unit, The movement direction discrimination circuit unit, the reversible counting circuit unit, the second single-chip processing circuit unit and the output interface circuit unit, wherein the number of the first laser distance sensors is two and are respectively installed on two sides of the walking direction of the data acquisition vehicle. side, and make their laser transmitting and receiving directions vertically upward respectively, and the pulse coder is installed on the walking wheel shaft of the data acquisition vehicle;
所述第一激光距离传感器的开关量输出端电连接所述第一微分电路单元的输入端,所述第一微分电路单元的输出端电连接所述第一单片机处理电路单元的输入端,构成接触网支柱杆识别结果数据采集支路;The switching value output terminal of the first laser distance sensor is electrically connected to the input terminal of the first differential circuit unit, and the output terminal of the first differential circuit unit is electrically connected to the input terminal of the first single-chip processing circuit unit to form a Catenary pole identification result data acquisition branch;
所述脉冲编码器的A相信号输出端、所述脉冲编码器的B相信号输出端和所述时钟脉冲发生电路单元的输出端分别电连接所述运动方向判别电路单元的三个输入端,所述运动方向判别电路单元的输出端电连接所述可逆计数电路单元的输入端,所述可逆计数电路单元的输出端电连接所述第二单片机处理电路单元的输入端,构成车程数据采集支路;The A-phase signal output end of the pulse encoder, the B-phase signal output end of the pulse encoder and the output end of the clock pulse generation circuit unit are respectively electrically connected to the three input ends of the motion direction discrimination circuit unit, The output end of the moving direction discrimination circuit unit is electrically connected to the input end of the reversible counting circuit unit, and the output end of the reversible counting circuit unit is electrically connected to the input end of the second single-chip processing circuit unit to form a driving data collection branch. road;
所述第一单片机处理电路单元的输出端和所述第二单片机处理电路单元的输出端分别电连接所述输出接口电路单元。The output end of the first single-chip processing circuit unit and the output end of the second single-chip processing circuit unit are respectively electrically connected to the output interface circuit unit.
优化的,还包括第二激光距离传感器、A/D采样电路单元、数字滤波电路单元和或门电路单元,其中,所述第二激光距离传感器的数目为两个且也分别安装在所述数据采集车的行走方向两侧,并使它们的激光收发方向分别垂直朝上;Optimally, it also includes a second laser distance sensor, an A/D sampling circuit unit, a digital filter circuit unit and an OR gate circuit unit, wherein the number of the second laser distance sensor is two and is also respectively installed in the data Collect the two sides of the vehicle's walking direction, and make their laser sending and receiving directions vertically upward;
所述第二激光距离传感器的模拟量输出端电连接所述A/D采样电路单元的输入端,所述A/D采样电路单元的输出端电连接所述数字滤波电路单元的输入端,所述数字滤波电路单元的输出端和所述第一微分电路单元的输出端分别电连接所述或门电路单元的两个输入端,所述或门电路单元的输出端电连接所述第一单片机处理电路单元的输入端。The analog output end of the second laser distance sensor is electrically connected to the input end of the A/D sampling circuit unit, and the output end of the A/D sampling circuit unit is electrically connected to the input end of the digital filter circuit unit, so The output end of the digital filtering circuit unit and the output end of the first differential circuit unit are respectively electrically connected to the two input ends of the OR circuit unit, and the output end of the OR circuit unit is electrically connected to the first single-chip microcomputer Process the input of the circuit unit.
进一步优化的,还包括手动按键和第二微分电路单元,其中,所述手动按键安装在所述数据采集车上;Further optimized, it also includes a manual button and a second differential circuit unit, wherein the manual button is installed on the data collection vehicle;
所述手动按键的输出端电连接所述第二微分电路单元的输入端,所述第二微分电路单元的输出端电连接所述或门电路单元的第三个输入端。The output end of the manual key is electrically connected to the input end of the second differential circuit unit, and the output end of the second differential circuit unit is electrically connected to the third input end of the OR gate circuit unit.
优化的,还包括速度计数电路单元和第三单片机处理电路单元,其中,所述第三单片机处理电路单元的输出端电连接所述输出接口电路单元;Optimally, it also includes a speed counting circuit unit and a third single-chip processing circuit unit, wherein the output terminal of the third single-chip processing circuit unit is electrically connected to the output interface circuit unit;
所述运动方向判别电路单元的输出端还电连接所述速度计数电路单元的输入端,所述速度计数电路单元的输出端电连接所述第三单片机处理电路单元的输入端,构成车速数据采集支路。The output end of the moving direction discrimination circuit unit is also electrically connected to the input end of the speed counting circuit unit, and the output end of the speed counting circuit unit is electrically connected to the input end of the third single-chip processing circuit unit to form a vehicle speed data collection branch road.
优化的,所述运动方向判别电路单元包括第一电阻R1、第二电阻R2、第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一与非门U1、第二与非门U2、第三与非门U3、用于电连接所述A相信号输出端的A相输入端Pin_A、用于电连接所述B相信号输出端的B相输入端Pin_B和用于电连接所述时钟脉冲发生电路单元输出端的时钟脉冲输入端Time;Optimally, the movement direction discrimination circuit unit includes a first resistor R1, a second resistor R2, a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, a first A NAND gate U1, a second NAND gate U2, a third NAND gate U3, the A-phase input terminal Pin_A for electrically connecting the A-phase signal output terminal, and the B-phase input terminal for electrically connecting the B-phase signal output terminal The input terminal Pin_B and the clock pulse input terminal Time for electrically connecting the output terminal of the clock pulse generating circuit unit;
所述A相输入端Pin_A电连接所述第一电阻R1的第一端,所述第一电阻R1的第二端电连接所述第一与非门U1的第一输入端,所述第一与非门U1的第二输入端电连接所述时钟脉冲输入端Time;The phase A input terminal Pin_A is electrically connected to the first terminal of the first resistor R1, the second terminal of the first resistor R1 is electrically connected to the first input terminal of the first NAND gate U1, and the first The second input end of the NAND gate U1 is electrically connected to the clock pulse input end Time;
所述B相输入端Pin_B电连接所述第二电阻R2的第一端,所述第二电阻R2的第二端电连接所述第二与非门U2的第一输入端,所述第二与非门U2的第二输出端电连接第三电阻R3的第一端,所述第三电阻R3的第二端电连接直流电压;The B-phase input terminal Pin_B is electrically connected to the first terminal of the second resistor R2, the second terminal of the second resistor R2 is electrically connected to the first input terminal of the second NAND gate U2, and the second The second output end of the NAND gate U2 is electrically connected to the first end of the third resistor R3, and the second end of the third resistor R3 is electrically connected to a DC voltage;
所述第一与非门U1的输出端和所述第二与非门U2的输出端分别电连接所述第三与非门U3的两个输入端,所述第三与非门U3的输出端作为所述运动方向判别电路单元的输出端Pout;The output terminal of the first NAND gate U1 and the output terminal of the second NAND gate U2 are respectively electrically connected to the two input terminals of the third NAND gate U3, and the output of the third NAND gate U3 terminal as the output terminal Pout of the motion direction discrimination circuit unit;
所述第二与非门U2的第一输入端还分别电连接第一二极管D1的阴极和所述第二二极管D2的阳极,所述第三与非门U3的输出端还分别电连接所述第三二极管D3的阴极和所述第四二极管D4的阳极,所述第一二极管D1的阳极和所述第三二极管D3的阳极分别接地,所述第二二极管D2的阴极和所述第四二极管D4的阴极分别电连接所述直流电压。The first input terminal of the second NAND gate U2 is also electrically connected to the cathode of the first diode D1 and the anode of the second diode D2, and the output terminal of the third NAND gate U3 is also respectively connected to the anode of the second diode D2. The cathode of the third diode D3 is electrically connected to the anode of the fourth diode D4, the anode of the first diode D1 and the anode of the third diode D3 are respectively grounded, and the The cathode of the second diode D2 and the cathode of the fourth diode D4 are respectively electrically connected to the DC voltage.
进一步优化的,在所述第一电阻R1的第二端与所述第一与非门U1的第一输入端之间还串联有方向判别启动支路,其中,所述方向判别启动支路包括第四电阻R4、第五电阻R5、第五二极管D5、第六二极管D6、电容C1、三极管Q1、第四与非门U4和启动控制输入端Pin_SY;Further optimized, there is a direction discrimination starting branch connected in series between the second terminal of the first resistor R1 and the first input terminal of the first NAND gate U1, wherein the direction discrimination starting branch includes The fourth resistor R4, the fifth resistor R5, the fifth diode D5, the sixth diode D6, the capacitor C1, the transistor Q1, the fourth NAND gate U4 and the start control input terminal Pin_SY;
所述第一电阻R1的第二端电连接所述第四与非门U4的第一输入端,所述启动控制输入端Pin_SY分别电连接所述三电阻R3的第一端、所述第五二极管D5的阴极和所述第四与非门U4的第二输入端;The second terminal of the first resistor R1 is electrically connected to the first input terminal of the fourth NAND gate U4, and the startup control input terminal Pin_SY is electrically connected to the first terminal of the three resistors R3, the fifth The cathode of the diode D5 and the second input terminal of the fourth NAND gate U4;
所述第四与非门U4的输出端电连接所述第五二极管D5的阳极、所述第四电阻R4的第一端和所述三极管Q1的基极,所述三极管Q1的发射极电连接所述第六二极管D6的阳极,所述三极管Q1的集电极分别电连接所述第五电阻R5的第一端和所述第一与非门U1的第一输入端;The output end of the fourth NAND gate U4 is electrically connected to the anode of the fifth diode D5, the first end of the fourth resistor R4 and the base of the triode Q1, and the emitter of the triode Q1 electrically connected to the anode of the sixth diode D6, and the collector of the triode Q1 is electrically connected to the first end of the fifth resistor R5 and the first input end of the first NAND gate U1;
所述第四电阻R4的第二端、所述五电阻R5的第二端和所述电容C1的第一端分别电连接所述直流电压,所述电容C1的第二端和所述第六二极管D6的阴极分别接地。The second end of the fourth resistor R4, the second end of the fifth resistor R5, and the first end of the capacitor C1 are respectively electrically connected to the DC voltage, and the second end of the capacitor C1 is connected to the sixth The cathodes of the diodes D6 are respectively grounded.
本发明所采用的另一种技术方案为:Another kind of technical scheme that the present invention adopts is:
一种采用数字激光技术的非接触式接触网参数测量系统,包括数据中心服务器、人机交互设备和如前所述的采用数字激光技术的非接触式接触网参数采集装置,其中,所述数据中心服务器的输入端电连接所述非接触式接触网参数采集装置中的输出接口电路单元,所述数据中心服务器的输出端电连接所述人机交互设备;A non-contact catenary parameter measurement system using digital laser technology, including a data center server, human-computer interaction equipment and a non-contact catenary parameter acquisition device using digital laser technology as described above, wherein the data The input end of the central server is electrically connected to the output interface circuit unit in the non-contact catenary parameter acquisition device, and the output end of the data center server is electrically connected to the human-computer interaction device;
所述数据中心服务器内置有包含接触网支柱杆识别结果数据接口、车程数据接口、线路数据库、支柱杆定位模块和支柱杆号确定模块的测量软件系统;The data center server is built with a measuring software system including a catenary pole recognition result data interface, a driving data interface, a line database, a pole positioning module and a pole number determination module;
所述接触网支柱杆识别结果数据接口用于导入来自第一单片机处理电路单元的接触网支柱杆识别结果数据;The catenary pole identification result data interface is used to import the catenary pole identification result data from the first single-chip processing circuit unit;
所述车程数据接口用于导入来自第二单片机处理电路单元的车程数据;The distance data interface is used to import the distance data from the second single-chip processing circuit unit;
所述线路数据库用于存储包含线路支柱杆号以及线路名称、线路区间、线路支柱杆号、线路所在领工区和/或线路所属责任单位的线路数据;The route database is used to store route data including route pole numbers, route names, route intervals, route support pole numbers, lead work areas where the routes are located, and/or responsible units to which the routes belong;
所述支柱杆定位模块用于在收到来自所述接触网支柱杆识别结果数据接口的实时接触网支柱杆识别结果数据和来自所述车程数据接口的实时车程数据后,首先根据所述实时车程数据,计算当前数据采集车位置至前一个确定支柱杆位置的实时移动距离,若所述实时移动距离处于S-x~S+x范围内,并且所述实时接触网支柱杆识别结果数据指示当前识别有支柱杆,则判定该支柱杆为有效支柱杆,然后根据前一个确定支柱杆的杆号数据和来自所述线路数据库的线路数据,确定该有效支柱杆的杆号数据,其中,所述杆号数据包含对应支柱杆的线路支柱杆号以及所属线路的线路名称、线路区间、线路所在领工区和/或线路所属责任单位,S为接触网支柱杆的设计间距,x为偏移常数。The strut pole positioning module is used to, after receiving the real-time catenary strut pole recognition result data from the catenary strut pole recognition result data interface and the real-time driving data from the driving distance data interface, firstly according to the real-time driving distance data, calculating the real-time moving distance from the current data collection vehicle position to the previous determined pole position, if the real-time moving distance is in the range of S-x~S+x, and the real-time catenary pole identification result data indicates that the current identification has pillar pole, it is determined that the pillar pole is an effective pillar pole, and then the pole number data of the effective pole pole is determined according to the pole number data of the previously determined pole pole and the line data from the route database, wherein the pole number The data includes the line support pole number of the corresponding support pole and the line name of the line to which it belongs, the line section, the leading area where the line is located and/or the responsible unit of the line. S is the design spacing of the catenary support poles, and x is the offset constant.
优化的,还包括安装在数据采集车上的激光扫描仪、轨距传感器和倾角传感器,其中,所述激光扫描仪的激光扫描面位于所述数据采集车的上方且与所述数据采集车的行走方向垂直;Optimally, it also includes a laser scanner, a gauge sensor and an inclination sensor installed on the data collection vehicle, wherein the laser scanning surface of the laser scanner is located above the data collection vehicle and connected to the data collection vehicle The direction of travel is vertical;
所述激光扫描仪、所述轨距传感器和所述倾角传感器的输出端分别电连接所述数据中心服务器的输入端;The output ends of the laser scanner, the gauge sensor and the inclination sensor are respectively electrically connected to the input ends of the data center server;
所述数据中心服务器中的测量软件系统还包括激光扫描仪接口、轨距传感器接口、倾角传感器接口、坐标系统模块、标定模块、补偿模块、超限判断模块、数据存储模块和显示界面驱动模块;The measurement software system in the data center server also includes a laser scanner interface, a gauge sensor interface, an inclination sensor interface, a coordinate system module, a calibration module, a compensation module, an overrun judgment module, a data storage module, and a display interface driver module;
所述激光扫描仪接口用于导入来自激光扫描仪的激光扫描数据;The laser scanner interface is used to import laser scanning data from the laser scanner;
所述轨距传感器接口用于导入来自轨距传感器的轨距测量数据;The gauge sensor interface is used to import gauge measurement data from the gauge sensor;
所述倾角传感器接口用于导入来自倾角传感器的倾角测量数据;The inclination sensor interface is used to import the inclination measurement data from the inclination sensor;
所述坐标系统模块用于在收到来自激光扫描仪的实时扫描数据后,将所述实时扫描数据由极坐标转换为直角坐标,然后根据是否属于同一障碍物对实时扫描数据进行分类,并根据障碍物的连续数据点个数过滤掉干扰数据,最后根据剩下的且关于接触网导线的实时扫描数据,获取接触网导线的实时导线拉出值和实时导线高度;The coordinate system module is used to convert the real-time scan data from polar coordinates to rectangular coordinates after receiving the real-time scan data from the laser scanner, and then classify the real-time scan data according to whether they belong to the same obstacle, and according to The number of continuous data points of obstacles filters out the interference data, and finally obtains the real-time wire pull-out value and real-time wire height of the catenary wire according to the remaining real-time scanning data about the catenary wire;
所述标定模块用于在标定参数时,根据自动测量值和手动测量值计算出由机械加工产生的原始误差数据;The calibration module is used to calculate the original error data generated by machining according to the automatic measurement value and the manual measurement value when calibrating the parameters;
所述补偿模块用于根据来自轨距传感器的实时轨距测量数据、来自倾角传感器的实时倾角测量数据和来自标定模块的原始误差数据,分别对所述实时导线拉出值和所述实时导线高度进行修正补偿;The compensation module is used to respectively adjust the real-time conductor pull-out value and the real-time conductor height according to the real-time gauge measurement data from the gauge sensor, the real-time inclination measurement data from the inclination sensor and the original error data from the calibration module make corrections;
所述超限判断模块用于判断实时导线拉出值和实时导线高度是否超限,若判定超限,则将由支柱杆定位模块确定最近接触网支柱杆作为故障区间杆;The overrun judging module is used to judge whether the real-time wire pull-out value and the real-time wire height are overrun, if it is judged overrun, then the nearest catenary pole will be determined by the pole positioning module as the fault zone pole;
所述数据存储模块用于将由支柱杆定位模块确定的杆号数据与补偿后的实时导线拉出值和实时导线高度进行绑定存储;The data storage module is used to bind and store the pole number data determined by the pillar pole positioning module with the compensated real-time wire pull-out value and real-time wire height;
所述显示界面驱动模块用于驱动人机交互设备输出展示最新的实时导线拉出值、实时导线高度和杆号数据,和/或者输出展示与故障区间杆对应的实时导线拉出值、实时导线高度和杆号数据。The display interface driver module is used to drive the human-computer interaction device to output and display the latest real-time wire pull-out value, real-time wire height and pole number data, and/or output and display the real-time wire pull-out value and real-time wire pull-out value corresponding to the fault zone pole. Height and pole number data.
进一步优化的,所述数据中心服务器还内置有包含存储读写模块、线路管理器、波形数据模型、图形界面模块、命令控制模块和操作栈模块的测量数据回放软件系统;Further optimized, the data center server also has a built-in measurement data playback software system including a storage read-write module, a line manager, a waveform data model, a graphical interface module, a command control module and an operation stack module;
所述存储读写模块用于从本地数据存储模块中读写历史测量的杆号数据和接触网参数以及将修正的接触网参数写入本地数据存储模块中;The storage read-write module is used to read and write historically measured pole number data and catenary parameters from the local data storage module and write the corrected catenary parameters into the local data storage module;
所述线路管理器用于管理若干条轨道线路的线路数据,并对应每条轨道线路,设有专用于管理该轨道线路的线路数据的曲线管理器;The line manager is used to manage the line data of several track lines, and corresponding to each track line, a curve manager dedicated to managing the line data of the track line is provided;
所述波形数据模型用于按照预制模型将待输出显示的杆号数据和接触网参数转换为可输出显示的波形图像;The waveform data model is used to convert the bar number data and catenary parameters to be output and displayed into output and displayed waveform images according to the prefabricated model;
所述图形界面模块用于显示来自波形数据模型的波形图像,以及输入由操作者手动生成的操作指令,其中,所述操作指令包含对接触网参数的修正指令和/或用于调整波形图像显示内容的控制指令;The graphical interface module is used to display waveform images from the waveform data model, and to input operating instructions manually generated by the operator, wherein the operating instructions include correction instructions for catenary parameters and/or are used to adjust the waveform image display Content control instructions;
所述命令控制模块用于根据来自图形界面模块的操作指令对接触网参数进行修正和/或调整波形图像的显示内容;The command control module is used to modify the catenary parameters and/or adjust the display content of the waveform image according to the operation instructions from the graphical interface module;
所述操作栈模块用于记录所有的操作指令以及对应的操作记录。The operation stack module is used to record all operation instructions and corresponding operation records.
本发明所采用的另一种技术方案为:Another kind of technical scheme that the present invention adopts is:
一种如前所述的采用数字激光技术的非接触式接触网参数测量系统的测量方法,包括如下步骤:A method for measuring a non-contact catenary parameter measurement system using digital laser technology as described above, comprising the steps:
S101.接收来自激光扫描仪的实时扫描数据,并将所述实时扫描数据由极坐标转换为直角坐标;S101. Receive real-time scanning data from a laser scanner, and convert the real-time scanning data from polar coordinates to rectangular coordinates;
S102.根据是否属于同一障碍物对实时扫描数据进行分类,并根据障碍物的连续数据点个数过滤掉干扰数据,最后剩下的实时扫描数据就是关于接触网导线的扫描数据;S102. Classify the real-time scanning data according to whether they belong to the same obstacle, and filter out the interference data according to the number of continuous data points of the obstacle, and the last remaining real-time scanning data is the scanning data about the catenary wire;
S103.根据剩下的实时扫描数据,获取接触网导线的实时导线拉出值和实时导线高度;S103. Obtain the real-time wire pull-out value and the real-time wire height of the catenary wire according to the remaining real-time scanning data;
S104.根据来自轨距传感器的实时轨距测量数据、来自倾角传感器的实时倾角测量数据和在标定时确定的原始误差数据,分别对所述实时导线拉出值和所述实时导线高度进行修正补偿;S104. Correct and compensate the real-time wire pull-out value and the real-time wire height according to the real-time gauge measurement data from the gauge sensor, the real-time inclination measurement data from the inclination sensor, and the original error data determined during calibration, respectively ;
S105.根据实时导线高度确定对应接触网导线为接触线还是承力索,若出现两根接触线,则根据对应接触线的实时导线拉出值和实时导线高度,分别计算出两根接触线之间的实时平行间距和实时高度差;S105. Determine whether the corresponding catenary wire is a catenary wire or a catenary cable according to the real-time wire height. If there are two contact wires, calculate the distance between the two contact wires according to the real-time wire pull-out value and the real-time wire height of the corresponding contact wire. The real-time parallel spacing and real-time height difference between them;
S106.判断实时导线拉出值、实时导线高度、实时平行间距或实时高度差是否超限,若判定超限,则将根据实时接触网支柱杆识别结果数据和实时车程数据确定的最近接触网支柱杆作为故障区间杆。S106. Judging whether the real-time wire pull-out value, real-time wire height, real-time parallel spacing or real-time height difference exceeds the limit, if it is determined to be over the limit, then the nearest catenary pillar determined according to the real-time catenary pillar rod identification result data and real-time driving data The rod acts as a fault zone rod.
本发明的有益效果为:The beneficial effects of the present invention are:
(1)本发明创造提供了一种可全自动采集接触网多参数的新型采集装置,即在不停止数据采集车的情况下,一方面可利用接触网支柱杆识别结果数据采集支路自动采集用于确定接触网支柱杆号的接触网支柱杆识别结果,另一方面可以识别数据采集车的移动方向,并利用车程数据采集支路进一步获取数据采集车的实时车程,并可通过输出接口电路单元进行多参数的统一输出,进而可利于与接触网支柱杆识别结果一起精确确定最接近的接触网支柱杆号,不但可以大大提高检测效率,并节省时间和降低人力成本,满足日益增长的铁路新线验收和既有线日常检修需求,还能够确保对新发现的故障区间进行及时地定位;(1) The invention provides a new type of acquisition device that can automatically collect multiple parameters of the catenary, that is, without stopping the data collection vehicle, on the one hand, it can use the catenary pillar rod identification result data collection branch to automatically collect The catenary pole identification result used to determine the catenary pole number, on the other hand, can identify the moving direction of the data collection vehicle, and use the driving data collection branch to further obtain the real-time driving distance of the data collection vehicle, which can be output through the interface circuit The unit can output multiple parameters in a unified way, which can help to accurately determine the nearest catenary pole number together with the catenary pole identification results, which can not only greatly improve the detection efficiency, but also save time and reduce labor costs to meet the growing railway Acceptance of new lines and daily maintenance requirements of existing lines can also ensure timely positioning of newly discovered fault areas;
(2)通过在该新型采集装置中布置或门电路单元,可兼容基于开关量检测方式、模拟量检测方式和人工手动方式等来获取接触网支柱杆识别结果,满足不同的使用习惯,拓展适用范围;(2) By arranging the OR gate circuit unit in the new acquisition device, it is compatible to obtain the identification results of catenary poles based on switch value detection methods, analog value detection methods, and manual methods, so as to meet different usage habits and expand the application scope;
(3)本发明创造还提供了一种可全自动采集接触网多参数的新型测量系统及其测量方法,一方面可以根据接触网支柱杆识别结果和实时车程,自动确定最接近的接触网支柱杆的杆号数据,另一方还可以结合激光扫描仪、轨距传感器和倾角传感器,计算获取包含接触网导线拉出值和导线高度等的接触网参数,并可以自动进行数据存储、数据显示和通过数据超限检测来发现故障位置,进一步提高检测效率,并节省时间和降低人力成本;(3) The present invention also provides a new type of measurement system and its measurement method that can automatically collect multiple parameters of the catenary. On the one hand, it can automatically determine the closest catenary support according to the identification results of the catenary support pole and the real-time driving distance The pole number data of the pole, the other party can also combine the laser scanner, gauge sensor and inclination sensor to calculate and obtain the catenary parameters including the pull-out value of the catenary wire and the height of the wire, and can automatically perform data storage, data display and Find the fault location through data overrun detection, further improve detection efficiency, save time and reduce labor costs;
(5)通过在新型测量系统中内置测量数据回放软件系统,还可以实现对测量数据进行数据回放、数据分析和数据修正等应用目的,确保后期数据分析的自动化;(5) Through the built-in measurement data playback software system in the new measurement system, it can also realize the application purposes of data playback, data analysis and data correction of the measurement data, ensuring the automation of later data analysis;
(6)所述采集装置及测量系统还具有安全可靠、采集精度高、易于调试、电路结构简单和成本低等优点,便于实际推广和应用。(6) The acquisition device and measurement system also have the advantages of safety and reliability, high acquisition accuracy, easy debugging, simple circuit structure and low cost, and are convenient for practical promotion and application.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1是本发明提供的数据采集车的结构示意图。Fig. 1 is a schematic structural diagram of a data collection vehicle provided by the present invention.
图2是本发明提供的第一种非接触式接触网参数采集装置的电路结构原理示意图。Fig. 2 is a schematic diagram of the circuit structure of the first non-contact catenary parameter acquisition device provided by the present invention.
图3是本发明提供的运动方向判别电路单元的电路图。Fig. 3 is a circuit diagram of the motion direction discrimination circuit unit provided by the present invention.
图4是本发明提供的在数据采集车正向行走时各节点的第一种波形示意图。Fig. 4 is a schematic diagram of the first waveform of each node when the data collection vehicle is moving in the forward direction provided by the present invention.
图5是本发明提供的在数据采集车逆向行走时各节点的第一种波形示意图。Fig. 5 is a schematic diagram of the first waveform of each node when the data collection vehicle is traveling in the reverse direction provided by the present invention.
图6是本发明提供的在运动方向判别电路单元输出端且在单位时间内正/逆向行走时的波形比较示意图。Fig. 6 is a schematic diagram of comparison of waveforms at the output end of the motion direction discrimination circuit unit provided by the present invention and during forward/reverse travel within a unit time.
图7是本发明提供的在数据采集车正向行走时各节点的第二种波形示意图。Fig. 7 is a schematic diagram of the second waveform of each node when the data collection vehicle is moving forward provided by the present invention.
图8是本发明提供的在数据采集车逆向行走时各节点的第二种波形示意图。Fig. 8 is a schematic diagram of the second waveform of each node when the data collection vehicle is traveling in the reverse direction provided by the present invention.
图9是本发明提供的第二种非接触式接触网参数采集装置的电路结构原理示意图。Fig. 9 is a schematic diagram of the circuit structure of the second non-contact catenary parameter acquisition device provided by the present invention.
图10是本发明提供的非接触式接触网参数测量系统的电路结构原理图。Fig. 10 is a schematic diagram of the circuit structure of the non-contact catenary parameter measurement system provided by the present invention.
图11是本发明提供的在非接触式接触网参数测量系统中测量软件系统的结构示意图。Fig. 11 is a schematic structural diagram of the measurement software system in the non-contact catenary parameter measurement system provided by the present invention.
图12是本发明提供的在非接触式接触网参数测量系统中测量数据回放软件系统的结构示意图。Fig. 12 is a schematic structural diagram of the measurement data playback software system in the non-contact catenary parameter measurement system provided by the present invention.
图13是本发明提供的波形图像的示例图。Fig. 13 is an example diagram of a waveform image provided by the present invention.
上述附图中:1-数据采集车;2-人机交互设备。In the above drawings: 1 - data collection vehicle; 2 - human-computer interaction equipment.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明作进一步阐述。在此需要说明的是,对于这些实施例方式的说明用于帮助理解本发明,但并不构成对本发明的限定。The present invention will be further elaborated below in conjunction with the accompanying drawings and specific embodiments. It should be noted here that the descriptions of these embodiments are used to help understand the present invention, but are not intended to limit the present invention.
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,同时存在A和B三种情况,本文中术语“/和”是描述另一种关联对象关系,表示可以存在两种关系,例如,A/和B,可以表示:单独存在A,单独存在A和B两种情况,另外,本文中字符“/”,一般表示前后关联对象是一种“或”关系。The term "and/or" in this article is just an association relationship describing associated objects, which means that there may be three relationships, for example, A and/or B, which can mean: A exists alone, B exists alone, and A and B exist simultaneously. In the three cases of B, the term "/and" in this article is to describe another associated object relationship, which means that there can be two relationships, for example, A/ and B, which can mean: there is A alone, and there are two cases of A and B alone , In addition, the character "/" in this article generally indicates that the contextual objects are an "or" relationship.
实施例一Embodiment one
如图1~8所示,本实施例提供的所述第一种非接触式接触网参数采集装置,包括数据采集车、第一激光距离传感器、第一微分电路单元、第一单片机处理电路单元、脉冲编码器、时钟脉冲发生电路单元、运动方向判别电路单元、可逆计数电路单元、第二单片机处理电路单元和输出接口电路单元,其中,所述第一激光距离传感器的数目为两个且分别安装在所述数据采集车的行走方向两侧,并使它们的激光收发方向分别垂直朝上,所述脉冲编码器安装在所述数据采集车的行走轮转轴上。As shown in Figures 1 to 8, the first non-contact catenary parameter acquisition device provided in this embodiment includes a data acquisition vehicle, a first laser distance sensor, a first differential circuit unit, and a first single-chip processing circuit unit , a pulse encoder, a clock pulse generation circuit unit, a motion direction discrimination circuit unit, a reversible counting circuit unit, a second single-chip processing circuit unit and an output interface circuit unit, wherein the number of the first laser distance sensors is two and respectively Installed on both sides of the traveling direction of the data acquisition vehicle, and make their laser transmitting and receiving directions vertically upward respectively, the pulse encoder is installed on the walking wheel shaft of the data acquisition vehicle.
如图1所示,在所述第一种非接触式接触网参数采集装置的结构中,所述数据采集车1为可在轨道上行走的移动车辆,以便作为前述其它结构的移动载体,确保在正/逆向行走过程中能够利用前述其它结构自动采集所处位置的接触网参数;所述数据采集车1可以但不限于为手推小车或采用其他移动形式的小型车。如图1所示,所述数据采集车优选为T型架车,利于消除车体抖动摇晃产生的测量误差。As shown in Figure 1, in the structure of the first kind of non-contact catenary parameter acquisition device, the data acquisition vehicle 1 is a mobile vehicle that can walk on the track, so as to be used as the mobile carrier of the aforementioned other structures to ensure During the forward/reverse walking process, other structures mentioned above can be used to automatically collect the catenary parameters at the location; the data collection vehicle 1 can be but not limited to a trolley or a small vehicle in other forms of movement. As shown in FIG. 1 , the data acquisition vehicle is preferably a T-frame vehicle, which is beneficial to eliminate measurement errors caused by shaking and shaking of the vehicle body.
所述第一激光距离传感器的开关量输出端电连接所述第一微分电路单元的输入端,所述第一微分电路单元的输出端电连接所述第一单片机处理电路单元的输入端,构成接触网支柱杆识别结果数据采集支路。The switching value output terminal of the first laser distance sensor is electrically connected to the input terminal of the first differential circuit unit, and the output terminal of the first differential circuit unit is electrically connected to the input terminal of the first single-chip processing circuit unit to form a Catenary strut rod identification result data acquisition branch.
如图2所示,在所述接触网支柱杆识别结果数据采集支路的结构中,所述第一激光距离传感器用于在数据采集车行走过程中,利用激光测距技术检测在轨道正上方有效探测距离范围内(例如5M内)是否有安装在接触网支柱杆上的且作为障碍物的定位器(其实质为一根横杆),并在检测有定位器时于开关量输出端输出高电平的开关量信号,否则输出低电平的开关量信号;其可以但不限于采用型号为DX35的中程激光距离传感器。所述第一微分电路单元用于将来自所述第一激光距离传感器的开关量信号由矩形波转换为尖脉冲波,以便得到表征脉冲前沿信息的脉冲信号;其可以但不限于采用现有的微分电路或者对现有微分电路进行常规性改动设计。所述第一单片机处理电路单元用于采用现有常规程序,根据所述脉冲信号对接触网支柱杆进行如下识别处理:若当前出现尖脉冲波,则判定当前实时接触网支柱杆识别结果数据为识别有支柱杆(即表征在轨道路侧存在接触网支柱杆),否则判定当前实时接触网支柱杆识别结果数据为未识别有支柱杆(即表征在轨道路侧空旷),由此通过采集前述接触网支柱杆识别结果数据,可以方便后续进一步确定接触网支柱杆的杆号数据(前提是需要有线路数据和预先人工确定初始接触网支柱杆的杆号数据,然后才能按照顺序依次确定);其可以但不限于采用型号为MSP430F123的单片机芯片及外围电路。As shown in Figure 2, in the structure of the data acquisition branch of the catenary pole identification result, the first laser distance sensor is used to detect the distance directly above the track by using laser ranging technology during the travel of the data acquisition vehicle. Within the effective detection distance (for example, within 5M), whether there is a locator (which is essentially a horizontal bar) installed on the catenary pole and used as an obstacle, and output at the switch output terminal when the locator is detected A high-level switching signal, otherwise a low-level switching signal is output; it can be, but not limited to, a medium-range laser distance sensor of the model DX35. The first differential circuit unit is used to convert the switch signal from the first laser distance sensor from a rectangular wave to a sharp pulse wave, so as to obtain a pulse signal representing pulse front information; it can be but not limited to adopt the existing Differential circuit or routinely modify the design of the existing differential circuit. The first single-chip processing circuit unit is used to adopt the existing routine program, and perform the following identification processing on the catenary strut according to the pulse signal: if a sharp pulse wave appears currently, it is determined that the current real-time catenary strut identification result data is Identify a strut pole (that is, it indicates that there is a catenary strut pole on the side of the track road), otherwise it is determined that the current real-time catenary strut pole identification result data is not identified as a strut pole (that is, it indicates that there is an open space on the track road side), so by collecting the aforementioned The catenary pole identification result data can facilitate subsequent further determination of the pole number data of the catenary pole (the premise is that there is a need for line data and pre-manual determination of the pole number data of the initial catenary pole, and then it can be determined in sequence); It can, but is not limited to, use a MSP430F123 single-chip microcomputer chip and peripheral circuits.
所述脉冲编码器的A相信号输出端、所述脉冲编码器的B相信号输出端和所述时钟脉冲发生电路单元的输出端分别电连接所述运动方向判别电路单元的三个输入端,所述运动方向判别电路单元的输出端电连接所述可逆计数电路单元的输入端,所述可逆计数电路单元的输出端电连接所述第二单片机处理电路单元的输入端,构成车程数据采集支路。The A-phase signal output end of the pulse encoder, the B-phase signal output end of the pulse encoder and the output end of the clock pulse generating circuit unit are respectively electrically connected to the three input ends of the motion direction discrimination circuit unit, The output end of the movement direction discrimination circuit unit is electrically connected to the input end of the reversible counting circuit unit, and the output end of the reversible counting circuit unit is electrically connected to the input end of the second single-chip processing circuit unit to form a driving data collection branch. road.
如图2所示,在所述车程数据采集支路的结构中,所述脉冲编码器用于在行走轮转轴旋转(即数据采集车正向或逆向行走)时,输出一对相位差为90度的A相信号和B相信号,如图4和5所示,当数据采集车正向行走时,A相信号相对于B相信号超前90度,而当数据采集侧逆向行走时,B相信号相对于A相信号超前90度;所述脉冲编码器可以但不限于采用型号为SCH24的脉冲编码器。所述时钟脉冲发生电路单元用于自发生成具有一定频率的时钟方波信号;其可以但不限于采用基于NE555芯片的时钟脉冲发生电路。所述运动方向判别电路单元用于通过对A相信号、B相信号和时钟方波信号进行逻辑运算,得到表征正向行走或逆向行走的不同输出波形。所述可逆计数电路单元用于对输出波形中的正向特征脉冲进行正向计数或对输出波形中的逆向特征脉冲进行逆向计数,并将实时的正向计数结果或逆向计数结果传送至所述第二单片机处理电路单元,其可以但不限于采用现有的可逆计数器实现正向/逆向计数功能。所述第二单片机处理电路单元用于采用现有车程算法对正向计数结果进行正向车程计算或对逆向计数结果进行逆向车程计算,得到表征当前实际位置的实时车程数据,其可以但不限于采用型号为MSP430F123的单片机芯片及外围电路。As shown in Figure 2, in the structure of the vehicle journey data acquisition branch, the pulse encoder is used to output a pair of phase difference of 90 degrees when the traveling wheel shaft rotates (i.e. the data acquisition vehicle is traveling in the forward or reverse direction). As shown in Figure 4 and 5, when the data collection vehicle is moving forward, the A-phase signal is 90 degrees ahead of the B-phase signal, and when the data collection vehicle is traveling in the reverse direction, the B-phase signal 90 degrees ahead relative to the phase A signal; the pulse encoder can be, but not limited to, a pulse encoder with a model number of SCH24. The clock pulse generating circuit unit is used for spontaneously generating a clock square wave signal with a certain frequency; it can be, but not limited to, adopt a clock pulse generating circuit based on the NE555 chip. The moving direction discriminating circuit unit is used to obtain different output waveforms representing forward or reverse travel by performing logic operations on the A-phase signal, B-phase signal and clock square wave signal. The reversible counting circuit unit is used for forward counting of the positive characteristic pulse in the output waveform or reverse counting of the reverse characteristic pulse in the output waveform, and transmits the real-time forward counting result or reverse counting result to the The second single-chip processing circuit unit can, but is not limited to, use an existing up-down counter to realize the forward/backward counting function. The second single-chip processing circuit unit is used to use the existing driving algorithm to perform forward driving calculation on the forward counting result or perform reverse driving calculation on the reverse counting result to obtain real-time driving data representing the current actual position, which can be but not limited to The MSP430F123 MCU chip and peripheral circuits are adopted.
所述第一单片机处理电路单元的输出端和所述第二单片机处理电路单元的输出端分别电连接所述输出接口电路单元。The output end of the first single-chip processing circuit unit and the output end of the second single-chip processing circuit unit are respectively electrically connected to the output interface circuit unit.
如图2所示,所述输出接口电路单元用于对接外部数据服务器或计算机设备,以便对外集中输出所采集到的接触网支柱杆识别结果数据和实时车程数据等;其可以但不限于为RS232接口电路单元。由此可利于应用实时车程和接触网支柱杆识别结果一起精确确定最接近的接触网支柱杆的杆号以及其他数据,不但可以大大提高检测效率,并节省时间和降低人力成本,满足日益增长的铁路新线验收和日常检修需求,还能够确保对新发现的故障区间进行及时地定位。As shown in Figure 2, the output interface circuit unit is used to connect to an external data server or computer equipment, so as to output the collected catenary pole recognition result data and real-time driving data etc. externally; it can be but not limited to RS232 Interface circuit unit. Therefore, it is beneficial to apply real-time driving and catenary pole identification results together to accurately determine the pole number and other data of the nearest catenary pole, which can not only greatly improve detection efficiency, but also save time and reduce labor costs to meet the growing demand The acceptance and daily maintenance requirements of new railway lines can also ensure the timely positioning of newly discovered fault areas.
优化的,还包括速度计数电路单元和第三单片机处理电路单元,其中,所述第三单片机处理电路单元的输出端电连接所述输出接口电路单元;所述运动方向判别电路单元的输出端还电连接所述速度计数电路单元的输入端,所述速度计数电路单元的输出端电连接所述第三单片机处理电路单元的输入端,构成车速数据采集支路。Optimally, it also includes a speed counting circuit unit and a third single-chip processing circuit unit, wherein the output end of the third single-chip processing circuit unit is electrically connected to the output interface circuit unit; the output end of the motion direction discrimination circuit unit is also The input end of the speed counting circuit unit is electrically connected, and the output end of the speed counting circuit unit is electrically connected to the input end of the third single-chip processing circuit unit to form a vehicle speed data acquisition branch.
如图2所示,在所述车速数据采集支路的结构中,所述速度计数电路单元用于对单位时间内的且处于输出波形中的特征脉冲进行实时速度计数,然后将实时速度计数结果传送至所述第三单片机处理电路单元,其可以但不限于采用计数器实现速度计数功能。所述第三单片机处理电路单元用于采用现有车速算法对实时速度计数结果进行即时车速计算,得到表征当前实际车速的实际车速数据,其同样可以但不限于采用型号为MSP430F123的单片机芯片及外围电路。由此通过增设车速数据采集支路,还可以获取数据采集车的实时车速。As shown in Figure 2, in the structure of the vehicle speed data acquisition branch, the speed counting circuit unit is used to perform real-time speed counting on the characteristic pulses in the output waveform per unit time, and then the real-time speed counting result It is transmitted to the third single-chip processing circuit unit, which may, but is not limited to, use a counter to realize the speed counting function. The third single-chip processing circuit unit is used to calculate the real-time speed of the real-time speed counting result by using the existing speed algorithm, and obtain the actual speed data representing the current actual speed. circuit. Therefore, by adding a vehicle speed data acquisition branch, the real-time vehicle speed of the data acquisition vehicle can also be obtained.
优化的,如图3所示,所述运动方向判别电路单元包括第一电阻R1、第二电阻R2、第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第一与非门U1、第二与非门U2、第三与非门U3、用于电连接所述A相信号输出端的A相输入端Pin_A、用于电连接所述B相信号输出端的B相输入端Pin_B和用于电连接所述时钟脉冲发生电路单元输出端的时钟脉冲输入端Time;所述A相输入端Pin_A电连接所述第一电阻R1的第一端,所述第一电阻R1的第二端电连接所述第一与非门U1的第一输入端,所述第一与非门U1的第二输入端电连接所述时钟脉冲输入端Time;所述B相输入端Pin_B电连接所述第二电阻R2的第一端,所述第二电阻R2的第二端电连接所述第二与非门U2的第一输入端,所述第二与非门U2的第二输出端电连接第三电阻R3的第一端,所述第三电阻R3的第二端电连接直流电压;所述第一与非门U1的输出端和所述第二与非门U2的输出端分别电连接所述第三与非门U3的两个输入端,所述第三与非门U3的输出端作为所述运动方向判别电路单元的输出端Pout;所述第二与非门U2的第一输入端还分别电连接第一二极管D1的阴极和所述第二二极管D2的阳极,所述第三与非门U3的输出端还分别电连接所述第三二极管D3的阴极和所述第四二极管D4的阳极,所述第一二极管D1的阳极和所述第三二极管D3的阳极分别接地,所述第二二极管D2的阴极和所述第四二极管D4的阴极分别电连接所述直流电压。Optimally, as shown in FIG. 3 , the movement direction discrimination circuit unit includes a first resistor R1, a second resistor R2, a first diode D1, a second diode D2, a third diode D3, a fourth The diode D4, the first NAND gate U1, the second NAND gate U2, the third NAND gate U3, the A-phase input terminal Pin_A for electrically connecting the A-phase signal output terminal, and the A-phase input terminal Pin_A for electrically connecting the B-phase The B-phase input terminal Pin_B of the phase signal output terminal and the clock pulse input terminal Time for electrically connecting the output terminal of the clock pulse generating circuit unit; the A-phase input terminal Pin_A is electrically connected to the first end of the first resistor R1, so The second end of the first resistor R1 is electrically connected to the first input end of the first NAND gate U1, and the second input end of the first NAND gate U1 is electrically connected to the clock pulse input end Time; The B-phase input terminal Pin_B is electrically connected to the first terminal of the second resistor R2, the second terminal of the second resistor R2 is electrically connected to the first input terminal of the second NAND gate U2, and the second NAND The second output end of the gate U2 is electrically connected to the first end of the third resistor R3, and the second end of the third resistor R3 is electrically connected to a DC voltage; the output end of the first NAND gate U1 and the second NAND The output terminals of the NOT gate U2 are respectively electrically connected to the two input terminals of the third NAND gate U3, and the output terminals of the third NAND gate U3 are used as the output terminals Pout of the movement direction discrimination circuit unit; The first input terminal of the two NAND gate U2 is also electrically connected to the cathode of the first diode D1 and the anode of the second diode D2, and the output terminal of the third NAND gate U3 is also electrically connected to the The cathode of the third diode D3 and the anode of the fourth diode D4, the anode of the first diode D1 and the anode of the third diode D3 are respectively grounded, the second two The cathode of the diode D2 and the cathode of the fourth diode D4 are respectively electrically connected to the DC voltage.
如图3所示,在所述运动方向判别电路单元的具体电路结构中,所述直流电压由电源模块提供,举例为+15V直流电压。前述运动方向判别电路单元的工作原理可由如图4~5所示的在数据采集车正/逆向行走时各节点的第一种波形信号来展示,从而可在数据采集车正/逆向行走时,于所述运动方向判别电路单元的输出端Pout处得到如图6所示的不同单位波形,进而可以利用这两种不同的单位波形表示不同的行走状态,即以图6为例,可用单位波形的数字信息“11111110000011111000”来表征数据采集车处于正向行走状态,可用单位波形的数字信号“11111100001111100000”来表征数据采集车处于正向行走状态.从而实现方向识别功能。As shown in FIG. 3 , in the specific circuit structure of the moving direction judging circuit unit, the DC voltage is provided by a power module, for example, +15V DC voltage. The working principle of the aforementioned motion direction discrimination circuit unit can be shown by the first waveform signal of each node when the data collection vehicle is running forward/reverse as shown in Figure 4-5, so that when the data collection vehicle is walking forward/reversely, Different unit waveforms as shown in Figure 6 are obtained at the output terminal Pout of the motion direction discrimination circuit unit, and then these two different unit waveforms can be used to represent different walking states, that is, taking Figure 6 as an example, the unit waveform can be used The digital information "11111110000011111000" of the data collection vehicle can be used to indicate that the data collection vehicle is in the forward walking state, and the digital signal of the unit waveform "11111100001111100000" can be used to represent that the data collection vehicle is in the forward walking state, thereby realizing the direction recognition function.
进一步优化的,在所述第一电阻R1的第二端与所述第一与非门U1的第一输入端之间还串联有方向判别启动支路,其中,所述方向判别启动支路包括第四电阻R4、第五电阻R5、第五二极管D5、第六二极管D6、电容C1、三极管Q1、第四与非门U4和启动控制输入端Pin_SY;所述第一电阻R1的第二端电连接所述第四与非门U4的第一输入端,所述启动控制输入端Pin_SY分别电连接所述三电阻R3的第一端、所述第五二极管D5的阴极和所述第四与非门U4的第二输入端;所述第四与非门U4的输出端电连接所述第五二极管D5的阳极、所述第四电阻R4的第一端和所述三极管Q1的基极,所述三极管Q1的发射极电连接所述第六二极管D6的阳极,所述三极管Q1的集电极分别电连接所述第五电阻R5的第一端和所述第一与非门U1的第一输入端;所述第四电阻R4的第二端、所述五电阻R5的第二端和所述电容C1的第一端分别电连接所述直流电压,所述电容C1的第二端和所述第六二极管D6的阴极分别接地。Further optimized, there is a direction discrimination starting branch connected in series between the second terminal of the first resistor R1 and the first input terminal of the first NAND gate U1, wherein the direction discrimination starting branch includes The fourth resistor R4, the fifth resistor R5, the fifth diode D5, the sixth diode D6, the capacitor C1, the transistor Q1, the fourth NAND gate U4 and the start control input terminal Pin_SY; the first resistor R1 The second terminal is electrically connected to the first input terminal of the fourth NAND gate U4, and the startup control input terminal Pin_SY is electrically connected to the first terminal of the three resistors R3, the cathode of the fifth diode D5 and the first terminal of the fifth diode D5 respectively. The second input end of the fourth NAND gate U4; the output end of the fourth NAND gate U4 is electrically connected to the anode of the fifth diode D5, the first end of the fourth resistor R4 and the The base of the triode Q1, the emitter of the triode Q1 is electrically connected to the anode of the sixth diode D6, and the collector of the triode Q1 is respectively electrically connected to the first end of the fifth resistor R5 and the The first input terminal of the first NAND gate U1; the second terminal of the fourth resistor R4, the second terminal of the fifth resistor R5 and the first terminal of the capacitor C1 are respectively electrically connected to the DC voltage, so The second end of the capacitor C1 and the cathode of the sixth diode D6 are respectively grounded.
如图3所示,在所述方向判别启动支路的电路结构中,所述启动控制输入端Pin_SY用于导入控制电平信号(可以来自按键开关或其它控制器),且如图7和8所示,在输入低电平时,所述运动方向判别电路单元的输出端Pout始终处于低电平,此时暂停启动所述运动方向判别电路单元;而在输入高电平时,所述运动方向判别电路单元的输出端Pout能够得到表示不同行走状态的单位波形,此时启动所述运动方向判别电路单元。由此通过所述方向判别启动支路,可以对所述运动方向判别电路单元起到启停控制作用,方便进行模拟调试。As shown in Figure 3, in the circuit structure of the direction discrimination start branch, the start control input terminal Pin_SY is used to import control level signals (which can come from key switches or other controllers), and as shown in Figures 7 and 8 As shown, when a low level is input, the output terminal Pout of the motion direction discrimination circuit unit is always at a low level, and at this moment, the motion direction discrimination circuit unit is paused to start; and when a high level is input, the motion direction discrimination circuit unit The output terminal Pout of the circuit unit can obtain unit waveforms representing different walking states, and at this time, the movement direction discrimination circuit unit is activated. Therefore, through the direction discrimination starting branch, the function of start-stop control for the movement direction discrimination circuit unit can be played, which is convenient for simulation debugging.
优化的,在所述脉冲编码器的输出端与所述运动方向判别电路单元的输入端之间依次串联有保护电路单元和高阻抗电平转换电路单元。Optimally, a protection circuit unit and a high-impedance level conversion circuit unit are serially connected in series between the output end of the pulse encoder and the input end of the motion direction determination circuit unit.
如图2所示,所述保护电路单元用于防止电压信号过大时对电路中的元器件造成损坏,提高抗干扰能力;其可以但不限于采用现有的光耦隔离电路或对现有光耦隔离电路进行常规性改动设计。所述高阻抗电平转换电路单元用于将输入信号进行放大,并使输入阻抗与自身匹配,实现最大功率传输和防止输入信号因过度微弱而消耗在自身阻抗上的目的;其可以但不限于采用现有的基于共集电极的高阻抗电平转换电路或对现有基于共集电极的高阻抗电平转换电路进行常规性改动设计。由此通过前述设计,可以确保在所述脉冲编码器的输出端与所述运动方向判别电路单元的输入端之间的端口安全和信号的正常输入。As shown in Figure 2, the protection circuit unit is used to prevent damage to the components in the circuit when the voltage signal is too large, and to improve the anti-interference ability; The optocoupler isolation circuit is designed with routine changes. The high-impedance level conversion circuit unit is used to amplify the input signal and match the input impedance with itself to achieve maximum power transmission and prevent the input signal from being consumed on its own impedance due to excessive weakness; it can be but not limited to The existing high-impedance level conversion circuit based on the common collector is adopted or the conventional modification design is performed on the existing high-impedance level conversion circuit based on the common collector. Therefore, through the foregoing design, port security and normal input of signals between the output end of the pulse encoder and the input end of the motion direction discrimination circuit unit can be ensured.
综上,采用本实施例所提供的非接触式接触网参数采集装置,具有如下技术效果:In summary, adopting the non-contact catenary parameter acquisition device provided in this embodiment has the following technical effects:
(1)本实施例提供了一种可全自动采集接触网多参数的新型采集装置,即在不停止数据采集车的情况下,一方面可利用接触网支柱杆识别结果数据采集支路自动采集用于确定接触网支柱杆号的接触网支柱杆识别结果,另一方面可以识别数据采集车的移动方向,并利用车程数据采集支路进一步获取数据采集车的实时车程,并可通过输出接口电路单元进行多参数的统一输出,进而可利于与接触网支柱杆识别结果一起精确确定最接近的接触网支柱杆号,不但可以大大提高检测效率,并节省时间和降低人力成本,满足日益增长的铁路新线验收和日常检修需求,还能够确保对新发现的故障区间进行及时地定位;(1) This embodiment provides a new type of collection device that can automatically collect multiple parameters of the catenary, that is, without stopping the data collection vehicle, on the one hand, the data collection branch of the catenary pillar rod identification result can be used to automatically collect The catenary pole identification result used to determine the catenary pole number, on the other hand, can identify the moving direction of the data collection vehicle, and use the driving data collection branch to further obtain the real-time driving distance of the data collection vehicle, which can be output through the interface circuit The unit can output multiple parameters in a unified way, which can help to accurately determine the nearest catenary pole number together with the catenary pole identification results, which can not only greatly improve the detection efficiency, but also save time and reduce labor costs to meet the growing railway Acceptance of new lines and daily maintenance requirements can also ensure timely positioning of newly discovered fault areas;
(2)所述采集装置还具有安全可靠、采集精度高、易于调试、电路结构简单和成本低等优点,便于实际推广和应用。(2) The acquisition device also has the advantages of safety and reliability, high acquisition accuracy, easy debugging, simple circuit structure and low cost, and is convenient for practical promotion and application.
实施例二Embodiment two
如图9所示,本实施例作为实施例一的拓展技术方案,其提供的电路结构与实施例一不同之处在于:还包括第二激光距离传感器、A/D采样电路单元、数字滤波电路单元和或门电路单元,其中,所述第二激光距离传感器的数目为两个且也分别安装在所述数据采集车的行走方向两侧,并使它们的激光收发方向分别垂直朝上;所述第二激光距离传感器的模拟量输出端电连接所述A/D采样电路单元的输入端,所述A/D采样电路单元的输出端电连接所述数字滤波电路单元的输入端,所述数字滤波电路单元的输出端和所述第一微分电路单元的输出端分别电连接所述或门电路单元的两个输入端,所述或门电路单元的输出端电连接所述第一单片机处理电路单元的输入端。As shown in Figure 9, this embodiment is an extended technical solution of the first embodiment, and the circuit structure provided by it is different from that of the first embodiment in that it also includes a second laser distance sensor, an A/D sampling circuit unit, and a digital filter circuit unit and an OR gate circuit unit, wherein the number of the second laser distance sensors is two and are installed on both sides of the traveling direction of the data collection vehicle respectively, and their laser transmitting and receiving directions are respectively vertically upward; The analog output end of the second laser distance sensor is electrically connected to the input end of the A/D sampling circuit unit, and the output end of the A/D sampling circuit unit is electrically connected to the input end of the digital filter circuit unit, and the The output end of the digital filtering circuit unit and the output end of the first differential circuit unit are respectively electrically connected to the two input ends of the OR gate circuit unit, and the output end of the OR gate circuit unit is electrically connected to the first single-chip processing unit. The input terminal of the circuit unit.
如图9所示,所述第二激光距离传感器用于在数据采集车行走过程中,利用激光测距技术输出所在位置至轨道上方定位器的模拟量距离信号;其可以但不限于采用型号为DX35的中程激光距离传感器。所述A/D采样电路单元用于对所述模拟量距离信号进行模数采样,获取数字距离信号;其可以但不限于采用现有A/D模数转换器及外围电路实现模数采样功能。所述数字滤波电路单元用于对前述数字距离信号进行数字滤波,得到低噪声的数字距离信号;其可以但不限于采用现有DSP(Digital Signal Processor,数字信号处理器)芯片及外围电路实现数字滤波功能。所述或门电路单元用于对数字距离信号和脉冲信号进行逻辑或运算,以便它们能够兼容输入所述第一单片机处理电路单元。所述第一单片机处理电路单元在获取数字距离信号后,可根据现有常规程序先获取数据采集车至轨道上方定位器的实时距离,若实时距离接近安装参数,则判定当前实时接触网支柱杆识别结果数据为识别有支柱杆(即表征在轨道路侧存在接触网支柱杆),否则判定当前实时接触网支柱杆识别结果数据为未识别有支柱杆(即表征在轨道路侧空旷),由此也能采集得到前述接触网支柱杆识别结果数据。As shown in Figure 9, the second laser distance sensor is used to output the analog distance signal from the location to the positioner above the track using laser ranging technology during the walking process of the data acquisition vehicle; Mid-range laser distance sensor for the DX35. The A/D sampling circuit unit is used to perform analog-to-digital sampling on the analog distance signal to obtain a digital distance signal; it can, but is not limited to, adopt the existing A/D analog-to-digital converter and peripheral circuits to realize the analog-to-digital sampling function . Described digital filtering circuit unit is used for carrying out digital filtering to aforementioned digital distance signal, obtains the digital distance signal of low noise; It can but not be limited to adopt existing DSP (Digital Signal Processor, digital signal processor) chip and peripheral circuit to realize digital filter function. The OR gate circuit unit is used for performing logical OR operations on the digital distance signal and the pulse signal, so that they can be compatible input to the first single-chip processing circuit unit. After the first single-chip processing circuit unit obtains the digital distance signal, it can first obtain the real-time distance from the data acquisition vehicle to the locator above the track according to the existing routine procedures. If the real-time distance is close to the installation parameters, then it is determined that the current real-time catenary pole The recognition result data is to identify a strut pole (that is, to indicate that there is a catenary strut pole on the side of the track road), otherwise it is determined that the current real-time catenary strut pole recognition result data is not identified as a strut pole (that is, to represent that there is an open space on the track roadside), by This can also collect the above-mentioned identification result data of catenary struts.
优化的,还包括手动按键和第二微分电路单元,其中,所述手动按键安装在所述数据采集车上;所述手动按键的输出端电连接所述第二微分电路单元的输入端,所述第二微分电路单元的输出端电连接所述或门电路单元的第三个输入端。如图9所示,所述手动按键用于在数据采集车途经路侧支柱杆时,由人工手动按压产生开关量信号。所述第二微分电路单元用于将来自所述手动按键的开关量信号由矩形波转换为尖脉冲波,以便得到表征脉冲前沿信息的脉冲信号;其可以但不限于采用现有的微分电路或者对现有微分电路进行常规性改动设计。所述第一单片机处理电路单元在通过所述或门电路单元获取前述脉冲信号后,依然可基于实施例一相同的现有常规程序,得到前述接触网支柱杆识别结果数据。Optimally, it also includes a manual button and a second differential circuit unit, wherein the manual button is installed on the data collection vehicle; the output end of the manual button is electrically connected to the input end of the second differential circuit unit, so The output end of the second differential circuit unit is electrically connected to the third input end of the OR gate circuit unit. As shown in FIG. 9 , the manual button is used to generate a switch signal by manual pressing when the data collection vehicle passes the roadside pillar. The second differential circuit unit is used to convert the switch signal from the manual key from a rectangular wave to a sharp pulse wave, so as to obtain a pulse signal representing pulse front information; it can be, but not limited to, use an existing differential circuit or Routinely modify the design of the existing differential circuit. After the first single-chip processing circuit unit obtains the aforementioned pulse signal through the OR gate circuit unit, it can still obtain the aforementioned catenary pole identification result data based on the same existing routine procedure as in Embodiment 1.
本实施例提供所述采集装置的技术效果,在实施例一的技术效果基础上,还具有如下技术效果:This embodiment provides the technical effects of the collection device, and on the basis of the technical effects of Embodiment 1, it also has the following technical effects:
(1)通过在该新型采集装置中布置或门电路单元,可兼容基于开关量检测方式、模拟量检测方式和人工手动方式等来获取接触网支柱杆识别结果,满足不同的使用习惯,拓展适用范围。(1) By arranging the OR gate circuit unit in the new acquisition device, it is compatible to obtain the identification results of catenary poles based on switch value detection methods, analog value detection methods and manual methods, so as to meet different usage habits and expand the application scope.
实施例三Embodiment three
如图10~13所示,本实施例作为包含实施例一或实施例二的拓展技术方案,其提供的采用数字激光技术的非接触式接触网参数测量系统,包括数据中心服务器、人机交互设备和如实施例一或实施例二所述的采用数字激光技术的非接触式接触网参数采集装置,其中,所述数据中心服务器的输入端电连接所述非接触式接触网参数采集装置中的输出接口电路单元,所述数据中心服务器的输出端电连接所述人机交互设备。As shown in Figures 10 to 13, this embodiment is an expanded technical solution that includes Embodiment 1 or Embodiment 2. It provides a non-contact catenary parameter measurement system using digital laser technology, including data center servers, human-computer interaction Equipment and the non-contact catenary parameter acquisition device using digital laser technology as described in Embodiment 1 or Embodiment 2, wherein the input end of the data center server is electrically connected to the non-contact catenary parameter acquisition device The output interface circuit unit of the data center server is electrically connected to the human-computer interaction device.
所述数据中心服务器为测量系统的数据处理中心和数据存储中心,其内置有包含接触网支柱杆识别结果数据接口、车程数据接口、线路数据库、支柱杆定位模块和支柱杆号确定模块的测量软件系统;其中,所述接触网支柱杆识别结果数据接口用于导入来自第一单片机处理电路单元的接触网支柱杆识别结果数据;所述车程数据接口用于导入来自第二单片机处理电路单元的车程数据;所述线路数据库用于存储包含线路支柱杆号以及线路名称、线路区间、线路支柱杆号、线路所在领工区和/或线路所属责任单位等的线路数据;所述支柱杆定位模块用于在收到来自所述接触网支柱杆识别结果数据接口的实时接触网支柱杆识别结果数据和来自所述车程数据接口的实时车程数据后,首先根据所述实时车程数据,计算当前数据采集车位置至前一个确定支柱杆位置的实时移动距离,若所述实时移动距离处于S-x~S+x范围内,并且所述实时接触网支柱杆识别结果数据指示当前识别有支柱杆,则判定该支柱杆为有效支柱杆,然后根据前一个确定支柱杆的杆号数据和来自所述线路数据库的线路数据,确定该有效支柱杆的杆号数据,其中,所述杆号数据包含对应支柱杆的线路支柱杆号以及所属线路的线路名称、线路区间、线路所在领工区和/或线路所属责任单位,S为接触网支柱杆的设计间距,x为偏移常数。The data center server is a data processing center and a data storage center of the measurement system, and it has a built-in measurement software including a catenary pole identification result data interface, a driving data interface, a line database, a pole positioning module and a pole number determination module System; wherein, the catenary pole identification result data interface is used to import the catenary pole identification result data from the first single-chip processing circuit unit; the driving data interface is used to import the driving distance from the second single-chip processing circuit unit data; the line database is used to store the line data including line pole number and line name, line interval, line pole number, line where the lead area is located and/or the responsible unit to which the line belongs; the pole positioning module is used for After receiving the real-time catenary pole identification result data from the catenary pole identification result data interface and the real-time driving data from the driving data interface, first calculate the current data collection vehicle position according to the real-time driving data The real-time movement distance to the previous determined pole position, if the real-time movement distance is within the range of S-x~S+x, and the real-time catenary pole identification result data indicates that a pole is currently recognized, then determine the pole To be an effective strut pole, then determine the pole number data of the effective strut pole according to the pole number data of the previously determined strut pole and the line data from the route database, wherein the pole number data includes the line strut of the corresponding strut pole The pole number and the line name of the line to which it belongs, the line section, the leading area where the line is located and/or the responsible unit to which the line belongs, S is the design spacing of catenary support poles, and x is the offset constant.
在所述支柱杆定位模块中,所述设计间距S可举例为60米,所述偏移常数x可举例为2米。所述数值范围S-x~S+x即提供了一个用于验证当前识别有的支柱杆是否为有效支柱杆的时机窗口,由此可以排除大量在非时机窗口中所误判的疑似支柱杆,大大提高自动采集接触网支柱杆号的精准度。此外,最初始支柱杆的线路支柱杆号是由人工手动确定的,例如在最初始支柱杆的线路支柱杆号确定为1024时,沿数据采集车的行走方向,每新判定一个有效支柱杆,则该有效支柱杆的线路支柱杆号即在前一个确定支柱杆的线路支柱杆号基础上自加1。In the pole positioning module, the design distance S may be, for example, 60 meters, and the offset constant x may be, for example, 2 meters. The numerical range S-x~S+x provides a timing window for verifying whether the currently identified struts are valid struts, thereby eliminating a large number of suspected struts misjudged in the non-timing window, greatly Improve the accuracy of automatic collection of catenary pole numbers. In addition, the line pole number of the most initial pole is manually determined. For example, when the line pole number of the initial pole is determined to be 1024, along the traveling direction of the data collection vehicle, each time a new effective pole is determined, Then the line pole number of the effective pole is automatically increased by 1 on the basis of the line pole number of the previous determined pole.
所述人机交互设备作为面向工作人员的人机交互界面,用于实现初始参数的输入和测量结果数据的输出展示,其可以但不限于如图1所示的笔记本电脑。The human-computer interaction device is used as a staff-oriented human-computer interaction interface to realize the input of initial parameters and the output and display of measurement result data, which may be but not limited to a notebook computer as shown in FIG. 1 .
优化的,如图10~11所示,所述非接触式接触网参数测量系统还包括安装在数据采集车上的激光扫描仪、轨距传感器和倾角传感器,其中,所述激光扫描仪的激光扫描面位于所述数据采集车的上方且与所述数据采集车的行走方向垂直;所述激光扫描仪、所述轨距传感器和所述倾角传感器的输出端分别电连接所述数据中心服务器的输入端。Optimally, as shown in Figures 10-11, the non-contact catenary parameter measurement system also includes a laser scanner, a gauge sensor and an inclination sensor installed on the data acquisition vehicle, wherein the laser scanner of the laser scanner The scanning surface is located above the data collection vehicle and is perpendicular to the walking direction of the data collection vehicle; the output ends of the laser scanner, the gauge sensor and the inclination sensor are electrically connected to the data center server respectively. input.
如图10所示,在所述非接触式接触网参数测量系统的结构中,所述激光扫描仪用于连续不停的发射激光脉冲,并由内置的旋转光学机构将激光脉冲按一定角度间隔(角度分辨率)发射向扫描角度内的各个方向,而形成一个径向坐标为基准的二维扫描面,最终得到包含至被测物体位置的距离及角度信息的扫描数据;所述激光扫描仪可以但不限于采用型号为LMS511-10100或LMS511-20100的激光扫描设备。所述轨距传感器用于测量轨道左右两轨间的距离,其可以为利用磁致伸缩原理而设计的现有轨距测量传感器。所述倾角传感器用于测量数据采集车的倾斜角度数据,其也为现有传感器。As shown in Figure 10, in the structure of the non-contact catenary parameter measurement system, the laser scanner is used to continuously emit laser pulses, and the laser pulses are separated by a certain angle interval by the built-in rotating optical mechanism (Angular resolution) launch to each direction in the scanning angle, and form a two-dimensional scanning surface based on radial coordinates, and finally obtain scanning data including distance and angle information to the position of the measured object; the laser scanner It can be used but not limited to laser scanning equipment model number LMS511-10100 or LMS511-20100. The gauge sensor is used to measure the distance between the left and right rails of the track, and it can be an existing gauge measuring sensor designed by utilizing the principle of magnetostriction. The inclination sensor is used to measure the inclination angle data of the data acquisition vehicle, which is also an existing sensor.
如图11所示,所述数据中心服务器中的测量软件系统还包括激光扫描仪接口、轨距传感器接口、倾角传感器接口、坐标系统模块、标定模块、补偿模块、超限判断模块、数据存储模块和显示界面驱动模块;其中,所述激光扫描仪接口用于导入来自激光扫描仪的激光扫描数据;所述轨距传感器接口用于导入来自轨距传感器的轨距测量数据;所述倾角传感器接口用于导入来自倾角传感器的倾角测量数据;所述坐标系统模块用于在收到来自激光扫描仪的实时扫描数据后,将所述实时扫描数据由极坐标转换为直角坐标,然后根据是否属于同一障碍物对实时扫描数据进行分类,并根据障碍物的连续数据点个数过滤掉干扰数据,最后根据剩下的且关于接触网导线的实时扫描数据,获取接触网导线的实时导线拉出值和实时导线高度。As shown in Figure 11, the measurement software system in the data center server also includes a laser scanner interface, a gauge sensor interface, an inclination sensor interface, a coordinate system module, a calibration module, a compensation module, an overrun judgment module, and a data storage module And display interface drive module; Wherein, described laser scanner interface is used for importing the laser scanning data from laser scanner; Described gauge sensor interface is used for importing the gauge measurement data from gauge sensor; Described inclination sensor interface Used to import the inclination measurement data from the inclination sensor; the coordinate system module is used to convert the real-time scan data from polar coordinates to Cartesian coordinates after receiving the real-time scan data from the laser scanner, and then according to whether it belongs to the same Obstacles classify the real-time scanning data, and filter out the interference data according to the number of continuous data points of obstacles, and finally obtain the real-time wire pull-out value and Live wire height.
所述标定模块用于在标定参数时,根据自动测量值和手动测量值计算出由机械加工产生的原始误差数据;所述补偿模块用于根据来自轨距传感器的实时轨距测量数据、来自倾角传感器的实时倾角测量数据和来自标定模块的原始误差数据,分别对所述实时导线拉出值和所述实时导线高度进行修正补偿;所述超限判断模块用于判断实时导线拉出值和实时导线高度是否超限,若判定超限,则将由支柱杆定位模块确定最近接触网支柱杆作为故障区间杆;所述数据存储模块用于将由支柱杆定位模块确定的杆号数据与补偿后的实时导线拉出值和实时导线高度进行绑定存储;所述显示界面驱动模块用于驱动人机交互设备输出展示最新的实时导线拉出值、实时导线高度和杆号数据,和/或者输出展示与故障区间杆对应的实时导线拉出值、实时导线高度和杆号数据。The calibration module is used to calculate the original error data produced by machining according to the automatic measurement value and the manual measurement value when calibrating the parameters; The real-time inclination measurement data of the sensor and the original error data from the calibration module correct and compensate the real-time wire pull-out value and the real-time wire height respectively; the overrun judgment module is used to judge the real-time wire pull-out value and the real-time Whether the wire height exceeds the limit, if it is determined that the limit is exceeded, then the nearest catenary pole will be determined by the pole positioning module as the fault interval pole; the data storage module is used to combine the pole number data determined by the pole positioning module with the real-time The wire pull-out value and the real-time wire height are bound and stored; the display interface driver module is used to drive the human-computer interaction device to output and display the latest real-time wire pull-out value, real-time wire height and pole number data, and/or output display and The real-time conductor pull-out value, real-time conductor height and pole number data corresponding to the pole in the fault zone.
前述非接触式接触网参数测量系统的测量方法,可以但不限于包括如下步骤。The measurement method of the aforementioned non-contact catenary parameter measurement system may, but is not limited to, include the following steps.
S101.接收来自激光扫描仪的实时扫描数据,并将所述实时扫描数据由极坐标转换为直角坐标。S101. Receive real-time scanning data from a laser scanner, and convert the real-time scanning data from polar coordinates to rectangular coordinates.
S102.根据是否属于同一障碍物对实时扫描数据进行分类,并根据障碍物的连续数据点个数过滤掉干扰数据,最后剩下的实时扫描数据就是关于接触网导线的扫描数据。S102. Classify the real-time scanning data according to whether they belong to the same obstacle, and filter out the interference data according to the number of continuous data points of the obstacle, and finally the remaining real-time scanning data is the scanning data about the catenary wire.
在所述步骤S102中,可具体根据两连续数据高度差是否大于30mm来判断是否属于同一障碍物,若高度差大于30mm,则判定为不同障碍物,若高度差小于30mm,判断为同一障碍物,由此可以过滤掉隧道壁等干扰数据。In the step S102, it can be judged whether they belong to the same obstacle according to whether the height difference between the two consecutive data is greater than 30 mm. If the height difference is greater than 30 mm, it is judged as a different obstacle; , so that interference data such as tunnel walls can be filtered out.
S103.根据剩下的实时扫描数据,获取接触网导线的实时导线拉出值和实时导线高度。S103. According to the remaining real-time scanning data, obtain the real-time conductor pull-out value and the real-time conductor height of the catenary conductor.
S104.根据来自轨距传感器的实时轨距测量数据、来自倾角传感器的实时倾角测量数据和在标定时确定的原始误差数据,分别对所述实时导线拉出值和所述实时导线高度进行修正补偿。S104. Correct and compensate the real-time wire pull-out value and the real-time wire height according to the real-time gauge measurement data from the gauge sensor, the real-time inclination measurement data from the inclination sensor, and the original error data determined during calibration, respectively .
在所述步骤S104中,所述原始误差数据为根据设备的测量值和手工测量的实际值计算出由机械加工产生的原始误差。In the step S104, the original error data is the original error generated by machining calculated according to the measured value of the equipment and the actual value measured manually.
S105.根据实时导线高度确定对应接触网导线为接触线还是承力索,若出现两根接触线,则根据对应接触线的实时导线拉出值和实时导线高度,分别计算出两根接触线之间的实时平行间距和实时高度差。S105. Determine whether the corresponding catenary wire is a catenary wire or a catenary cable according to the real-time wire height. If there are two contact wires, calculate the distance between the two contact wires according to the real-time wire pull-out value and the real-time wire height of the corresponding contact wire. Real-time parallel spacing and real-time height difference between them.
在所述步骤S105中,还可以根据两根接触线的斜率判断出是锚段还是线岔;根据跨距由公式计算出吊弦个数和每个吊弦的位置。In the step S105, it is also possible to judge whether it is an anchor segment or a line branch according to the slope of the two contact lines; the number of hanging strings and the position of each hanging string are calculated according to the formula according to the span.
S106.判断实时导线拉出值、实时导线高度、实时平行间距或实时高度差是否超限,若判定超限,则将根据实时接触网支柱杆识别结果数据和实时车程数据确定的最近接触网支柱杆作为故障区间杆。S106. Judging whether the real-time wire pull-out value, real-time wire height, real-time parallel spacing or real-time height difference exceeds the limit, if it is determined to be over the limit, then the nearest catenary pillar determined according to the real-time catenary pillar rod identification result data and real-time driving data The rod acts as a fault zone rod.
在所述步骤S106之后,还可以根据所述故障区间杆的线路支柱杆号在线路数据库中查找到预先存储的对应杆号数据,并将该杆号数据和包含对应实时导线拉出值和实时导线高度等其他实时测量得到的接触网参数进行输出警示,以便进行及时地维修,消除交通隐患。After the step S106, the pre-stored corresponding pole number data can also be found in the line database according to the line pillar pole number of the fault zone pole, and the pole number data and the corresponding real-time wire pull-out value and real-time Other catenary parameters measured in real time, such as conductor height, are used to output warnings, so as to carry out timely maintenance and eliminate traffic hazards.
所述数据中心服务器的数据储存方式可分为全数据储存和定位点数据储存两种,前者为数据采集车每移动一定车程距离(例如5cm),即保存一次测量的全数据(包括轨距、超高、侧面限界、拉出值和高度等),后者为定点存储支柱杆、吊弦、线岔处的几何参数。The data storage methods of the data center server can be divided into two types: full data storage and positioning point data storage. The former saves the full data (including gauge, Superelevation, side limit, pull-out value and height, etc.), the latter stores the geometric parameters of the pillar rod, hanging string and line switch for fixed points.
优化的,如图12~13所示,所述数据中心服务器还内置有包含存储读写模块、线路管理器、波形数据模型、图形界面模块、命令控制模块和操作栈模块的测量数据回放软件系统;Optimized, as shown in Figures 12-13, the data center server also has a built-in measurement data playback software system including a storage read-write module, a line manager, a waveform data model, a graphical interface module, a command control module and an operation stack module ;
所述存储读写模块用于从本地数据存储模块中读写历史测量的杆号数据和接触网参数以及将修正的接触网参数写入本地数据存储模块中;The storage read-write module is used to read and write historically measured pole number data and catenary parameters from the local data storage module and write the corrected catenary parameters into the local data storage module;
所述线路管理器用于管理若干条轨道线路的线路数据,并对应每条轨道线路,设有专用于管理该轨道线路的线路数据的曲线管理器;The line manager is used to manage the line data of several track lines, and corresponding to each track line, a curve manager dedicated to managing the line data of the track line is provided;
所述波形数据模型用于按照预制模型将待输出显示的杆号数据和接触网参数转换为可输出显示的波形图像;The waveform data model is used to convert the bar number data and catenary parameters to be output and displayed into output and displayed waveform images according to the prefabricated model;
所述图形界面模块用于显示来自波形数据模型的波形图像,以及输入由操作者手动生成的操作指令,其中,所述操作指令包含对接触网参数的修正指令和/或用于调整波形图像显示内容的控制指令;The graphical interface module is used to display waveform images from the waveform data model, and to input operating instructions manually generated by the operator, wherein the operating instructions include correction instructions for catenary parameters and/or are used to adjust the waveform image display Content control instructions;
所述命令控制模块用于根据来自图形界面模块的操作指令对接触网参数进行修正和/或调整波形图像的显示内容;The command control module is used to modify the catenary parameters and/or adjust the display content of the waveform image according to the operation instructions from the graphical interface module;
所述操作栈模块用于记录所有的操作指令以及对应的操作记录。The operation stack module is used to record all operation instructions and corresponding operation records.
如图12和13所示,所述接触网参数可以但不限于为导线拉出值、导线高度、平行间距或高度差等。由此通过在新型测量系统中内置测量数据回放软件系统,还可以实现对测量数据进行数据回放、数据分析和数据修正等应用目的,确保后期数据分析的自动化。As shown in FIGS. 12 and 13 , the catenary parameters may be, but not limited to, wire pull-out value, wire height, parallel spacing or height difference, and the like. Therefore, through the built-in measurement data playback software system in the new measurement system, application purposes such as data playback, data analysis, and data correction of measurement data can also be realized to ensure the automation of later data analysis.
本实施例提供所述测量系统及其测量方法的技术效果,在实施例一或实施例二的技术效果基础上,还具有如下技术效果:This embodiment provides the technical effects of the measurement system and its measurement method, and on the basis of the technical effects of Embodiment 1 or Embodiment 2, it also has the following technical effects:
(1)本实施例还提供了一种可全自动采集接触网多参数的新型测量系统及其测量方法,一方面可以根据接触网支柱杆识别结果和实时车程,自动确定最接近的接触网支柱杆的杆号数据,另一方还可以结合激光扫描仪、轨距传感器和倾角传感器,计算获取包含接触网导线拉出值和导线高度等的接触网参数,并可以自动进行数据存储、数据显示和通过数据超限检测来发现故障位置,进一步提高检测效率,并节省时间和降低人力成本;(1) This embodiment also provides a new type of measurement system and its measurement method that can automatically collect multiple parameters of the catenary. On the one hand, it can automatically determine the closest catenary support according to the identification results of the catenary support pole and the real-time driving distance The pole number data of the pole, the other party can also combine the laser scanner, gauge sensor and inclination sensor to calculate and obtain the catenary parameters including the pull-out value of the catenary wire and the height of the wire, and can automatically perform data storage, data display and Find the fault location through data overrun detection, further improve detection efficiency, save time and reduce labor costs;
(2)通过在新型测量系统中内置测量数据回放软件系统,还可以实现对测量数据进行数据回放、数据分析和数据修正等应用目的,确保后期数据分析的自动化。(2) Through the built-in measurement data playback software system in the new measurement system, it can also realize the application purposes of data playback, data analysis and data correction of the measurement data, ensuring the automation of later data analysis.
本发明不局限于上述可选的实施方式,任何人在本发明的启示下都可得出其他各种形式的产品。上述具体实施方式不应理解成对本发明的保护范围的限制,本发明的保护范围应当以权利要求书中界定的为准,并且说明书可以用于解释权利要求书。The present invention is not limited to the above optional embodiments, and anyone can obtain other various forms of products under the enlightenment of the present invention. The above specific implementation methods should not be construed as limiting the protection scope of the present invention. The protection scope of the present invention should be defined in the claims, and the description can be used to interpret the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810845270.0A CN108761477B (en) | 2018-07-27 | 2018-07-27 | Non-contact network parameter acquisition device, measurement system and measurement method adopting digital laser technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810845270.0A CN108761477B (en) | 2018-07-27 | 2018-07-27 | Non-contact network parameter acquisition device, measurement system and measurement method adopting digital laser technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108761477A true CN108761477A (en) | 2018-11-06 |
CN108761477B CN108761477B (en) | 2023-12-19 |
Family
ID=63972089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810845270.0A Expired - Fee Related CN108761477B (en) | 2018-07-27 | 2018-07-27 | Non-contact network parameter acquisition device, measurement system and measurement method adopting digital laser technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108761477B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632803A (en) * | 2019-02-20 | 2019-04-16 | 银河水滴科技(北京)有限公司 | A kind of Contact Line Detection equipment, method and device |
CN109798842A (en) * | 2019-03-13 | 2019-05-24 | 武汉汉宁轨道交通技术有限公司 | One kind third rail detection device and detection method |
CN110244320A (en) * | 2019-07-08 | 2019-09-17 | 四川艾德瑞电气有限公司 | Overhead contact line operating status intelligent checking system |
CN110346295A (en) * | 2019-07-15 | 2019-10-18 | 北京神州同正科技有限公司 | Defect combined positioning method and device, equipment and storage medium |
CN112197726A (en) * | 2020-10-29 | 2021-01-08 | 中国铁建电气化局集团第五工程有限公司 | Integrated application method for measuring and calculating integral dropper of high-speed rail contact network |
CN112782193A (en) * | 2021-02-02 | 2021-05-11 | 成都国铁电气设备有限公司 | Performance test platform and method for contact net suspension state detection and monitoring device |
CN112881055A (en) * | 2021-01-23 | 2021-06-01 | 中船重工海为郑州高科技有限公司 | Dynamic walking precision calibration and distance measurement method |
CN113607094A (en) * | 2021-10-11 | 2021-11-05 | 中国铁建电气化局集团第二工程有限公司 | Contact net slope laser measuring device and method |
CN114923520A (en) * | 2022-05-20 | 2022-08-19 | 广东中科如铁技术有限公司 | An automatic detection system for catenary |
CN115183670A (en) * | 2022-06-15 | 2022-10-14 | 北京航天控制仪器研究所 | A method and device for calibration of rotary catenary detection equipment |
CN117788965A (en) * | 2024-02-28 | 2024-03-29 | 四川拓及轨道交通设备股份有限公司 | Flexible contact net hanger detection and high-definition imaging method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2560687A1 (en) * | 1983-12-26 | 1985-09-06 | Jauliac Louis | Calibrated telescopic boom for various direct reading measurements, particularly for inspecting suspended high-voltage electric cables in complete safety |
CN101349755A (en) * | 2007-07-19 | 2009-01-21 | 亚洲光学股份有限公司 | Apparatus and method for measuring distance by laser |
CN201534505U (en) * | 2009-05-25 | 2010-07-28 | 许继集团有限公司 | Automatic phase-splitting device without break for electric locomotive |
CN103453916A (en) * | 2013-09-16 | 2013-12-18 | 北京机械设备研究所 | Speedometer capable of autonomously judging direction |
CN105416097A (en) * | 2015-11-12 | 2016-03-23 | 北京天格高通科技有限公司 | Contact screen detecting and overhauling car and method based on laser radar |
CN106595488A (en) * | 2015-10-19 | 2017-04-26 | 北京纳米能源与系统研究所 | Monitoring device and monitoring system for contact line drop in simple chain-shaped suspension overhead contact system |
CN208384117U (en) * | 2018-07-27 | 2019-01-15 | 成都磁海电气工程有限公司 | A kind of contactless catenary's parameters acquisition device using digital laser technology |
-
2018
- 2018-07-27 CN CN201810845270.0A patent/CN108761477B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2560687A1 (en) * | 1983-12-26 | 1985-09-06 | Jauliac Louis | Calibrated telescopic boom for various direct reading measurements, particularly for inspecting suspended high-voltage electric cables in complete safety |
CN101349755A (en) * | 2007-07-19 | 2009-01-21 | 亚洲光学股份有限公司 | Apparatus and method for measuring distance by laser |
CN201534505U (en) * | 2009-05-25 | 2010-07-28 | 许继集团有限公司 | Automatic phase-splitting device without break for electric locomotive |
CN103453916A (en) * | 2013-09-16 | 2013-12-18 | 北京机械设备研究所 | Speedometer capable of autonomously judging direction |
CN106595488A (en) * | 2015-10-19 | 2017-04-26 | 北京纳米能源与系统研究所 | Monitoring device and monitoring system for contact line drop in simple chain-shaped suspension overhead contact system |
CN105416097A (en) * | 2015-11-12 | 2016-03-23 | 北京天格高通科技有限公司 | Contact screen detecting and overhauling car and method based on laser radar |
CN208384117U (en) * | 2018-07-27 | 2019-01-15 | 成都磁海电气工程有限公司 | A kind of contactless catenary's parameters acquisition device using digital laser technology |
Non-Patent Citations (2)
Title |
---|
O. DUQUE 等: "Criticality determination based on failure records for decision-making in the overhead contact line system", PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS, PART F. JOURNAL OF RAIL AND RAPID TRANSIT, vol. 223, no. 5, pages 485 - 494 * |
刘文强: "基于均值漂移和粒子滤波算法的接触网几何参数检测方法研究", 铁道学报, no. 11, pages 30 - 36 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632803A (en) * | 2019-02-20 | 2019-04-16 | 银河水滴科技(北京)有限公司 | A kind of Contact Line Detection equipment, method and device |
CN109632803B (en) * | 2019-02-20 | 2023-10-20 | 银河水滴科技(北京)有限公司 | Contact net detection equipment, method and device |
CN109798842B (en) * | 2019-03-13 | 2023-09-08 | 武汉汉宁轨道交通技术有限公司 | A third rail detection device and detection method |
CN109798842A (en) * | 2019-03-13 | 2019-05-24 | 武汉汉宁轨道交通技术有限公司 | One kind third rail detection device and detection method |
CN110244320A (en) * | 2019-07-08 | 2019-09-17 | 四川艾德瑞电气有限公司 | Overhead contact line operating status intelligent checking system |
CN110346295A (en) * | 2019-07-15 | 2019-10-18 | 北京神州同正科技有限公司 | Defect combined positioning method and device, equipment and storage medium |
CN112197726A (en) * | 2020-10-29 | 2021-01-08 | 中国铁建电气化局集团第五工程有限公司 | Integrated application method for measuring and calculating integral dropper of high-speed rail contact network |
CN112881055B (en) * | 2021-01-23 | 2023-05-05 | 中船重工海为郑州高科技有限公司 | Dynamic walking precision calibration and ranging method |
CN112881055A (en) * | 2021-01-23 | 2021-06-01 | 中船重工海为郑州高科技有限公司 | Dynamic walking precision calibration and distance measurement method |
CN112782193A (en) * | 2021-02-02 | 2021-05-11 | 成都国铁电气设备有限公司 | Performance test platform and method for contact net suspension state detection and monitoring device |
CN113607094A (en) * | 2021-10-11 | 2021-11-05 | 中国铁建电气化局集团第二工程有限公司 | Contact net slope laser measuring device and method |
CN114923520A (en) * | 2022-05-20 | 2022-08-19 | 广东中科如铁技术有限公司 | An automatic detection system for catenary |
CN115183670A (en) * | 2022-06-15 | 2022-10-14 | 北京航天控制仪器研究所 | A method and device for calibration of rotary catenary detection equipment |
CN115183670B (en) * | 2022-06-15 | 2025-05-02 | 北京航天控制仪器研究所 | A method and device for calibrating rotary contact network detection equipment |
CN117788965A (en) * | 2024-02-28 | 2024-03-29 | 四川拓及轨道交通设备股份有限公司 | Flexible contact net hanger detection and high-definition imaging method |
CN117788965B (en) * | 2024-02-28 | 2024-05-10 | 四川拓及轨道交通设备股份有限公司 | Flexible contact net hanger detection and high-definition imaging method |
Also Published As
Publication number | Publication date |
---|---|
CN108761477B (en) | 2023-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108761477A (en) | A kind of contactless catenary's parameters harvester, measuring system and its measurement method using digital laser technology | |
CN202080298U (en) | Contact rail detecting device for urban rail transit | |
CN102788557B (en) | System with single laser sensor for detecting length and height of vehicle based on related algorithm | |
CN107063179A (en) | A kind of movable tunnel cross section deformation detection means | |
CN104260751B (en) | The high-speed railway rail center line detecting system of a kind of Multi-sensor Fusion and detection method | |
CN208384117U (en) | A kind of contactless catenary's parameters acquisition device using digital laser technology | |
CN202066866U (en) | Railcar intelligent speedometer | |
CN103723161A (en) | Real-time automatic detection equipment for train loading safety | |
CN110203247A (en) | A kind of multisensor synchronous for track detecting | |
CN111579560A (en) | A device and method for locating defects in a tunnel | |
CN101302738B (en) | Rut testing instrument and testing method thereof | |
CN108181313B (en) | Device and method suitable for detecting safety state of contact net operation environment | |
CN202614181U (en) | Rain running space limiting laser measurement trolley system | |
CN202083384U (en) | System for positioning and ranging vehicle for automatic coal sample acquiring system | |
CN211626392U (en) | Contact net check out test set | |
CN207380496U (en) | A kind of Long-Distance Monitoring System About for being adapted for contact with net detection tool car | |
CN202974192U (en) | Urban rail detection device | |
CN201945294U (en) | Automatic detecting system for full face of line | |
CN211401099U (en) | Rail transit carries on tunnel detection device of formula | |
CN207268904U (en) | Independent and self-powered road traffic monitoring system | |
CN115035087A (en) | Novel railway line image detection method and system | |
CN101546477A (en) | Movable traffic information investigating instrument | |
CN202182945U (en) | Comprehensive positioning device based on radar and camera scanning | |
CN110184866A (en) | A kind of subway O&M limit and track geometry status detect integral measuring instrument | |
CN2824007Y (en) | Intelligent multi-channel tester for bridge vibration and data acquiring adapter thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20231219 |