[go: up one dir, main page]

CN108753672B - A kind of xylitol genetic engineering production bacterium and its construction method and application - Google Patents

A kind of xylitol genetic engineering production bacterium and its construction method and application Download PDF

Info

Publication number
CN108753672B
CN108753672B CN201810594607.5A CN201810594607A CN108753672B CN 108753672 B CN108753672 B CN 108753672B CN 201810594607 A CN201810594607 A CN 201810594607A CN 108753672 B CN108753672 B CN 108753672B
Authority
CN
China
Prior art keywords
gene
xylitol
ptsg
xylose
genome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810594607.5A
Other languages
Chinese (zh)
Other versions
CN108753672A (en
Inventor
吴绵斌
王吉平
袁新松
林建平
杨立荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810594607.5A priority Critical patent/CN108753672B/en
Publication of CN108753672A publication Critical patent/CN108753672A/en
Application granted granted Critical
Publication of CN108753672B publication Critical patent/CN108753672B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01307D-Xylose reductase (1.1.1.307)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种木糖醇基因工程生产菌及其构建方法和应用,属于基因工程技术领域。所述的木糖醇基因工程生产菌,由大肠杆菌W3110经基因组改造得到,原始大肠杆菌W3110基因组中的ptsG、xylAB和ptsF均替换成木糖还原酶基因XR;还包括基因组中pfkA、pfkB、pgi、sthA中的至少一个替换成XR。本发明以大肠杆菌W3110为出发菌株,将基因组中的相应基因均替换成XR,木糖还原酶得以高效表达,同时通过阻断木糖的代谢和木糖醇的磷酸化,提高对木糖的利用,并且通过阻断或减少EMP途径葡萄糖代谢通量强化NADPH再生,为木糖还原酶还原木糖生成木糖醇提供必需的辅酶NADPH,极大提高基因工程菌转化木糖生产木糖醇的效率。

Figure 201810594607

The invention discloses a xylitol genetic engineering production bacterium and a construction method and application thereof, belonging to the technical field of genetic engineering. The xylitol genetically engineered production bacterium is obtained from Escherichia coli W3110 through genome modification, and ptsG, xylAB and ptsF in the original Escherichia coli W3110 genome are all replaced with xylose reductase gene XR; it also includes pfkA, pfkB, At least one of pgi, sthA is replaced with XR. In the present invention, Escherichia coli W3110 is used as the starting strain, and the corresponding genes in the genome are replaced with XR, so that the xylose reductase can be expressed efficiently, and meanwhile the metabolism of xylose and the phosphorylation of xylitol are blocked, and the effect of xylose on xylose is improved. Utilize and strengthen the regeneration of NADPH by blocking or reducing the glucose metabolism flux of the EMP pathway, providing the necessary coenzyme NADPH for the reduction of xylose by xylose reductase to generate xylitol, and greatly improving the efficiency of genetically engineered bacteria to convert xylose to produce xylitol. efficiency.

Figure 201810594607

Description

一种木糖醇基因工程生产菌及其构建方法和应用A kind of xylitol genetic engineering production bacterium and its construction method and application

技术领域technical field

本发明涉及基因工程技术领域,具体涉及一种木糖醇基因工程生产菌及其构建方法和应用。The invention relates to the technical field of genetic engineering, in particular to a xylitol genetically engineered production bacterium and a construction method and application thereof.

背景技术Background technique

木糖醇是一种五碳糖醇,其甜度与蔗糖相当,热量值却只有其60%左右,木糖醇具有抗龋齿及代谢不依赖胰岛素、改善肝功能等特点,广泛应用于食品、医药和化工行业。Xylitol is a five-carbon sugar alcohol whose sweetness is comparable to that of sucrose, but only about 60% of its calorie value. Pharmaceutical and chemical industries.

工业上生产木糖醇主要是利用半纤维素酸水解获得木糖,经分离纯化后得到纯度在95%以上的木糖在高温高压条件下用镍催化加氢制得,这种工艺条件苛刻,且容易造成污染,生产成本较高。生物法生产木糖醇不需要高温高压条件、易燃易爆氢气、污染环境的镍催化剂和高纯度的木糖等,反应条件温和、安全节能且环境友好,所以生物法转化生产木糖醇越来越受到人们的重视。The industrial production of xylitol is mainly to obtain xylose by acid hydrolysis of hemicellulose. After separation and purification, xylose with a purity of more than 95% is obtained by catalytic hydrogenation of nickel under high temperature and high pressure conditions. This process condition is harsh. And it is easy to cause pollution, and the production cost is high. Biological production of xylitol does not require high temperature and high pressure conditions, flammable and explosive hydrogen, environmentally polluting nickel catalysts and high-purity xylose, etc. The reaction conditions are mild, safe, energy-saving and environmentally friendly. more and more people's attention.

目前用于发酵法制备木糖醇的微生物几乎都是酵母菌,既有自然菌种,也有基因工程菌。酵母菌作为木糖醇生产菌株有着自己的优势,比如能耐受较高的糖浓度,对半纤维素水解液中的抑制因子抵抗性较强,等等。但是也存在不可回避的问题,如具有潜在的致病性、酵母本身所含有的木糖还原酶专一性较差等。At present, the microorganisms used for the preparation of xylitol by fermentation are almost all yeasts, including natural strains and genetically engineered bacteria. Yeasts have their own advantages as xylitol producing strains, such as being able to tolerate higher sugar concentrations, stronger resistance to inhibitory factors in hemicellulose hydrolyzate, and so on. However, there are also unavoidable problems, such as potential pathogenicity and poor specificity of xylose reductase contained in yeast itself.

大肠杆菌作为生产各种高附加值化学品的理想宿主,当前研究最为透彻,基因背景清楚,利用其构建基因工程菌有着得天独厚的条件。以大肠杆菌作为宿主生产木糖醇已有报道,如苏卜利等基于质粒载体系统构建了第一代高产木糖醇菌株,利用质粒载体进行蛋白的表达,通过mRNA二级结构的调节,构建了一个能在较高温度下高效可溶表达的质粒;在30℃条件下,酶活是出发菌株的5.68倍。通过敲除葡萄糖磷酸转移酶系统中酶Ⅱ组分的ptsG基因,消除菌株的代谢物阻遏效应,使菌株能同时转运葡萄糖和木糖;敲除菌株自身代谢木糖的基因xylA和xylB,阻断木糖的代谢利用;敲除可转运木糖醇的果糖磷酸转移酶系统中酶Ⅱ组分的ptsF基因,减少木糖醇的磷酸化;通过一系列的优化,木糖醇生产效率是出发菌株的8.71倍(“大肠杆菌基因工程菌转化半纤维素水解液生产木糖醇的研究”,苏卜利,《浙江大学》,2016年)。As an ideal host for the production of various high value-added chemicals, Escherichia coli has the most thorough research and clear genetic background. It has unique conditions for constructing genetically engineered bacteria. Using Escherichia coli as a host to produce xylitol has been reported. For example, Subli et al. constructed the first generation of high-yielding xylitol strains based on the plasmid vector system. The plasmid vector was used for protein expression. A plasmid capable of high-efficiency soluble expression at higher temperature was obtained; at 30 °C, the enzyme activity was 5.68 times that of the starting strain. By knocking out the ptsG gene of the enzyme II component of the glucose phosphotransferase system, the metabolite repression effect of the strain is eliminated, so that the strain can transport glucose and xylose at the same time; Metabolic utilization of xylose; Knock out the ptsF gene of the enzyme II component of the fructose phosphotransferase system that can transport xylitol to reduce the phosphorylation of xylitol; Through a series of optimizations, the production efficiency of xylitol is the starting strain 8.71 times ("Research on the transformation of hemicellulose hydrolyzate to produce xylitol by genetically engineered Escherichia coli", Subli, "Zhejiang University", 2016).

辅酶是一大类有机辅因子的总称,是酶催化氧化还原反应等所必须的辅助因子。它们在反应中充当传递电子、原子或基团的作用,辅酶在一定程度上可以看作是酶反应中的第二底物。作为微生物代谢网络中的一种关键辅因子,通过调节细胞内的辅酶含量和还原型氧化型的比例可定向改变和优化微生物的细胞代谢功能,从而实现代谢流的最大化,这也是增加目标产物的重要方法之一。Coenzyme is a general term for a large class of organic cofactors, which are necessary for enzymes to catalyze redox reactions. They play the role of transferring electrons, atoms or groups in the reaction, and coenzymes can be regarded as the second substrate in the enzyme reaction to a certain extent. As a key cofactor in the microbial metabolic network, by regulating the intracellular coenzyme content and the ratio of reduced oxidized forms, the cellular metabolic function of microorganisms can be directionally changed and optimized, thereby maximizing metabolic flux, which is also an increase in target products. one of the important methods.

辅酶NAD(P)H在各类酶催化反应中都起着重要作用,尤其是氧化还原反应中,都需要辅酶NAD(P)H作为电子传递参与反应。在产物合成的过程中,会消耗一定量的辅酶。因此随着反应的进行胞内的辅酶含量减少,导致催化效率降低。由于辅酶价格昂贵,通过外源添加的方式进行补充是不现实的。因此通过代谢工程调控微生物的代谢过程,提高胞内NADPH的浓度,不仅能有效的提高生产效率降低成本,也能更好地保证生物转化过程的正常进行。从技术经济的角度来看,强化辅酶再生循环意义重大。Coenzyme NAD(P)H plays an important role in various enzyme-catalyzed reactions, especially in redox reactions, which all require coenzyme NAD(P)H as electron transfer to participate in the reaction. In the process of product synthesis, a certain amount of coenzyme will be consumed. Therefore, as the reaction proceeds, the intracellular coenzyme content decreases, resulting in a decrease in catalytic efficiency. Due to the high price of coenzymes, it is unrealistic to supplement by exogenous addition. Therefore, regulating the metabolic process of microorganisms through metabolic engineering and increasing the concentration of intracellular NADPH can not only effectively improve the production efficiency and reduce the cost, but also better ensure the normal progress of the biotransformation process. From a technical and economic point of view, it is of great significance to strengthen the regeneration cycle of coenzyme.

目前,基于辅酶NADPH的代谢工程改造主要方法为增强PPP的代谢通量。在大肠杆菌中,葡萄糖主要存在两条代谢途径,包括糖酵解途径(EMP途径)和磷酸戊糖途径(PPP途径)。其中PPP途径中有2步反应能实现NADPH的再生,现有的研究中通过过表达这两步反应中的zwf和gnd基因来提高内源性辅酶NADPH,该方法能在一定程度上强化胞内NADPH的再生。At present, the main method of metabolic engineering based on coenzyme NADPH is to enhance the metabolic flux of PPP. In E. coli, there are two main metabolic pathways for glucose, including the glycolysis pathway (EMP pathway) and the pentose phosphate pathway (PPP pathway). Among them, there are two steps in the PPP pathway that can achieve the regeneration of NADPH. In the existing research, the endogenous coenzyme NADPH was increased by overexpressing the zwf and gnd genes in these two steps. This method can strengthen the intracellular NADPH to a certain extent. Regeneration of NADPH.

但在整合型表达木糖还原酶基因的大肠杆菌中,要实现木糖还原酶酶活与辅酶再生速率的匹配,需要进一步降低葡萄糖的消耗速率。目前未见利用阻断或减少EMP途径葡萄糖代谢通量的方法实现辅酶NADPH再生强化和减慢葡萄糖利用速率方法的报道。However, in Escherichia coli expressing xylose reductase gene integratively, to achieve the matching of xylose reductase enzyme activity and coenzyme regeneration rate, it is necessary to further reduce the consumption rate of glucose. So far, there is no report on the method of enhancing the regeneration of coenzyme NADPH and slowing down the rate of glucose utilization by blocking or reducing the glucose metabolism flux of the EMP pathway.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种可以大幅度提升木糖醇生产效率的木糖醇基因工程生产菌。The purpose of the present invention is to provide a xylitol genetically engineered production bacterium that can greatly improve the xylitol production efficiency.

为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

本发明以大肠杆菌W3110为出发菌株,利用基因替换技术对原始菌株基因组中的影响木糖代谢通路及葡萄糖代谢通路中的基因进行替换,以实现木糖还原酶活与辅酶再生速率的匹配,进而提升基因工程菌转化木糖生产木糖醇的效率。The invention uses Escherichia coli W3110 as the starting strain, and uses gene replacement technology to replace the genes affecting the xylose metabolism pathway and the glucose metabolism pathway in the genome of the original strain, so as to realize the matching of xylose reductase activity and coenzyme regeneration rate, and then Improve the efficiency of genetically engineered bacteria to convert xylose to produce xylitol.

因此,本发明提供了一种木糖醇基因工程生产菌,由大肠杆菌W3110经基因组改造得到,原始大肠杆菌W3110基因组中的ptsG、xylAB和ptsF均替换成木糖还原酶基因XR;还包括基因组中pfkA、pfkB、pgi、sthA中的至少一个替换成木糖还原酶基因XR。Therefore, the present invention provides a xylitol gene-engineered production bacterium, which is obtained from Escherichia coli W3110 through genome modification, and ptsG, xylAB and ptsF in the original Escherichia coli W3110 genome are all replaced with xylose reductase gene XR; it also includes the genome At least one of pfkA, pfkB, pgi, and sthA is replaced with the xylose reductase gene XR.

所述的大肠杆菌W3110购自德国微生物菌种保藏中心DSMZ,编号为DSM-5911。The Escherichia coli W3110 was purchased from DSMZ, the German Collection of Microorganisms, and the number is DSM-5911.

本发明对大肠杆菌W3110的改造包括:The transformation of the present invention to Escherichia coli W3110 includes:

(1)在大肠杆菌细胞内存在代谢木糖的途径:木糖经过木糖异构酶(xylA)生成木酮糖,木酮糖在木酮糖激酶(xylB)的作用下生成5-磷酸木酮糖,5-磷酸木酮糖进入磷酸戊糖途径被代谢掉。同时果糖的磷酸转移酶(ptsF)途径可能也参与了木糖醇的转运,使木糖醇进入细胞的同时被磷酸化,而磷酸化的木糖醇对细胞有毒害作用,因此将基因组中xylAB和ptsF替换成木糖还原酶基因XR,阻断木糖的代谢和木糖醇的磷酸化的同时增加木糖还原酶的表达,有利于工程菌高效转化木糖生产木糖醇。(1) There is a pathway to metabolize xylose in E. coli cells: xylose generates xylulose through xylose isomerase (xylA), and xylulose generates xylulose 5-phosphate under the action of xylulokinase (xylB). Ketose, xylulose 5-phosphate enters the pentose phosphate pathway to be metabolized. At the same time, the phosphotransferase (ptsF) pathway of fructose may also be involved in the transport of xylitol, so that xylitol is phosphorylated when it enters the cell, and the phosphorylated xylitol is toxic to cells. The xylose reductase gene XR is replaced with ptsF, which blocks the metabolism of xylose and the phosphorylation of xylitol while increasing the expression of xylose reductase, which is beneficial to the efficient conversion of xylose by engineered bacteria to produce xylitol.

(2)大肠杆菌利用糖时存在葡萄糖效应,即在有葡萄糖存在时,大肠杆菌对其他糖如木糖、阿拉伯糖等的利用都会受到严重抑制,因此,本发明将葡萄糖磷酸转移酶基因ptsG替换成木糖还原酶基因XR,降低基因工程菌对葡萄糖的利用速率,消除葡萄糖效应。(2) There is a glucose effect when Escherichia coli utilizes sugar, that is, when there is glucose, the utilization of other sugars such as xylose and arabinose by Escherichia coli will be severely inhibited. Therefore, the present invention replaces the glucose phosphotransferase gene ptsG with The xylose reductase gene XR is formed, which reduces the utilization rate of glucose by genetically engineered bacteria and eliminates the effect of glucose.

但是木糖还原酶还原木糖生成木糖醇的过程中,需要葡萄糖作为辅底物提供反应必需的辅酶NADPH。因此,本发明将参与糖酵解途径(EMP)的基因pfkA、pfkB、pgi或sthA进行替换,以阻断或减少EMP途径葡萄糖代谢通量,实现PPP途径辅酶NADPH再生强化和减慢葡萄糖利用速率。However, in the process of reducing xylose to xylitol by xylose reductase, glucose is required as a co-substrate to provide the necessary coenzyme NADPH for the reaction. Therefore, the present invention replaces the genes pfkA, pfkB, pgi or sthA involved in the glycolysis pathway (EMP) to block or reduce the glucose metabolism flux of the EMP pathway, so as to realize the regeneration enhancement of the PPP pathway coenzyme NADPH and slow down the glucose utilization rate. .

作为优选,原始大肠杆菌W3110基因组中的ptsG、xylAB、ptsF、pfkA和pfkB均替换成木糖还原酶基因XR。研究表明,上述5个基因均被替换成木糖还原酶基因XR后,基因工程菌转化木糖生产木糖醇的生产效率达到1.92g/L。Preferably, ptsG, xylAB, ptsF, pfkA and pfkB in the original Escherichia coli W3110 genome are all replaced with the xylose reductase gene XR. Studies have shown that after the above five genes are replaced by xylose reductase gene XR, the production efficiency of genetically engineered bacteria to convert xylose to produce xylitol reaches 1.92g/L.

所述木糖还原酶基因XR来源于粗糙脉孢菌,基因序列参见NCBI登录号NCU08384.1。The xylose reductase gene XR is derived from Neurospora crassa, and the gene sequence is shown in NCBI accession number NCU08384.1.

本发明还提供了一种构建上述木糖醇基因工程生产菌的构建方法,包括以下步骤:The present invention also provides a construction method for constructing the above-mentioned xylitol genetically engineered production bacteria, comprising the following steps:

(1)将大肠杆菌W3110基因组中的ptsG、xylAB和ptsF均替换成木糖还原酶基因XR,得到第一代基因工程菌;(1) replacing ptsG, xylAB and ptsF in the genome of E. coli W3110 with xylose reductase gene XR to obtain the first generation of genetically engineered bacteria;

(2)将第一代基因工程菌基因组中的pfkA,pfkB,pgi,sthA中的至少一个替换成木糖还原酶基因XR。(2) At least one of pfkA, pfkB, pgi, and sthA in the genome of the first-generation genetically engineered bacteria is replaced with the xylose reductase gene XR.

步骤(1)和(2)中,利用同源重组技术进行基因替换。In steps (1) and (2), gene replacement is performed using homologous recombination technology.

具体地,步骤(1)中,包括:Specifically, in step (1), including:

a.利用特异性引物分别构建替换ptsG、xylAB和ptsF基因的pTargetF质粒及对应的含有XR表达模块的修复模板;a. Use specific primers to construct pTargetF plasmids that replace the ptsG, xylAB and ptsF genes and the corresponding repair templates containing the XR expression module;

b.将替换ptsG基因的pTargetF质粒和修复模板转化入含有pCas质粒的大肠杆菌W3110中,经同源重组,筛选获得基因组中ptsG基因替换成XR表达模块的菌株W3110△ptsG::XR;b. The pTargetF plasmid and the repair template that replace the ptsG gene are transformed into E. coli W3110 containing the pCas plasmid, and through homologous recombination, the strain W3110△ptsG::XR in which the ptsG gene in the genome is replaced with an XR expression module is obtained by screening;

再将替换xylAB基因的pTargetF质粒和修复模板转化入菌株W3110△ptsG::XR中,经同源重组,筛选获得基因组中xylAB基因替换成XR表达模块的菌株W3110△ptsG::XR,△xylAB::XR;Then, the pTargetF plasmid and the repair template that replaced the xylAB gene were transformed into the strain W3110△ptsG::XR, and after homologous recombination, the strain W3110△ptsG::XR,△xylAB: :XR;

然后将替换ptsF基因的pTargetF质粒和修复模板转化入菌株W3110△ptsG::XR,△xylAB::XR,经同源重组,筛选获得基因组中ptsF基因替换成XR表达模块的菌株W3110△ptsG::XR,△xylAB::XR,ΔptsF::XR,即第一代基因工程菌;Then, the pTargetF plasmid and the repair template that replaced the ptsF gene were transformed into the strain W3110△ptsG::XR,△xylAB::XR. After homologous recombination, the strain W3110△ptsG:: with the ptsF gene in the genome replaced by the XR expression module was obtained by screening. XR,△xylAB::XR,ΔptsF::XR, the first generation of genetically engineered bacteria;

步骤(2)中,包括:In step (2), including:

d.分别构建替换pfkA、pfkB基因的pTargetF质粒及对应的含有XR表达模块的修复模板;D. respectively construct the pTargetF plasmid that replaces pfkA, pfkB gene and the corresponding repair template containing XR expression module;

e.先将替换pfkA基因的pTargetF质粒及对应的修复模板转化入步骤(1)制得的第一代基因工程菌中,经同源重组,筛选获得基因组中pfkA基因替换成XR表达模块的菌株WZ04△pfkA::XR,再将替换pfkB基因的pTargetF质粒及对应的修复模板转化入菌株WZ04△pfkA::XR中,经同源重组,筛选获得基因组中pfkB基因替换成XR表达模块的菌株,即为所述的木糖醇基因工程生产菌。e. First transform the pTargetF plasmid and the corresponding repair template that replace the pfkA gene into the first-generation genetically engineered bacteria obtained in step (1), and through homologous recombination, screen to obtain the bacterial strain in which the pfkA gene in the genome is replaced with an XR expression module WZ04△pfkA::XR, then the pTargetF plasmid replacing the pfkB gene and the corresponding repair template were transformed into the strain WZ04△pfkA::XR, and after homologous recombination, the strain with the pfkB gene in the genome replaced by the XR expression module was obtained by screening, That is, the xylitol genetic engineering production bacteria.

所述的XR表达模块中包含启动子P43。研究表明启动子P43有助于木糖还原酶的表达,且不需要诱导剂。以专利文献CN 104789586A提供的pRC43M质粒为模板,利用特异性引物扩增出以P43为启动子的XR表达模块。The XR expression module contains promoter P43. Studies have shown that the promoter P43 facilitates the expression of xylose reductase and does not require an inducer. Taking the pRC43M plasmid provided by the patent document CN 104789586A as a template, and using specific primers to amplify the XR expression module with P43 as the promoter.

本发明还提供了所述的木糖醇基因工程生产菌在生产木糖醇中的应用。The present invention also provides the application of the xylitol genetic engineering production bacteria in the production of xylitol.

所述的应用,包括:将所述的木糖醇基因工程生产菌接种于发酵培养基中,30-37℃发酵培养80-90h,发酵过程中保持菌液浓度OD600小于20。The application includes: inoculating the xylitol genetically engineered production bacteria in a fermentation medium, fermenting and culturing at 30-37° C. for 80-90 hours, and keeping the OD 600 of the bacterial liquid concentration less than 20 during the fermentation process.

所述的发酵培养基可以利用人工配置的以木糖为主要成分的培养液,也可以利用半纤维素水解液为主要原料。The fermentation medium can use artificially configured culture liquid with xylose as the main component, or can use hemicellulose hydrolyzate as the main raw material.

作为优选,发酵初始条件:温度37℃、转速400rpm、通气量0.6-0.8vvm、发酵培养基初始pH为6.5左右,培养过程溶氧控制在30-35%;当菌液浓度OD600≥20时,进行补料,补料后发酵条件为:温度30℃,溶氧控制在20-25%。Preferably, the initial conditions of fermentation: temperature 37°C, rotation speed 400rpm, ventilation 0.6-0.8vvm, initial pH of fermentation medium is about 6.5, and dissolved oxygen in the culture process is controlled at 30-35%; when the concentration of bacterial liquid OD 600 ≥ 20 , feeding, the fermentation conditions after feeding are: temperature 30 ℃, dissolved oxygen controlled at 20-25%.

采用分批补料方式,具体地,OD600>20(37℃培养7h左右),进行第一次补料;待葡萄糖完全消耗完,进行第二次补料。The batch feeding method was adopted, specifically, when OD600>20 (culturing at 37°C for about 7 h), the first feeding was performed; when the glucose was completely consumed, the second feeding was performed.

补料液成分,包括:半纤维素水解液或木糖母液(木糖终浓度60g/L)、葡萄糖母液(葡萄糖终浓度为木糖摩尔浓度的1/2)、工业级玉米浆干粉(木糖质量浓度的1/3)。Feeding liquid ingredients, including: hemicellulose hydrolyzate or xylose mother liquor (xylose final concentration 60g/L), glucose mother liquor (glucose final concentration is 1/2 of xylose molar concentration), technical grade corn steep liquor dry powder (wood 1/3 of the sugar mass concentration).

本发明具备的有益效果:The beneficial effects that the present invention has:

本发明提供的木糖醇基因工程生产菌,以大肠杆菌W3110为出发菌株,将基因组中的xylAB和ptsF均替换成木糖还原酶基因XR,阻断木糖的代谢和木糖醇的磷酸化,提高基因工程菌对木糖的利用速率;将基因组中ptsG以及pfkA,pfkB,pgi,sthA中的至少一个替换成木糖还原酶基因XR,消除葡萄糖效应的同时通过阻断或减少EMP途径葡萄糖代谢通量达到强化PPP途径NADPH再生,为木糖还原酶还原木糖生成木糖醇提供必需的辅酶NADPH;基因组中的相应基因均替换成木糖还原酶基因XR,木糖还原酶得以高效表达,极大提高了基因工程菌转化木糖生产木糖醇的效率。The xylitol genetically engineered production bacteria provided by the present invention takes Escherichia coli W3110 as the starting strain, and both xylAB and ptsF in the genome are replaced by xylose reductase gene XR, so as to block the metabolism of xylose and the phosphorylation of xylitol , to improve the utilization rate of xylose by genetically engineered bacteria; at least one of ptsG and pfkA, pfkB, pgi, sthA in the genome is replaced by xylose reductase gene XR, which eliminates the effect of glucose by blocking or reducing the EMP pathway glucose The metabolic flux reaches the PPP pathway to strengthen the regeneration of NADPH, which provides the necessary coenzyme NADPH for the reduction of xylose by xylose reductase to generate xylitol; the corresponding genes in the genome are replaced by the xylose reductase gene XR, and the xylose reductase is highly expressed , greatly improving the efficiency of genetically engineered bacteria to convert xylose to produce xylitol.

附图说明Description of drawings

图1为ptsG中靶位点的确定和pTargetF质粒突变引物设计策略。Figure 1 shows the determination of the target site in ptsG and the design strategy of pTargetF plasmid mutation primers.

图2为修复模板的构建方法。Figure 2 shows the construction method of the repair template.

图3为使用CRISPR技术改造底盘细胞核酸电泳图,其中M:250bp Marker,G和G:XR为使用引物ptsG-u-F和ptsG-d-R扩增得到的片段,G:原始ptsG基因,G:XR:原始ptsG基因替换为xr;AB和AB:XR为使用引物xylAB-u-F和xylAB-d-R扩增得到的片段,AB:原始xylAB基因,AB:XR:原始xylAB基因替换为xr;F和F:XR为使用引物ptsF-u-F和ptsF-d-R扩增得到的片段,F:原始ptsF基因,F:XR:原始ptsF基因替换为xr。Figure 3 is the electrophoresis of nucleic acid in the chassis cell transformed by CRISPR technology, wherein M: 250bp Marker, G and G: XR are fragments amplified by primers ptsG-u-F and ptsG-d-R, G: original ptsG gene, G: XR: The original ptsG gene was replaced by xr; AB and AB: XR were fragments amplified using primers xylAB-u-F and xylAB-d-R, AB: the original xylAB gene, AB: XR: the original xylAB gene was replaced by xr; F and F: XR For the fragment amplified using primers ptsF-u-F and ptsF-d-R, F: original ptsF gene, F: XR: original ptsF gene replaced by xr.

图4为葡萄糖主要代谢通路分析。Figure 4 shows the analysis of the main metabolic pathways of glucose.

图5为24h摇瓶发酵后发酵液中糖及糖醇的浓度。Figure 5 is the concentration of sugar and sugar alcohol in the fermentation broth after 24h shake flask fermentation.

图6为24h发酵后菌浓度OD600测定结果。Fig. 6 is the determination result of bacterial concentration OD600 after 24h fermentation.

图7为菌株WZ31利用纯糖发酵产木糖醇,其中Glucose为葡糖糖,Xylose为木糖,Xylitol为木糖醇。Figure 7 shows that strain WZ31 utilizes pure sugar to ferment xylitol, wherein Glucose is glucose, Xylose is xylose, and Xylitol is xylitol.

图8为利用WZ31使用半纤维素水解液和玉米浆干粉进行分批补料发酵,其中Glucose为葡糖糖,Xylose为木糖,Arabinose表示阿拉伯糖,Arabitol表示阿拉伯糖醇,Xylitol为木糖醇。Figure 8 is a fed-batch fermentation using WZ31 using hemicellulose hydrolyzate and corn steep liquor dry powder, wherein Glucose is glucose, Xylose is xylose, Arabinose is arabinose, Arabitol is arabitol, and Xylitol is xylitol .

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.

下列实施例中采用的E.coli W3110购自德国微生物菌种保藏中心DSMZ,编号为DSM-5911;pTargetF质粒addgene:#62226;pCas质粒addgene:#62225;pRC43M质粒来自申请号为201510196843.8,名称为“大肠杆菌基因组整合载体、基因工程菌以及在生产木糖醇中的应用”的专利文献。The E.coli W3110 used in the following examples was purchased from the German Collection of Microorganisms, DSMZ, numbered DSM-5911; pTargetF plasmid addgene: #62226; pCas plasmid addgene: #62225; pRC43M plasmid from the application number 201510196843.8, named as "Escherichia coli genome integration vector, genetic engineering bacteria and application in the production of xylitol" patent document.

实施例1Example 1

本实施例提供一种木糖醇基因工程生产菌,实现在整合型木糖还原酶表达菌株中增强胞内NADPH再生,提高木糖醇的生产效率。This embodiment provides a xylitol genetically engineered production bacterium, which can enhance the regeneration of intracellular NADPH in an integrated xylose reductase expressing strain and improve the production efficiency of xylitol.

所述木糖醇基因工程生产菌的构建方法,包括以下步骤:The construction method of described xylitol genetic engineering production bacteria, comprises the following steps:

1、构建替换或敲除目的基因的pTargetF质粒1. Construct the pTargetF plasmid that replaces or knocks out the target gene

首先需要在目标基因上找到一个PAM位点,即NGG序列,确定对应的N20序列,并将pTargetF质粒上的cadAspacer替换为目的基因的N20序列。以ptsG为例,构建pTargetF-ptsG的质粒构建为例,设计并使用引物N20-ptsG-F和N20-ptsG-R对pTargetF进行全质粒突变PCR,引物设计方法如图1所示。First, it is necessary to find a PAM site on the target gene, that is, the NGG sequence, determine the corresponding N20 sequence, and replace the cadAspacer on the pTargetF plasmid with the N20 sequence of the target gene. Taking ptsG as an example, and the plasmid construction of pTargetF-ptsG as an example, the primers N20-ptsG-F and N20-ptsG-R were designed and used for pTargetF mutation PCR. The primer design method is shown in Figure 1.

PCR配方和程序设置如下:The PCR recipe and program settings are as follows:

表1 全质粒突变PCR体系Table 1 Whole plasmid mutation PCR system

Figure BDA0001691763660000051
Figure BDA0001691763660000051

Figure BDA0001691763660000061
Figure BDA0001691763660000061

由pTargetF质粒图谱可知,质粒总长度为2118bp,为了保证PCR过程中延伸的完整性,本研究中采用长延伸时间的设置。It can be seen from the pTargetF plasmid map that the total length of the plasmid is 2118bp. In order to ensure the integrity of the extension during the PCR process, a long extension time was used in this study.

表2 全质粒PCR程序设置Table 2 Whole plasmid PCR program settings

Figure BDA0001691763660000062
Figure BDA0001691763660000062

将得到的PCR产物进行DNA核酸电泳验证,通过观察在2000bp左右处是否有亮条带,来检验PCR是否成功。The obtained PCR product is verified by DNA nucleic acid electrophoresis, and whether the PCR is successful is checked by observing whether there is a bright band at about 2000bp.

验证之后使用DpnI酶进行PCR模板的消化,提高转化子的阳性率。酶消化体系如下:After verification, the PCR template was digested with DpnI enzyme to improve the positive rate of transformants. The enzymatic digestion system is as follows:

Enzyme DpnI 0.5μLEnzyme DpnI 0.5μL

10*Buffer 1μL10*Buffer 1μL

PCR产物 8.5μL。PCR product 8.5 μL.

按照体系加入相应物质后水平震荡混匀,短时快速离心20s,置于37℃水浴或金属浴中60min。然后使用DH5α感受态进行转化。Add the corresponding substances according to the system, shake and mix horizontally, centrifuge quickly for 20s for a short time, and place in a water bath or metal bath at 37°C for 60min. DH5α competence was then used for transformation.

挑取得到的转化子进行液体培养,使用质粒少量提取试剂盒提取质粒。使用Target-check进行测序验证,最终得到突变成功的质粒pTargetF-ptsG。The obtained transformants were picked for liquid culture, and plasmids were extracted using a plasmid mini-extraction kit. Using Target-check for sequencing verification, the successfully mutated plasmid pTargetF-ptsG was finally obtained.

2、ptsG替换为XR基因修复模板的构建2. Replacement of ptsG with the construction of XR gene repair template

构建策略如图2所示。The build strategy is shown in Figure 2.

使用E.coli W3110基因组作为模板,以ptsG-u-F和ptsG-u-R,ptsG-d-F和ptsG-d-R为PCR引物,进行常规PCR获得ptsG基因上下游各500bp的同源臂片段;Using E.coli W3110 genome as a template, with ptsG-u-F and ptsG-u-R, ptsG-d-F and ptsG-d-R as PCR primers, conventional PCR was performed to obtain 500bp of homology arm fragments upstream and downstream of the ptsG gene;

以pRC43M质粒为模板,ptsG-XR-F和ptsG-XR-R为引物PCR得到以P43为启动子的xr表达模块。将得到的PCR产物进行DNA核酸电泳并胶回收。Using pRC43M plasmid as template and ptsG-XR-F and ptsG-XR-R as primers, the xr expression module with P43 as promoter was obtained by PCR. The obtained PCR products were subjected to DNA nucleic acid electrophoresis and gel recovery.

最后使用ptsG-u-F和ptsG-d-R为引物,ptsG上下游同源臂和xr表达模块的等比例混合物为模板,进行重叠延伸PCR,切胶回收对应长度的片段,获得替换ptsG基因的修复模板。Finally, using ptsG-u-F and ptsG-d-R as primers, and the equal proportion mixture of ptsG upstream and downstream homology arms and xr expression module as templates, overlap extension PCR was performed, and fragments of corresponding length were recovered by cutting the gel to obtain a repair template for replacing the ptsG gene.

3、基因组基因替换方法操作3. Genome Gene Replacement Method Operation

1)热激法转入pCas质粒1) Transfer to pCas plasmid by heat shock method

a.将保存在-80℃的野生型E.coli W3110划线在无抗的固体培养基平板上,过夜37℃培养。挑取单菌落于液体LB培养基中37℃,200rpm培养约10h,转接1mL菌液到装有50mL液体LB培养基的250mL三角瓶中,生长至OD600到0.6~0.8,将菌液冰浴10min,按照Takara大肠杆菌感受态试剂盒制备化转感受态。a. The wild-type E. coli W3110 stored at -80°C was streaked on an antibody-free solid medium plate and incubated at 37°C overnight. Pick a single colony in liquid LB medium at 37°C and cultivate at 200 rpm for about 10 hours, transfer 1 mL of bacterial solution to a 250 mL conical flask containing 50 mL of liquid LB medium, grow to OD 600 to 0.6-0.8, and freeze the bacterial solution on ice. After bathing for 10 min, the transformation competence was prepared according to the Takara E. coli competence kit.

b.将制备好的E.coli W3110感受态置于冰上,融化后在无菌条件下加入10μLpCas质粒,混匀后置于冰浴放置30min。b. Put the prepared E.coli W3110 competent cells on ice, add 10 μL of pCas plasmid under aseptic conditions after thawing, mix well and place in an ice bath for 30 min.

c.42℃下水浴或金属浴热激90s,立即冰浴2min。c. Heat shock in water bath or metal bath for 90 s at 42°C, and immediately ice bath for 2 min.

d.加入890μL液体LB或复苏培养基,于30℃,200rpm复苏45min。d. Add 890 μL of liquid LB or recovery medium, and recover at 30°C and 200 rpm for 45 minutes.

e.吸取100μL复苏后的菌液,涂布于含有50mg/L的kanR的固体LB平板上,30℃培养过夜。e. Pipette 100 μL of the revived bacterial solution, spread it on a solid LB plate containing 50 mg/L of kan R , and culture at 30° C. overnight.

f.挑取单克隆的菌落进行PCR或提取质粒验证,获得转化成功的E.coliW3110pCas。f. Pick a single clone for PCR or extract plasmid verification to obtain E.coliW3110pCas that has been transformed successfully.

2)电转化相应替换基因的pTargetF和修复模板donor DNA2) Electrically transform the pTargetF of the corresponding replacement gene and repair the template donor DNA

a.将1)中得到的大肠杆菌为出发菌株,划线于50mg/L的硫酸卡那霉素抗性的平板上,30℃培养过夜后(后续培养均需加入相同浓度的同种抗生素),挑取单菌落至液体LB中,30℃,200rpm培养10-12h,转接1mL至50mL中LB中,30℃,200rpm培养1h后,加入工作浓度为0.5%灭菌的L-阿拉伯糖进行诱导表达Red重组蛋白,继续培养至OD600至0.6~0.8(约3h左右),冰浴10min,进行电转感受态的制备。a. Take the Escherichia coli obtained in 1) as the starting strain, streak it on a 50 mg/L kanamycin sulfate-resistant plate, and cultivate overnight at 30°C (the same antibiotic of the same concentration needs to be added for subsequent cultivation) , pick a single colony into liquid LB, culture at 30°C, 200rpm for 10-12h, transfer 1mL to 50mL medium LB, culture at 30°C, 200rpm for 1h, add L-arabinose with a working concentration of 0.5% sterilized Induce the expression of the Red recombinant protein, continue to culture to OD 600 to 0.6-0.8 (about 3 hours), ice bath for 10 minutes, and prepare electrotransformation competent cells.

b.使用灭菌好的10mL Ep管,将菌液分装后,4℃,4000rpm下离心5min,弃上清。b. Using a sterilized 10 mL Ep tube, after dividing the bacterial liquid into a batch, centrifuge at 4°C and 4000 rpm for 5 min, and discard the supernatant.

c.用1mL预冷过的灭菌的10%的甘油重悬,4℃,4000rpm下离心10min,小心的弃去上清。c. Resuspend with 1 mL of pre-cooled sterile 10% glycerol, centrifuge at 4°C for 10 min at 4000 rpm, and carefully discard the supernatant.

d.重复c步骤2次。d. Repeat step c twice.

e.用100μL 10%的甘油重悬,转移至灭菌的1.5mL Ep管中,立即使用或置于-80℃冰箱中备用。e. Resuspend with 100 μL of 10% glycerol, transfer to a sterilized 1.5 mL Ep tube, use immediately or place in a -80°C refrigerator for later use.

f.使用制备好的感受态或从-80℃中取出预先制备的感受态,冰上放置5min,加入400ng构建好替换相应基因的pTargetF质粒和800ng修复模板。混匀后转移至无菌的2mm电转杯中,冰上放置10min,进行电转化。f. Use the prepared competent cells or take out the pre-prepared competent cells from -80°C, place on ice for 5 minutes, and add 400 ng of pTargetF plasmid and 800 ng of repair template constructed to replace the corresponding gene. After mixing, it was transferred to a sterile 2mm electroporation cup and placed on ice for 10 min for electroporation.

g.电转条件:2.5kV,25μF,200Ω,电转时间5ms,电转前电转杯杯壁和底座一定要用纸巾擦干,不然极易引起爆杯。同时提取的质粒和回收的修复模板中盐离子残余过高也会引起爆杯。g. Power transfer conditions: 2.5kV, 25μF, 200Ω, power transfer time 5ms, the cup wall and base of the power transfer cup must be dried with paper towels before power transfer, otherwise it will easily cause the cup to burst. At the same time, excessive salt ion residues in the extracted plasmids and recovered repair templates can also cause burst cups.

h.电转结束之后,立即加入1mL液体LB,用移液枪来回吹打混匀后,转移至2mL灭菌的Ep管中。在30℃,150rpm下复苏约3h。h. Immediately after electroporation, 1 mL of liquid LB was added, mixed by pipetting back and forth, and then transferred to a 2 mL sterilized Ep tube. Resuscitate for about 3h at 30°C and 150rpm.

i.将复苏后的菌液离心浓缩后全部涂布于含有50mg/L的kanR和50mg/L的specR平板,30℃过夜培养。i. After centrifuging and concentrating the recovered bacterial liquid, it was spread on a plate containing 50 mg/L of kan R and 50 mg/L of spec R , and cultured at 30°C overnight.

j.通常情况下,培养12小时就能有肉眼可见的转化子。如果菌株经过了多次编辑,可能生长时间会有所延长。j. Under normal circumstances, there are visible transformants within 12 hours of culture. If the strain has undergone multiple edits, the growth time may be extended.

4、基因替换验证4. Gene replacement verification

对于替换成功的阳性转化子,在替换前后序列长度相差较大的情况下,可采用菌落或菌液PCR扩增目标条带,进行DNA核酸电泳,比较基因替换前后的扩增条带大小的方式来进行鉴定。如果替换前后基因大小相差在200bp以内,可采用PCR产物测序的方式来鉴定。For the positive transformants that have been successfully replaced, if the sequence lengths before and after the replacement are quite different, the target band can be amplified by colony or bacterial liquid PCR, DNA nucleic acid electrophoresis is performed, and the size of the amplified band before and after the gene replacement can be compared. to identify. If the difference in gene size before and after replacement is within 200bp, the PCR product sequencing method can be used to identify.

5、同理使用对应引物构建其他替换基因的pTargetF和修复模板,经过3轮的基因组编辑,成功的将木糖还原酶插入到基因组ptsG,xylAB,ptsF区域。5. Similarly, the corresponding primers were used to construct pTargetF and repair templates of other replacement genes. After 3 rounds of genome editing, xylose reductase was successfully inserted into the ptsG, xylAB, ptsF regions of the genome.

经过设计得到改造后的整合型表达木糖还原酶的菌株WZ01,WZ02,WZ03。其中,WZ03(E.coli W3110,△ptsG:XR,△xylAB:XR,△ptsF:XR)的基因组示意图如图3所示。The transformed integrated strains WZ01, WZ02 and WZ03 expressing xylose reductase were designed. Among them, the schematic diagram of the genome of WZ03 (E.coli W3110, △ptsG:XR, △xylAB:XR, △ptsF:XR) is shown in Figure 3.

插入的木糖还原酶表达模块大小为1449bp。ptsG基因大小为1434bp,因此替换后大小变化并不明显,通过核酸胶电泳图无法断定其结果正确性,使用Target-check引物进行PCR产物测序验证,成功将ptsG基因替换为木糖还原酶表达模块。xylAB基因共2849bp,替换为XR后减小1400bp,电泳图可判断替换后为阳性转化子;ptsF基因为1692bp,替换后减少243bp,电泳图显示为阳性转化。最终得到的WZ03菌株为ptsG、xylAB和ptsF全部替换为木糖还原酶基因的表达模块的工程菌。The size of the inserted xylose reductase expression module is 1449 bp. The size of the ptsG gene is 1434bp, so the size change is not obvious after the replacement. The correctness of the result cannot be determined by the nucleic acid gel electrophoresis. The Target-check primer is used to verify the sequencing of the PCR product, and the ptsG gene is successfully replaced with the xylose reductase expression module. . The xylAB gene has a total of 2849 bp, which is reduced by 1400 bp after being replaced by XR. The electropherogram can determine that it is a positive transformant after the replacement; the ptsF gene is 1692 bp, which is reduced by 243 bp after the replacement. The WZ03 strain finally obtained is an engineering strain in which ptsG, xylAB and ptsF are all replaced with the expression module of the xylose reductase gene.

6、通过葡萄糖主要代谢通路(图4)分析,葡萄糖代谢中PPP途径能产生更多的NADPH,因此涉及实验对EMP途径的pfkA、pfkB、pgi基因和转氢酶sthA基因,使用木糖还原酶表达模块进行替换。6. Through the analysis of the main metabolic pathway of glucose (Figure 4), the PPP pathway in glucose metabolism can produce more NADPH, so it involves experiments on the pfkA, pfkB, pgi genes and the transhydrogenase sthA gene of the EMP pathway, using xylose reductase The expression module is replaced.

以WZ03菌株为出发菌株,对可能增强辅酶NADPH再生能力的基因pfkA,pfkB,pgi,sthA进行单个基因的替换,得到菌株WZ21,WZ22,WZ23,WZ24。并选择其中效果较优的工程菌进行双替换,得到菌株WZ31和WZ32。Taking the WZ03 strain as the starting strain, the genes pfkA, pfkB, pgi and sthA, which may enhance the regeneration ability of coenzyme NADPH, were replaced by single genes to obtain strains WZ21, WZ22, WZ23 and WZ24. And select the engineering bacteria with better effect for double replacement to obtain strains WZ31 and WZ32.

上述实验中涉及的引物(SEQ ID NO.1-57)如表3所示。详细的菌株及其基因组类型如表4所示。The primers (SEQ ID NO. 1-57) involved in the above experiments are shown in Table 3. The detailed strains and their genome types are shown in Table 4.

表3 引物序列Table 3 Primer sequences

Figure BDA0001691763660000081
Figure BDA0001691763660000081

Figure BDA0001691763660000091
Figure BDA0001691763660000091

Figure BDA0001691763660000101
Figure BDA0001691763660000101

表4 菌株及相关基因型类型Table 4 Strains and related genotypes

Figure BDA0001691763660000102
Figure BDA0001691763660000102

7、对以上菌株进行摇瓶发酵实验,发酵条件如下:7. The above strains were subjected to shake flask fermentation experiments, and the fermentation conditions were as follows:

(1)种子液制备(1) Preparation of seed solution

种子液培养:将划线分离的单菌落挑取至灭菌的新鲜液体LB培养基中,于37℃,200rpm培养过夜至生长稳定期。Seed liquid culture: Pick the single colonies separated by streaking into sterilized fresh liquid LB medium, and cultivate overnight at 37°C and 200 rpm to a stable growth stage.

(2)摇瓶发酵(2) Shake flask fermentation

配制摇瓶发酵培养基,250mL三角瓶中装液量45mL,接种1mL的种子液,37℃,200rpm培养4h,添加5mL灭菌后的混合糖液(含有200g/L木糖和100g/L的葡萄糖),30℃,200rpm下进行摇瓶发酵,定时取样并检测相关参数变化情况。To prepare a shake flask fermentation medium, a 250 mL conical flask was filled with 45 mL of liquid, inoculated with 1 mL of seed solution, cultured at 37°C, 200 rpm for 4 h, and added 5 mL of sterilized mixed sugar solution (containing 200 g/L xylose and 100 g/L Glucose), shake flask fermentation at 30 °C and 200 rpm, take samples regularly and detect changes in relevant parameters.

(3)糖和糖醇的液相检测方法(3) Liquid phase detection method of sugar and sugar alcohol

将所取的样品进行适当浓度的稀释后,使用0.22μm的过滤头进行过滤。利用Dionex UltiMate 3000高效液相系统对木糖、葡萄糖、阿拉伯糖、木糖醇和阿拉伯糖醇进行定量检测。检测器:Corona Charged Aerosol Detector(CAD),分析柱:Aminex HPX-87C(Φ7.8mm×300mm),流动相:超纯水,流速:0.6mL/min,柱温设定:76℃。The collected sample was diluted to an appropriate concentration, and then filtered using a 0.22 μm filter. Quantitative detection of xylose, glucose, arabinose, xylitol, and arabitol was performed using the Dionex UltiMate 3000 HPLC system. Detector: Corona Charged Aerosol Detector (CAD), analytical column: Aminex HPX-87C (Φ7.8mm×300mm), mobile phase: ultrapure water, flow rate: 0.6mL/min, column temperature setting: 76°C.

取补加糖液24h后的菌液,提取胞内的氧化型和还原型辅酶,并进行浓度测定,方法如下:Take the bacterial solution after adding sugar solution for 24 hours, extract the oxidized and reduced coenzymes in the cells, and measure the concentration. The method is as follows:

1)将菌液置于冰浴中10min,4℃,4000rpm离心15min,浓缩至1mL菌液的OD600为30,分离胞内氧化形式和还原形式的辅酶。1) Place the bacterial solution in an ice bath for 10 min, centrifuge at 4000 rpm for 15 min at 4°C, and concentrate to 1 mL of bacterial solution with an OD 600 of 30 to separate the intracellular oxidized and reduced coenzymes.

2)分别取1mL的菌液,加入:2) Take 1mL of bacterial solution and add:

分离氧化形式:0.5mL的0.3M HCl和50mM的Tricine-NaOH(pH8.0);Separate oxidized form: 0.5 mL of 0.3 M HCl and 50 mM Tricine-NaOH (pH 8.0);

分离还原形式:0.5mL的0.3M NaOH;Isolated reduced form: 0.5 mL of 0.3 M NaOH;

3)所有样品60℃保温7min,氧化形式的用0.5mL的0.3M NaOH中和,还原形式的用0.5mL 0.3M HCl中和,中和之后每个样品中都需加入0.1mL的1.0M Tricine-NaOH来维持pH的稳定。3) All samples were incubated at 60°C for 7 min. The oxidized form was neutralized with 0.5 mL of 0.3M NaOH, and the reduced form was neutralized with 0.5 mL of 0.3M HCl. After neutralization, 0.1 mL of 1.0M Tricine should be added to each sample. -NaOH to maintain pH stability.

4)4℃,13000rpm离心60min。吸取300μL上清转移至新的Ep管中。4) Centrifuge at 13000rpm for 60min at 4°C. Transfer 300 μL of supernatant to a new Ep tube.

5)采用反应液在特定波长下的吸光值来测定辅酶的含量。可采用96孔板和酶标仪进行定量。测定体系为:5) Use the absorbance value of the reaction solution at a specific wavelength to determine the content of the coenzyme. Quantitation can be performed using a 96-well plate and a microplate reader. The measurement system is:

氧化形式:40μL样品+40μL 0.1M NaCl;Oxidized form: 40 μL sample + 40 μL 0.1M NaCl;

还原形式为:80μL样品;The reduced form is: 80 μL sample;

6)加入等体积(80μL)的2*反应原液(1.0M Tricine-NaOH(pH8.0),4.2mMthiazolyl blue tetrazolium bromide(MTT),40mM EDTA,1.67mM phenazineethosulfate(PES),和底物(5M乙醇(用于测定NAD)或25mM葡萄糖-6-磷酸(用于测定NADP)。6) Add equal volume (80 μL) of 2* reaction stock solution (1.0M Tricine-NaOH (pH8.0), 4.2mM thiazolyl blue tetrazolium bromide (MTT), 40mM EDTA, 1.67mM phenazineethosulfate (PES), and substrate (5M ethanol) (for measuring NAD) or 25 mM glucose-6-phosphate (for measuring NADP).

7)混匀之后37℃恒温5min,分别加入工作浓度为10U/mL的醇脱氢酶和0.27U/mL的葡萄糖-6-磷酸脱氢酶(母液以10*浓度进行配制)。7) After mixing, keep the temperature at 37°C for 5 minutes, add alcohol dehydrogenase with a working concentration of 10 U/mL and glucose-6-phosphate dehydrogenase with a working concentration of 0.27 U/mL (the mother liquor is prepared at a concentration of 10*).

8)37℃下MTT的减少量可用570nm的酶标仪来检测。数据对照标准曲线。8) The reduction of MTT at 37°C can be detected by a microplate reader at 570 nm. Data were compared to a standard curve.

测得的辅酶还原型和氧化型的比例如下表5所示。The measured ratios of the reduced and oxidized coenzymes are shown in Table 5 below.

表5 不同基因替换后还原型与氧化型辅酶的比例Table 5 The ratio of reduced and oxidized coenzymes after different gene replacements

Figure BDA0001691763660000121
Figure BDA0001691763660000121

相比于对照组WZ03,替换相关基因后胞内NADPH/NADP+的含量均有一定量的提高,对发酵液中的糖及糖醇进行测定,结果如下图5所示。Compared with the control group WZ03, the intracellular NADPH/NADP+ content increased to a certain extent after the replacement of related genes. The sugar and sugar alcohol in the fermentation broth were determined, and the results are shown in Figure 5 below.

由表5和图5分析可知,经过改造后,胞内NADPH的再生能力得到了强化,消耗相同摩尔葡萄糖能产生更多的NADPH,同时提高了胞内NADPH/NADP+的比例,维持较高的辅酶浓度为木糖还原酶提供充足的还原力。From the analysis in Table 5 and Figure 5, it can be seen that after the transformation, the regeneration ability of intracellular NADPH has been strengthened, and the consumption of the same mole of glucose can produce more NADPH, while increasing the ratio of intracellular NADPH/NADP+, maintaining a higher coenzyme. The concentration provides sufficient reducing power for xylose reductase.

对各株菌株的生长OD600进行测定,结果如图6所示。经改造后的菌株,4个木糖还原酶拷贝数下,辅酶NADPH/NADP+比例越高,菌株的木糖醇产量也越高。5个木糖还原酶拷贝数下,WZ31与WZ32的辅酶NADPH/NADP+比例相当,但WZ31有更高的木糖醇产量。结合图6,WZ32由于改造后菌株的生长能力受到破坏,24h后菌浓度仅有出发菌株WZ03的40%左右,这是其木糖醇产量较低的主要原因。The growth OD 600 of each strain was measured, and the results are shown in Figure 6 . In the transformed strain, with 4 copies of xylose reductase, the higher the ratio of coenzyme NADPH/NADP+, the higher the yield of xylitol of the strain. At 5 copies of xylose reductase, the coenzyme NADPH/NADP+ ratio of WZ31 and WZ32 were comparable, but WZ31 had higher xylitol production. Combined with Figure 6, the growth ability of WZ32 was destroyed after the transformation, and the bacterial concentration after 24h was only about 40% of the starting strain WZ03, which was the main reason for its low xylitol production.

将菌株WZ31进行纯糖摇瓶发酵实验,分别对补加糖后10h,20h及30h进行取样,测定发酵液中的糖和糖醇浓度及OD600的测定,结果如图7所示。The strain WZ31 was subjected to pure sugar shake flask fermentation experiments, and samples were taken 10h, 20h and 30h after sugar supplementation, respectively, to determine the concentration of sugar and sugar alcohol in the fermentation broth and the determination of OD 600. The results are shown in Figure 7.

8、使用半纤维素水解液和玉米浆干粉进行发酵,采用WZ31菌株,在不添加无抗生素及诱导剂的条件下,使用15L发酵罐进行木糖醇发酵,方法如下:8. Use hemicellulose hydrolyzate and dry corn steep liquor for fermentation, use WZ31 strain, and use 15L fermenter to ferment xylitol without adding antibiotics and inducers. The method is as follows:

(1)一级种子液培养(1) First-class seed liquid culture

将保藏的菌种划线于固体培养基平板上,37℃恒温下过夜培养。挑取单菌落于液体LB中,37℃,200rpm培养约12h。The preserved strains were streaked on solid medium plates and cultured overnight at a constant temperature of 37°C. Pick a single colony in liquid LB and culture at 37°C and 200rpm for about 12h.

一级种子液培养基配方(L-1):蛋白胨10g,酵母粉5g,氯化钠10g,固体培养基另加2%的琼脂粉。First-class seed liquid medium formula (L -1 ): peptone 10g, yeast powder 5g, sodium chloride 10g, solid medium plus 2% agar powder.

(2)二级种子液培养(2) Secondary seed liquid culture

按体积比0.5~1%的比例转接一级种子液至二级种子液培养基中,37℃,200rpm培养7h。The primary seed liquid was transferred to the secondary seed liquid medium at a volume ratio of 0.5 to 1%, and cultured at 37° C. and 200 rpm for 7 h.

二级种子液培养基配方(L-1):酵母粉7.5g,蛋白胨7.5g,氯化钠10g,葡萄糖20g。Secondary seed liquid medium formula (L -1 ): 7.5 g of yeast powder, 7.5 g of peptone, 10 g of sodium chloride, and 20 g of glucose.

(3)发酵过程控制(3) Fermentation process control

接种前先用氨水将发酵培养基的pH调节至6.5左右,按发酵培养基体积的10~15%接种培养好的二级种子液,培养温度:37℃,通气量控制在0.6vvm,初始转速控制在400rpm。调节转速和溶氧联控,保持发酵罐溶氧为30-35%,间隔一定时间取样测定菌浓OD600,并在OD600≥20时进行补料操作,接种和补料均采用火焰法。Before inoculation, adjust the pH of the fermentation medium to about 6.5 with ammonia water, and inoculate the cultured secondary seed liquid according to 10-15% of the volume of the fermentation medium. Controlled at 400rpm. Adjust the speed and dissolved oxygen joint control, keep the dissolved oxygen in the fermenter at 30-35%, take samples at certain time intervals to measure the bacterial concentration OD 600 , and carry out feeding operation when the OD 600 ≥ 20, and the flame method is used for inoculation and feeding.

补料方式:分批补料Feeding method: batch feeding

OD600>20(37℃培养7h左右),进行第一次补料。第一次补料后,葡萄糖完全消耗完,进行第二次补料。OD600>20 (cultivation at 37°C for about 7h), the first feeding was carried out. After the first feeding, the glucose was completely consumed, and the second feeding was carried out.

补料液成分及终浓度:半纤维素水解液或木糖母液(木糖终浓度60g/L)、葡萄糖母液(葡萄糖终浓度为木糖摩尔浓度的1/2)、工业级玉米浆干粉(木糖质量浓度的1/3)。Feeding liquid composition and final concentration: hemicellulose hydrolyzate or xylose mother liquor (xylose final concentration 60g/L), glucose mother liquor (glucose final concentration is 1/2 of xylose molar concentration), technical grade corn steep liquor dry powder ( 1/3 of the mass concentration of xylose).

补料后条件控制:溶氧控制在20-25%,温度控制:30℃。Condition control after feeding: dissolved oxygen is controlled at 20-25%, temperature control: 30°C.

补料后定时取样并检测发酵过程中葡萄糖、木糖、阿拉伯糖以及阿拉伯糖醇和木糖醇的浓度,监测整个工程中菌株的生长情况。最终发酵结果如图8所示。After feeding, samples were taken regularly and the concentrations of glucose, xylose, arabinose, arabitol and xylitol were detected during the fermentation process, and the growth of the strains in the whole project was monitored. The final fermentation result is shown in Figure 8.

由图8可知,使用半纤维素水解液作为底物,玉米浆干粉作为碳源,最终经过84h分批补料发酵,最终获得161.03g/L的木糖醇,木糖、阿拉伯糖及葡萄糖基本完全消耗,副产物阿拉伯糖醇仅为1.63g/L。木糖醇的生产效率为1.92g/L/h。As can be seen from Figure 8, using the hemicellulose hydrolyzate as the substrate and corn steep liquor dry powder as the carbon source, 161.03g/L of xylitol was finally obtained after 84h fed-batch fermentation, and xylose, arabinose and glucose were basically the same. When completely consumed, the by-product arabitol is only 1.63g/L. The production efficiency of xylitol was 1.92 g/L/h.

以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The above-mentioned embodiments describe the technical solutions and beneficial effects of the present invention in detail. It should be understood that the above-mentioned embodiments are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modifications, additions and equivalent replacements made should be included within the protection scope of the present invention.

序列表 sequence listing

<110> 浙江大学<110> Zhejiang University

<120> 一种木糖醇基因工程生产菌及其构建方法和应用<120> A kind of xylitol genetic engineering production bacterium and its construction method and application

<160> 57<160> 57

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

tccttcattt ggccgccgat gttttagagc tagaaatagc 40tccttcattt ggccgccgat gttttagagc tagaaatagc 40

<210> 2<210> 2

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

atcggcggcc aaatgaagga actagtatta tacctaggac 40atcggcggcc aaatgaagga actagtatta tacctaggac 40

<210> 3<210> 3

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

gatcggttac tggtggaaac tgactc 26gatcggttac tggtggaaac tgactc 26

<210> 4<210> 4

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

cactcaataa agctgagctc aattgagagt gctcctgagt atggg 45cactcaataa agctgagctc aattgagagt gctcctgagt atggg 45

<210> 5<210> 5

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

actcaggagc actctcaatt gagctcagct ttattgagtg gatga 45actcaggagc actctcaatt gagctcagct ttattgagtg gatga 45

<210> 6<210> 6

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

ctccccaacg tcttacggat taccggttta ttgactaccg gaag 44ctccccaacg tcttacggat taccggttta ttgactaccg gaag 44

<210> 7<210> 7

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

ggtagtcaat aaaccggtaa tccgtaagac gttggggaga ctaa 44ggtagtcaat aaaccggtaa tccgtaagac gttggggaga ctaa 44

<210> 8<210> 8

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

ggtggatggg acagtcagta aagg 24ggtggatggg acagtcagta aagg 24

<210> 9<210> 9

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

tgcgcaagag tgcactttgc gttttagagc tagaaatagc 40tgcgcaagag tgcactttgc gttttagagc tagaaatagc 40

<210> 10<210> 10

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

gcaaagtgca ctcttgcgca actagtatta tacctaggac 40gcaaagtgca ctcttgcgca actagtatta tacctaggac 40

<210> 11<210> 11

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

gatatctcga tctttttgcc agcgttc 27gatatctcga tctttttgcc agcgttc 27

<210> 12<210> 12

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

cactcaataa agctgagctc attgaactcc ataatcaggt aatgc 45cactcaataa agctgagctc attgaactcc ataatcaggt aatgc 45

<210> 13<210> 13

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

acctgattat ggagttcaat gagctcagct ttattgagtg gatga 45acctgattat ggagttcaat gagctcagct ttattgagtg gatga 45

<210> 14<210> 14

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

ggtcaggcag gggataacgt taccggttta ttgactaccg gaag 44ggtcaggcag gggataacgt taccggttta ttgactaccg gaag 44

<210> 15<210> 15

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 15<400> 15

ggtagtcaat aaaccggtaa cgttatcccc tgcctgaccg ggtg 44ggtagtcaat aaaccggtaa cgttatcccc tgcctgaccg ggtg 44

<210> 16<210> 16

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 16<400> 16

gagcgaaaca aacgcatttg accaaac 27gagcgaaaca aacgcatttg accaaac 27

<210> 17<210> 17

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 17<400> 17

agcaccggtt ctggcttcat gttttagagc tagaaatagc 40agcaccggtt ctggcttcat gttttagagc tagaaatagc 40

<210> 18<210> 18

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

atgaagccag aaccggtgct actagtatta tacctaggac 40atgaagccag aaccggtgct actagtatta tacctaggac 40

<210> 19<210> 19

<211> 27<211> 27

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 19<400> 19

gactggatga ctcgcctgcg tagtcag 27gactggatga ctcgcctgcg tagtcag 27

<210> 20<210> 20

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 20<400> 20

cactcaataa agctgagctc tatgcctctc ctgctgtcag ttaaa 45cactcaataa agctgagctc tatgcctctc ctgctgtcag ttaaa 45

<210> 21<210> 21

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

ctgacagcag gagaggcata gagctcagct ttattgagtg gatga 45ctgacagcag gagaggcata gagctcagct ttattgagtg gatga 45

<210> 22<210> 22

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

gccctgtaac acacctttta taccggttta ttgactaccg gaag 44gccctgtaac acacctttta taccggttta ttgactaccg gaag 44

<210> 23<210> 23

<211> 44<211> 44

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

ggtagtcaat aaaccggtat aaaaggtgtg ttacagggca gaaa 44ggtagtcaat aaaccggtat aaaaggtgtg ttacagggca gaaa 44

<210> 24<210> 24

<211> 25<211> 25

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

tgcgccctac tccaccaggc gtaaa 25tgcgccctac tccaccaggc gtaaa 25

<210> 25<210> 25

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 25<400> 25

cacaacgaat tcacagccac gttttagagc tagaaatagc 40cacaacgaat tcacagccac gttttagagc tagaaatagc 40

<210> 26<210> 26

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 26<400> 26

gtggctgtga attcgttgtg actagtatta tacctaggac 40gtggctgtga attcgttgtg actagtatta tacctaggac 40

<210> 27<210> 27

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 27<400> 27

gtgactgacg aatcaccacg 20gtgactgacg aatcaccacg 20

<210> 28<210> 28

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 28<400> 28

cactcaataa agctgagctc tgatttcgga aaaaggcaga ttcct 45cactcaataa agctgagctc tgatttcgga aaaaggcaga ttcct 45

<210> 29<210> 29

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 29<400> 29

tctgcctttt tccgaaatca gagctcagct ttattgagtg gatga 45tctgcctttt tccgaaatca gagctcagct ttattgagtg gatga 45

<210> 30<210> 30

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 30<400> 30

tccaaagttc agaggtagtc ccggtttatt gactaccgga agcag 45tccaaagttc agaggtagtc ccggtttatt gactaccgga agcag 45

<210> 31<210> 31

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 31<400> 31

tccggtagtc aataaaccgg gactacctct gaactttgga atgca 45tccggtagtc aataaaccgg gactacctct gaactttgga atgca 45

<210> 32<210> 32

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 32<400> 32

gtttgcattg ggaatcggca tc 22gtttgcattg ggaatcggca tc 22

<210> 33<210> 33

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 33<400> 33

gtcctaggta taatactagt ccaaaaagaa ctcagtgcgc 40gtcctaggta taatactagt ccaaaaagaa ctcagtgcgc 40

<210> 34<210> 34

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 34<400> 34

gctatttcta gctctaaaac gcgcactgag ttctttttgg 40gctatttcta gctctaaaac gcgcactgag ttctttttgg 40

<210> 35<210> 35

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 35<400> 35

gaagaagtat tactggcgtt ccc 23gaagaagtat tactggcgtt ccc 23

<210> 36<210> 36

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 36<400> 36

cactcaataa agctgagctc catttcctcc tataggctga tttca 45cactcaataa agctgagctc catttcctcc tataggctga tttca 45

<210> 37<210> 37

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 37<400> 37

tcagcctata ggaggaaatg gagctcagct ttattgagtg gatga 45tcagcctata ggaggaaatg gagctcagct ttattgagtg gatga 45

<210> 38<210> 38

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 38<400> 38

atgctggggg aatgtttttg ccggtttatt gactaccgga agcag 45atgctggggg aatgtttttg ccggtttatt gactaccgga agcag 45

<210> 39<210> 39

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 39<400> 39

tccggtagtc aataaaccgg caaaaacatt cccccagcat tgggg 45tccggtagtc aataaaccgg caaaaacatt cccccagcat tgggg 45

<210> 40<210> 40

<211> 23<211> 23

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 40<400> 40

gactgattgc ctgccacatg atg 23gactgattgc ctgccacatg atg 23

<210> 41<210> 41

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 41<400> 41

ctgccaacat gttcgagttc gttttagagc tagaaatagc 40ctgccaacat gttcgagttc gttttagagc tagaaatagc 40

<210> 42<210> 42

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 42<400> 42

gaactcgaac atgttggcag actagtatta tacctaggac 40gaactcgaac atgttggcag actagtatta tacctaggac 40

<210> 43<210> 43

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 43<400> 43

gatccatttt cagccttggc ac 22gatccatttt cagccttggc ac 22

<210> 44<210> 44

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 44<400> 44

cactcaataa agctgagctc tagcaatact cttctgattt tgaga 45cactcaataa agctgagctc tagcaatact cttctgattt tgaga 45

<210> 45<210> 45

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 45<400> 45

aaatcagaag agtattgcta gagctcagct ttattgagtg gatga 45aaatcagaag agtattgcta gagctcagct ttattgagtg gatga 45

<210> 46<210> 46

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 46<400> 46

ggcctacata tcgacgatga ccggtttatt gactaccgga agcag 45ggcctacata tcgacgatga ccggtttatt gactaccgga agcag 45

<210> 47<210> 47

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 47<400> 47

tccggtagtc aataaaccgg tcatcgtcga tatgtaggcc ggata 45tccggtagtc aataaaccgg tcatcgtcga tatgtaggcc ggata 45

<210> 48<210> 48

<211> 26<211> 26

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 48<400> 48

cagaagtcgc cgcaagcgca gatatg 26cagaagtcgc cgcaagcgca gatatg 26

<210> 49<210> 49

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 49<400> 49

gaatatgcgt cgatcttccg gttttagagc tagaaatagc 40gaatatgcgt cgatcttccg gttttagagc tagaaatagc 40

<210> 50<210> 50

<211> 40<211> 40

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 50<400> 50

cggaagatcg acgcatattc actagtatta tacctaggac 40cggaagatcg acgcatattc actagtatta tacctaggac 40

<210> 51<210> 51

<211> 22<211> 22

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 51<400> 51

gttcgtctac gtcgcggaaa tg 22gttcgtctac gtcgcggaaa tg 22

<210> 52<210> 52

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 52<400> 52

cactcaataa agctgagctc ggtagggctt acctgttctt ataca 45cactcaataa agctgagctc ggtagggctt acctgttctt ataca 45

<210> 53<210> 53

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 53<400> 53

aagaacaggt aagccctacc gagctcagct ttattgagtg gatga 45aagaacaggt aagccctacc gagctcagct ttattgagtg gatga 45

<210> 54<210> 54

<211> 45<211> 45

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 54<400> 54

atggccattt cgataaagtt ccggtttatt gactaccgga agcag 45atggccattt cgataaagtt ccggtttatt gactaccgga agcag 45

<210> 55<210> 55

<211> 46<211> 46

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 55<400> 55

tccggtagtc aataaaccgg aactttatcg aaatggccat ccattc 46tccggtagtc aataaaccgg aactttatcg aaatggccat ccattc 46

<210> 56<210> 56

<211> 24<211> 24

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 56<400> 56

gaagcacaga cccaccagtt actg 24gaagcacaga cccaccagtt actg 24

<210> 57<210> 57

<211> 20<211> 20

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 57<400> 57

gaagggagaa aggcggacag 20gaagggagaa aggcggacag 20

Claims (4)

1.一种木糖醇基因工程生产菌,由大肠杆菌W3110经基因组改造得到,其特征在于,原始大肠杆菌W3110基因组中的ptsG、xylAB、ptsF、pfkA和pfkB均替换成木糖还原酶基因XR,所述木糖还原酶基因XR来源于粗糙脉孢菌;1. a xylitol genetic engineering production bacterium, obtained through genome modification by Escherichia coli W3110, is characterized in that, ptsG, xylAB, ptsF, pfkA and pfkB in the original Escherichia coli W3110 genome are all replaced by xylose reductase gene XR , the xylose reductase gene XR is derived from Neurospora crassa; 所述的木糖醇基因工程生产菌的构建方法,包括以下步骤:The construction method of described xylitol genetic engineering production bacterium, comprises the following steps: (1)将大肠杆菌W3110基因组中的ptsG、xylAB和ptsF均替换成木糖还原酶基因XR,得到第一代基因工程菌;(1) replacing ptsG, xylAB and ptsF in the genome of E. coli W3110 with xylose reductase gene XR to obtain the first generation of genetically engineered bacteria; (2)将第一代基因工程菌基因组中的pfkA,pfkB替换成木糖还原酶基因XR;(2) replacing pfkA and pfkB in the genome of the first-generation genetically engineered bacteria with xylose reductase gene XR; 步骤(1)中,包括:In step (1), including: a.利用特异性引物分别构建替换ptsG、xylAB和ptsF基因的pTargetF质粒及对应的含有XR表达模块的修复模板;a. Use specific primers to construct pTargetF plasmids that replace the ptsG, xylAB and ptsF genes and the corresponding repair templates containing the XR expression module; b.将替换ptsG基因的pTargetF质粒和修复模板转化入含有pCas质粒的大肠杆菌W3110中,经同源重组,筛选获得基因组中ptsG基因替换成XR表达模块的菌株W3110△ptsG::XR;b. The pTargetF plasmid and the repair template that replace the ptsG gene are transformed into E. coli W3110 containing the pCas plasmid, and through homologous recombination, the strain W3110△ptsG::XR in which the ptsG gene in the genome is replaced with an XR expression module is obtained by screening; 再将替换xylAB基因的pTargetF质粒和修复模板转化入菌株W3110△ptsG::XR中,经同源重组,筛选获得基因组中xylAB基因替换成XR表达模块的菌株W3110△ptsG::XR,△xylAB::XR;Then, the pTargetF plasmid and the repair template that replaced the xylAB gene were transformed into the strain W3110△ptsG::XR, and after homologous recombination, the strain W3110△ptsG::XR,△xylAB: :XR; 然后将替换ptsF基因的pTargetF质粒和修复模板转化入菌株W3110△ptsG::XR,△xylAB::XR,经同源重组,筛选获得基因组中ptsF基因替换成XR表达模块的菌株W3110△ptsG::XR,△xylAB::XR,△ptsF::XR,即第一代基因工程菌;Then, the pTargetF plasmid and the repair template that replaced the ptsF gene were transformed into the strain W3110△ptsG::XR,△xylAB::XR. After homologous recombination, the strain W3110△ptsG:: with the ptsF gene in the genome replaced by the XR expression module was obtained by screening. XR,△xylAB::XR,△ptsF::XR, namely the first generation of genetically engineered bacteria; 步骤(2)中,包括:In step (2), including: d.分别构建替换pfkA、pfkB基因的pTargetF质粒及对应的含有XR表达模块的修复模板;D. respectively construct the pTargetF plasmid that replaces pfkA, pfkB gene and the corresponding repair template containing XR expression module; e.先将替换pfkA基因的pTargetF质粒及对应的修复模板转化入步骤(1)制得的第一代基因工程菌中,经同源重组,筛选获得基因组中pfkA基因替换成XR表达模块的菌株WZ04△pfkA::XR,再将替换pfkB基因的pTargetF质粒及对应的修复模板转化入菌株WZ04△pfkA::XR中,经同源重组,筛选获得基因组中pfkB基因替换成XR表达模块的菌株,即为所述的木糖醇基因工程生产菌;所述的XR表达模块中包含启动子P43。e. First transform the pTargetF plasmid and the corresponding repair template that replace the pfkA gene into the first-generation genetically engineered bacteria obtained in step (1), and through homologous recombination, screen to obtain the bacterial strain in which the pfkA gene in the genome is replaced with an XR expression module WZ04△pfkA::XR, then the pTargetF plasmid replacing the pfkB gene and the corresponding repair template were transformed into the strain WZ04△pfkA::XR, and after homologous recombination, the strain with the pfkB gene in the genome replaced by the XR expression module was obtained by screening, That is, the xylitol genetically engineered production bacteria; the XR expression module includes the promoter P43. 2.如权利要求1所述的木糖醇基因工程生产菌在生产木糖醇中的应用。2. the application of xylitol genetic engineering producing bacteria as claimed in claim 1 in producing xylitol. 3.如权利要求2所述的应用,其特征在于,包括:将所述的木糖醇基因工程生产菌接种于发酵培养基中,30-37℃发酵培养80-90h,发酵过程中保持菌液浓度OD600小于20。3. application as claimed in claim 2, is characterized in that, comprises: inoculate described xylitol genetic engineering production bacteria in fermentation medium, 30-37 ℃ of fermentation culture 80-90h, keep bacteria in fermentation process The liquid concentration OD 600 is less than 20. 4.如权利要求3所述的应用,其特征在于,发酵初始条件:温度37℃、转速400rpm、通气量0.6-0.8vvm、发酵培养基初始pH为6.5,培养过程溶氧控制在30-35%;当菌液浓度OD600≥20时,进行补料,补料后发酵条件为:温度30℃,溶氧控制在20-25%。4. application as claimed in claim 3, it is characterized in that, fermentation initial condition: temperature 37 ℃, rotating speed 400rpm, ventilation 0.6-0.8vvm, initial pH of fermentation medium is 6.5, and dissolved oxygen in culturing process is controlled at 30-35 %; when the concentration of bacterial liquid OD 600 ≥ 20, feeding is carried out, and the fermentation conditions after feeding are as follows: temperature is 30°C, and dissolved oxygen is controlled at 20-25%.
CN201810594607.5A 2018-06-11 2018-06-11 A kind of xylitol genetic engineering production bacterium and its construction method and application Active CN108753672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810594607.5A CN108753672B (en) 2018-06-11 2018-06-11 A kind of xylitol genetic engineering production bacterium and its construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810594607.5A CN108753672B (en) 2018-06-11 2018-06-11 A kind of xylitol genetic engineering production bacterium and its construction method and application

Publications (2)

Publication Number Publication Date
CN108753672A CN108753672A (en) 2018-11-06
CN108753672B true CN108753672B (en) 2020-09-18

Family

ID=64020793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810594607.5A Active CN108753672B (en) 2018-06-11 2018-06-11 A kind of xylitol genetic engineering production bacterium and its construction method and application

Country Status (1)

Country Link
CN (1) CN108753672B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511949A (en) * 2019-08-14 2019-11-29 山东寿光巨能金玉米开发有限公司 A kind of gene, recombinant vector, recombinant cell and application method improving xylose utilization rate
CN110835621B (en) * 2019-10-17 2021-05-04 浙江大学 A kind of genetic engineering bacteria and its application in producing xylitol
CN113025516A (en) * 2020-12-28 2021-06-25 浙江华康药业股份有限公司 Method for preparing xylitol by fermenting xylose secondary mother liquor
CN113293121B (en) * 2021-06-17 2022-10-25 福州大学 A method for intelligent regulation of carbon metabolism flux for production of xylitol in Escherichia coli
CN118581025B (en) * 2024-08-05 2024-12-10 浙江容锐科技有限公司 Genetically engineered bacteria for preparing xylitol and its application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1765978A2 (en) * 2004-05-19 2007-03-28 Biotechnology Research And Development Corporation Methods for production of xylitol in microorganisms
WO2011006136A2 (en) * 2009-07-09 2011-01-13 Verdezyne, Inc. Engineered microorganisms with enhanced fermentation activity
CN103205391A (en) * 2013-04-12 2013-07-17 浙江大学 Gene engineering strain and application thereof
CN104593308A (en) * 2014-12-09 2015-05-06 浙江大学 Genetic engineering strain, construction method and application in xylitol production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1765978A2 (en) * 2004-05-19 2007-03-28 Biotechnology Research And Development Corporation Methods for production of xylitol in microorganisms
WO2011006136A2 (en) * 2009-07-09 2011-01-13 Verdezyne, Inc. Engineered microorganisms with enhanced fermentation activity
CN103205391A (en) * 2013-04-12 2013-07-17 浙江大学 Gene engineering strain and application thereof
CN104593308A (en) * 2014-12-09 2015-05-06 浙江大学 Genetic engineering strain, construction method and application in xylitol production

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden–Meyerhof–Parnas pathway‑associated genes to enhance NADPH regeneration in Escherichia coli;Xinsong Yuan等;《Journal of Industrial Microbiology & Biotechnology》;20190425;第46卷;1061-1069 *
Improved NADPH Supply for Xylitol Production by Engineered Escherichia Coli with Glycolytic Mutations;Jonathan W. Chin等;《Biotechnol. Prog.》;20110222;第27卷(第2期);333-341 *
大肠杆菌基因工程菌转化半纤维素水解液生产木糖醇的研究;苏卜利;《中国博士学位论文全文数据库》;20160615(第06期);B016-13 *
辅酶再生强化的多拷贝整合表达木糖还原酶大肠杆菌的构建;王吉平;《中国优秀硕士学位论文全文数据库》;20190115(第1期);A006-828 *

Also Published As

Publication number Publication date
CN108753672A (en) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108753672B (en) A kind of xylitol genetic engineering production bacterium and its construction method and application
CN104593308B (en) A kind of genetic engineering bacterium and its construction method and the application in production xylitol
WO2021093289A1 (en) Construction method for recombinant yarrowia lipolytica for synthesis of xylitol and strain thereof
CN103097514B (en) A kind of method for preparing 1,3-PD from sucrose
WO2022217827A1 (en) ENZYME COMPOSITION FOR PREPARING β-NICOTINAMIDE MONONUCLEOTIDE, AND APPLICATION THEREOF
CN113073074B (en) A genetically engineered bacterium for efficient synthesis of riboflavin and its application
CN104278003A (en) Recombinant Escherichia coli for producing D-lactic acid and application of recombinant Escherichia coli
Yuan et al. Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus
CN102643774B (en) Gene engineering bacterium for producing succinic acid and method for producing succinic acid by fermentation of gene engineering bacterium
CN116064345A (en) High-efficiency production of fucosyllactose without genetically engineered bacteria and its application
CN106635943A (en) Method for improving content of intracellular oxidation type coenzymes I
CN106434402B (en) A strain of Saccharomyces cerevisiae expressing xylose isomerase and its construction method
CN110835621A (en) Genetically engineered bacterium and application thereof in producing xylitol
CN114957413B (en) E.coli global regulatory factor cyclic adenosine receptor protein mutant, genetically engineered bacterium and application
CN113957027B (en) A genetically engineered bacterium that improves the production of lactoyl-N-fucohexaose and its production method
CN110499259A (en) A kind of Yarrowia Yarrowia YW100-1 and its application
CN101993850A (en) Genetic engineering bacteria for producing D-lactic acid and constructon method and application thereof
CN112877271B (en) Method for improving L-arginine production of corynebacterium crenatum through anaerobic fermentation
CN105861339B (en) A recombinant Mortierella alpina overexpressing GTP cyclohydrolase gene, its construction method and application
CN103509747A (en) Corynebacterium glutamicum engineering bacterium for highly producing succinic acid and building method thereof
CN114672448A (en) A kind of Escherichia coli for synthesizing 2&#39;-fucosyllactose and its construction method and application
CN103031348A (en) Method for preparing L-lactic acid by utilizing lignocellulose
CN105586365B (en) A method for fermenting and producing mixed alcohols
CN112501219A (en) Method for producing lactic acid monomer by fermenting sucrose as raw material
CN111304105A (en) Genetically engineered bacteria using methanol and xylose co-substrate to produce lipase and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant