CN108751222A - A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern - Google Patents
A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern Download PDFInfo
- Publication number
- CN108751222A CN108751222A CN201810658480.9A CN201810658480A CN108751222A CN 108751222 A CN108751222 A CN 108751222A CN 201810658480 A CN201810658480 A CN 201810658480A CN 108751222 A CN108751222 A CN 108751222A
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- sio
- intertwined
- crystal morphology
- mfi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002808 molecular sieve Substances 0.000 title claims abstract description 85
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 230000003993 interaction Effects 0.000 title 1
- 239000013078 crystal Substances 0.000 claims abstract description 45
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 14
- 239000011737 fluorine Substances 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 14
- 239000010703 silicon Substances 0.000 claims abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 5
- 238000001035 drying Methods 0.000 claims abstract description 3
- 150000002221 fluorine Chemical class 0.000 claims abstract 3
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 37
- 229910021536 Zeolite Inorganic materials 0.000 claims description 25
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 25
- 239000010457 zeolite Substances 0.000 claims description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 15
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 238000003786 synthesis reaction Methods 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 239000006229 carbon black Substances 0.000 claims description 6
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 5
- 125000005207 tetraalkylammonium group Chemical group 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 claims description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 2
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical group CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 2
- 230000032683 aging Effects 0.000 claims description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011698 potassium fluoride Substances 0.000 claims description 2
- 235000003270 potassium fluoride Nutrition 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 239000011775 sodium fluoride Substances 0.000 claims description 2
- 235000013024 sodium fluoride Nutrition 0.000 claims description 2
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 6
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000005406 washing Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 9
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 description 9
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- -1 Silicalite-1 Chemical compound 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000004626 scanning electron microscopy Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000013517 stratification Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012229 microporous material Substances 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- AJROUILWTHWZFO-UHFFFAOYSA-N [F-].[NH4+].[Si] Chemical compound [F-].[NH4+].[Si] AJROUILWTHWZFO-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000013335 mesoporous material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Signal Processing (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
一种具有交互孪晶形貌的MFI分子筛的制备方法及其声学应用,其制备工艺特征是在合成硅源及铝源中加入氟盐,形成二氧化硅‑氧化铝‑四烷基铵结构导向剂‑氟盐‑水‑碱‑醇溶胶体系,溶胶在50‑220℃温度下,在水热条件下合成5‑240小时,经分离、清洗、干燥和焙烧后可得到具有高结晶度的分子筛产品,分子筛晶粒单分散,其硅铝比可在10‑∞范围内调节,尺寸范围在0.5‑50微米范围内可调。本发明制备的分子筛孔道规整、缺陷少、具有较高的微孔表面积、结晶度好、稳定性好、产率高,同时在声学吸收研究中可起到扩充谐振腔空间的作用,有效降低微型扬声器中的低频共振频率,可应用于便携式电子设备中改善扬声器的声学性能。
A preparation method of MFI molecular sieve with alternating twin crystal morphology and its acoustic application, the preparation process is characterized by adding fluorine salts to the synthetic silicon source and aluminum source to form silica-alumina-tetraalkylammonium structure-oriented Agent-fluorine salt-water-alkali-alcohol sol system, the sol is synthesized under hydrothermal conditions for 5-240 hours at a temperature of 50-220°C, and molecular sieves with high crystallinity can be obtained after separation, washing, drying and roasting The product, molecular sieve crystal grains are monodisperse, its silicon-aluminum ratio can be adjusted in the range of 10-∞, and the size range can be adjusted in the range of 0.5-50 microns. The molecular sieve prepared by the present invention has regular pores, few defects, high micropore surface area, good crystallinity, good stability, and high yield. The low-frequency resonance frequency in the speaker can be applied to improve the acoustic performance of the speaker in portable electronic equipment.
Description
技术领域technical field
本发明涉及具有交互孪晶形貌的分子筛的制备与声学应用,特别涉及晶粒尺度为0.5-50微米范围、硅铝比为10-∞的具有交互孪晶形貌的MFI结构类型分子筛的制备技术,特别涉及具有交互孪晶形貌的分子筛在声学领域的应用,属分子筛材料制备与应用领域。The present invention relates to the preparation and acoustic application of molecular sieves with alternating twin morphology, in particular to the preparation of molecular sieves of MFI structure with alternating twin morphology with a grain size in the range of 0.5-50 microns and a silicon-aluminum ratio of 10-∞ Technology, especially related to the application of molecular sieves with intertwined crystal morphology in the field of acoustics, belonging to the field of preparation and application of molecular sieve materials.
背景技术Background technique
随着手机、平板电脑、液晶电视等电子设备的轻薄化及柔性化的趋势,以及人们对扬声器的高质量声学效果提出了越来越高的要求。而由于此类便携轻薄电子设备里的微型扬声器尺寸很小,重放低频有先天缺陷。在有限的后腔中填充吸声或者微孔材料,尤其是分子筛材料具有稳定性高及微孔分布均匀的特点,可达到增加音腔容积的作用,进而改善扬声器的低频重放性能。专利CN103098480A发明了一种扬声器装置,以分子筛为填充材料可有效的将谐振频率向低频移动,该专利对分子筛种类、微孔孔径和硅铝比对吸音性能的影响进行了探讨,但未对分子筛的颗粒形状及均一度进行探讨。专利CN105872920A报道了以Silicalite-1、ZSM-5、MCM-41、SBA-15等分子筛和有序介孔碳CMK-3为吸音材料用于扬声器使得谐振空间虚拟增大,但未对颗粒的尺寸、形貌和均一度对吸引性能的影响加以探讨。具有不同形貌的颗粒对分子筛的堆积行为及产生的颗粒间孔均产生明显的影响,并将进一步影响分子筛的吸音性能。With the trend of thinner and more flexible electronic devices such as mobile phones, tablet computers, and LCD TVs, people have put forward higher and higher requirements for high-quality acoustic effects of speakers. However, due to the small size of the micro-speakers in such portable and thin electronic devices, there are inherent defects in reproducing low frequencies. Filling the limited rear cavity with sound-absorbing or microporous materials, especially molecular sieve materials, has the characteristics of high stability and uniform distribution of micropores, which can increase the volume of the sound cavity and improve the low-frequency reproduction performance of the speaker. Patent CN103098480A invented a loudspeaker device, which can effectively move the resonance frequency to low frequency with molecular sieve as the filling material. The shape and uniformity of the particles were discussed. Patent CN105872920A reports that molecular sieves such as Silicalite-1, ZSM-5, MCM-41, SBA-15 and ordered mesoporous carbon CMK-3 are used as sound-absorbing materials for speakers to make the resonance space virtual increase, but the particle size is not adjusted. , morphology and homogeneity on the attraction performance to be discussed. Particles with different morphologies have a significant impact on the packing behavior of molecular sieves and the pores between particles, which will further affect the sound-absorbing performance of molecular sieves.
分子筛材料是无机微孔晶体材料中非常重要的家族,广泛用于离子交换、吸附分离、催化等领域。MFI型分子筛是一种含有两条交叉孔道的SiO2晶体,孔直径大约为0.55nm,其骨架Si/Al比可自全硅型直至含铝型(即ZSM-5)可调。1978年,Flanigen等人首次合成了Silicalite-1,即全硅MFI型分子筛。传统的合成MFI型分子筛晶体是以四丙基氢氧化铵(TPAOH)作为结构导向剂(SDA)在水热条件下合成的,OH-同时也是合成沸石分子筛的矿化剂,在分子筛合成中起着重要的作用。OH-作为矿化剂可以溶解更多的硅酸盐,当OH-浓度较高时,大量的硅铝凝胶被溶解,形成更多晶核。Molecular sieve materials are a very important family of inorganic microporous crystal materials, widely used in ion exchange, adsorption separation, catalysis and other fields. MFI type molecular sieve is a SiO 2 crystal containing two intersecting channels, the pore diameter is about 0.55nm, and its skeleton Si/Al ratio can be adjusted from the all-silicon type to the aluminum-containing type (ie ZSM-5). In 1978, Flanigen and others synthesized Silicalite-1 for the first time, that is, all-silicon MFI molecular sieve. The traditional synthesis of MFI molecular sieve crystals is synthesized by tetrapropylammonium hydroxide (TPAOH) as a structure-directing agent (SDA) under hydrothermal conditions. OH - is also a mineralizer for the synthesis of zeolite molecular sieves. play an important role. OH - as a mineralizer can dissolve more silicate. When the OH - concentration is higher, a large amount of silica-alumina gel is dissolved and more crystal nuclei are formed.
除了碱体系,1978年E.M.Flanigen等(Nature,1978,271,512-516)首次在水热条件下将F-引入合成体系。这一合成策略为分子筛的合成历史开创了新的道路。F-在分子筛的合成过程中作矿化剂时,可以使反应在中性或酸性条件下进行,F-能够导向双四元环的形成,更容易获得开放的低密度骨架结构,同时F离子可以平衡模板剂阳离子,减少沸石分子筛的缺陷。A.C.Voegtlin等(Microporous Mater,1997,9,95-105)认为无F-条件下,一般由骨架缺陷形成的负电荷来平衡阳离子。氟化物体系中,硅、铝以SiF6 2-、AlF6 3-配合物存在,改变了反应路径和进程,从而可以改变样品的形貌。Benoit Louis等(MicroporousMesoporous Mater,2004,74,171–178)报导了在TPABr-TEOS-NaAlO2-NH4F-H2O体系中F/Si对分子筛形貌的影响,结果发现F/Si从0.3到1.6,ZSM-5分子筛晶粒大小从10μm增大到75μm,表面积由60m2/g变到350m2/g,结晶度也增大。专利US3839539A和CA976324A1报道了在合成溶胶中直接加入氟硅铵来制备含氟的高活性HX、HY和A型沸石分子筛,制备的沸石分子筛比传统方法制备的分子筛具有更高的热稳定性和比表面积。专利CN101837990A报道了直接将氟源添加到合成溶胶中,通过水热合成法直接制备含氟全硅MFI沸石分子筛的方法。In addition to the alkali system, in 1978, EM Flanigen et al. (Nature, 1978, 271, 512-516 ) introduced F- into the synthesis system under hydrothermal conditions for the first time. This synthetic strategy opened a new path for the synthetic history of molecular sieves. F - When used as a mineralizer in the synthesis of molecular sieves, the reaction can be carried out under neutral or acidic conditions. F - can lead to the formation of double four-membered rings, and it is easier to obtain an open low-density framework structure. At the same time, F ions It can balance template cations and reduce defects of zeolite molecular sieves. ACVoegtlin et al. (Microporous Mater, 1997, 9, 95-105) believed that under the condition of no F- , the negative charges formed by the defects of the framework generally balance the cations. In the fluoride system, silicon and aluminum exist as SiF 6 2- and AlF 6 3- complexes, which change the reaction path and process, thereby changing the morphology of the sample. Benoit Louis et al. (Microporous Mesoporous Mater, 2004, 74, 171–178) reported the effect of F/Si on the morphology of molecular sieves in the TPABr-TEOS-NaAlO 2 -NH 4 FH 2 O system, and found that F/Si ranged from 0.3 to 1.6. The grain size of ZSM-5 molecular sieve increases from 10μm to 75μm, the surface area changes from 60m 2 /g to 350m 2 /g, and the crystallinity also increases. Patents US3839539A and CA976324A1 reported that fluorine-containing high-activity HX, HY and A-type zeolite molecular sieves were prepared by directly adding ammonium fluoride silicon into the synthetic sol. The prepared zeolite molecular sieves had higher thermal stability and specificity than those prepared by traditional methods. surface area. Patent CN101837990A reports a method of directly adding a fluorine source to a synthetic sol, and directly preparing a fluorine-containing all-silicon MFI zeolite molecular sieve through a hydrothermal synthesis method.
通常情况下,反应时间、温度、酸碱度、搅拌时间和强度等合成参数的改变,会对分子筛晶体的尺寸、形状、聚集度等方面产生一定的影响。传统的合成MFI型分子筛晶体是以四丙基氢氧化铵(TPAOH)作为结构导向剂(SDA)在水热条件下合成的。以TPAOH作为结构导向剂在水热条件下合成的典型的MFI型分子筛晶体具有“Coffin(棺材)”形状,晶体在c-轴方向具有较长的尺寸,而a-轴和b-轴方向的尺寸相对较短。为了更为细致的研究Si-MFI晶体的形状和尺寸的变化,Jaouad Arichi和Benoit Louis(Crystal Growth Design,2008,8,3999)在氟离子存在下利用传统的水热合成得到了不同形貌的ZSM-5沸石分子筛。通过改变F/Si比、硅源、反应时间得到了类似星状和类似刺猬状形貌的MFI沸石分子筛。FlavianoTesta等人(Microporous and Mesoporous Materials,2003,57,57)在不同氟源作为添加剂合成了具有不同形貌的Fe掺杂的Silicalite-1分子筛。目前,有效获得具有单分散性的具有交互孪晶形貌的分子筛的合成工艺,并对颗粒尺寸和硅铝比进行宽范围调控的成熟方案还十分缺乏,这限制了包括声学领域在内的分子筛的应用。Usually, changes in synthesis parameters such as reaction time, temperature, pH, stirring time and strength will have certain effects on the size, shape and degree of aggregation of molecular sieve crystals. Traditionally synthesized MFI molecular sieve crystals are synthesized by using tetrapropylammonium hydroxide (TPAOH) as structure directing agent (SDA) under hydrothermal conditions. The typical MFI-type molecular sieve crystals synthesized under hydrothermal conditions with TPAOH as a structure-directing agent have a "Coffin (coffin)" shape, and the crystals have longer dimensions in the c-axis direction, while the a-axis and b-axis directions Relatively short in size. In order to study the shape and size changes of Si-MFI crystals in more detail, Jaouad Arichi and Benoit Louis (Crystal Growth Design, 2008, 8, 3999) used traditional hydrothermal synthesis in the presence of fluoride ions to obtain Si-MFI crystals with different morphologies. ZSM-5 zeolite molecular sieve. By changing the F/Si ratio, silicon source, and reaction time, MFI zeolite molecular sieves with star-like and hedgehog-like morphologies were obtained. FlavianoTesta et al. (Microporous and Mesoporous Materials, 2003, 57, 57) synthesized Fe-doped Silicalite-1 molecular sieves with different morphologies using different fluorine sources as additives. At present, there is still a lack of mature methods for effectively obtaining monodisperse molecular sieves with alternating twin crystal morphology, and a wide range of controllable particle size and silicon-aluminum ratio, which limits the development of molecular sieves in the field of acoustics. Applications.
本发明提供了一种在颗粒尺寸(0.5-50微米)和硅铝比(10-∞)可调的,具有交互孪晶形貌的单分散分子筛颗粒的制备工艺,该工艺具有流程短、三废少的特点,制备的具有交互孪晶形貌额分子筛颗粒,单分散性好、形貌均一、孔道规整、表面缺陷少,微孔表面积大、孔隙率高、结晶度好、热稳定性好的特点,在吸音特性测试中表现出优异的性能。The invention provides a preparation process of monodisperse molecular sieve particles with adjustable particle size (0.5-50 microns) and silicon-aluminum ratio (10-∞) and intertwined crystal morphology. The molecular sieve particles prepared with alternating twin crystal morphology have good monodispersity, uniform shape, regular channels, less surface defects, large micropore surface area, high porosity, good crystallinity and good thermal stability. Features, it shows excellent performance in the test of sound absorption characteristics.
发明内容Contents of the invention
本发明的目的在于提供一种流程步骤短、三废少的工艺,制备具有交互孪晶形貌的MFI分子筛的工艺,该工艺可获得颗粒大小、骨架组成可调的单分散MFI型分子筛颗粒。在合成沸石分子筛的溶胶中直接加入氟源的SiO2-TXAOH-TPAY-MF-H2O体系,通过水热合成法,在50-220℃温度下一步法制备含氟交互孪晶形貌的MFI沸石分子筛。具体地说,其制备步骤为:The purpose of the present invention is to provide a process with short process steps and less waste, and a process for preparing MFI molecular sieves with intertwined crystal morphology. The process can obtain monodisperse MFI molecular sieve particles with adjustable particle size and skeleton composition. The SiO 2 -TXAOH-TPAY-MF-H 2 O system of the fluorine source was directly added to the sol of the synthetic zeolite molecular sieve, and the fluorine-containing intertwined crystal morphology was prepared by the hydrothermal synthesis method at a temperature of 50-220 °C in one step. MFI zeolite molecular sieve. Specifically, its preparation steps are:
(1)将模板剂四烷基铵模板剂(TXAOH或TPAY)、硅源(以SiO2计)、铝源(以Al2O3计)、氟源(MF)、水、碱(MOH)、醇(XOH)混合以特定比例及加料顺序混合,硅源加入速率为0.1-100g/min,并在室温下混合搅拌形成稳定溶胶,搅拌老化0.5-36小时,所形成的SiO2-Al2O3-TXAOH-TPAY-MF-MOH-H2O-XOH溶胶体系中各组分摩尔比为:SiO2/Al2O3=10-∞;MF/SiO2=0-1.5;TXAOH/SiO2=0-1.0;TPAY/SiO2=0-1.0;H2O/SiO2=5-50;MOH/SiO2=0-5.0;XOH/SiO2=0-5.0。(1) The template agent tetraalkylammonium template (TXAOH or TPAY), silicon source (calculated as SiO 2 ), aluminum source (calculated as Al 2 O 3 ), fluorine source (MF), water, alkali (MOH) , Alcohol (XOH) is mixed in a specific ratio and in the order of addition, the silicon source is added at a rate of 0.1-100g/min, and mixed and stirred at room temperature to form a stable sol, stirred and aged for 0.5-36 hours, the formed SiO 2 -Al 2 The molar ratio of each component in the O 3 -TXAOH-TPAY-MF-MOH-H 2 O-XOH sol system is: SiO 2 /Al 2 O 3 =10-∞; MF/SiO 2 =0-1.5; TXAOH/SiO 2 =0-1.0; TPAY/SiO 2 =0-1.0; H 2 O/SiO 2 =5-50; MOH/SiO 2 =0-5.0; XOH/SiO 2 =0-5.0.
较佳范围为:The preferred range is:
SiO2/Al2O3=20-∞;MF/SiO2=0-1.0;TXAOH/SiO2=0-0.5;MOH/SiO2=0-5.0;TPAY/SiO2=0-0.5;H2O/SiO2=5-25;XOH/SiO2=0-2.0。SiO 2 /Al 2 O 3 =20-∞; MF/SiO 2 =0-1.0; TXAOH/SiO 2 =0-0.5; MOH/SiO 2 =0-5.0; TPAY/SiO 2 =0-0.5; H 2 O/SiO 2 =5-25; XOH/SiO 2 =0-2.0.
(2)上述老化后的溶胶置入反应釜或晶化釜等具有实现水热高温高压功能的反应容器中,然后将容器放入已预热至50-220℃的烘箱中晶化5-240小时。反应完毕后,反应产物经抽滤、离心、压滤或闪蒸等工艺分离,并多次用蒸馏水冲洗至中性。干燥后,放入500-650℃马弗炉中焙烧1-6小时,以去除模板剂,即可得到具有交互孪晶形貌的MFI型分子筛。本发明中合成交互孪晶形貌MFI沸石分子筛时水热合成温度较佳范围为90-180℃,较佳范围合成时间为10-120小时。(2) The above-mentioned aged sol is placed in a reaction vessel with the function of realizing hydrothermal high temperature and high pressure, such as a reaction kettle or a crystallization kettle, and then the container is placed in an oven preheated to 50-220°C for 5-240°C crystallization. Hour. After the reaction is completed, the reaction product is separated by suction filtration, centrifugation, pressure filtration or flash evaporation, and washed with distilled water several times until neutral. After drying, put it into a muffle furnace at 500-650°C and bake for 1-6 hours to remove the template agent, and the MFI molecular sieve with alternating twin crystal morphology can be obtained. In the present invention, when synthesizing the MFI zeolite molecular sieve with intertwined crystal morphology, the preferred range of hydrothermal synthesis temperature is 90-180° C., and the preferred range of synthesis time is 10-120 hours.
(3)上述获得的具有交互孪晶形貌的MFI型分子筛的颗粒,填充于具有固定体积的腔体中,放置于微型扬声器后,以信号分析仪测试其声学吸收性能。测试表明,具有交互孪晶形貌的MFI型分子筛颗粒能够显著降低低频共振频率F0,降低值为51.8-60.8Hz之间。(3) The MFI-type molecular sieve particles obtained above with an intertwined crystal morphology are filled in a cavity with a fixed volume, placed behind a micro-speaker, and its acoustic absorption performance is tested with a signal analyzer. Tests show that MFI molecular sieve particles with alternating twin crystal morphology can significantly reduce the low-frequency resonance frequency F 0 , and the reduction value is between 51.8-60.8 Hz.
进一步的,以上所述的硅源为硅酸四乙酯或硅酸四丁酯或白炭黑或硅溶胶或硅片,铝源为氧化铝或异丙醇铝或氟化铝。Further, the silicon source mentioned above is tetraethyl silicate or tetrabutyl silicate or white carbon black or silica sol or silicon wafer, and the aluminum source is alumina or aluminum isopropoxide or aluminum fluoride.
进一步的,以上所述的氟源为氟化铵或氢氟酸或氟化钠或氟化钾等含氟无机或者有机盐。Further, the fluorine source mentioned above is ammonium fluoride or hydrofluoric acid or sodium fluoride or potassium fluoride and other fluorine-containing inorganic or organic salts.
进一步的,以上所述的四烷基铵模板剂之一的种类包括烷基的碳链数为1-16、阴离子为OH-或之二的种类包括烷基的碳链数为1-16、阴离子为Br-或Cl-或F-。Further, one of the above-mentioned tetraalkylammonium templating agents includes an alkyl group with a carbon chain number of 1-16, an anion that is OH- , or both types include an alkyl group with a carbon chain number of 1-16, The anion is Br - or Cl - or F - .
进一步的,以上所述的碱的种类为氢氧化钠或氢氧化锂或氢氧化钾。Further, the above-mentioned type of alkali is sodium hydroxide or lithium hydroxide or potassium hydroxide.
本发明中提供的合成具有交互孪晶形貌MFI沸石分子筛的方法,其制备过程简单、条件温和、可省去沸石分子筛制备中繁琐的后续处理过程,节省制备步骤和时间。而且制备的交互孪晶形貌MFI沸石分子筛具有较多数量的微孔和较大的比表面积,除了应用于声音吸收领域,还可应用于烃油原料的催化裂化、醚化反应、吸附和分离有机蒸汽及其它气体、液体混合物分离、离子交换和膜反应器等领域中。The method for synthesizing an MFI zeolite molecular sieve with an intertwined crystal morphology provided in the present invention has a simple preparation process and mild conditions, which can save the tedious follow-up treatment process in the preparation of the zeolite molecular sieve, and save preparation steps and time. Moreover, the prepared MFI zeolite molecular sieve with alternating twin crystal morphology has a large number of micropores and a large specific surface area. In addition to being used in the field of sound absorption, it can also be used in catalytic cracking, etherification reaction, adsorption and separation of hydrocarbon oil raw materials. In the fields of separation of organic vapor and other gases and liquid mixtures, ion exchange and membrane reactors.
本发明制备的具有交互孪晶形貌MFI型分子筛材料孔道规整,缺陷较少,有较高的微孔表面积,结晶度和产率,同时高温测试表现了较好的热稳定性,因此能够带来较好的经济收益。The MFI type molecular sieve material prepared by the present invention has regular pores, fewer defects, higher micropore surface area, crystallinity and yield, and at the same time shows better thermal stability in high temperature tests, so it can bring to better economic returns.
附图说明Description of drawings
图1为实施例1合成的具有交互孪晶形貌分子筛的X-射线衍射图。Figure 1 is the X-ray diffraction pattern of the molecular sieve with alternating twin morphology synthesized in Example 1.
图2为实施例1合成的具有交互孪晶形貌分子筛的扫描电镜照片图。Fig. 2 is a scanning electron micrograph of the molecular sieve with alternating twin crystal morphology synthesized in Example 1.
图3为实施例2合成的具有交互孪晶形貌分子筛的X-射线衍射图。Figure 3 is the X-ray diffraction pattern of the molecular sieve with alternating twin morphology synthesized in Example 2.
图4为实施例2合成的具有交互孪晶形貌分子筛的扫描电镜照片图。Fig. 4 is a scanning electron micrograph of the molecular sieve with alternating twin crystal morphology synthesized in Example 2.
图5为实施例3合成的具有交互孪晶形貌分子筛的X-射线衍射图。Fig. 5 is an X-ray diffraction pattern of the molecular sieve with alternating twin morphology synthesized in Example 3.
图6为实施例3合成的具有交互孪晶形貌分子筛的扫描电镜照片图。Fig. 6 is a scanning electron micrograph of the molecular sieve with alternating twin crystal morphology synthesized in Example 3.
图7为实施例4合成的具有交互孪晶形貌分子筛的X-射线衍射图。Fig. 7 is the X-ray diffraction pattern of the molecular sieve with alternating twin morphology synthesized in Example 4.
图8为实施例4合成的具有交互孪晶形貌分子筛的扫描电镜照片图。Fig. 8 is a scanning electron micrograph of the molecular sieve with alternating twin crystal morphology synthesized in Example 4.
图9为测试分子筛颗粒的扬声器模组示意图。Fig. 9 is a schematic diagram of a speaker module for testing molecular sieve particles.
具体实施方式Detailed ways
下面应用实施例对本发明作进一步的阐述,但专利权限并不局限于这些例子,本行业从业人员经过合理的条件优化和组合,均可基于本发明精神和方法获得相似的结构,基于此进行的开发也在本专利的保护范围内:The following application examples further illustrate the present invention, but the patent rights are not limited to these examples, practitioners in this industry can obtain similar structures based on the spirit and methods of the present invention through reasonable condition optimization and combination, and based on this Development is also within the scope of protection of this patent:
实施例1Example 1
一步法制备含氟交互孪晶形貌MFI沸石分子筛的步骤,(1)将模板剂四丙基溴化铵(TPABr)、硅溶胶、偏铝酸钠(NaAlO2)、氢氧化钠(NaOH)和适量水混合溶解,硅溶胶的加入速率为5g/min,并在室温下混合搅拌形成稳定溶胶,搅拌老化6小时,所形成SiO2-NaAlO2-TPABr-NaOH-H2O溶胶体系中各组分摩尔比为:SiO2/Al2O3=0.02,TPABr/Si02=0.05,NaOH/Si02=0.2,H2O/Si02=40;(2)上述老化后的溶胶置入聚四氟乙烯内衬的不锈钢反应釜中,然后将反应釜放入已预热至170℃的烘箱中晶化24小时。反应完毕后,反应液有明显的分层。反应产物经抽滤分离、清洗至中性、干燥后,并放入马弗炉中经550℃焙烧6小时,以去除模板剂即可得到交互孪晶形貌MFI沸石分子筛。样品经XRD表征,图1为合成的沸石分子筛的XRD衍射图,由图可见制备的沸石分子筛在衍射角2θ为7.8°、8.8°、23.2°、23.8°和24.3°处表现出MFI沸石分子筛的典型衍射峰。样品经扫描电镜(SEM)表征如图2所示表现出交互孪晶形貌,尺寸约5μm。经吸音测试后,F0降低了56Hz,计ΔF0=56Hz。The step of preparing fluorine-containing intertwined crystal MFI zeolite molecular sieve by one-step method, (1) template agent tetrapropylammonium bromide (TPABr), silica sol, sodium metaaluminate (NaAlO 2 ), sodium hydroxide (NaOH) Mix and dissolve with an appropriate amount of water, add the silica sol at a rate of 5g/min, and mix and stir at room temperature to form a stable sol, stir and age for 6 hours, each of the formed SiO 2 -NaAlO 2 -TPABr-NaOH-H 2 O sol system The molar ratio of the components is: SiO 2 /Al 2 O 3 =0.02, TPABr/Si0 2 =0.05, NaOH/Si0 2 =0.2, H 2 O/Si0 2 =40; The reaction kettle was placed in a stainless steel reactor lined with tetrafluoroethylene, and then placed in an oven preheated to 170°C for crystallization for 24 hours. After the reaction was completed, the reaction solution had obvious stratification. The reaction product was separated by suction filtration, washed to neutrality, dried, and put into a muffle furnace for 6 hours at 550°C to remove the template agent to obtain an MFI zeolite molecular sieve with an intertwined crystal morphology. The sample is characterized by XRD. Figure 1 is the XRD diffraction pattern of the synthesized zeolite molecular sieve. It can be seen from the figure that the prepared zeolite molecular sieve exhibits MFI zeolite molecular sieve at diffraction angles 2θ of 7.8°, 8.8°, 23.2°, 23.8° and 24.3°. Typical diffraction peaks. The sample was characterized by scanning electron microscopy (SEM), as shown in Figure 2, showing the morphology of alternating twins with a size of about 5 μm. After the sound absorption test, F 0 decreased by 56Hz, and ΔF 0 =56Hz.
实施例2Example 2
合成过程如实施例1所述,(1)将模板剂四丙基溴化铵、白炭黑、氢氧化钠和适量水混合溶解,白炭黑的加入速率为5g/min,并在室温下混合搅拌形成稳定溶胶,搅拌老化12小时,所形成SiO2-TPABr-NaOH-H2O溶胶体系中各组分摩尔比为:TPABr/Si02=0.2,NaOH/Si02=0.2,H2O/Si02=20;(2)上述老化后的溶胶置入聚四氟乙烯内衬的不锈钢反应釜中,然后将反应釜放入已预热至170℃的烘箱中晶化24小时。反应完毕后,反应液有明显的分层。反应产物经抽滤分离、清洗至中性、干燥后,并放入550℃马弗炉中焙烧6小时以去除模板剂即可得到交互孪晶形貌纯硅MFI沸石分子筛。样品经XRD表征,图3处表现出MFI沸石分子筛的典型衍射峰,样品经SEM表征如图4所示表现出交互孪晶形貌,尺寸约4-5μm。经吸音测试后,F0降低了60.8Hz,计ΔF0=60.8Hz。The synthesis process is as described in Example 1, (1) template agent tetrapropylammonium bromide, white carbon black, sodium hydroxide and appropriate amount of water are mixed and dissolved, and the addition rate of white carbon black is 5g/min, and at room temperature Mix and stir to form a stable sol, stir and age for 12 hours, the molar ratio of each component in the formed SiO 2 -TPABr-NaOH-H 2 O sol system is: TPABr/Si0 2 =0.2, NaOH/Si0 2 =0.2, H 2 O /Si0 2 =20; (2) The above-mentioned aged sol was placed in a polytetrafluoroethylene-lined stainless steel reactor, and then the reactor was placed in an oven preheated to 170°C for crystallization for 24 hours. After the reaction was completed, the reaction solution had obvious stratification. The reaction product was separated by suction filtration, washed until neutral, dried, and put into a muffle furnace at 550°C for 6 hours to remove the template agent to obtain the pure silica MFI zeolite molecular sieve with alternating twin crystal morphology. The sample was characterized by XRD. Figure 3 showed the typical diffraction peaks of MFI zeolite molecular sieve. The sample was characterized by SEM as shown in Figure 4, showing the morphology of alternating twins with a size of about 4-5 μm. After the sound absorption test, F 0 decreased by 60.8Hz, and ΔF 0 =60.8Hz.
实施例3Example 3
合成过程如实施例1所述,(1)将模板剂四丙基溴化铵(TPABr)、四丙基氢氧化铵(TPAOH)、硅溶胶、氢氟酸(HF)和适量水混合溶解,硅溶胶的加入速率为5g/min,并在室温下混合搅拌形成稳定溶胶,搅拌老化24小时,所形成SiO2-TPAOH-TPABr-HF-H2O溶胶体系中各组分摩尔比为:TPABr/Si02=0.14,TPAOH/Si02=0.14,HF/Si02=0.6,H2O/Si02=20;(2)上述老化后的溶胶置入聚四氟乙烯内衬的不锈钢反应釜中,然后将反应釜放入已预热至150℃的烘箱中晶化48小时。反应完毕后,反应液有明显的分层。反应产物经抽滤分离、清洗至中性、干燥后,并放入550℃马弗炉中焙烧6小时以去除模板剂即可得到交互孪晶形貌纯硅MFI沸石分子筛。样品经XRD表征,图5处表现出MFI沸石分子筛的典型衍射峰,样品经SEM表征如图6所示表现出交互孪晶形貌,尺寸约40μm。经吸音测试后,F0降低了53.2Hz,计ΔF0=53.2Hz。The synthesis process is as described in Example 1, (1) the template agent tetrapropylammonium bromide (TPABr), tetrapropylammonium hydroxide (TPAOH), silica sol, hydrofluoric acid (HF) and appropriate amount of water are mixed and dissolved, The addition rate of silica sol is 5g/min, and mixed and stirred at room temperature to form a stable sol, and aged for 24 hours with stirring, the molar ratio of each component in the formed SiO 2 -TPAOH-TPABr-HF-H 2 O sol system is: TPABr /Si0 2 =0.14, TPAOH/Si0 2 =0.14, HF/Si0 2 =0.6, H 2 O/Si0 2 =20; (2) The above-mentioned aging sol is placed in a stainless steel reactor lined with polytetrafluoroethylene , and then put the reactor into an oven preheated to 150°C for crystallization for 48 hours. After the reaction was completed, the reaction solution had obvious stratification. The reaction product was separated by suction filtration, washed until neutral, dried, and put into a muffle furnace at 550°C for 6 hours to remove the template agent to obtain the pure silica MFI zeolite molecular sieve with alternating twin crystal morphology. The sample was characterized by XRD. Figure 5 shows the typical diffraction peaks of MFI zeolite molecular sieve. The sample was characterized by SEM as shown in Figure 6, showing the morphology of alternating twins with a size of about 40 μm. After the sound absorption test, F 0 decreased by 53.2Hz, and ΔF 0 =53.2Hz.
实施例4Example 4
合成过程如实施例1所述,(1)将模板剂四丙基溴化铵、白炭黑、氢氧化钠和适量水混合溶解,白炭黑的加入速率为5g/min,并在室温下混合搅拌形成稳定溶胶,搅拌老化12小时,所形成SiO2-TPAOH-NH4F-H2O溶胶体系中各组分摩尔比为:TPAOH/Si02=0.2,NH4F/Si02=0.1,H2O/Si02=25;(2)上述老化后的溶胶置入聚四氟乙烯内衬的不锈钢反应釜中,然后将反应釜放入已预热至170℃的烘箱中晶化24小时。反应完毕后,反应液有明显的分层。反应产物经抽滤分离、清洗至中性、干燥后,并放入550℃马弗炉中焙烧6小时以去除模板剂即可得到交互孪晶形貌纯硅MFI沸石分子筛。样品经XRD表征,参见附图7,表现出MFI沸石分子筛的典型衍射峰,样品经SEM表征见附图8表现出交互孪晶形貌,尺寸约10μm。经吸音测试后,F0降低了51.8Hz,计ΔF0=51.8Hz。The synthesis process is as described in Example 1, (1) template agent tetrapropylammonium bromide, white carbon black, sodium hydroxide and appropriate amount of water are mixed and dissolved, and the addition rate of white carbon black is 5g/min, and at room temperature Mix and stir to form a stable sol, stir and age for 12 hours, the molar ratio of each component in the formed SiO 2 -TPAOH-NH 4 FH 2 O sol system is: TPAOH/Si0 2 =0.2, NH 4 F/Si0 2 =0.1,H 2 O/Si0 2 =25; (2) The above-mentioned aged sol was placed in a polytetrafluoroethylene-lined stainless steel reactor, and then the reactor was placed in an oven preheated to 170°C for crystallization for 24 hours. After the reaction was completed, the reaction solution had obvious stratification. The reaction product was separated by suction filtration, washed until neutral, dried, and put into a muffle furnace at 550°C for 6 hours to remove the template agent to obtain the pure silica MFI zeolite molecular sieve with alternating twin crystal morphology. The sample was characterized by XRD, see Figure 7, showing the typical diffraction peaks of MFI zeolite molecular sieve, and the sample was characterized by SEM, see Figure 8, showing the morphology of alternating twins with a size of about 10 μm. After the sound absorption test, F 0 decreased by 51.8Hz, and ΔF 0 =51.8Hz.
本发明实施例中测试分子筛颗粒的扬声器模组示意图见附图9,在扬声器有限的后腔腔体中填充本发明分子筛,由于分子筛材料具有稳定性高及微孔分布均匀的特点,可达到增加音腔容积的作用,进而改善扬声器的低频重放性能。The schematic diagram of the loudspeaker module for testing molecular sieve particles in the embodiment of the present invention is shown in Figure 9. The molecular sieve of the present invention is filled in the limited rear cavity of the loudspeaker. Because the molecular sieve material has the characteristics of high stability and uniform micropore distribution, it can achieve increased The effect of the volume of the sound cavity, thereby improving the low-frequency reproduction performance of the speaker.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810658480.9A CN108751222A (en) | 2018-06-25 | 2018-06-25 | A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810658480.9A CN108751222A (en) | 2018-06-25 | 2018-06-25 | A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108751222A true CN108751222A (en) | 2018-11-06 |
Family
ID=63977001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810658480.9A Pending CN108751222A (en) | 2018-06-25 | 2018-06-25 | A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108751222A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021047171A1 (en) * | 2019-09-11 | 2021-03-18 | 国家能源投资集团有限责任公司 | Composite zsm-5 molecular sieve, preparation method therefor, catalyst and application thereof |
CN112777609A (en) * | 2019-11-08 | 2021-05-11 | 国家能源投资集团有限责任公司 | Composite twin crystalline ZSM-5 molecular sieve and preparation method and application thereof |
CN113336240A (en) * | 2021-06-25 | 2021-09-03 | 厦门大学 | Method for preparing single/double crystal ZSM-5 zeolite based on kaolin mineral regulation and control |
CN114538462A (en) * | 2022-02-22 | 2022-05-27 | 复旦大学 | MFI/MEL composite molecular sieve and preparation method and application thereof |
CN115784253A (en) * | 2022-11-30 | 2023-03-14 | 中国科学院青岛生物能源与过程研究所 | Aluminum-rich ZSM-5 zeolite molecular sieve microsphere, and method for synthesizing same in one step in high-fluorine system and application thereof |
US11843928B2 (en) | 2020-07-22 | 2023-12-12 | Luxshare-Ict Co., Ltd. | Acoustic block manufacturing method and acoustic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1132699C (en) * | 1999-12-24 | 2003-12-31 | 中国石油化工集团公司 | Titanium-silicon molecular sieve and its preparing method |
CN101318107A (en) * | 2008-05-20 | 2008-12-10 | 吉林大学 | A kind of preparation method of pure silicon beta molecular sieve membrane |
CN101837990A (en) * | 2010-05-24 | 2010-09-22 | 江西师范大学 | Fluorine-containing all-silica MFI zeolite molecular sieve and preparation method thereof |
CN105872920A (en) * | 2016-04-19 | 2016-08-17 | 碗海鹰 | Acoustic material for loudspeaker |
-
2018
- 2018-06-25 CN CN201810658480.9A patent/CN108751222A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1132699C (en) * | 1999-12-24 | 2003-12-31 | 中国石油化工集团公司 | Titanium-silicon molecular sieve and its preparing method |
CN101318107A (en) * | 2008-05-20 | 2008-12-10 | 吉林大学 | A kind of preparation method of pure silicon beta molecular sieve membrane |
CN101837990A (en) * | 2010-05-24 | 2010-09-22 | 江西师范大学 | Fluorine-containing all-silica MFI zeolite molecular sieve and preparation method thereof |
CN105872920A (en) * | 2016-04-19 | 2016-08-17 | 碗海鹰 | Acoustic material for loudspeaker |
Non-Patent Citations (2)
Title |
---|
SONG, GUOQIANG, ET AL: "Synthesis and catalytic characterization of ZSM-5 zeolite with uniform mesopores prepared in the presence of a novel organosiloxane", 《MICROPOROUS AND MESOPOROUS MATERIALS》 * |
方向青等: "含氟TS-1分子筛的制备、表征及催化性能", 《化学与生物工程》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021047171A1 (en) * | 2019-09-11 | 2021-03-18 | 国家能源投资集团有限责任公司 | Composite zsm-5 molecular sieve, preparation method therefor, catalyst and application thereof |
US12318764B2 (en) | 2019-09-11 | 2025-06-03 | China Energy Investment Corporation Limited | Composite ZSM-5 molecular sieve, preparation method therefor, catalyst and use thereof |
CN112777609A (en) * | 2019-11-08 | 2021-05-11 | 国家能源投资集团有限责任公司 | Composite twin crystalline ZSM-5 molecular sieve and preparation method and application thereof |
CN112777609B (en) * | 2019-11-08 | 2022-10-11 | 国家能源投资集团有限责任公司 | Composite twin crystal ZSM-5 molecular sieve, and preparation method and application thereof |
US11843928B2 (en) | 2020-07-22 | 2023-12-12 | Luxshare-Ict Co., Ltd. | Acoustic block manufacturing method and acoustic device |
CN113336240A (en) * | 2021-06-25 | 2021-09-03 | 厦门大学 | Method for preparing single/double crystal ZSM-5 zeolite based on kaolin mineral regulation and control |
CN114538462A (en) * | 2022-02-22 | 2022-05-27 | 复旦大学 | MFI/MEL composite molecular sieve and preparation method and application thereof |
CN115784253A (en) * | 2022-11-30 | 2023-03-14 | 中国科学院青岛生物能源与过程研究所 | Aluminum-rich ZSM-5 zeolite molecular sieve microsphere, and method for synthesizing same in one step in high-fluorine system and application thereof |
CN115784253B (en) * | 2022-11-30 | 2024-03-15 | 中国科学院青岛生物能源与过程研究所 | Aluminum-rich ZSM-5 zeolite molecular sieve microsphere, and method and application for synthesizing same in one step in high-fluorine system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108751222A (en) | A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern | |
Wang et al. | Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process | |
CN106573204B (en) | Zeolite membrane, process for producing the same, and separation method using the zeolite membrane | |
TWI788013B (en) | Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom | |
JP5689890B2 (en) | Method for producing ZSM-5 zeolite using nanocrystalline ZSM-5 core | |
US9932240B2 (en) | Method for producing zeolite crystals and/or zeolite-like crystals | |
Ostroumova et al. | MWW-type zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (a review) | |
WO2008095264A2 (en) | Zeolite materials and synthesis method thereof | |
JP2000016809A (en) | Production of zeolite film | |
CN106032278A (en) | A kind of preparation method of all-silicon molecular sieve Silicalite-1 with high hydrogen bond silicon hydroxyl content | |
CN110963502A (en) | A kind of preparation method of high silicon-aluminum ratio Y-type molecular sieve | |
CN103848437B (en) | A kind of preparation method of ZSM-5 molecular sieve | |
CN112850742B (en) | Hierarchical pore Y-type molecular sieve and synthesis method thereof | |
CN110467198A (en) | A kind of multi-stage porous ZSM-5 Micelle-like Nano-structure of Two microballoon and preparation method | |
CN113184877B (en) | Hollow octahedral NaP molecular sieve and preparation method thereof | |
CN104941451A (en) | Method for synthesizing NaA molecular sieve membrane by employing mesoporous zeolite crystal | |
CN111547738A (en) | Three-dimensional ordered macroporous ZMS-5 molecular sieve material and preparation method thereof | |
CN115448324B (en) | MFI structure molecular sieve hierarchical pore material and preparation method thereof | |
CN107673369A (en) | A kind of method for synthesizing the Chabazite zeolite molecular sieves with multi-stage artery structure | |
CN115010146B (en) | Multistage hole ZSM-5 nano aggregate molecular sieve and preparation method thereof | |
RU2740381C1 (en) | Mww type zeolite and method for production thereof | |
CN116253330A (en) | Preparation method of green synthetic molecular sieve | |
CN112125318B (en) | A kind of method for preparing MFI zeolite based on imidazolyl ionic liquid | |
CN108545756A (en) | The method of selective one-step synthesis method different kinds of molecules sieve | |
JP2020510603A (en) | Synthetic method involving multi-seeding of zeolite crystals with controlled particle size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181106 |