CN108735561B - 高场发射电流密度碳纳米管阵列冷阴极及其制备方法 - Google Patents
高场发射电流密度碳纳米管阵列冷阴极及其制备方法 Download PDFInfo
- Publication number
- CN108735561B CN108735561B CN201710242570.5A CN201710242570A CN108735561B CN 108735561 B CN108735561 B CN 108735561B CN 201710242570 A CN201710242570 A CN 201710242570A CN 108735561 B CN108735561 B CN 108735561B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- nanotube array
- field emission
- current density
- cold cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 82
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 82
- 238000002360 preparation method Methods 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 48
- 239000002184 metal Substances 0.000 claims abstract description 48
- 239000000853 adhesive Substances 0.000 claims abstract description 28
- 230000001070 adhesive effect Effects 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 238000003491 array Methods 0.000 claims abstract description 18
- 239000002086 nanomaterial Substances 0.000 claims abstract description 18
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 17
- 238000012546 transfer Methods 0.000 claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 23
- 229910052710 silicon Inorganic materials 0.000 claims description 23
- 239000010703 silicon Substances 0.000 claims description 23
- 239000003054 catalyst Substances 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 235000012431 wafers Nutrition 0.000 claims description 17
- 230000005684 electric field Effects 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000002957 persistent organic pollutant Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000002105 nanoparticle Substances 0.000 claims description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000006056 electrooxidation reaction Methods 0.000 claims description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- 239000004519 grease Substances 0.000 claims description 3
- 238000003780 insertion Methods 0.000 claims description 3
- 230000037431 insertion Effects 0.000 claims description 3
- 238000005240 physical vapour deposition Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000005485 electric heating Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 239000000463 material Substances 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 16
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 239000010937 tungsten Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000010408 film Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002071 nanotube Substances 0.000 description 4
- 238000013112 stability test Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000259 microwave plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
- H01J1/3042—Field-emissive cathodes microengineered, e.g. Spindt-type
- H01J1/3044—Point emitters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2209/00—Apparatus and processes for manufacture of discharge tubes
- H01J2209/02—Manufacture of cathodes
- H01J2209/022—Cold cathodes
- H01J2209/0223—Field emission cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公布了一种高场发射电流密度碳纳米管阵列冷阴极及其制备方法,即利用微纳操纵转移工艺,将碳纳米管阵列转移并固定在金属支撑体上,实现碳纳米管阵列与金属支撑体的高强度粘接,制备出具有高场发射电流密度及良好电流‑时间稳定性的碳纳米管阵列冷阴极。器件制备工艺及所需设备简单,可控性良好。构建过程包括:利用化学气相沉积方法制备多壁碳纳米管阵列;利用微纳操纵和胶黏剂转移并固定碳纳米管阵列至金属支撑体,得到拥有高电流密度及良好电流‑时间稳定性的碳纳米管阵列冷阴极。本发明通过提高碳纳米管阵列与基体的结合强度,实现高电流密度及良好电流‑时间稳定性的碳纳米管阵列场发射冷阴极制备,拓展了一维纳米材料的应用领域。
Description
技术领域
一种高场发射电流密度碳纳米管阵列场发射冷阴极及其制备方法,涉及利用碳纳米管转移技术制备新器件及其场电子发射特性的研究,属于纳米材料与应用领域。
背景技术
场电子发射是一种量子过程,在足够高的外电场作用下,电子通过隧穿效应可以从固体表面逸出至真空能级,是低维纳米材料一个重要的电学性能。高性能的场发射器件是纳米材料场发射器件化应用的关键,包括较低的工作电场,高场发射电流密度和良好的时间稳定性,因此如何制备出更切近实际需要的场发射源就显得尤为重要。高性能的场发射器件在制备高性能X光源、新一代真空管、电子加速器的强流电子源、场发射电镜的电子枪、冷阴极场致发射平板显示器等方面都显示出了广阔的应用前景。
碳纳米管具有较小的直径和较长的轴向长度的结构特点,这种高长径比的形态有利于在尖端实现较大的电场增强效果,从而在较低电场条件下实现电子发射。同时,碳纳米管本身具有较好的力学特性,理论预测其抗拉强度范围在50~200GPa,大约为钢的100倍,密度却只有钢的1/6;弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍;并且具有很好的韧性。此外,碳纳米管具有良好的导电性和传热性,可以实现在较大电流通过状态下较小的温升。
单根碳纳米管的场发射电流密度可以达到105A/cm2以上,此时碳纳米管的温度达到2000K以上。工作温度是室温时,单根碳纳米管的最大场发射电流密度也能达到103A/cm2。按照碳纳米管阵列中纳米管10%的填充系数计算,取向碳纳米管阵列的场发射电流密度估算值也应该能够达到102A/cm2。但是目前在实际测试和器件应用中,碳纳米管阵列的场发射电流密度通常为几十至几百mA/cm2,最大场发射电流密度仅为几A/cm2,远低于取向碳纳米管阵列场发射电流密度的估算值。这其中的关键问题是碳纳米管与基底的结合强度。在场发射过程中,当碳纳米管阵列处于较大局域电场环境下,外加电场引起的静电力大于碳纳米管与基底的结合强度,这会导致碳纳米管从基体拔出,从而限制了碳纳米管阵列所能达到的最大场发射电流密度,进而影响了高电流密度、高时间稳定性的碳纳米管场发射器件的研发。
发明内容
本发明公布了一种高场发射电流密度碳纳米管阵列场发射冷阴极及其制备方法,即利用胶黏剂与碳纳米管和钨针尖良好的粘结效果,实现碳纳米管与钨针尖的高强度粘接,高的结合强度可以使碳纳米管承受场发射过程中产生的高静电力作用,避免高静电力作用下碳纳米管从场发射支撑体脱出,实现器件中碳纳米管阵列场发射阴极的高场发射电流密度,且场发射电流密度同时具有良好的时间稳定性。
根据上述目的,本发明提供了一种高场发射电流密度碳纳米管冷阴极及其制备方法,该方法包括:
1模块化垂直取向多壁碳纳米管阵列的制备
1.1将硅片和石英玻璃分别浸于丙酮、乙醇中超声清洗去除硅片表面的吸附颗粒物和油脂;
1.2硅片和石英玻璃基体表面模块化催化剂的制备:利用物理气相沉积技术和掩膜方法,以金属铁(或钴、镍)及其合金为沉积源,真空环境下,在硅片和石英玻璃基体表面沉积厚度范围在1~10nm的铁(或钴、镍)及其合金催化剂薄膜,形成模块化结构的碳纳米管阵列合成所需的催化剂;
1.3模块化垂直取向多壁碳纳米管阵列的制备:将载有催化剂的硅片和石英玻璃转移至真空反应室,在真空环境下,750℃加热20分钟,实现催化剂薄膜高温退火,形成均匀分布小粒径金属催化剂纳米颗粒薄膜;随后通入10~100sccm氢气载气和1~20sccm乙炔碳源气体,将载有催化剂的硅片温度控制在500~800℃,微波功率100~800W,进行碳纳米管阵列的生长;通过控制碳纳米管的生长时间,在硅片和石英玻璃基体上合成出管直径为5~80nm、厚度在200μm以上的模块化垂直取向多壁碳纳米管阵列,每个模块单元面积在1~400μm2,模块单元间距在10~1000μm;
2高场发射电流密度碳纳米管冷阴极的制备
2.1微纳结构金属支撑体的制备:以0.5-2.0mm直径的金属丝为原材料,清洗金属丝表面以去除表面的金属氧化物和有机污染物,保证金属丝表面的洁净,通过电化学腐蚀处理,在金属丝一端形成顶端尺寸为0.5-200μm直径的微纳结构,构成具有微纳结构的碳纳米管阵列场发射冷阴极金属支撑体;或以0.5-2.0mm直径的金属丝为基座,清洗金属丝表面以去除表面的金属氧化物和有机污染物,保证金属丝的洁净表面,然后通过焊接或粘接处理将直径为0.5-200μm金属细丝连接在金属基座上,构成具有微纳结构的碳纳米管阵列场发射冷阴极金属支撑体;
2.2微纳结构金属支撑体针尖表面胶粘剂涂覆:将金属支撑体针尖固定在旋转速度可调的旋转支架上,控制金属支撑体针尖的旋转速度为每分钟10~1000转,然后在显微操纵平台的观察下将金属支撑体针尖缓慢浸入胶粘剂液体中15-300s,针尖浸入长度控制在1-200μm,实现微纳结构金属支撑体针尖表面胶粘剂的均匀涂覆,胶粘剂的涂覆厚度控制在0.2-30μm;
2.3垂直取向碳纳米管阵列的转移粘接:在显微操纵平台上将均匀涂覆胶黏剂的微纳结构金属支撑体针尖缓慢移向硅片和石英玻璃基体表面模块化生长的垂直取向碳纳米管阵列,使阵列碳纳米管插入金属支撑体针尖表面的液体胶黏剂,插入深度为0.2-30μm。然后利用电加热或光辐照进行胶黏剂的固化,待胶黏剂固化后缓慢反向移动金属支撑体针尖,使碳纳米管阵列脱离硅片和石英玻璃基体,实现模块单元的取向碳纳米管阵列的转移粘接。
3碳纳米管冷阴极的场发射特性测试
碳纳米管冷阴极的场发射特性测试采用两电极方法。场发射电流密度-电场特性测试,固定两极板间距,通过改变两极板间电场,测量场发射电流密度;场发射电流密度的时间稳定性测试,固定两极板间距,通过恒定极板间电场,测试场发射电流密度随时间的变化。
附图说明
图1在衬底表面制备模块化垂直取向多壁碳纳米管阵列过的程示意图:
11 利用物理气相沉积技术和掩膜方法,在衬底表面制备模块化催化剂薄膜
12 高温条件下,催化剂薄膜退火,形成模块化均匀分布的纳米颗粒;
13 微波辅助化学气相沉积,乙炔/氢气在等离子体状态下,制备模块化垂直取向多壁碳纳米管阵列。
图2碳纳米管阴极制备过程示意图及其样品电镜照片:
21 利用旋涂方式,在钨针尖表面均匀涂覆一层导电粘结剂;
22 将涂覆导电粘结剂的钨针尖与一个模块单元的碳纳米管阵列接触,利用导电粘结剂粘附性实现钨针尖与碳纳米管的粘接;
23 转移至钨针尖的碳纳米管阵列示意图;
24 粘附碳纳米管阵列的钨针尖电镜照片,其比例尺为40μm。
图3场电子发射特性测试装置示意图及其测试数据。
31 场电子发射特性测试装置示意图;
32 场电子发射特性J-E测试曲线;
33 场电子发射稳定性测试。
具体实施方式
为了让器件的制作过程及其特性更加清晰易懂,下面将结合具体实施案例和附图,对本发明做进一步的详细说明。
1模块化垂直取向多壁碳纳米管阵列的制备
图1展现的是模块化垂直多壁碳纳米管阵列的制备方法示意图,碳纳米管阵列生长采用微波等离子体辅助化学气相沉积方法,制备分为三步:
1.1硅片清洗:将2×2cm2N型磷掺杂(100)晶向单晶硅片浸于丙酮超声清洗10分钟,然后浸于乙醇中超声清洗10分钟去除表面的吸附颗粒物和油脂,取出用洗耳球吹干;
1.2硅基底表面催化剂制备:利用磁控溅射技术和掩膜方法,预抽真空使薄膜沉积室的背底真空度在9.9×10-5Pa以下,调节控制Ar气流量为10sccm,薄膜沉积室的气压为1.5Pa,利用直流溅射在硅衬底上沉积厚度为3nm的铁催化剂薄膜,形成模块化碳纳米管阵列合成所需的催化剂薄膜;
1.3模块化垂直取向多壁碳纳米管阵列的制备:将载有催化剂的硅片转移至真空反应室,在5.0×10-3Pa环境下,750℃加热20分钟,实现铁薄膜高温退火,形成均匀分布小粒径催化剂颗粒;通入50sccm氢气将温度调整至600℃,微波功率300W,腔体内出现稳定氢等离子体,通入乙炔5sccm,生长时间15分钟,可以得到厚度在200μm以上的模块化垂直多壁碳纳米管阵列(如附图1所示),关闭微波,将腔体内残余气体抽出至10Pa以下,冷却;
2取向碳纳米管阵列冷阴极制备
图2展现的是取向碳纳米管冷阴极的制备方法及其扫描电子显微镜照片,采用旋涂方式在钨针尖表面均匀涂覆导电粘结剂,然后利用导电粘结剂的粘附性实现一个碳纳米管阵列单元与钨针尖的粘接。取向碳纳米管冷阴极的制备分为三步:
2.1钨针尖的制备:以2.0mm直径的钨丝为原材料,清洗钨丝表面以去除表面的氧化物和有机污染物,保证钨丝的洁净表面,然后通过电化学腐蚀处理,在钨丝一端形成顶端尺寸为5μm直径的针尖结构;
2.2钨针尖表面胶黏剂的涂覆:将胶黏剂滴加在玻璃片表面,将钨针尖浸没在胶黏剂中,浸没深度为200μm,转速控制在每分钟100转,浸没时间30s,然后将针尖垂直移出胶黏剂同时停止其旋转;
2.3垂直取向碳纳米管阵列模块的转移:将涂覆有胶黏剂的钨针尖表面插入选定的碳纳米管阵列模块,,插入深度为100μm,加热固化胶黏剂30s,然后沿垂直方向移动钨针尖,直至碳纳米管阵列离开生长基体,实现碳纳米管阵列模块的转移,得到所需的碳纳米管阵列冷阴极。
3取向碳纳米管阵列冷阴极的场发射性能
图3展示的是碳纳米管冷阴极的场发射性能测试方法和其典型性能测试曲线,包括场发射电流密度-电场测试和场发射电流密度稳定性测试。碳纳米管冷阴极场发射特性测试采用两电极方法,碳纳米管阵列上表面与阳极极板间距为2mm。场发射电流密度-电场测试通过改变两极板间电压,测量相应的场发射电流,实验中测得原始数据为场发射电流-电压曲线,场发射电流密度通过计算场发射电流与碳纳米管阵列的发射面积比值得到,电场通过计算电压与碳纳米管阵列上表面与阳极极板间距的比值得到,实验中测得样品场发射电流密度可以达到40A/cm2以上。场发射电流稳定性测试通过恒定极板间电压,测试场发射电流密度的时间稳定性。该样品测得时间稳定性从小电流密度到达电流密度分别为0.28±0.07A/cm2、1.11±0.05A/cm2、3.64±0.07A/cm2、11.07±0.13A/cm2、14.63±0.27A/cm2、19.38±0.25A/cm2显示出了碳纳米管阵列冷阴极不同场发射电流密度良好的时间稳定性。
以上所述仅为本发明的较佳实施例而已,正是用来解释说明本发明,并非用来限定本发明的保护范围。另外在本发明的精神和权利要求保护的范围之内,对本发明作用的任何修改和改变,都落入本发明的保护范围。
Claims (3)
1.高场发射电流密度碳纳米管阵列冷阴极制备方法,其特征在于,利用碳纳米管阵列的场发射特性,实现室温、低电场强度作用下高密度电流的场电子发射,包括:模块化垂直取向多壁碳纳米管阵列的制备;利用微纳操纵转移和胶黏剂将垂直取向多壁碳纳米管阵列粘接在微纳结构金属针尖顶端的转移粘接技术;高场发射电流密度及良好场发射电流-时间稳定性的基于碳纳米管阵列的场发射冷阴极;
所述利用微纳操纵转移和胶黏剂将垂直取向多壁碳纳米管阵列粘接在微纳结构金属针尖顶端转移粘接的方法包括:
1.1微纳结构金属支撑体的制备:以0.5-2.0mm直径的金属丝为原材料,清洗金属丝表面以去除表面的金属氧化物和有机污染物,保证金属丝表面的洁净,通过电化学腐蚀处理,在金属丝一端形成顶端尺寸为0.5-200μm直径的微纳结构,构成具有微纳结构的碳纳米管阵列场发射冷阴极金属支撑体;或以0.5-2.0mm直径的金属丝为基座,清洗金属丝表面以去除表面的金属氧化物和有机污染物,保证金属丝的洁净表面,然后通过焊接或粘接处理将直径为0.5-200μm金属细丝连接在金属基座上,构成具有微纳结构的碳纳米管阵列场发射冷阴极金属支撑体;
1.2微纳结构金属支撑体针尖表面胶粘剂涂覆:将金属支撑体针尖固定在旋转速度可调的旋转支架上,控制金属支撑体针尖的旋转速度为每分钟10~1000转,然后在显微操纵平台的观察下将金属支撑体针尖缓慢浸入胶粘剂液体中15-300s,针尖浸入长度控制在1-200μm,实现微纳结构金属支撑体针尖表面胶粘剂的均匀涂覆,胶粘剂的涂覆厚度控制在0.2-30μm;
1.3垂直取向碳纳米管阵列的转移粘接:在显微操纵平台上将均匀涂覆胶黏剂的微纳结构金属支撑体针尖缓慢移向硅片和石英玻璃基体表面模块化生长的垂直取向碳纳米管阵列,使阵列碳纳米管插入金属支撑体针尖表面的液体胶黏剂,插入深度为0.2-30μm,然后利用电加热或光辐照进行胶黏剂的固化,待胶黏剂固化后缓慢反向移动金属支撑体针尖,使碳纳米管阵列脱离硅片和石英玻璃基体,实现模块单元的取向碳纳米管阵列的转移粘接。
2.根据权利要求1所述的高场发射电流密度碳纳米管阵列冷阴极制备方法,特征是在500~800℃温度下,在硅片和石英玻璃基体表面制备模块化垂直取向多壁碳纳米管阵列,所述制备模块化垂直取向多壁碳纳米管阵列方法包括:
2.1硅片和石英玻璃基体的表面清洗:将硅片和石英玻璃分别浸于丙酮、乙醇中超声清洗去除表面的吸附颗粒物和油脂;
2.2硅片和石英玻璃基体表面模块化催化剂的制备:利用物理气相沉积技术和掩膜方法,在真空环境中将碳纳米管阵列制备所需的催化剂铁纳米颗粒薄膜沉积在硅片和石英玻璃基体衬底上,形成模块化结构的碳纳米管阵列合成所需的催化剂;
2.3模块化垂直取向多壁碳纳米管阵列的制备:将载有催化剂的硅片和石英玻璃转移至真空反应室,在真空环境下,750℃加热20分钟,实现催化剂薄膜高温退火热处理,形成均匀分布小粒径催化剂纳米颗粒膜;通入10~100sccm氢气和1~20sccm乙炔,生长温度控制在500~800℃,微波功率100~800W,通过生长时间的调节,在硅片和石英玻璃衬底上制备出管直径为5~80nm,厚度在200~500μm的模块化垂直取向多壁碳纳米管阵列,每个模块单元面积在1~400μm,模块单元间距在10~1000μm。
3.一种如权利要求1所述的高场发射电流密度碳纳米管阵列冷阴极制备方法制备得到的高场发射电流密度碳纳米管阵列冷阴极,其特征在于,以微纳结构金属针尖为阴极支撑体,以高性能取向碳纳米管阵列为冷阴极场发射材料,构建高场发射电流密度及良好场发射电流-时间稳定性的基于碳纳米管阵列的场发射冷阴极,所述场发射冷阴极在工作电场0.1~2V/μm的范围内,场发射电流密度为0.4mA/cm2-40A/cm2,在场发射电流密度20A/cm2下工作5小时的电流密度波动平均值小于±0.25A/cm2,场发射电流密度稳定性优于±1.5%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710242570.5A CN108735561B (zh) | 2017-04-14 | 2017-04-14 | 高场发射电流密度碳纳米管阵列冷阴极及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710242570.5A CN108735561B (zh) | 2017-04-14 | 2017-04-14 | 高场发射电流密度碳纳米管阵列冷阴极及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108735561A CN108735561A (zh) | 2018-11-02 |
CN108735561B true CN108735561B (zh) | 2020-02-07 |
Family
ID=63923824
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710242570.5A Active CN108735561B (zh) | 2017-04-14 | 2017-04-14 | 高场发射电流密度碳纳米管阵列冷阴极及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108735561B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110085503B (zh) * | 2019-05-06 | 2021-02-12 | 北京师范大学 | 一种可调束斑的场发射冷阴极电子源器件及其制备方法 |
CN110767515B (zh) * | 2019-10-21 | 2020-10-27 | 北京师范大学 | 一种应用于场发射冷阴极的可调长径比碳纳米管阵列束的制备方法 |
CN111261473B (zh) * | 2020-03-31 | 2021-06-04 | 中山大学 | 一种单根一维纳米结构场发射冷阴极的制作方法 |
CN115852331B (zh) * | 2022-12-05 | 2024-11-01 | 浙江工业大学 | 一种密堆积纳米金刚石薄膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1959896A (zh) * | 2005-11-04 | 2007-05-09 | 清华大学 | 碳纳米管场发射体及其制备方法 |
CN101355001A (zh) * | 2008-09-18 | 2009-01-28 | 上海交通大学 | 金属和碳纳米管或碳纤维薄膜发射阵列阴极及其制作方法 |
CN101508421A (zh) * | 2009-04-01 | 2009-08-19 | 北京师范大学 | 用于场电子发射器的碳纳米纤维/碳纳米管异质纳米阵列及其制备技术 |
CN102049890A (zh) * | 2010-10-29 | 2011-05-11 | 清华大学 | 碳纳米管复合材料的制备方法 |
-
2017
- 2017-04-14 CN CN201710242570.5A patent/CN108735561B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1959896A (zh) * | 2005-11-04 | 2007-05-09 | 清华大学 | 碳纳米管场发射体及其制备方法 |
CN101355001A (zh) * | 2008-09-18 | 2009-01-28 | 上海交通大学 | 金属和碳纳米管或碳纤维薄膜发射阵列阴极及其制作方法 |
CN101508421A (zh) * | 2009-04-01 | 2009-08-19 | 北京师范大学 | 用于场电子发射器的碳纳米纤维/碳纳米管异质纳米阵列及其制备技术 |
CN102049890A (zh) * | 2010-10-29 | 2011-05-11 | 清华大学 | 碳纳米管复合材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
High brightness electron beam from a multi-walled carbon nanotube;Niels de Jonge, et al.;《Nature》;20021128;第420卷(第6914期);第393-3955页 * |
模板制备碳纳米管阵列的研究;郑瑞廷等;《纪念我国博士后制度实施二十周年—首都现代制造技术发展论》;20090729;第68-76页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108735561A (zh) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101497437B (zh) | 碳纳米管复合膜的制备方法 | |
US7811149B2 (en) | Method for fabricating carbon nanotube-based field emission device | |
CN108735561B (zh) | 高场发射电流密度碳纳米管阵列冷阴极及其制备方法 | |
US9656246B2 (en) | Vertically aligned arrays of carbon nanotubes formed on multilayer substrates | |
CN101466252B (zh) | 电磁屏蔽层及其制备方法 | |
CN101497438A (zh) | 碳纳米管复合膜 | |
CN108172488B (zh) | 碳纳米场发射阴极及其制造方法和应用 | |
CN103050346B (zh) | 场致发射电子源及其碳纳米管石墨烯复合结构的制备方法 | |
CN101508421B (zh) | 用于场电子发射器的碳纳米纤维/碳纳米管异质纳米阵列及其制备技术 | |
Jung et al. | Clean carbon nanotube field emitters aligned horizontally | |
CN101425438A (zh) | 一种场发射电子源的制备方法 | |
CN113744916A (zh) | 一种透明导电薄膜及其制备方法 | |
CN103871802B (zh) | 碳纳米管复合薄膜场发射阴极的制备方法 | |
CN103193217A (zh) | 一种硼掺杂金刚石与碳纳米管复合纳米锥的制备方法 | |
CN103011124B (zh) | 碳纳米管复合膜的制备方法 | |
CN104616944A (zh) | 一种表面富褶皱超薄直立石墨烯场发射阴极的制备方法 | |
TW201000393A (en) | Method for making carbon nanotube film | |
Chen et al. | Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walledcarbon nanotube arrays with high adherence strength | |
He et al. | Highly enhanced field emission properties of a carbon nanotube cathode on a titanium alloy substrate modified by alkali | |
CN105513921B (zh) | 碳纳米场发射阴极及其制备方法和应用 | |
CN110767515B (zh) | 一种应用于场发射冷阴极的可调长径比碳纳米管阵列束的制备方法 | |
CN101471210A (zh) | 热电子源 | |
CN103187219B (zh) | 碳纳米管发射体的制备方法 | |
CN101830456B (zh) | 一种提高碳纳米管网络导电性的方法 | |
CN103086351B (zh) | 碳纳米管复合结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |