CN108757731A - A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized - Google Patents
A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized Download PDFInfo
- Publication number
- CN108757731A CN108757731A CN201810702176.XA CN201810702176A CN108757731A CN 108757731 A CN108757731 A CN 108757731A CN 201810702176 A CN201810702176 A CN 201810702176A CN 108757731 A CN108757731 A CN 108757731A
- Authority
- CN
- China
- Prior art keywords
- radial
- axial
- permanent magnet
- core
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000725 suspension Substances 0.000 claims abstract description 34
- 238000004804 winding Methods 0.000 claims abstract description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 4
- 239000007789 gas Substances 0.000 claims 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 1
- 239000000696 magnetic material Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000004907 flux Effects 0.000 description 26
- 238000005339 levitation Methods 0.000 description 5
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/041—Passive magnetic bearings with permanent magnets on one part attracting the other part
- F16C32/0421—Passive magnetic bearings with permanent magnets on one part attracting the other part for both radial and axial load
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Abstract
一种永磁体轴向磁化的径向轴向三自由度磁轴承,包括定子和转子,所述转子由转轴、转子铁心径向部分和转子铁心轴向部分组成,所述定子包括间隔设置于转子铁心径向部径向外侧的径向控制铁心,以及对称设置于径向控制铁心两侧的两个轴向控制铁心,所述径向控制铁心与转子铁心径向部分之间设置有径向工作气隙,所述径向控制铁心上绕制有径向悬浮绕组;所述两个轴向控制铁心的外沿与径向控制铁心之间分别连接有永磁体,内壁内沿分别同心设置有两道吸力圆盘,所述两道吸力圆盘之间同心设置有控制圆盘,所述两道吸力圆盘上各自绕制有轴向悬浮绕组。
A radial and axial three-degree-of-freedom magnetic bearing with permanent magnets magnetized axially, comprising a stator and a rotor. The radial control core on the radial outer side of the radial part of the core, and the two axial control cores arranged symmetrically on both sides of the radial control core. air gap, radial suspension windings are wound on the radial control core; permanent magnets are respectively connected between the outer edges of the two axial control cores and the radial control core, and two A suction disk, a control disk is concentrically arranged between the two suction disks, and an axial suspension winding is wound on each of the two suction disks.
Description
技术领域technical field
本发明涉及三自由度磁轴承领域,具体涉及一种永磁体轴向磁化的径向轴向三自由度磁轴承。The invention relates to the field of three-degree-of-freedom magnetic bearings, in particular to a radial and axial three-degree-of-freedom magnetic bearing with axial magnetization of permanent magnets.
背景技术Background technique
相比于传统电机中使用的机械轴承,磁轴承由于定转子之间没有直接接触,利用磁悬浮力使得转子悬浮来代替传统机械轴承的支撑作用,因此可以有效解决机械轴承中出现的振动、磨损、摩擦、需要润滑等问题。磁轴承其独特的设计原理,使得在高速、高精和真空等工作领域具有很高的应用价值和广泛的应用前景。Compared with the mechanical bearings used in traditional motors, magnetic bearings can effectively solve the vibration, wear, Friction, need for lubrication, etc. The unique design principle of the magnetic bearing makes it have high application value and broad application prospects in the fields of high speed, high precision and vacuum.
专利公开号CN201410156526,名称为一种三自由度磁轴承的专利文献和专利公开号CN201410461449,名称为一种新型轴-径向三自由度混合磁轴承的专利文献中提出的三自由度混合磁轴承,定子均由轴向、径向铁心两部分构成,转子在轴向方向上始终处于自由运动状态,当转子产生轴向位移时,永磁体提供的轴向偏置磁通将根据磁路磁阻最小原则,将全部选择轴向气隙减小的一侧定子轴向铁心磁路,而不再经过轴向气隙增大的一侧磁路,众所周知,对于同样的气隙大小,由于高性能永磁材料的采用,导致永磁体产生的气隙磁场强度很大,可达0.8T或者更高,而绕组通电产生的气隙磁场强度较小,约为0.2T~0.3T,悬浮控制磁通调节偏置磁通时,一侧从0.8T减小到0.5T,而另一侧从0T增大到0.3T,转子受力方向并没有发生改变,从而导致轴向无法启动。Patent Publication No. CN201410156526, a patent document named a three-degree-of-freedom magnetic bearing and patent publication No. CN201410461449, a three-degree-of-freedom hybrid magnetic bearing proposed in a patent document named a new axial-radial three-degree-of-freedom hybrid magnetic bearing , the stator is composed of axial and radial iron cores, and the rotor is always in a state of free movement in the axial direction. The principle of minimum is to select the stator axial core magnetic circuit on the side with the reduced axial air gap instead of the magnetic circuit on the side with the increased axial air gap. As we all know, for the same air gap size, due to high performance The use of permanent magnet materials leads to a large air gap magnetic field strength generated by the permanent magnet, which can reach 0.8T or higher, while the air gap magnetic field strength generated by the winding electrification is small, about 0.2T~0.3T, and the suspension controls the magnetic flux When adjusting the bias flux, one side decreases from 0.8T to 0.5T, while the other side increases from 0T to 0.3T, the force direction of the rotor does not change, which leads to the axial failure to start.
专利公开号CN201110232913,名称为一种径向-轴向三自由度交直流混合磁轴承,采用双永磁体提供轴向径向偏置磁通的结构,虽然解决了轴向启动困难的问题,但其结构中的两个永磁体占用了轴承内部空间,使得绕组占用空间小,轴向和径向磁极面积减小,产生的轴向和径向悬浮力减小;此外由于隔磁材料的厚度必须根据气隙厚度进行确定,多个隔磁环的使用造成结构复杂,制造工艺要求高,价格高。Patent Publication No. CN201110232913, named as a radial-axial three-degree-of-freedom AC-DC hybrid magnetic bearing, adopts double permanent magnets to provide axial and radial bias magnetic flux structure, although it solves the problem of axial start-up difficulty, but The two permanent magnets in its structure occupy the inner space of the bearing, so that the winding occupies a small space, the axial and radial magnetic pole areas are reduced, and the axial and radial levitation forces generated are reduced; in addition, because the thickness of the magnetic isolation material must be Determined according to the thickness of the air gap, the use of multiple magnetic isolation rings results in a complex structure, high manufacturing process requirements, and high prices.
发明内容Contents of the invention
本发明的目的是针对现有三自由度磁轴承的不足,提供一种体积小、制造工艺简单、结构紧凑,轴向悬浮力和径向悬浮力无耦合,转子径向部分两侧轴向偏置磁通始终相等的永磁体轴向磁化的径向轴向三自由度磁轴承。The purpose of the present invention is to address the shortcomings of the existing three-degree-of-freedom magnetic bearings, to provide a magnetic bearing with small volume, simple manufacturing process, compact structure, no coupling between axial suspension force and radial suspension force, and axial offset on both sides of the radial part of the rotor. Radial and axial three-degree-of-freedom magnetic bearings with axial magnetization of permanent magnets whose magnetic flux is always equal.
本发明通过以下技术方案实现:The present invention is realized through the following technical solutions:
一种永磁体轴向磁化的径向轴向三自由度磁轴承,包括定子和转子,所述转子由转轴、转子铁心径向部分和转子铁心轴向部分组成,所述定子包括间隔设置于转子铁心径向部分径向外侧的径向控制铁心,以及对称设置于径向控制铁心两侧的两个轴向控制铁心,所述径向控制铁心与转子铁心径向部分之间设置有径向工作气隙,所述径向控制铁心上绕制有径向悬浮绕组;所述两个轴向控制铁心的外沿与径向控制铁心之间分别连接有永磁体,内壁内沿分别同心设置有两道吸力圆盘,所述两道吸力圆盘之间同心设置有控制圆盘,所述两道吸力圆盘上各自绕制有轴向悬浮绕组。A radial and axial three-degree-of-freedom magnetic bearing with permanent magnets magnetized axially, comprising a stator and a rotor. The radial control core on the radial outside of the radial part of the core, and the two axial control cores symmetrically arranged on both sides of the radial control core, and a radial working core is arranged between the radial control core and the radial part of the rotor core. air gap, radial suspension windings are wound on the radial control core; permanent magnets are respectively connected between the outer edges of the two axial control cores and the radial control core, and two A suction disk, a control disk is concentrically arranged between the two suction disks, and an axial suspension winding is wound on each of the two suction disks.
本发明的进一步方案是,所述控制圆盘与转子铁心径向部分之间的气隙长度大于吸力圆盘与转子铁心径向部分之间的气隙长度。A further solution of the present invention is that the length of the air gap between the control disc and the radial part of the rotor core is greater than the length of the air gap between the suction disc and the radial part of the rotor core.
本发明的进一步方案是,所述永磁体为轴向充磁的环形永磁体。A further solution of the present invention is that the permanent magnet is an axially magnetized annular permanent magnet.
本发明的进一步方案是,所述永磁体由稀土永磁材料或铁氧永磁材料制成。A further solution of the present invention is that the permanent magnet is made of rare earth permanent magnet material or ferrite permanent magnet material.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
一、由两个轴向磁化的永磁体分别提供轴向和径向偏置磁通,其中轴向偏置磁通在转子轴向发生偏移时,仍然能保证转子径向部分左、右两侧轴向偏置磁动势始终相等,解决了磁轴承轴向启动困难的问题;轴向控制铁心正对转子铁心径向部的内沿采用由两道吸力圆盘和控制圆盘组成的“E”形结构,保证轴向控制悬浮磁通路径畅通,通过轴向悬浮绕组与轴向偏置磁通的相互作用,实现转子轴向的稳定悬浮;1. Two axially magnetized permanent magnets provide axial and radial bias fluxes respectively. When the axial bias flux is shifted in the axial direction of the rotor, it can still ensure the left and right sides of the radial part of the rotor. The lateral axial bias magnetomotive force is always equal, which solves the problem of difficult axial start of the magnetic bearing; the inner edge of the axial control core facing the radial part of the rotor core adopts a " The E" shape structure ensures the smooth path of the axially controlled levitation flux, and realizes the stable levitation of the rotor in the axial direction through the interaction between the axial levitation winding and the axial bias flux;
二、径向悬浮力和轴向悬浮力不存在耦合问题,降低了控制的难度,有利于在高速场合的应用,易于工业实现;2. There is no coupling problem between the radial suspension force and the axial suspension force, which reduces the difficulty of control, is conducive to the application in high-speed occasions, and is easy to realize industrially;
三、相比于现有技术中采用两块轴向充磁的永磁体提供静态偏磁磁通,本发明采用的两块轴向充磁的永磁体嵌入到径向控制铁心之中,不占用轴承内部空间,增加了径向和轴向控制绕组的空间,能够增加轴向和径向悬浮力;3. Compared with the prior art that uses two axially magnetized permanent magnets to provide static bias magnetic flux, the two axially magnetized permanent magnets used in the present invention are embedded in the radial control core without occupying The internal space of the bearing increases the space for radial and axial control windings, which can increase the axial and radial suspension force;
四、轴向控制铁心采用的“E”形结构,给轴向悬浮控制磁通提供闭合路径,是转子轴向左、右两侧轴向偏置磁动势始终相等必须满足的条件。4. The "E" shape structure adopted by the axial control core provides a closed path for the axial suspension control flux, which is the condition that the axial bias magnetomotive force on the left and right sides of the rotor shaft is always equal.
附图说明Description of drawings
图1为本发明的结构剖视图。Fig. 1 is a structural sectional view of the present invention.
具体实施方式Detailed ways
如图1所示的一种永磁体轴向磁化的径向轴向三自由度磁轴承,包括定子和转子,所述转子由转轴16、转子铁心径向部分14和转子铁心轴向部分15组成。A radial and axial three-degree-of-freedom magnetic bearing with permanent magnets axially magnetized as shown in Figure 1 includes a stator and a rotor, and the rotor is composed of a rotating shaft 16, a radial portion 14 of the rotor core and an axial portion 15 of the rotor core .
所述定子包括间隔设置于转子铁心径向部分14径向外侧形成径向工作气隙的径向控制铁心3,以及对称设置于径向控制铁心3两侧的左侧轴向控制铁心1、右侧轴向控制铁心5;所述径向控制铁心3上绕制有径向悬浮绕组26。The stator includes a radial control core 3 arranged at intervals on the radially outer side of the radial part 14 of the rotor core to form a radial working air gap, and left axial control cores 1 and 1 symmetrically arranged on both sides of the radial control core 3 . The side axial control core 5 ; the radial suspension winding 26 is wound on the radial control core 3 .
所述左侧轴向控制铁心1、右侧轴向控制铁心5的外沿与径向控制铁心3之间分别连接有环形的左侧永磁体2、右侧永磁体4,所述左侧永磁体2、右侧永磁体4为稀土永磁材料或铁氧永磁材料制成的轴向充磁的环形永磁体,分别给径向和轴向三自由度提供偏置磁通;所述左侧轴向控制铁心1、右侧轴向控制铁心5的内壁内沿分别同心设置有两道左吸力圆盘6、两道右吸力圆盘7,所述两道左吸力圆盘6之间和两道右吸力圆盘7之间分别同心设置有左控制圆盘8、右控制圆盘9,所述左控制圆盘8、右控制圆盘9与转子铁心径向部分14之间的气隙长度大于左吸力圆盘6、右吸力圆盘7与转子铁心径向部分14之间的气隙长度,所述两道左吸力圆盘6和两道右吸力圆盘7上各自绕制有左轴向悬浮绕组10、右轴向悬浮绕组12;两道左吸力圆盘6、左控制圆盘8与左侧轴向铁心1,以及两道右吸力圆盘7、右控制圆盘9与右侧轴向铁心5分别构成“E”形结构。Between the outer edges of the left axial control core 1 and the right axial control core 5 and the radial control core 3, there are ring-shaped left permanent magnets 2 and right permanent magnets 4 respectively. The magnet 2 and the permanent magnet 4 on the right are axially magnetized annular permanent magnets made of rare earth permanent magnet materials or ferrite permanent magnet materials, which provide bias magnetic flux to the radial and axial three degrees of freedom respectively; the left Two left suction discs 6 and two right suction discs 7 are concentrically arranged on the inner walls of the side axial control core 1 and the right axial control core 5 respectively, and the gap between the two left suction discs 6 and A left control disc 8 and a right control disc 9 are arranged concentrically between the two right suction discs 7 respectively. The air gap between the left control disc 8 and the right control disc 9 and the radial part 14 of the rotor core The length is greater than the air gap length between the left suction disk 6, the right suction disk 7 and the radial part 14 of the rotor core, and the two left suction disks 6 and the two right suction disks 7 are respectively wound with left Axial suspension winding 10, right axial suspension winding 12; two left suction disks 6, left control disk 8 and left axial core 1, and two right suction disks 7, right control disk 9 and right The lateral axial iron cores 5 form an "E"-shaped structure respectively.
转子铁心径向部分14和转子铁心轴向部分(15)、左侧轴向铁心1、右侧轴向铁心5、径向控制铁心3均由轴向和径向导磁性能良好的材料制成,左轴向悬浮绕组10、右轴向悬浮绕组12均采用导电良好的电磁线圈绕制后侵漆烘干而成。The radial part 14 of the rotor core, the axial part (15) of the rotor core, the left axial core 1, the right axial core 5, and the radial control core 3 are all made of materials with good axial and radial magnetic permeability, Both the left axial suspension winding 10 and the right axial suspension winding 12 are formed by winding electromagnetic coils with good electrical conductivity and drying them with varnish.
所述左侧轴向铁心1、左轴向悬浮绕组10、径向控制铁心3、径向悬浮绕组26、右侧轴向铁心5、右轴向悬浮绕组12、左侧永磁体2、右侧永磁体4沿轴向叠压。The left axial core 1, the left axial suspension winding 10, the radial control core 3, the radial suspension winding 26, the right axial core 5, the right axial suspension winding 12, the left permanent magnet 2, the right The permanent magnets 4 are stacked axially.
悬浮原理是:左侧永磁体2和右侧永磁体4分别产生左侧偏置磁通20和右侧偏置磁通25两部分;左侧偏置磁通20从左侧永磁体2的N极出发,经两道左吸力圆盘6分为左内偏置磁通19、左外偏置磁通27两部分,然后分别经过两道左吸力圆盘6与转子铁心径向部14之间的左侧轴向气隙、转子铁心径向部分14、径向工作气隙、径向控制铁心3,回到左侧永磁体2的S极形成左侧闭合磁路。The levitation principle is: the left permanent magnet 2 and the right permanent magnet 4 generate two parts, the left bias magnetic flux 20 and the right bias magnetic flux 25 respectively; Starting from the pole, the two left suction disks 6 are divided into two parts: the left inner bias magnetic flux 19 and the left outer bias magnetic flux 27, and then pass between the two left suction disks 6 and the radial part 14 of the rotor core. The left axial air gap, the rotor core radial part 14, the radial working air gap, the radial control core 3, return to the S pole of the left permanent magnet 2 to form a left closed magnetic circuit.
右侧偏置磁通25从右侧永磁体4的N极出发,经两道右吸力圆盘7分为右内偏置磁通23、右外偏置磁通24两部分,然后分别经过两道右吸力圆盘7与转子铁心径向部分14之间的右侧轴向气隙、转子铁心径向部分14、径向工作气隙、径向控制铁心3,回到右侧永磁体4的S极形成右侧闭合磁路。The right bias magnetic flux 25 starts from the N pole of the right permanent magnet 4, and is divided into two parts, the right inner bias magnetic flux 23 and the right outer bias magnetic flux 24, through two right suction discs 7, and then passes through two parts respectively. The right side axial air gap between the right suction disk 7 and the radial part 14 of the rotor core, the radial part 14 of the rotor core, the radial working air gap, the radial control core 3, and the right side permanent magnet 4 The S pole forms a right closed magnetic circuit.
径向悬浮绕组26通电产生径向悬浮磁通28,径向悬浮磁通28经过径向控制铁心3上侧、上侧径向气隙、转子铁心径向部分14、转子铁心轴向部分15、下侧径向气隙和径向控制铁心3下侧形成闭合路径;用来改变磁轴承转子铁心径向两侧气隙磁场的强弱,根据现有技术,在定子上安装径向位移传感器建立径向位移闭环控制系统,保持定、转子径向之间气隙均匀,实现转子径向稳定悬浮;两组左轴向悬浮绕组10、两组右轴向悬浮绕组12通电分别产生四条轴向悬浮磁通,分别为:左内轴向悬浮磁通17、左外轴向悬浮磁通18、右内轴向悬浮磁通21、右外轴向悬浮磁通22,四条轴向悬浮磁通用来改变磁轴承转子铁心轴向两侧气隙磁场的强弱,通过在定子上安装轴向位移传感器建立轴向位移闭环控制系统,保持定、转子轴向之间气隙均匀,实现转子轴向稳定悬浮。The radial suspension winding 26 is energized to generate a radial suspension magnetic flux 28, and the radial suspension magnetic flux 28 passes through the upper side of the radial control core 3, the upper radial air gap, the radial part 14 of the rotor core, the axial part 15 of the rotor core, The radial air gap on the lower side and the lower side of the radial control core 3 form a closed path; it is used to change the strength of the air gap magnetic field on both sides of the magnetic bearing rotor core in the radial direction. According to the prior art, a radial displacement sensor is installed on the stator to establish The radial displacement closed-loop control system keeps the air gap between the stator and the rotor even in the radial direction, and realizes the stable suspension of the rotor in the radial direction; two sets of left axial suspension windings 10 and two sets of right axial suspension windings 12 are energized to generate four axial suspensions respectively The magnetic fluxes are respectively: left inner axial suspension magnetic flux 17, left outer axial suspension magnetic flux 18, right inner axial suspension magnetic flux 21, right outer axial suspension magnetic flux 22, and the four axial suspension magnetic fluxes are commonly used to change The strength of the magnetic field in the air gap on both sides of the rotor core in the magnetic bearing axis is established by installing an axial displacement sensor on the stator to establish an axial displacement closed-loop control system to keep the air gap between the stator and rotor axially uniform and to achieve stable suspension of the rotor in the axial direction .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810702176.XA CN108757731A (en) | 2018-06-30 | 2018-06-30 | A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810702176.XA CN108757731A (en) | 2018-06-30 | 2018-06-30 | A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108757731A true CN108757731A (en) | 2018-11-06 |
Family
ID=63975131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810702176.XA Pending CN108757731A (en) | 2018-06-30 | 2018-06-30 | A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108757731A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109340259A (en) * | 2018-12-02 | 2019-02-15 | 迈格钠磁动力股份有限公司 | A kind of permanent-magnet suspension bearing bearing radial and axial load |
CN109578435A (en) * | 2018-11-26 | 2019-04-05 | 北京航空航天大学 | A kind of precision tracking bracket axial magnetic bearing |
CN111102291A (en) * | 2019-12-31 | 2020-05-05 | 珠海格力电器股份有限公司 | Magnetic suspension bearing, compressor and air conditioner |
CN111140596A (en) * | 2020-01-17 | 2020-05-12 | 淮阴工学院 | New structure homopolar quadrupole magnetic bearing |
CN113586609A (en) * | 2021-08-30 | 2021-11-02 | 珠海格力电器股份有限公司 | Magnetic suspension bearing, motor, compressor and air conditioner |
CN114198403A (en) * | 2021-12-31 | 2022-03-18 | 淮阴工学院 | A five-degree-of-freedom hybrid magnetic bearing |
CN117307606A (en) * | 2023-09-19 | 2023-12-29 | 淮阴工学院 | A three-degree-of-freedom hybrid magnetic bearing with axial auxiliary excitation and a bias magnetic circuit design method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105840654A (en) * | 2016-06-08 | 2016-08-10 | 淮阴工学院 | Permanent magnet bias single-degree-of-freedom axial magnetic bearing |
CN105864292A (en) * | 2016-06-08 | 2016-08-17 | 淮阴工学院 | Permanent magnet polarization three-degree-of-freedom magnetic bearing |
CN105864293A (en) * | 2016-06-08 | 2016-08-17 | 淮阴工学院 | Integrated five-degree-of-freedom magnetic levitation motorized spindle |
CN106050918A (en) * | 2016-06-08 | 2016-10-26 | 淮阴工学院 | Permanent magnet biased five-degree-of-freedom integrated magnetic suspension supporting system |
CN205663761U (en) * | 2016-06-08 | 2016-10-26 | 淮阴工学院 | Five degrees of freedom of low -power permanent magnet biased integrate magnetic bearing |
-
2018
- 2018-06-30 CN CN201810702176.XA patent/CN108757731A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105840654A (en) * | 2016-06-08 | 2016-08-10 | 淮阴工学院 | Permanent magnet bias single-degree-of-freedom axial magnetic bearing |
CN105864292A (en) * | 2016-06-08 | 2016-08-17 | 淮阴工学院 | Permanent magnet polarization three-degree-of-freedom magnetic bearing |
CN105864293A (en) * | 2016-06-08 | 2016-08-17 | 淮阴工学院 | Integrated five-degree-of-freedom magnetic levitation motorized spindle |
CN106050918A (en) * | 2016-06-08 | 2016-10-26 | 淮阴工学院 | Permanent magnet biased five-degree-of-freedom integrated magnetic suspension supporting system |
CN205663761U (en) * | 2016-06-08 | 2016-10-26 | 淮阴工学院 | Five degrees of freedom of low -power permanent magnet biased integrate magnetic bearing |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109578435A (en) * | 2018-11-26 | 2019-04-05 | 北京航空航天大学 | A kind of precision tracking bracket axial magnetic bearing |
CN109578435B (en) * | 2018-11-26 | 2020-11-06 | 北京航空航天大学 | Axial magnetic bearing for precision tracking bracket |
CN109340259A (en) * | 2018-12-02 | 2019-02-15 | 迈格钠磁动力股份有限公司 | A kind of permanent-magnet suspension bearing bearing radial and axial load |
CN109340259B (en) * | 2018-12-02 | 2023-10-27 | 迈格钠磁动力股份有限公司 | Permanent magnet suspension bearing capable of bearing radial and axial loads |
CN111102291A (en) * | 2019-12-31 | 2020-05-05 | 珠海格力电器股份有限公司 | Magnetic suspension bearing, compressor and air conditioner |
CN111102291B (en) * | 2019-12-31 | 2024-09-27 | 珠海格力电器股份有限公司 | Magnetic suspension bearing, compressor and air conditioner |
CN111140596A (en) * | 2020-01-17 | 2020-05-12 | 淮阴工学院 | New structure homopolar quadrupole magnetic bearing |
CN113586609A (en) * | 2021-08-30 | 2021-11-02 | 珠海格力电器股份有限公司 | Magnetic suspension bearing, motor, compressor and air conditioner |
CN114198403A (en) * | 2021-12-31 | 2022-03-18 | 淮阴工学院 | A five-degree-of-freedom hybrid magnetic bearing |
CN117307606A (en) * | 2023-09-19 | 2023-12-29 | 淮阴工学院 | A three-degree-of-freedom hybrid magnetic bearing with axial auxiliary excitation and a bias magnetic circuit design method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108825655A (en) | A kind of radial-axial Three Degree Of Freedom magnetic bearing with magnetism-isolating loop | |
CN108757731A (en) | A kind of radial-axial Three Degree Of Freedom magnetic bearing of permanent magnet axial magnetized | |
CN102155492B (en) | Mixed type driving and driven magnetic suspension bearing | |
CN102900761B (en) | Permanent magnet biased axial hybrid magnetic bearing | |
CN105864292A (en) | Permanent magnet polarization three-degree-of-freedom magnetic bearing | |
CN104265761A (en) | Novel axial-radial three-degree-of-freedom hybrid magnetic bearing | |
CN106050918A (en) | Permanent magnet biased five-degree-of-freedom integrated magnetic suspension supporting system | |
CN106812797B (en) | A double-layer stator permanent magnet offset radial magnetic bearing | |
CN102392852B (en) | Axial magnetic bearing | |
CN105090245A (en) | Asymmetric permanent-magnet bias axial magnetic bearing | |
CN104832538A (en) | Magnetically decoupled permanent magnet bias active and passive hybrid axial radial magnetic bearings | |
CN106015331A (en) | Low-power-consumption permanent-magnet bias five-degree-of-freedom integrated magnetic bearing | |
CN101526107B (en) | Hybrid axial magnetic bearing with permanent magnets on the rotor | |
CN104141685A (en) | Driving and driven inner rotor magnetic bearing | |
CN105840654A (en) | Permanent magnet bias single-degree-of-freedom axial magnetic bearing | |
CN103939465B (en) | A kind of Simple Freedom Magnetic Bearing | |
CN108808916A (en) | A kind of novel Three Degree Of Freedom permanent magnet type non-bearing motor | |
CN205663759U (en) | Permanent magnetism biasing single degree of freedom axial magnetic bearing | |
CN106059256B (en) | Five-degree-of-freedom magnetic suspension motor with integrated structure | |
CN101975224B (en) | Magnetic suspension bearing of hybrid magnetic circuit | |
CN214534059U (en) | Disc stator type AC/DC hybrid magnetic bearing | |
CN205663757U (en) | Five degrees of freedom of permanent magnetism biasing integrate magnetic suspension braced system | |
CN108696190A (en) | A kind of Three Degree Of Freedom permanent magnet type non-bearing motor with magnetism-isolating loop | |
CN108599502A (en) | A kind of Three Degree Of Freedom permanent magnet type non-bearing motor of permanent magnet axial magnetized | |
CN111927885B (en) | Permanent magnet biased axial magnetic bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20181106 |
|
RJ01 | Rejection of invention patent application after publication |