CN108707618A - A kind of nano enzyme and preparation method thereof based on people's ferritin - Google Patents
A kind of nano enzyme and preparation method thereof based on people's ferritin Download PDFInfo
- Publication number
- CN108707618A CN108707618A CN201810470199.2A CN201810470199A CN108707618A CN 108707618 A CN108707618 A CN 108707618A CN 201810470199 A CN201810470199 A CN 201810470199A CN 108707618 A CN108707618 A CN 108707618A
- Authority
- CN
- China
- Prior art keywords
- enzyme
- ala
- leu
- rhf
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03001—Alkaline phosphatase (3.1.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/08—Phosphoric triester hydrolases (3.1.8)
- C12Y301/08001—Aryldialkylphosphatase (3.1.8.1), i.e. paraoxonase
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/35—Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明属于基因工程技术领域,具体公开了一种基于人铁蛋白的纳米酶及其制备方法。所述制备方法以人铁蛋白为融合伴侣,将目标酶置于其N端进行融合表达,在目标酶与人铁蛋白之间插入连接肽。本发明所述制备方法能够显著提高目标酶对底物的催化活性,且使酶对温度及pH有更强的耐受性。该制备方法不仅限于人铁蛋白与甲基对硫磷水解酶和大肠杆菌碱性磷酸酶的融合表达,还适用于人铁蛋白与多种酶的融合表达,用来改良目标酶的特性,在科学研究和应用基础研究中具有较高的研究价值和科学意义。
The invention belongs to the technical field of genetic engineering, and specifically discloses a nanozyme based on human ferritin and a preparation method thereof. The preparation method uses human ferritin as a fusion partner, places the target enzyme at its N-terminal for fusion expression, and inserts a connecting peptide between the target enzyme and human ferritin. The preparation method of the invention can significantly improve the catalytic activity of the target enzyme to the substrate, and make the enzyme have stronger tolerance to temperature and pH. This preparation method is not limited to the fusion expression of human ferritin, methyl parathion hydrolase and Escherichia coli alkaline phosphatase, and is also applicable to the fusion expression of human ferritin and various enzymes to improve the characteristics of the target enzyme. It has high research value and scientific significance in scientific research and applied basic research.
Description
技术领域technical field
本发明涉及基因工程技术领域,具体地,涉及一种基于人铁蛋白的纳米酶及其制备方法。The invention relates to the technical field of genetic engineering, in particular to a nanozyme based on human ferritin and a preparation method thereof.
背景技术Background technique
重组人铁蛋白重链(recombinant heavy chain of human ferritin, rHF, 以下简称人铁蛋白)是目前研究得较为清晰的具有纳米结构特性的蛋白质,具有在体外自组装形成24聚体笼形纳米颗粒的特性。人铁蛋白较其他生物大分子型的纳米元件相对简单,修饰和组装技术也相对成熟,可以通过基因工程手段连接功能性蛋白,特别是与人铁蛋白N端融合,并不影响纳米颗粒的完整性,且组装后功能分子被展示在笼形结构的表面,这些特点都赋予了人铁蛋白在纳米材料领域独特的优势,使得人铁蛋白成为一种构建自组装纳米颗粒的完美模块。Recombinant heavy chain of human ferritin (rHF, hereinafter referred to as human ferritin) is a relatively well-researched protein with nanostructure characteristics. It has the ability to self-assemble in vitro to form 24-mer cage-shaped nanoparticles. characteristic. Human ferritin is relatively simpler than other biomacromolecular nanocomponents, and its modification and assembly technology is relatively mature. It can be connected with functional proteins by genetic engineering, especially fusion with the N-terminal of human ferritin, without affecting the integrity of nanoparticles. properties, and functional molecules are displayed on the surface of the cage structure after assembly, these characteristics endow human ferritin with unique advantages in the field of nanomaterials, making human ferritin a perfect module for building self-assembled nanoparticles.
对硫磷类有机磷农药作为一种广泛用于农业生产行列的产品,已被列为最毒物质之一。它的神经毒性是由于对乙酰胆碱酯酶的抑制作用,该酶在神经系统中可以正常降解神经递质乙酰胆碱,从而使神经系统功能紊乱。在农业生产中,因病虫害所造成的有机磷农药的滥用使得农药在土壤、水资源、农产品,甚至食物链的残留,破坏农业生态,严重威胁着人类健康,因此迫切需要发展一种高效无污染的对硫磷类农药降解方法和高灵敏度检测手段。甲基对硫磷水解酶(Methyl parathion hydrolase, MPH, EC 3.1.8.1)是在2001年由中国科学院武汉病毒研究所从筛选出来的一株甲基对硫磷降解菌(Pseudomonas sp.strain WBC-3)中分离纯化出来的对硫磷类重要代谢酶。研究发现,MPH可以降解甲基对硫磷、乙基对硫磷、毒死俾等。虽然已有研究人员成功构建了MPH的大肠杆菌表达系统,并且成功实现了MPH在异源宿主中的大量表达(楚晓娜,2003;刘璐璐等,2004),但是这对于迫切希望提高降解速率和检测灵敏度方法学的研究而言还是远远不够的。As a product widely used in agricultural production, parathion-type organophosphorus pesticides have been listed as one of the most toxic substances. Its neurotoxicity is due to inhibition of acetylcholinesterase, an enzyme in the nervous system that normally degrades the neurotransmitter acetylcholine, thereby disrupting nervous system function. In agricultural production, the abuse of organophosphorus pesticides caused by pests and diseases makes pesticides remain in soil, water resources, agricultural products, and even food chains, destroying agricultural ecology and seriously threatening human health. Therefore, it is urgent to develop an efficient and pollution-free A parathion-type pesticide degradation method and a high-sensitivity detection method. Methyl parathion hydrolase (MPH, EC 3.1.8.1) is a methyl parathion degrading bacterium ( Pseudomonas sp.strain WBC- 3) Important metabolizing enzymes of parathion isolated and purified in Studies have found that MPH can degrade methyl parathion, ethyl parathion, chlorpyrifos, etc. Although some researchers have successfully constructed the E. coli expression system of MPH, and successfully achieved a large amount of expression of MPH in heterologous hosts (Chu Xiaona, 2003; Liu Lulu et al., 2004), but this is urgent to improve the degradation rate and However, the study of detection sensitivity methodology is far from enough.
碱性磷酸酶(Alkaline phosphatase, AP, EC 3.1.3.1)属于非特异性磷酸单酯酶,具有催化磷酸单酯水解生成无机磷酸和相应的醇、酚或糖类化合物的功能。碱性磷酸酶来源广泛,且不同来源的分子大小、编码序列差异很大,在结构、功能与催化机理上也略有不同。其中,对大肠杆菌碱性磷酸酶(Escherichia coli alkaline phosphatase,EAP)的研究最为透彻,EAP是一个同源二聚体金属酶,因其催化机理清楚且作用底物广泛,目前被广泛应用于医学、免疫学等领域。Alkaline phosphatase (Alkaline phosphatase, AP, EC 3.1.3.1) is a non-specific phosphomonoesterase, which has the function of catalyzing the hydrolysis of phosphate monoesters to generate inorganic phosphate and corresponding alcohols, phenols or sugar compounds. Alkaline phosphatase has a wide range of sources, and the molecular size and coding sequence of different sources are very different, and the structure, function and catalytic mechanism are also slightly different. Among them, the research on Escherichia coli alkaline phosphatase (EAP) is the most thorough. EAP is a homodimeric metalloenzyme. It is widely used in medicine because of its clear catalytic mechanism and wide range of substrates. , immunology and other fields.
人铁蛋白纳米颗粒广泛用于生物传感器、疫苗的开发、药物的靶向释药系统的研究和应用,但是基于人铁蛋白纳米结构而构建的甲基对硫磷水解酶及大肠杆菌碱性磷酸酶的重组蛋白(纳米酶),以及针对这两种纳米酶催化体系的研究目前尚无报道。Human ferritin nanoparticles are widely used in the research and application of biosensors, vaccine development, and targeted drug delivery systems, but methyl parathion hydrolase and Escherichia coli alkaline phosphate based on human ferritin nanostructures The recombinant protein of the enzyme (nanozyme), and the research on the catalytic system of these two nanozymes have not been reported yet.
发明内容Contents of the invention
本发明的目的是为了克服现有技术的上述不足,提供一种基于人铁蛋白的纳米酶及其制备方法。本发明将甲基对硫磷水解酶或大肠杆菌碱性磷酸酶置于人铁蛋白的N端进行融合表达,这两种酶可分别在大肠杆菌中自组装形成纳米颗粒,酶活性及稳定性皆有提高,本发明所述制备方法可解决酶活性不高、最适pH及最适温度过窄等问题,扩大酶的应用范围。The object of the present invention is to provide a nanozyme based on human ferritin and a preparation method thereof in order to overcome the above-mentioned deficiencies of the prior art. In the present invention, methyl parathion hydrolase or Escherichia coli alkaline phosphatase is placed at the N-terminus of human ferritin for fusion expression, and these two enzymes can self-assemble in Escherichia coli to form nanoparticles, and the enzyme activity and stability Both are improved, and the preparation method of the invention can solve the problems of low enzyme activity, too narrow optimum pH and optimum temperature, etc., and expand the application range of the enzyme.
本发明的另一目的在于提供由上述制备方法制备得到的纳米酶。Another object of the present invention is to provide the nanozyme prepared by the above preparation method.
本发明的另一目的在于提供一种编码上述纳米酶的融合基因。Another object of the present invention is to provide a fusion gene encoding the aforementioned nanozyme.
本发明的另一目的在于提供一种含有上述核酸的表达载体。Another object of the present invention is to provide an expression vector containing the above nucleic acid.
本发明的另一目的在于提供一种含有上述表达载体的宿主菌。Another object of the present invention is to provide a host bacterium containing the above expression vector.
本发明的另一目的在于提供一种用于降解有机磷农药或催化磷酸单酯水解的制剂。Another object of the present invention is to provide a preparation for degrading organophosphorus pesticides or catalyzing the hydrolysis of phosphate monoesters.
为了实现上述目的,本发明是通过以下方案予以实现的:In order to achieve the above object, the present invention is achieved through the following schemes:
一种基于人铁蛋白的纳米酶的制备方法,以人铁蛋白为融合伴侣,将目标酶置于其N端进行融合表达,在目标酶与人铁蛋白之间插入连接肽。所述连接肽为柔性连接肽,其序列为GGGGS。A method for preparing a nanozyme based on human ferritin, using human ferritin as a fusion partner, placing a target enzyme at its N-terminus for fusion expression, and inserting a connecting peptide between the target enzyme and human ferritin. The connecting peptide is a flexible connecting peptide whose sequence is GGGGS.
本发明所述制备方法能够显著提高目标酶对底物的催化活性,且使酶对温度及pH有更强的耐受性,具有高效、简便、适用面广等特点,适用于基因工程、生物化学、分子生物学等研究。The preparation method of the invention can significantly improve the catalytic activity of the target enzyme to the substrate, and make the enzyme have stronger tolerance to temperature and pH, and has the characteristics of high efficiency, simplicity, and wide application range, and is suitable for genetic engineering, biological Research in chemistry and molecular biology.
优选地,所述制备方法包括如下步骤:克隆人铁蛋白和目标酶基因,拼接获得人铁蛋白-连接肽-目标酶融合蛋白基因,构建重组质粒,转化大肠杆菌宿主菌,筛选获得工程菌株,培养工程菌,诱导人铁蛋白-连接肽-目标酶融合蛋白的表达,经镍离子亲和层析纯化,分离获得人铁蛋白-连接肽-目标酶融合蛋白。Preferably, the preparation method includes the following steps: cloning human ferritin and the target enzyme gene, splicing to obtain the human ferritin-linking peptide-target enzyme fusion protein gene, constructing a recombinant plasmid, transforming E. coli host bacteria, screening to obtain engineering strains, Cultivate engineering bacteria, induce the expression of human ferritin-connecting peptide-target enzyme fusion protein, purify by nickel ion affinity chromatography, and obtain human ferritin-connecting peptide-target enzyme fusion protein.
优选地,所述目标酶为水解酶。Preferably, the target enzyme is a hydrolase.
更优选地,所述水解酶为甲基对硫磷水解酶或大肠杆菌碱性磷酸酶。More preferably, the hydrolase is methyl parathion hydrolase or Escherichia coli alkaline phosphatase.
下面以甲基对硫磷水解酶和大肠杆菌碱性磷酸酶为例说明本发明的特点:以人铁蛋白(rHF)为融合伴侣,将甲基对硫磷水解酶(MPH)或大肠杆菌碱性磷酸酶(EAP)融合于rHF的N端,构建融合表达载体pET28a-MPH-rHF或pET28a-EAP-rHF。这两种融合蛋白MPH-rHF和EAP-rHF都可高效表达于大肠杆菌内,通过镍离子亲和层析可获得高纯度的MPH-rHF和EAP-rHF。通过透射电镜对融合蛋白的聚集形式进行检测,发现融合蛋白MPH-rHF和EAP-rHF在体外成功地自组装形成纳米结构,表明在rHF的N端融合MPH或EAP不影响rHF自组装形成笼形纳米结构。通过比较纳米酶MPH-rHF及游离酶MPH对底物(对甲基对硫磷)的水解活性,发现纳米酶MPH-rHF较游离酶MPH有更高的催化活性;相比于游离酶MPH,纳米酶MPH-rHF的最适温度由35℃变为40℃,最适pH由9.5变为10.5。通过比较纳米酶EAP-rHF及游离酶EAP对底物(对硝基苯磷酸, p-nitrophenyl phosphate, pNPP)的催化活性,发现纳米酶EAP-rHF有更高的催化活性;相比于游离酶EAP,纳米酶EAP-rHF对温度和pH都有更高的耐受性。The following takes methyl parathion hydrolase and Escherichia coli alkaline phosphatase as examples to illustrate the characteristics of the present invention: human ferritin (rHF) is used as a fusion partner, methyl parathion hydrolase (MPH) or Escherichia coli alkali phosphatase (EAP) was fused to the N-terminal of rHF to construct the fusion expression vector pET28a-MPH-rHF or pET28a-EAP-rHF. Both fusion proteins MPH-rHF and EAP-rHF can be highly expressed in Escherichia coli, and high-purity MPH-rHF and EAP-rHF can be obtained by nickel ion affinity chromatography. The aggregation form of the fusion protein was detected by transmission electron microscopy, and it was found that the fusion proteins MPH-rHF and EAP-rHF successfully self-assembled to form nanostructures in vitro, indicating that the fusion of MPH or EAP at the N-terminus of rHF did not affect the self-assembly of rHF to form a cage Nano-structure. By comparing the hydrolysis activity of nanozyme MPH-rHF and free enzyme MPH on the substrate (parathion), it was found that nanozyme MPH-rHF had higher catalytic activity than free enzyme MPH; compared with free enzyme MPH, The optimum temperature of nanozyme MPH-rHF changed from 35°C to 40°C, and the optimum pH changed from 9.5 to 10.5. By comparing the catalytic activity of the nanozyme EAP-rHF and the free enzyme EAP on the substrate (p-nitrophenyl phosphate, p-nitrophenyl phosphate, pNPP), it was found that the nanozyme EAP-rHF has higher catalytic activity; compared with the free enzyme EAP, nanozyme EAP-rHF has higher tolerance to temperature and pH.
因此,本发明请求保护人铁蛋白在提高甲基对硫磷水解酶或大肠杆菌碱性磷酸酶的催化活性和/或稳定性中的应用;具体地,所述稳定性为酶对温度和pH的耐受性。Therefore, the present invention claims the use of human ferritin in improving the catalytic activity and/or stability of methyl parathion hydrolase or Escherichia coli alkaline phosphatase; tolerance.
本发明还请求保护由上述制备方法制备得到的纳米酶,所述纳米酶为融合蛋白,从N端到C端依次为目标酶、连接肽和人铁蛋白。The present invention also claims to protect the nanozyme prepared by the above preparation method. The nanozyme is a fusion protein, and the sequence from the N-terminal to the C-terminal is the target enzyme, connecting peptide and human ferritin.
优选地,所述融合蛋白的氨基酸序列为SEQ ID NO:1~SEQ ID NO:2中的任一条。Preferably, the amino acid sequence of the fusion protein is any one of SEQ ID NO:1-SEQ ID NO:2.
所述融合蛋白MPH-rHF的氨基酸序列如SEQ ID NO:1所示。The amino acid sequence of the fusion protein MPH-rHF is shown in SEQ ID NO:1.
所述融合蛋白EAP-rHF的氨基酸序列如SEQ ID NO:2所示。The amino acid sequence of the fusion protein EAP-rHF is shown in SEQ ID NO:2.
本发明还请求保护一种编码上述纳米酶的融合基因,所述融合基因的核苷酸序列为SEQ ID NO:3~SEQ ID NO:4中的任一条。The present invention also claims a fusion gene encoding the aforementioned nanozyme, the nucleotide sequence of the fusion gene being any one of SEQ ID NO:3-SEQ ID NO:4.
所述融合基因MPH-rHF的核苷酸序列如SEQ ID NO:3所示。The nucleotide sequence of the fusion gene MPH - rHF is shown in SEQ ID NO:3.
所述融合基因EAP-rHF的核苷酸序列如SEQ ID NO:4所示。The nucleotide sequence of the fusion gene EAP - rHF is shown in SEQ ID NO:4.
本发明还请求保护一种含有上述核酸的表达载体,所述表达载体为pET28a-MPH-rHF或pET28a-EAP-rHF。The present invention also claims an expression vector containing the above nucleic acid, and the expression vector is pET28a-MPH-rHF or pET28a-EAP-rHF.
本发明还请求保护一种含有上述表达载体的宿主菌,所述宿主菌为E. coli BL21(DE3)或E. coli BL21(DE3)pLysS感受态细胞。The present invention also claims a host bacterium containing the above expression vector, the host bacterium is E. coli BL21 (DE3) or E. coli BL21 (DE3) pLysS competent cell.
本发明还请求保护一种用于降解有机磷农药或催化磷酸单酯水解的制剂,所述制剂包括上述纳米酶、融合基因、表达载体或宿主菌。The present invention also claims a preparation for degrading organophosphorus pesticides or catalyzing the hydrolysis of phosphate monoesters, said preparation including the above-mentioned nanozyme, fusion gene, expression vector or host bacteria.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
通过本发明所提供的制备方法形成纳米酶(融合蛋白),分别提高了甲基对硫磷水解酶或大肠杆菌碱性磷酸酶对底物的催化活性,增强了酶对温度、pH的耐受性。该制备方法不仅限于人铁蛋白与甲基对硫磷水解酶和大肠杆菌碱性磷酸酶的融合表达,还适用于人铁蛋白与多种酶的融合表达,以改良目标酶的特性,在科学研究和应用基础研究中具有较高的研究价值和科学意义。The nanozyme (fusion protein) is formed by the preparation method provided by the present invention, which respectively improves the catalytic activity of methyl parathion hydrolase or Escherichia coli alkaline phosphatase on the substrate, and enhances the tolerance of the enzyme to temperature and pH sex. This preparation method is not limited to the fusion expression of human ferritin, methyl parathion hydrolase and Escherichia coli alkaline phosphatase, but is also applicable to the fusion expression of human ferritin and various enzymes to improve the characteristics of the target enzyme. It has high research value and scientific significance in research and applied basic research.
附图说明Description of drawings
图1为本发明重组酶构建策略的示意图;其中目标酶基因可为甲基对硫磷水解酶基因(MPH)或大肠杆菌碱性磷酸酶基因(EAP);linker为GGGGS的核苷酸序列;rHF为人铁蛋白重链基因。Figure 1 is a schematic diagram of the recombinant enzyme construction strategy of the present invention; wherein the target enzyme gene can be methyl parathion hydrolase gene ( MPH ) or Escherichia coli alkaline phosphatase gene ( EAP ); linker is the nucleotide sequence of GGGGS; rHF is human ferritin heavy chain gene.
图2为实施例中纯化的重组酶的SDS-PAGE电泳图;a为纯化的MPH-rHF及MPH的电泳图,其中M为蛋白Marker,泳道1为纯化的MPH,泳道2为纯化的MPH-rHF;b为纯化的EAP-rHF及EAP的电泳图,其中M为蛋白Marker,泳道1为纯化的EAP,泳道2为纯化的EAP-rHF。Fig. 2 is the SDS-PAGE electrophoresis figure of the recombinant enzyme purified in the embodiment; a is the electrophoresis figure of purified MPH-rHF and MPH, wherein M is protein Marker, swimming lane 1 is the MPH of purification, and swimming lane 2 is the MPH-rHF of purification rHF; b is the electropherogram of purified EAP-rHF and EAP, where M is protein marker, lane 1 is purified EAP, and lane 2 is purified EAP-rHF.
图3为实施例中重组酶的透射电镜(TEM)图像;a为重组酶MPH-rHF的聚集形式;b为重组酶EAP-rHF的聚集形式。Figure 3 is a transmission electron microscope (TEM) image of the recombinant enzyme in the example; a is the aggregated form of the recombinant enzyme MPH-rHF; b is the aggregated form of the recombinant enzyme EAP-rHF.
图4为实施例中温度对酶活性的影响结果;a为温度对MPH-rHF及MPH的影响;b为温度对EAP-rHF及EAP的影响。Fig. 4 is the result of the influence of temperature on enzyme activity in the embodiment; a is the influence of temperature on MPH-rHF and MPH; b is the influence of temperature on EAP-rHF and EAP.
图5为实施例中pH对酶活性的影响结果;a为pH对MPH-rHF及MPH的影响;b为pH对EAP-rHF及EAP的影响。Figure 5 is the result of the effect of pH on enzyme activity in the examples; a is the effect of pH on MPH-rHF and MPH; b is the effect of pH on EAP-rHF and EAP.
具体实施方式Detailed ways
下面结合说明书附图及具体实施例对本发明作出进一步地详细阐述,所述实施例只用于解释本发明,并非用于限定本发明的范围。下述实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,为可从商业途径得到的试剂和材料。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments, which are only used to explain the present invention, and are not intended to limit the scope of the present invention. The test methods used in the following examples are conventional methods unless otherwise specified; the materials and reagents used are commercially available reagents and materials unless otherwise specified.
实施例1 甲基对硫磷水解酶与人铁蛋白融合表达载体的构建Example 1 Construction of fusion expression vector of methyl parathion hydrolase and human ferritin
融合蛋白的设计策略:以人铁蛋白(rHF)为融合伴侣,将甲基对硫磷水解酶(MPH)置于rHF的N端进行表达,MPH与rHF之间通过一个连接肽(linker)进行连接。融合蛋白MPH-rHF的基因序列示意图见图1。Fusion protein design strategy: using human ferritin (rHF) as a fusion partner, placing methyl parathion hydrolase (MPH) at the N-terminus of rHF for expression, and a linker between MPH and rHF connect. The schematic diagram of the gene sequence of the fusion protein MPH-rHF is shown in Fig. 1 .
表达载体的构建:根据中国科学院武汉病毒研究所提供的载体pET20-MPH及pET28a-rHF,设计特异的扩增引物,在MPH基因两端分别引入Nde I和BamH I酶切位点;在rHF基因5’端引入linker(GGGGS)的核苷酸序列,同时两端引入BamH I和Hind III酶切位点。分别用Nde I和BamH I双酶切回收MPH和pET28a载体,酶切产物进行连接,转入E. coli DH5α,筛选阳性克隆并测序,测序结果显示成功构建载体pET28a-MPH,将正确的阳性克隆扩大培养,抽提质粒保存备用。然后用BamH I和Hind III双酶切pET28a-MPH及扩增的rHF片段,酶切产物进行连接,转入E. coli DH5α,筛选阳性克隆并测序,测序结果显示成功构建表达载体pET28a-MPH-rHF,将正确的阳性克隆扩大培养,抽提质粒保存备用。Construction of expression vectors: According to the vectors pET20-MPH and pET28a-rHF provided by Wuhan Institute of Virology, Chinese Academy of Sciences, specific amplification primers were designed, and Nde I and Bam H I restriction sites were introduced at both ends of the MPH gene ; The nucleotide sequence of the linker (GGGGS) is introduced at the 5' end, and Bam H I and Hind III restriction sites are introduced at both ends. The MPH and pET28a vectors were recovered by double enzyme digestion with Nde I and Bam H I, respectively, and the digested products were ligated, and transformed into E. coli DH5α, and the positive clones were screened and sequenced. The sequencing results showed that the vector pET28a-MPH was successfully constructed, and the correct positive clones Expand the culture, extract the plasmid and save it for later use. Then pET28a-MPH and the amplified rHF fragment were digested with Bam H I and Hin d III, the digested products were ligated, and transformed into E. coli DH5α, positive clones were screened and sequenced. The sequencing results showed that the expression vector pET28a-MPH was successfully constructed -rHF, the correct positive clones are expanded and cultivated, and the plasmids are extracted and stored for later use.
实施例2 融合蛋白MPH-rHF的诱导表达及纯化Example 2 Induced expression and purification of fusion protein MPH-rHF
将实施例1中构建成功的表达载体pET28a-MPH-rHF以及pET28a-MPH,用热激法转入E. coli BL21(DE3)感受态细胞中,挑取单菌落在含有50 μg/mL卡那霉素的LB培养基中,于37℃、200 rpm条件下振摇培养5 h后,以1:100的比例转进500 mL含50 μg/mL卡那霉素的LB培养基中,于37℃、200 rpm条件下,摇至OD600=0.6左右,加入诱导剂IPTG,使其终浓度为0.5mM,30℃,150 rpm诱导8 h。于4℃、5000 rpm条件下离心10 min,弃上清收集菌体。每克菌体用20 mL结合缓冲液(20 mM Tris,0.5 M氯化钠和5 mM咪唑,pH7.9)重悬,进行超声破碎,破碎后于4℃、6000 rpm条件下离心15 min,收集上清,将上清过0.22 μm滤膜抽滤,然后进行镍离子亲和层析(Ni-NTA)纯化,梯度洗脱,分管收集洗脱液并进行SDS-PAGE电泳,电泳结果见图2a。The expression vectors pET28a-MPH-rHF and pET28a-MPH successfully constructed in Example 1 were transferred into E. coli BL21 (DE3) competent cells by the heat shock method, and a single colony was picked in a medium containing 50 μg/mL kana In the LB medium containing kanamycin, shake culture at 37°C and 200 rpm for 5 h, then transfer to 500 mL LB medium containing 50 μg/mL kanamycin at a ratio of 1:100, and at 37 Under the conditions of ℃ and 200 rpm, shake until OD 600 =0.6 or so, add the inducer IPTG to make the final concentration 0.5mM, and induce for 8 h at 30℃ and 150 rpm. Centrifuge at 4°C and 5000 rpm for 10 min, discard the supernatant and collect the cells. Each gram of bacteria was resuspended with 20 mL of binding buffer (20 mM Tris, 0.5 M sodium chloride and 5 mM imidazole, pH7.9), ultrasonically disrupted, and centrifuged at 4°C and 6000 rpm for 15 min. Collect the supernatant, filter the supernatant through a 0.22 μm filter membrane, then perform nickel ion affinity chromatography (Ni-NTA) purification, gradient elution, collect the eluate in separate tubes and perform SDS-PAGE electrophoresis, the electrophoresis results are shown in the figure 2a.
实施例3 重组酶MPH-rHF及游离酶MPH动力学参数的测定Example 3 Determination of Recombinase MPH-rHF and Free Enzyme MPH Kinetic Parameters
通过使用岛津UV-2550分光光度计,检测产物对硝基苯酚在405 nm处的吸光值来测定重组酶MPH-rHF以及游离酶MPH对模式底物甲基对硫磷的相关稳态动力学参数。标准反应体系总体积为800 μL,其中含50 nM MPH-rHF或MPH和不同浓度的甲基对硫磷(溶于甲醇中,当甲醇浓度小于4%时,酶的活性不受影响),缓冲液为pH8.0的20 mM的Tris-HCl。底物加入前对吸收值进行调零,加入甲基对硫磷混匀后起始反应,在37℃记录波长405 nm处4 min内吸收值的变化。利用GraphPad Prism对三次实验数据进行拟合,得到酶促动力学参数,如表1所示(结果是3次实验的平均值)。从表1可以看出,重组酶MPH-rHF与游离酶MPH相比,酶的催化效率(k cat/K m)提高超过1倍。The relative steady-state kinetics of recombinant enzyme MPH-rHF and free enzyme MPH to the model substrate methyl parathion was determined by using a Shimadzu UV-2550 spectrophotometer to detect the absorbance of the product p-nitrophenol at 405 nm parameter. The total volume of the standard reaction system is 800 μL, which contains 50 nM MPH-rHF or MPH and different concentrations of methyl parathion (dissolved in methanol, when the concentration of methanol is less than 4%, the enzyme activity will not be affected), buffer The solution was 20 mM Tris-HCl at pH 8.0. The absorbance value was adjusted to zero before the addition of the substrate, and the reaction was initiated after adding methyl parathion and mixing well, and the change of the absorbance value at a wavelength of 405 nm within 4 min was recorded at 37°C. GraphPad Prism was used to fit the data of the three experiments to obtain the enzymatic kinetic parameters, as shown in Table 1 (the results are the average of the three experiments). It can be seen from Table 1 that compared with the free enzyme MPH, the catalytic efficiency ( k cat / K m ) of the recombinant enzyme MPH-rHF was increased by more than 1 times.
表1 重组酶MPH-rHF和游离酶MPH的动力学参数比较Table 1 Comparison of kinetic parameters between recombinant enzyme MPH-rHF and free enzyme MPH
实施例4 透射电镜(TEM)检测重组酶MPH-rHF的聚集形式Example 4 Transmission Electron Microscopy (TEM) Detection of the Aggregated Form of the Recombinase MPH-rHF
将20 μL MPH-rHF溶液,20 μL负染液,滴加到封口膜光滑面,成隆起的小液滴;轻轻夹起铜网边缘,将碳膜面覆盖到样品溶液上,使得样品吸附到碳膜表面,时间3~5 min;小心夹起铜网,用滤纸从铜网边缘吸走液体后,待肉眼观察不到铜网表面有水珠,再将铜网碳膜面覆盖到负染液表面,时间5~7 min。同样用滤纸从边缘吸走液体后,放置到铺有一层滤纸的平皿中,做好标记;静置2~4 h后,方可进行TEM表征。电镜观察由华南农业大学测试中心完成(荷兰FEI,分析型透射电子显微镜)。Add 20 μL MPH-rHF solution and 20 μL negative staining solution dropwise to the smooth surface of the parafilm to form raised droplets; gently clamp the edge of the copper grid and cover the carbon film surface on the sample solution to allow the sample to adsorb to the surface of the carbon film for 3 to 5 minutes; carefully clamp the copper mesh, use filter paper to absorb the liquid from the edge of the copper mesh, and cover the carbon film surface of the copper mesh to the negative Dye the surface of the solution for 5-7 minutes. Also use filter paper to absorb the liquid from the edge, place it on a plate covered with a layer of filter paper, and mark it; after standing for 2 to 4 hours, TEM characterization can be performed. Electron microscope observation was completed by South China Agricultural University Test Center (FEI, Netherlands, analytical transmission electron microscope).
通过电镜技术表征MPH-rHF自组装形成笼形纳米颗粒结构,如图3a所示:有直径在12 nm[12.86±2.17 nm(n=300)]左右的颗粒状规则结构,说明在rHF的N端融合MPH不影响人铁蛋白自组装形成笼形纳米结构,分离纯化的MPH-rHF在体外成功地自组装形成笼形纳米颗粒结构。The self-assembly of MPH-rHF to form a cage-shaped nanoparticle structure was characterized by electron microscopy, as shown in Figure 3a: there is a granular regular structure with a diameter of about 12 nm [12.86±2.17 nm (n=300)], indicating that the N in rHF End-fused MPH did not affect the self-assembly of human ferritin to form cage-like nanostructures, and the isolated and purified MPH-rHF successfully self-assembled into cage-like nanoparticle structures in vitro.
实施例5 温度对纳米酶MPH-rHF活性的影响Example 5 Effect of temperature on the activity of nanozyme MPH-rHF
分别将含50 nM待测酶的反应体系置于各温度(4℃、15℃、30℃、37℃、40℃、50℃、60℃和65℃)下,保温30 min后,迅速进行活性检测,反应10 min后加50 μL 1 M NaOH终止反应。以各温度为横轴,各温度下产物在405 nm处的吸收值为纵轴作图。从图4a中可以看出纳米酶MPH-rHF对于高温有更好的耐受性,并且在40℃表现出最佳活性,这与游离酶MPH最适温度在35℃左右有所差异;并且纳米酶MPH-rHF在高达60℃下都有较好的活性,而游离酶MPH在超过40℃以后酶活力急剧下降,这表明与人铁蛋白的融合作用增强了MPH对于温度的耐受性。Place the reaction system containing 50 nM of the enzyme to be tested at various temperatures (4°C, 15°C, 30°C, 37°C, 40°C, 50°C, 60°C, and 65°C), and after incubation for 30 min, the activity proceeds rapidly. For detection, after 10 min of reaction, 50 μL of 1 M NaOH was added to terminate the reaction. Taking each temperature as the horizontal axis, the absorption value of the product at 405 nm at each temperature is plotted on the vertical axis. It can be seen from Figure 4a that the nanozyme MPH-rHF has better tolerance to high temperature, and exhibits the best activity at 40°C, which is different from the optimum temperature of the free enzyme MPH at about 35°C; The enzyme MPH-rHF has good activity up to 60°C, while the enzyme activity of the free enzyme MPH drops sharply after exceeding 40°C, which indicates that the fusion with human ferritin enhances the temperature tolerance of MPH.
实施例6 pH对纳米酶MPH-rHF活性的影响Example 6 The Effect of pH on the Activity of Nanozyme MPH-rHF
选用pH值7.0、7.5、8.0、8.5、9.0、9.5、10.0,10.5,11.0,11.5,12.0 的20 mM Tris-HCl缓冲液作为酶反应缓冲液,在酶浓度为50 nM,底物浓度为0.0625 mM的反应体系下测定酶活力,反应10 min后加50 μL 1 M NaOH终止反应。以pH值为横轴,各pH值下产物在405 nm处的吸光值为纵轴作图,如图5a所示,可以看出纳米酶MPH-rHF在pH10.5具有更佳的酶活性,而游离酶MPH则表现在pH 9.5左右;并且从图中可以看出纳米酶对于pH也有很好的适应性,这表明与人铁蛋白的融合作用增强了MPH对于pH的耐受性。20 mM Tris-HCl buffer solution with pH values of 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, and 12.0 was selected as the enzyme reaction buffer at an enzyme concentration of 50 nM and a substrate concentration of 0.0625 The enzyme activity was measured under the mM reaction system, and 50 μL of 1 M NaOH was added to terminate the reaction after 10 min of reaction. With the pH value on the horizontal axis, the absorbance value of the product at each pH value at 405 nm is plotted on the vertical axis, as shown in Figure 5a, it can be seen that the nanozyme MPH-rHF has better enzymatic activity at pH 10.5, The free enzyme MPH is expressed at about pH 9.5; and it can be seen from the figure that the nanozyme also has good adaptability to pH, which indicates that the fusion with human ferritin enhances the tolerance of MPH to pH.
实施例7 大肠杆菌碱性磷酸酶与人铁蛋白融合表达载体的构建Example 7 Construction of fusion expression vector of Escherichia coli alkaline phosphatase and human ferritin
融合蛋白的设计策略:以人铁蛋白(rHF)为融合伴侣,将大肠杆菌碱性磷酸酶(EAP)置于rHF的N端进行表达,EAP与rHF之间通过一个连接肽(linker)进行连接。融合蛋白EAP-rHF的基因序列示意图见图1。Fusion protein design strategy: Human ferritin (rHF) was used as a fusion partner, and Escherichia coli alkaline phosphatase (EAP) was expressed at the N-terminus of rHF, and EAP was connected to rHF through a linker . The schematic diagram of the gene sequence of the fusion protein EAP-rHF is shown in Fig. 1 .
表达载体的构建:从实验室已有的ATCC 25922菌株中,提取基因组。根据NCBI中EAP的序列设计引物,分别扩增出含终止密码子和不含终止密码子的EAP的核苷酸序列(两端含有NdeI和BamH I酶切位点);然后用Nde I和BamH I酶对扩增出的含终止密码子和不含终止密码子的EAP的核苷酸序列和pET28a载体进行双酶切,酶切产物进行连接,转化到E.coli DH5α感受态细胞,筛选阳性克隆并测序,测序结果显示成功构建表达载体pET28a-EAP(含终止密码子与不含终止密码子)。根据测序结果,将正确的阳性克隆扩大培养,抽提质粒保存备用。Construction of the expression vector: the genome was extracted from the ATCC 25922 strain already in the laboratory. Primers were designed according to the sequence of EAP in NCBI, and the nucleotide sequences of EAP containing stop codon and without stop codon were respectively amplified (both ends contained Nde I and Bam H I restriction sites); then Nde I and Bam H I enzyme double-digests the amplified nucleotide sequence of EAP containing stop codon and without stop codon and pET28a vector, ligates the digested products, transforms them into E.coli DH5α competent cells, and screens Positive clones were sequenced, and the sequencing results showed that the expression vector pET28a-EAP (with or without stop codon) was successfully constructed. According to the sequencing results, the correct positive clones were expanded and cultivated, and the plasmids were extracted and stored for later use.
从实验室已有的pET28a-rHF载体上,设计引物(5’端引入GGGGS的核苷酸序列)扩增含有linker的rHF的核苷酸序列(含BamH I和Hind III酶切位点);用BamH I和Hind III酶对扩增出的含有linker的rHF的核苷酸序列和不含终止密码子的pET28a-EAP载体进行双酶切,酶切产物进行连接,转化到E.coli DH5α感受态细胞,筛选阳性克隆并测序,测序结果显示成功构建表达载体pET28a-EAP-rHF。根据测序结果,将正确的阳性克隆扩大培养,抽提质粒保存备用。From the existing pET28a-rHF vector in the laboratory, design primers (the nucleotide sequence of GGGGS introduced at the 5' end) to amplify the nucleotide sequence of rHF containing the linker (including Bam H I and Hind III restriction sites); The amplified rHF nucleotide sequence containing linker and the pET28a-EAP vector without stop codon were double digested with Bam H I and Hind III enzymes, and the digested products were ligated and transformed into E.coli DH5α sensory The positive clones were screened and sequenced. The sequencing results showed that the expression vector pET28a-EAP-rHF was successfully constructed. According to the sequencing results, the correct positive clones were expanded and cultivated, and the plasmids were extracted and stored for later use.
实施例8 融合蛋白EAP-rHF的诱导表达及纯化Example 8 Induced expression and purification of fusion protein EAP-rHF
将保存备用的表达载体pET28a-EAP以及pET28a-EAP-rHF,利用热激法转化进E. coli BL21(DE3)pLysS感受态细胞,挑单克隆于5 mL含卡那霉素50 mg/mL的LB培养基中于37℃、200 rpm条件下振摇5 h后,按1:100转进500 mL含卡那霉素50 μg/mL的新鲜LB培养基中,于37℃、200 rpm条件下摇菌至OD600=0.6,加入诱导剂IPTG,使其终浓度为0.5 mM,于25℃、150rpm条件下诱导24 h后收菌。于4℃、5000 rpm离心10 min,弃上清,菌体用预冷的ddH2O重悬。于4℃、5000 rpm离心10 min,弃上清留菌体。Transform the reserved expression vectors pET28a-EAP and pET28a-EAP-rHF into E. coli BL21(DE3) pLysS competent cells by heat shock method, and pick a single clone in 5 mL of medium containing kanamycin 50 mg/mL After shaking in LB medium at 37°C and 200 rpm for 5 h, transfer to 500 mL of fresh LB medium containing kanamycin 50 μg/mL at a ratio of 1:100, and shake at 37°C and 200 rpm Shake the bacteria until OD 600 = 0.6, add the inducer IPTG to make the final concentration 0.5 mM, and harvest the bacteria after induction at 25°C and 150 rpm for 24 h. Centrifuge at 4°C and 5000 rpm for 10 min, discard the supernatant, and resuspend the cells with pre-cooled ddH 2 O. Centrifuge at 4°C, 5000 rpm for 10 min, discard the supernatant and keep the cells.
每克菌体用20 mL缓冲液(20 mM Tris-HCl,1 mM EDTA,pH8.0)重悬,加入终浓度为1mM的PMSF,样品置于冰上进行超声破碎,破碎后样品于4℃、5000 rpm离心30 min,上清过0.22 μm滤膜,进行镍离子亲和层析(Ni-NTA)纯化,梯度洗脱,分管收集洗脱液,进行SDS-PAGE电泳,电泳结果见图2b。Resuspend each gram of bacteria with 20 mL buffer (20 mM Tris-HCl, 1 mM EDTA, pH8.0), add PMSF with a final concentration of 1 mM, place the sample on ice for ultrasonic disruption, and store the broken sample at 4 °C , centrifuged at 5000 rpm for 30 min, passed the supernatant through a 0.22 μm filter membrane, performed nickel ion affinity chromatography (Ni-NTA) purification, gradient elution, collected the eluate in separate tubes, and performed SDS-PAGE electrophoresis. The electrophoresis results are shown in Figure 2b .
实施例9 重组酶EAP-rHF及游离酶EAP动力学参数的测定Example 9 Determination of Kinetic Parameters of Recombinase EAP-rHF and Free Enzyme EAP
以对硝基苯磷酸(pNPP)为催化底物,EAP与pNPP发生反应后生成产物对硝基苯酚,对硝基苯酚在405 nm处有特异性吸收值。通过分析游离酶EAP和纳米酶EAP-RHF对底物pNPP的催化能力,来测定相关动力学参数。在96孔板上进行酶活检测,反应总体积为250 μL,其中酶浓度为5 nM。反应前先将含有不同浓度pNPP的DEA缓冲液(pH9.8,1 mM Mg2+)和酶溶液放置37℃温育5 min,混合后立即放入仪器,以不加酶液的样品孔作为调零样,37℃条件下监测5min内405 nm处吸收值的变化。利用GraphPad Prism对三次实验数据进行拟合,绘制酶促动力学参数,如表2所示(结果是3次实验的平均值)。从表2可以看出,纳米酶EAP-rHF与游离酶EAP相比,酶的催化效率(k cat/K m)提高6.7倍。With p-nitrophenylphosphate (pNPP) as the catalytic substrate, EAP reacts with pNPP to produce p-nitrophenol, which has a specific absorption value at 405 nm. The relevant kinetic parameters were determined by analyzing the catalytic ability of the free enzyme EAP and the nanozyme EAP-RHF to the substrate pNPP. The enzyme activity assay was performed on a 96-well plate with a total reaction volume of 250 μL and an enzyme concentration of 5 nM. Before the reaction, incubate the DEA buffer solution (pH9.8, 1 mM Mg 2+ ) containing different concentrations of pNPP and the enzyme solution at 37°C for 5 min, and put them into the instrument immediately after mixing. The sample well without enzyme solution was used as the sample well. Adjust the sample to zero, and monitor the change of the absorbance at 405 nm within 5 minutes at 37°C. GraphPad Prism was used to fit the data of the three experiments, and the enzymatic kinetic parameters were plotted, as shown in Table 2 (the results are the average of the three experiments). It can be seen from Table 2 that the catalytic efficiency ( k cat / K m ) of the nanozyme EAP-rHF is 6.7 times higher than that of the free enzyme EAP.
表2 重组酶EAP-rHF和游离酶EAP的动力学参数Table 2 Kinetic parameters of recombinant enzyme EAP-rHF and free enzyme EAP
实施例10 透射电镜(TEM)检测重组酶EAP-rHF的聚集形式Example 10 Transmission Electron Microscopy (TEM) Detection of the Aggregated Form of the Recombinase EAP-rHF
将纯化得到的重组酶EAP-rHF进行TEM电镜分析:取10 μL蛋白样品液于光滑封口膜上,用镊子夹铜网膜边缘,将其覆盖着蛋白液上,浸润10 min;取10 μL 2%PTA溶液(pH 8.0)于另一光滑的封口膜上,将浸润蛋白液的铜网膜竖立,用滤纸将膜上多余蛋白液吸干,然后将铜网膜轻轻放在2%PTA溶液的液珠上,浸润10 min;用滤纸将膜上多余液体吸干,室温放置,待铜网膜晾干后上机观察形态(电镜观察由中国科学院武汉病毒研究所完成),如图3b所示,有直径在12 nm[12.54±1.35 nm(n=20)]左右的颗粒状规则结构。The purified recombinant enzyme EAP-rHF was analyzed by TEM electron microscope: take 10 μL of the protein sample solution on a smooth parafilm, clamp the edge of the copper omentum with tweezers, cover it on the protein solution, and infiltrate it for 10 min; take 10 μL of 2 %PTA solution (pH 8.0) on another smooth sealing film, erect the copper mesh soaked in the protein solution, blot the excess protein solution on the membrane with filter paper, and then gently place the copper mesh on the 2% PTA solution The excess liquid on the membrane was soaked for 10 minutes; the excess liquid on the membrane was blotted dry with filter paper, and placed at room temperature. After the copper mesh was dry, the morphology was observed on the machine (the electron microscope observation was completed by the Wuhan Institute of Virology, Chinese Academy of Sciences), as shown in Figure 3b It shows that there is a granular regular structure with a diameter of about 12 nm [12.54±1.35 nm (n=20)].
实施例11 温度对纳米酶EAP-rHF及游离酶EAP活性的影响Example 11 Effect of temperature on the activity of nanozyme EAP-rHF and free enzyme EAP
将待测酶及含有0.0125 mM的底物缓冲液置于20℃、30℃、40℃、50℃、60℃、70℃及80℃下,温预5 min后,取50 μL酶液和200 μL底物缓冲液,迅速进行活性检测,反应10 min后加50 μL 1 M NaOH终止反应。以温度为横轴,各温度下产物在405 nm处的吸收值为纵轴作图。如图4b所示,与游离酶EAP相似,高温条件下纳米酶EAP-rHF仍有较高的活性;但纳米酶EAP-rHF在各个温度条件下的活性都比游离酶EAP的强,这表明与人铁蛋白的融合作用增强了EAP对于温度的耐受性。Place the enzyme to be tested and the substrate buffer solution containing 0.0125 mM at 20°C, 30°C, 40°C, 50°C, 60°C, 70°C and 80°C. After warming for 5 min, take 50 μL of the enzyme solution and 200 μL of substrate buffer, quickly detect the activity, and add 50 μL of 1 M NaOH to terminate the reaction after 10 min of reaction. Taking temperature as the horizontal axis, the absorption value of the product at 405 nm at each temperature is plotted on the vertical axis. As shown in Figure 4b, similar to the free enzyme EAP, the nanozyme EAP-rHF still has higher activity under high temperature conditions; however, the activity of the nanozyme EAP-rHF is stronger than that of the free enzyme EAP at all temperature conditions, which indicates that Fusion to human ferritin enhances the temperature tolerance of EAP.
实施例12 pH对纳米酶EAP-rHF及游离酶EAP活性的影响Example 12 Effect of pH on Nanozyme EAP-rHF and Free Enzyme EAP Activity
选用pH值6.5、7.0、8.0、9.0、10.0及10.5 的DEA缓冲液作为酶反应缓冲液,在酶浓度为5 nM,底物浓度为0.0125 mM的250 μL反应体系下测定酶活力,反应10 min后加50μL 1 MNaOH终止反应。以pH值为横轴,各pH值下产物在405 nm处的吸光值为纵轴作图。从图5b中可以看出纳米酶EAP-rHF和游离酶EAP的最适pH均在8.0左右,但在各pH条件下纳米酶EAP-rHF的活性都比游离酶EAP的活性高,这表明与人铁蛋白的融合作用增强了EAP对pH的耐受性。DEA buffer solutions with pH values of 6.5, 7.0, 8.0, 9.0, 10.0 and 10.5 were selected as the enzyme reaction buffer, and the enzyme activity was measured in a 250 μL reaction system with an enzyme concentration of 5 nM and a substrate concentration of 0.0125 mM for 10 min. Then add 50 μL of 1 M NaOH to stop the reaction. Take the pH value on the horizontal axis, and plot the absorbance value of the product at 405 nm at each pH value on the vertical axis. It can be seen from Figure 5b that the optimum pH of both nanozyme EAP-rHF and free enzyme EAP is around 8.0, but the activity of nanozyme EAP-rHF is higher than that of free enzyme EAP under each pH condition, which shows that Fusion of human ferritin enhances the pH tolerance of EAP.
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,对于本领域的普通技术人员来说,在上述说明及思路的基础上还可以做出其它不同形式的变化或变动,这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit the scope of the present invention. For those of ordinary skill in the art, on the basis of the above descriptions and ideas, they can also make There is no need to and cannot exhaustively list all the implementation manners for other changes or changes in different forms. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
序列表sequence listing
<110> 华南农业大学<110> South China Agricultural University
<120> 一种基于人铁蛋白的纳米酶及其制备方法<120> A nanozyme based on human ferritin and its preparation method
<160> 4<160> 4
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 484<211> 484
<212> PRT<212> PRT
<213> 大肠杆菌(Escherichia coli)<213> Escherichia coli
<400> 1<400> 1
Ala Ala Pro Gln Val Arg Thr Ser Ala Pro Gly Tyr Tyr Arg Met LeuAla Ala Pro Gln Val Arg Thr Ser Ala Pro Gly Tyr Tyr Arg Met Leu
1 5 10 151 5 10 15
Leu Gly Asp Phe Glu Ile Thr Ala Leu Ser Asp Gly Thr Val Ala LeuLeu Gly Asp Phe Glu Ile Thr Ala Leu Ser Asp Gly Thr Val Ala Leu
20 25 30 20 25 30
Pro Val Asp Lys Arg Leu Asn Gln Pro Ala Pro Lys Thr Gln Ser AlaPro Val Asp Lys Arg Leu Asn Gln Pro Ala Pro Lys Thr Gln Ser Ala
35 40 45 35 40 45
Leu Ala Lys Ser Phe Gln Lys Ala Pro Leu Glu Thr Ser Val Thr GlyLeu Ala Lys Ser Phe Gln Lys Ala Pro Leu Glu Thr Ser Val Thr Gly
50 55 60 50 55 60
Tyr Leu Val Asn Thr Gly Ser Lys Leu Val Leu Val Asp Thr Gly AlaTyr Leu Val Asn Thr Gly Ser Lys Leu Val Leu Val Asp Thr Gly Ala
65 70 75 8065 70 75 80
Ala Gly Leu Phe Gly Pro Thr Leu Gly Arg Leu Ala Ala Asn Leu LysAla Gly Leu Phe Gly Pro Thr Leu Gly Arg Leu Ala Ala Asn Leu Lys
85 90 95 85 90 95
Ala Ala Gly Tyr Gln Pro Glu Gln Val Asp Glu Ile Tyr Ile Thr HisAla Ala Gly Tyr Gln Pro Glu Gln Val Asp Glu Ile Tyr Ile Thr His
100 105 110 100 105 110
Met His Pro Asp His Val Gly Gly Leu Met Val Gly Glu Gln Leu AlaMet His Pro Asp His Val Gly Gly Leu Met Val Gly Glu Gln Leu Ala
115 120 125 115 120 125
Phe Pro Asn Ala Val Val Arg Ala Asp Gln Lys Glu Ala Asp Phe TrpPhe Pro Asn Ala Val Val Arg Ala Asp Gln Lys Glu Ala Asp Phe Trp
130 135 140 130 135 140
Leu Ser Gln Thr Asn Leu Asp Lys Ala Pro Asp Asp Glu Ser Lys GlyLeu Ser Gln Thr Asn Leu Asp Lys Ala Pro Asp Asp Glu Ser Lys Gly
145 150 155 160145 150 155 160
Phe Phe Lys Gly Ala Met Ala Ser Leu Asn Pro Tyr Val Lys Ala GlyPhe Phe Lys Gly Ala Met Ala Ser Leu Asn Pro Tyr Val Lys Ala Gly
165 170 175 165 170 175
Lys Phe Lys Pro Phe Ser Gly Asn Thr Asp Leu Val Pro Gly Ile LysLys Phe Lys Pro Phe Ser Gly Asn Thr Asp Leu Val Pro Gly Ile Lys
180 185 190 180 185 190
Ala Leu Ala Ser His Gly His Thr Pro Gly His Thr Thr Tyr Val ValAla Leu Ala Ser His Gly His Thr Pro Gly His Thr Thr Tyr Val Val
195 200 205 195 200 205
Glu Ser Gln Gly Gln Lys Leu Ala Leu Leu Gly Asp Leu Ile Leu ValGlu Ser Gln Gly Gln Lys Leu Ala Leu Leu Gly Asp Leu Ile Leu Val
210 215 220 210 215 220
Ala Ala Val Gln Phe Asp Asp Pro Ser Val Thr Thr Gln Leu Asp SerAla Ala Val Gln Phe Asp Asp Pro Ser Val Thr Thr Gln Leu Asp Ser
225 230 235 240225 230 235 240
Asp Ser Lys Ser Val Ala Val Glu Arg Lys Lys Ala Phe Ala Asp AlaAsp Ser Lys Ser Val Ala Val Glu Arg Lys Lys Ala Phe Ala Asp Ala
245 250 255 245 250 255
Ala Lys Gly Gly Tyr Leu Ile Ala Ala Ser His Leu Ser Phe Pro GlyAla Lys Gly Gly Tyr Leu Ile Ala Ala Ser His Leu Ser Phe Pro Gly
260 265 270 260 265 270
Ile Gly His Ile Arg Ala Glu Gly Lys Gly Tyr Arg Phe Val Pro ValIle Gly His Ile Arg Ala Glu Gly Lys Gly Tyr Arg Phe Val Pro Val
275 280 285 275 280 285
Asn Tyr Ser Val Val Asn Pro Lys Gly Gly Gly Gly Ser Met Thr ThrAsn Tyr Ser Val Val Asn Pro Lys Gly Gly Gly Gly Ser Met Thr Thr
290 295 300 290 295 300
Ala Ser Thr Ser Gln Val Arg Gln Asn Tyr His Gln Asp Ser Glu AlaAla Ser Thr Ser Gln Val Arg Gln Asn Tyr His Gln Asp Ser Glu Ala
305 310 315 320305 310 315 320
Ala Ile Asn Arg Gln Ile Asn Leu Glu Leu Tyr Ala Ser Tyr Val TyrAla Ile Asn Arg Gln Ile Asn Leu Glu Leu Tyr Ala Ser Tyr Val Tyr
325 330 335 325 330 335
Leu Ser Met Ser Tyr Tyr Phe Asp Arg Asp Asp Val Ala Leu Lys AsnLeu Ser Met Ser Tyr Tyr Phe Asp Arg Asp Asp Val Ala Leu Lys Asn
340 345 350 340 345 350
Phe Ala Lys Tyr Phe Leu His Gln Ser His Glu Glu Arg Glu His AlaPhe Ala Lys Tyr Phe Leu His Gln Ser His Glu Glu Arg Glu His Ala
355 360 365 355 360 365
Glu Lys Leu Met Lys Leu Gln Asn Gln Arg Gly Gly Arg Ile Phe LeuGlu Lys Leu Met Lys Leu Gln Asn Gln Arg Gly Gly Arg Ile Phe Leu
370 375 380 370 375 380
Gln Asp Ile Lys Lys Pro Asp Cys Asp Asp Trp Glu Ser Gly Leu AsnGln Asp Ile Lys Lys Pro Asp Cys Asp Asp Trp Glu Ser Gly Leu Asn
385 390 395 400385 390 395 400
Ala Met Glu Cys Ala Leu His Leu Glu Lys Asn Val Asn Gln Ser LeuAla Met Glu Cys Ala Leu His Leu Glu Lys Asn Val Asn Gln Ser Leu
405 410 415 405 410 415
Leu Glu Leu His Lys Leu Ala Thr Asp Lys Asn Asp Pro His Leu CysLeu Glu Leu His Lys Leu Ala Thr Asp Lys Asn Asp Pro His Leu Cys
420 425 430 420 425 430
Asp Phe Ile Glu Thr His Tyr Leu Asn Glu Gln Val Lys Ala Ile LysAsp Phe Ile Glu Thr His Tyr Leu Asn Glu Gln Val Lys Ala Ile Lys
435 440 445 435 440 445
Glu Leu Gly Asp His Val Thr Asn Leu Arg Lys Met Gly Ala Pro GluGlu Leu Gly Asp His Val Thr Asn Leu Arg Lys Met Gly Ala Pro Glu
450 455 460 450 455 460
Ser Gly Leu Ala Glu Tyr Leu Phe Asp Lys His Thr Leu Gly Asp SerSer Gly Leu Ala Glu Tyr Leu Phe Asp Lys His Thr Leu Gly Asp Ser
465 470 475 480465 470 475 480
Asp Asn Glu SerAsp Asn Glu Ser
<210> 2<210> 2
<211> 637<211> 637
<212> PRT<212> PRT
<213> 大肠杆菌(Escherichia coli)<213> Escherichia coli
<400> 2<400> 2
Thr Pro Glu Met Pro Val Leu Glu Asn Arg Ala Ala Gln Gly Asp IleThr Pro Glu Met Pro Val Leu Glu Asn Arg Ala Ala Gln Gly Asp Ile
1 5 10 151 5 10 15
Thr Ala Pro Gly Gly Ala Arg Arg Leu Thr Gly Asp Gln Thr Ala AlaThr Ala Pro Gly Gly Ala Arg Arg Leu Thr Gly Asp Gln Thr Ala Ala
20 25 30 20 25 30
Leu Arg Asp Ser Leu Ser Asp Lys Pro Ala Lys Asn Ile Ile Leu LeuLeu Arg Asp Ser Leu Ser Asp Lys Pro Ala Lys Asn Ile Ile Leu Leu
35 40 45 35 40 45
Ile Gly Asp Gly Met Gly Asp Ser Glu Ile Thr Ala Ala Arg Asn TyrIle Gly Asp Gly Met Gly Asp Ser Glu Ile Thr Ala Ala Arg Asn Tyr
50 55 60 50 55 60
Ala Glu Gly Ala Gly Gly Phe Phe Lys Gly Ile Asp Ala Leu Pro LeuAla Glu Gly Ala Gly Gly Phe Phe Lys Gly Ile Asp Ala Leu Pro Leu
65 70 75 8065 70 75 80
Thr Gly Gln Tyr Thr His Tyr Ala Leu Asn Lys Lys Thr Gly Lys ProThr Gly Gln Tyr Thr His Tyr Ala Leu Asn Lys Lys Thr Gly Lys Pro
85 90 95 85 90 95
Asp Tyr Val Thr Asp Ser Ala Ala Ser Ala Thr Ala Trp Ser Thr GlyAsp Tyr Val Thr Asp Ser Ala Ala Ser Ala Thr Ala Trp Ser Thr Gly
100 105 110 100 105 110
Val Lys Thr Tyr Asn Gly Ala Leu Gly Val Asp Ile His Glu Lys AspVal Lys Thr Tyr Asn Gly Ala Leu Gly Val Asp Ile His Glu Lys Asp
115 120 125 115 120 125
His Pro Thr Ile Leu Glu Met Ala Lys Ala Ala Gly Leu Ala Thr GlyHis Pro Thr Ile Leu Glu Met Ala Lys Ala Ala Gly Leu Ala Thr Gly
130 135 140 130 135 140
Asn Val Ser Thr Ala Glu Leu Gln Asp Ala Thr Pro Ala Ala Leu ValAsn Val Ser Thr Ala Glu Leu Gln Asp Ala Thr Pro Ala Ala Leu Val
145 150 155 160145 150 155 160
Ala His Val Thr Ser Arg Lys Cys Tyr Gly Pro Ser Ala Thr Ser GluAla His Val Thr Ser Arg Lys Cys Tyr Gly Pro Ser Ala Thr Ser Glu
165 170 175 165 170 175
Lys Cys Ser Gly Asn Ala Leu Glu Lys Gly Gly Lys Gly Ser Ile ThrLys Cys Ser Gly Asn Ala Leu Glu Lys Gly Gly Lys Gly Ser Ile Thr
180 185 190 180 185 190
Glu Gln Leu Leu Asn Ala Arg Ala Asp Val Thr Leu Gly Gly Gly AlaGlu Gln Leu Leu Asn Ala Arg Ala Asp Val Thr Leu Gly Gly Gly Ala
195 200 205 195 200 205
Lys Thr Phe Ala Glu Thr Ala Thr Ala Gly Glu Trp Gln Gly Lys ThrLys Thr Phe Ala Glu Thr Ala Thr Ala Gly Glu Trp Gln Gly Lys Thr
210 215 220 210 215 220
Leu Arg Glu Gln Ala Gln Ala Arg Gly Tyr Gln Leu Val Ser Asp AlaLeu Arg Glu Gln Ala Gln Ala Arg Gly Tyr Gln Leu Val Ser Asp Ala
225 230 235 240225 230 235 240
Ala Ser Leu Asn Ser Val Thr Glu Ala Asn Gln Gln Lys Pro Leu LeuAla Ser Leu Asn Ser Val Thr Glu Ala Asn Gln Gln Lys Pro Leu Leu
245 250 255 245 250 255
Gly Leu Phe Ala Asp Gly Asn Met Pro Val Arg Trp Gln Gly Pro LysGly Leu Phe Ala Asp Gly Asn Met Pro Val Arg Trp Gln Gly Pro Lys
260 265 270 260 265 270
Ala Thr Tyr His Gly Asn Ile Asp Lys Pro Ala Val Thr Cys Thr ProAla Thr Tyr His Gly Asn Ile Asp Lys Pro Ala Val Thr Cys Thr Pro
275 280 285 275 280 285
Asn Pro Gln Arg Asn Asp Ser Val Pro Thr Leu Ala Gln Met Thr AspAsn Pro Gln Arg Asn Asp Ser Val Pro Thr Leu Ala Gln Met Thr Asp
290 295 300 290 295 300
Lys Ala Ile Glu Leu Leu Ser Arg Asn Glu Lys Gly Phe Phe Leu GlnLys Ala Ile Glu Leu Leu Ser Arg Asn Glu Lys Gly Phe Phe Leu Gln
305 310 315 320305 310 315 320
Val Glu Gly Ala Ser Ile Asp Lys Gln Asp His Ala Ala Asn Pro CysVal Glu Gly Ala Ser Ile Asp Lys Gln Asp His Ala Ala Asn Pro Cys
325 330 335 325 330 335
Gly Gln Ile Gly Glu Thr Val Asp Leu Asp Glu Ala Val Gln Arg AlaGly Gln Ile Gly Glu Thr Val Asp Leu Asp Glu Ala Val Gln Arg Ala
340 345 350 340 345 350
Leu Glu Phe Ala Lys Lys Asp Gly Asn Thr Leu Val Ile Val Thr AlaLeu Glu Phe Ala Lys Lys Asp Gly Asn Thr Leu Val Ile Val Thr Ala
355 360 365 355 360 365
Asp His Ala His Ala Ser Gln Ile Val Ala Pro Asp Thr Lys Ala ProAsp His Ala His Ala Ser Gln Ile Val Ala Pro Asp Thr Lys Ala Pro
370 375 380 370 375 380
Gly Leu Thr Gln Ala Leu Asn Thr Lys Asp Gly Ala Val Met Val MetGly Leu Thr Gln Ala Leu Asn Thr Lys Asp Gly Ala Val Met Val Met
385 390 395 400385 390 395 400
Ser Tyr Gly Asn Ser Glu Glu Asp Ser Gln Glu His Thr Gly Ser GlnSer Tyr Gly Asn Ser Glu Glu Asp Ser Gln Glu His Thr Gly Ser Gln
405 410 415 405 410 415
Leu Arg Ile Ala Ala Tyr Gly Pro His Ala Ala Asn Val Val Gly LeuLeu Arg Ile Ala Ala Tyr Gly Pro His Ala Ala Asn Val Val Gly Leu
420 425 430 420 425 430
Thr Asp Gln Thr Asp Leu Phe Tyr Thr Met Lys Ala Ala Leu Gly LeuThr Asp Gln Thr Asp Leu Phe Tyr Thr Met Lys Ala Ala Leu Gly Leu
435 440 445 435 440 445
Lys Gly Gly Gly Gly Ser Met Thr Thr Ala Ser Thr Ser Gln Val ArgLys Gly Gly Gly Gly Gly Ser Met Thr Thr Ala Ser Thr Ser Gln Val Arg
450 455 460 450 455 460
Gln Asn Tyr His Gln Asp Ser Glu Ala Ala Ile Asn Arg Gln Ile AsnGln Asn Tyr His Gln Asp Ser Glu Ala Ala Ile Asn Arg Gln Ile Asn
465 470 475 480465 470 475 480
Leu Glu Leu Tyr Ala Ser Tyr Val Tyr Leu Ser Met Ser Tyr Tyr PheLeu Glu Leu Tyr Ala Ser Tyr Val Tyr Leu Ser Met Ser Tyr Tyr Phe
485 490 495 485 490 495
Asp Arg Asp Asp Val Ala Leu Lys Asn Phe Ala Lys Tyr Phe Leu HisAsp Arg Asp Asp Val Ala Leu Lys Asn Phe Ala Lys Tyr Phe Leu His
500 505 510 500 505 510
Gln Ser His Glu Glu Arg Glu His Ala Glu Lys Leu Met Lys Leu GlnGln Ser His Glu Glu Arg Glu His Ala Glu Lys Leu Met Lys Leu Gln
515 520 525 515 520 525
Asn Gln Arg Gly Gly Arg Ile Phe Leu Gln Asp Ile Lys Lys Pro AspAsn Gln Arg Gly Gly Arg Ile Phe Leu Gln Asp Ile Lys Lys Pro Asp
530 535 540 530 535 540
Cys Asp Asp Trp Glu Ser Gly Leu Asn Ala Met Glu Cys Ala Leu HisCys Asp Asp Trp Glu Ser Gly Leu Asn Ala Met Glu Cys Ala Leu His
545 550 555 560545 550 555 560
Leu Glu Lys Asn Val Asn Gln Ser Leu Leu Glu Leu His Lys Leu AlaLeu Glu Lys Asn Val Asn Gln Ser Leu Leu Glu Leu His Lys Leu Ala
565 570 575 565 570 575
Thr Asp Lys Asn Asp Pro His Leu Cys Asp Phe Ile Glu Thr His TyrThr Asp Lys Asn Asp Pro His Leu Cys Asp Phe Ile Glu Thr His Tyr
580 585 590 580 585 590
Leu Asn Glu Gln Val Lys Ala Ile Lys Glu Leu Gly Asp His Val ThrLeu Asn Glu Gln Val Lys Ala Ile Lys Glu Leu Gly Asp His Val Thr
595 600 605 595 600 605
Asn Leu Arg Lys Met Gly Ala Pro Glu Ser Gly Leu Ala Glu Tyr LeuAsn Leu Arg Lys Met Gly Ala Pro Glu Ser Gly Leu Ala Glu Tyr Leu
610 615 620 610 615 620
Phe Asp Lys His Thr Leu Gly Asp Ser Asp Asn Glu SerPhe Asp Lys His Thr Leu Gly Asp Ser Asp Asn Glu Ser
625 630 635625 630 635
<210> 3<210> 3
<211> 1452<211> 1452
<212> DNA<212>DNA
<213> 大肠杆菌(Escherichia coli)<213> Escherichia coli
<400> 3<400> 3
gccgcaccgc aggtgcgcac ctcggccccc ggctactacc ggatgctgct gggcgacttc 60gccgcaccgc aggtgcgcac ctcggccccc ggctactacc ggatgctgct gggcgacttc 60
gaaatcaccg cgctgtcgga cggcacggtg gcgctgccgg tcgacaagcg gctgaaccag 120gaaatcaccg cgctgtcgga cggcacggtg gcgctgccgg tcgacaagcg gctgaaccag 120
ccggccccga agacgcagag cgcgctggcc aagtccttcc agaaagcgcc gctcgaaacc 180ccggccccga agacgcagag cgcgctggcc aagtccttcc agaaagcgcc gctcgaaacc 180
tcggtcaccg gttacctcgt caacaccggc tccaagctgg tgctggtgga caccggcgcg 240tcggtcaccg gttacctcgt caacaccggc tccaagctgg tgctggtgga caccggcgcg 240
gccggcctgt tcggccccac cctgggccgg ctggcggcca acctcaaggc cgcaggctat 300gccggcctgt tcggccccac cctgggccgg ctggcggcca acctcaaggc cgcaggctat 300
cagcccgagc aggtcgacga gatctacatc acccacatgc accccgacca cgtgggcggc 360cagcccgagc aggtcgacga gatctacatc accccacatgc accccgacca cgtgggcggc 360
ttgatggtgg gtgagcaact ggcgttcccg aacgcggtgg tgcgtgcgga ccagaaagaa 420ttgatggtgg gtgagcaact ggcgttcccg aacgcggtgg tgcgtgcgga ccagaaagaa 420
gccgatttct ggctcagcca gaccaacctc gacaaggccc cggacgacga gagcaaaggc 480gccgatttct ggctcagcca gaccaacctc gacaaggccc cggacgacga gagcaaaggc 480
ttcttcaaag gcgccatggc ctcgctgaac ccctatgtga aggccggcaa gttcaagcct 540ttcttcaaag gcgccatggc ctcgctgaac ccctatgtga aggccggcaa gttcaagcct 540
ttctcgggga acaccgacct ggtgcccggc atcaaagcgc tggccagcca cggccacacc 600ttctcgggga acaccgacct ggtgcccggc atcaaagcgc tggccagcca cggccacacc 600
ccgggccaca ccacctacgt ggtcgaaagc caggggcaaa agctcgccct gctcggcgac 660ccgggccaca ccacctacgt ggtcgaaagc caggggcaaa agctcgccct gctcggcgac 660
ctgatactcg tcgccgcggt gcagttcgac gaccccagcg tcacgaccca gctcgacagc 720ctgatactcg tcgccgcggt gcagttcgac gaccccagcg tcacgaccca gctcgacagc 720
gacagcaagt ccgtcgcggt ggagcgcaag aaggccttcg cggatgccgc caagggcggc 780gacagcaagt ccgtcgcggt ggagcgcaag aaggccttcg cggatgccgc caagggcggc 780
tacctgatcg cggcgtccca cctgtcgttc cccggcatcg gccacatccg cgccgaaggc 840tacctgatcg cggcgtccca cctgtcgttc cccggcatcg gccacatccg cgccgaaggc 840
aagggctacc gtttcgtgcc ggtgaactac tcggtcgtca accccaaggg tggaggtgga 900aagggctacc gtttcgtgcc ggtgaactac tcggtcgtca accccaaggg tggaggtgga 900
tcgatgacga ccgcgtccac ctcgcaggtg cgccagaact accaccagga ctcagaggcc 960tcgatgacga ccgcgtccac ctcgcaggtg cgccagaact accaccagga ctcagaggcc 960
gccatcaacc gccagatcaa cctggagctc tacgcctcct acgtttacct gtccatgtct 1020gccatcaacc gccagatcaa cctggagctc tacgcctcct acgtttacct gtccatgtct 1020
tactactttg accgcgatga tgtggccttg aagaactttg ccaaatactt tcttcaccaa 1080tactactttg accgcgatga tgtggccttg aagaactttg ccaaatactt tcttcaccaa 1080
tctcatgagg agagggaaca tgctgagaaa ctgatgaagc tgcagaacca acgaggtggc 1140tctcatgagg agagggaaca tgctgagaaa ctgatgaagc tgcagaacca acgaggtggc 1140
cgaatcttcc ttcaggatat caagaaacca gactgtgatg actgggagag cgggctgaat 1200cgaatcttcc ttcaggatat caagaaacca gactgtgatg actgggagag cgggctgaat 1200
gcgatggagt gtgcattaca tttggaaaaa aatgtgaatc agtcactact ggaactgcac 1260gcgatggagt gtgcattaca tttggaaaaa aatgtgaatc agtcactact ggaactgcac 1260
aaactggcca ctgacaaaaa tgacccccat ttgtgtgact tcattgagac acattacctg 1320aaactggcca ctgacaaaaa tgacccccat ttgtgtgact tcattgagac aattacctg 1320
aatgagcagg tgaaagccat caaagaattg ggtgaccacg tgaccaactt gcgcaagatg 1380aatgagcagg tgaaagccat caaagaattg ggtgaccacg tgaccaactt gcgcaagatg 1380
ggagcgcccg aatccggctt ggcggaatat ctctttgaca agcacaccct gggagacagt 1440ggagcgcccg aatccggctt ggcggaatat ctctttgaca agcacaccct gggagacagt 1440
gataatgaaa gc 1452gataatgaaa gc 1452
<210> 4<210> 4
<211> 1911<211> 1911
<212> DNA<212>DNA
<213> 大肠杆菌(Escherichia coli)<213> Escherichia coli
<400> 4<400> 4
acaccagaaa tgcctgttct ggaaaaccgg gctgctcagg gcgatattac tgcacccggc 60acaccagaaa tgcctgttct ggaaaaccgg gctgctcagg gcgatattac tgcacccggc 60
ggtgctcgcc gcttaacggg tgatcagacc gccgctctgc gtgattctct tagcgataaa 120ggtgctcgcc gcttaacggg tgatcagacc gccgctctgc gtgattctct tagcgataaa 120
cctgcaaaaa atattatttt gctgattggc gatgggatgg gggactcgga aattactgcc 180cctgcaaaaa atattatttt gctgattggc gatgggatgg gggactcgga aattactgcc 180
gcacgcaatt atgccgaagg tgcgggcggc ttttttaaag gtatcgatgc cttaccgctt 240gcacgcaatt atgccgaagg tgcgggcggc ttttttaaag gtatcgatgc cttaccgctt 240
accgggcaat acactcacta tgcgctgaat aaaaaaaccg gcaaaccgga ctacgtcacc 300accgggcaat acactcacta tgcgctgaat aaaaaaaccg gcaaaccgga ctacgtcacc 300
gactcggctg catcagcaac cgcctggtca actggtgtca aaacctataa cggcgcgctg 360gactcggctg catcagcaac cgcctggtca actggtgtca aaacctataa cggcgcgctg 360
ggcgtcgata ttcacgaaaa agatcaccca acgattctgg aaatggcaaa agccgcaggt 420ggcgtcgata ttcacgaaaa agatcaccca acgattctgg aaatggcaaa agccgcaggt 420
ctggcgaccg gtaacgtttc taccgcagag ttgcaggatg ccacgcccgc tgcgctggtg 480ctggcgaccg gtaacgtttc taccgcagag ttgcaggatg ccacgcccgc tgcgctggtg 480
gcgcatgtga cctcgcgcaa atgctacggt ccgagtgcga ccagtgaaaa atgttcgggt 540gcgcatgtga cctcgcgcaa atgctacggt ccgagtgcga ccagtgaaaa atgttcgggt 540
aacgctctgg aaaaaggcgg aaaaggatcg attaccgaac agctgcttaa cgcccgtgcc 600aacgctctgg aaaaaggcgg aaaaggatcg attaccgaac agctgcttaa cgcccgtgcc 600
gatgttacgc ttggcggcgg cgcaaaaacc tttgctgaaa cggcaaccgc cggtgaatgg 660gatgttacgc ttggcggcgg cgcaaaaacc tttgctgaaa cggcaaccgc cggtgaatgg 660
cagggaaaaa cgctgcgtga acaggcacag gcgcgtggtt atcagttggt gagcgatgct 720cagggaaaaa cgctgcgtga acaggcacag gcgcgtggtt atcagttggt gagcgatgct 720
gcctcactga attcggtgac ggaagcgaat cagcaaaaac ccctattagg actgtttgct 780gcctcactga attcggtgac ggaagcgaat cagcaaaaac ccctattagg actgtttgct 780
gacggcaata tgccagtgcg ctggcaagga ccgaaagcaa cgtaccacgg taatatagat 840gacggcaata tgccagtgcg ctggcaagga ccgaaagcaa cgtaccacgg taatatagat 840
aagcccgcag tcacctgtac gcctaatccg caacgtaatg acagtgtacc gaccctggcg 900aagcccgcag tcacctgtac gcctaatccg caacgtaatg acagtgtacc gaccctggcg 900
cagatgaccg acaaagccat tgaattgttg agtagaaatg agaaaggctt tttcctgcaa 960cagatgaccg acaaagccat tgaattgttg agtagaaatg agaaaggctt tttcctgcaa 960
gttgaaggtg cgtcaatcga taaacaggat cacgctgcga atccttgtgg gcaaattggc 1020gttgaaggtg cgtcaatcga taaacaggat cacgctgcga atccttgtgg gcaaattggc 1020
gagacggtcg atctcgatga agccgtacaa cgggcgctgg aattcgctaa aaaggatggt 1080gagacggtcg atctcgatga agccgtacaa cgggcgctgg aattcgctaa aaaggatggt 1080
aacacgttgg tcatagtcac cgctgatcac gcccatgcca gccagatagt tgcgccagat 1140aacacgttgg tcatagtcac cgctgatcac gcccatgcca gccagatagt tgcgccagat 1140
accaaagctc cgggcctcac ccaggcgcta aataccaaag atggcgcagt gatggtgatg 1200accaaagctc cgggcctcac ccaggcgcta aataccaaag atggcgcagt gatggtgatg 1200
agttacggga actccgaaga ggattcacaa gaacataccg gcagtcagtt gcgtattgcg 1260agttacggga actccgaaga ggattcacaa gaacataccg gcagtcagtt gcgtattgcg 1260
gcgtatggcc cgcatgccgc caatgttgtt ggactgaccg accagaccga tctcttctac 1320gcgtatggcc cgcatgccgc caatgttgtt ggactgaccg accagaccga tctcttctac 1320
accatgaaag ccgctctggg gctgaaaggt ggaggtggat cgatgacgac cgcgtccacc 1380accatgaaag ccgctctggg gctgaaaggt ggaggtggat cgatgacgac cgcgtccacc 1380
tcgcaggtgc gccagaacta ccaccaggac tcagaggccg ccatcaaccg ccagatcaac 1440tcgcaggtgc gccagaacta ccaccaggac tcagaggccg ccatcaaccg ccagatcaac 1440
ctggagctct acgcctccta cgtttacctg tccatgtctt actactttga ccgcgatgat 1500ctggagctct acgcctccta cgtttacctg tccatgtctt actactttga ccgcgatgat 1500
gtggccttga agaactttgc caaatacttt cttcaccaat ctcatgagga gagggaacat 1560gtggccttga agaactttgc caaatacttt cttcaccaat ctcatgagga gagggaacat 1560
gctgagaaac tgatgaagct gcagaaccaa cgaggtggcc gaatcttcct tcaggatatc 1620gctgagaaac tgatgaagct gcagaaccaa cgaggtggcc gaatcttcct tcaggatatc 1620
aagaaaccag actgtgatga ctgggagagc gggctgaatg cgatggagtg tgcattacat 1680aagaaaccag actgtgatga ctgggagagc gggctgaatg cgatggagtg tgcattacat 1680
ttggaaaaaa atgtgaatca gtcactactg gaactgcaca aactggccac tgacaaaaat 1740ttggaaaaaa atgtgaatca gtcactactg gaactgcaca aactggccac tgacaaaaat 1740
gacccccatt tgtgtgactt cattgagaca cattacctga atgagcaggt gaaagccatc 1800gacccccatt tgtgtgactt cattgagaca cattacctga atgagcaggt gaaagccatc 1800
aaagaattgg gtgaccacgt gaccaacttg cgcaagatgg gagcgcccga atccggcttg 1860aaagaattgg gtgaccacgt gaccaacttg cgcaagatgg gagcgcccga atccggcttg 1860
gcggaatatc tctttgacaa gcacaccctg ggagacagtg ataatgaaag c 1911gcggaatatc tctttgacaa gcacaccctg ggagacagtg ataatgaaag c 1911
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810470199.2A CN108707618B (en) | 2018-05-16 | 2018-05-16 | A kind of nanozyme based on human ferritin and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810470199.2A CN108707618B (en) | 2018-05-16 | 2018-05-16 | A kind of nanozyme based on human ferritin and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108707618A true CN108707618A (en) | 2018-10-26 |
CN108707618B CN108707618B (en) | 2022-04-08 |
Family
ID=63868102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810470199.2A Active CN108707618B (en) | 2018-05-16 | 2018-05-16 | A kind of nanozyme based on human ferritin and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108707618B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423742A (en) * | 2019-07-31 | 2019-11-08 | 南京林业大学 | A method of realizing that enzyme is fixed by Armco magnetic iron protein surface display |
CN111057155A (en) * | 2019-12-31 | 2020-04-24 | 河南农业大学 | O-type FMDV VP1 protein-ferritin fusion protein, protein cage nanoparticle and preparation method thereof |
CN111116757A (en) * | 2019-12-31 | 2020-05-08 | 河南农业大学 | Ferritin fusion protein with galectin EW29 tag, protein cage nanoparticles and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103146664A (en) * | 2013-02-04 | 2013-06-12 | 辽宁中科生物工程有限公司 | Random mutation reconstructed organophosphorus pesticide degradation enzyme and coding genes thereof |
US20140134601A1 (en) * | 2012-11-09 | 2014-05-15 | Korea University Research And Business Foundation | Use of protein nanoparticle based hydrogel |
CN104655833A (en) * | 2015-03-05 | 2015-05-27 | 中国科学院武汉病毒研究所 | Enzyme nano composite as well as controllable self-assembly method and application thereof to immunoassay |
WO2016065273A1 (en) * | 2014-10-24 | 2016-04-28 | The University Of Chicago | Heat-inducible self-assembling protein domains |
CN105801706A (en) * | 2014-12-31 | 2016-07-27 | 深圳先进技术研究院 | Scorpion chlorotoxin polypeptide-ferritin heavy chain fused protein, self-assembled protein nanocage, preparation method therefor and application |
CN106922149A (en) * | 2014-09-30 | 2017-07-04 | 西纳生物技术有限公司 | Fusion protein, the nano particle of monomer composition and application thereof by multiple fusion proteins |
-
2018
- 2018-05-16 CN CN201810470199.2A patent/CN108707618B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140134601A1 (en) * | 2012-11-09 | 2014-05-15 | Korea University Research And Business Foundation | Use of protein nanoparticle based hydrogel |
CN103146664A (en) * | 2013-02-04 | 2013-06-12 | 辽宁中科生物工程有限公司 | Random mutation reconstructed organophosphorus pesticide degradation enzyme and coding genes thereof |
CN106922149A (en) * | 2014-09-30 | 2017-07-04 | 西纳生物技术有限公司 | Fusion protein, the nano particle of monomer composition and application thereof by multiple fusion proteins |
WO2016065273A1 (en) * | 2014-10-24 | 2016-04-28 | The University Of Chicago | Heat-inducible self-assembling protein domains |
CN105801706A (en) * | 2014-12-31 | 2016-07-27 | 深圳先进技术研究院 | Scorpion chlorotoxin polypeptide-ferritin heavy chain fused protein, self-assembled protein nanocage, preparation method therefor and application |
CN104655833A (en) * | 2015-03-05 | 2015-05-27 | 中国科学院武汉病毒研究所 | Enzyme nano composite as well as controllable self-assembly method and application thereof to immunoassay |
Non-Patent Citations (1)
Title |
---|
SHUTTLEWORTH H. ET AL.: "phoA - Alkaline phosphatase precursor -...oli (strain K12) - phoA gene & protein", 《EMBL登录号:UNIPROT KB-P00634》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110423742A (en) * | 2019-07-31 | 2019-11-08 | 南京林业大学 | A method of realizing that enzyme is fixed by Armco magnetic iron protein surface display |
CN110423742B (en) * | 2019-07-31 | 2022-10-18 | 南京林业大学 | Method for realizing enzyme immobilization through magnetic ferritin surface display |
CN111057155A (en) * | 2019-12-31 | 2020-04-24 | 河南农业大学 | O-type FMDV VP1 protein-ferritin fusion protein, protein cage nanoparticle and preparation method thereof |
CN111116757A (en) * | 2019-12-31 | 2020-05-08 | 河南农业大学 | Ferritin fusion protein with galectin EW29 tag, protein cage nanoparticles and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN108707618B (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110982803B (en) | A Novel Phthalate Hydrolase EstJ6 and Its Encoding Gene and Application | |
CN106986922B (en) | A kind of self-assembled amphiphilic short peptide and its application | |
CN106957850B (en) | A genetically engineered bacterium producing phospholipase D and its construction method and application | |
CN106754802B (en) | Isoeugenol monooxygenase mutant and its application | |
CN108707618B (en) | A kind of nanozyme based on human ferritin and preparation method thereof | |
CN106459163B (en) | The variant antibacterial peptide of Maraba grouper Piscidin and its application | |
CN109825484A (en) | Zearalenone hydrolase ZHD101 mutant and method for hydrolyzing zearalenone using the mutant | |
CN109021086A (en) | A kind of antibacterial peptide cecropin A mutant and its encoding gene, preparation method and application | |
CN112430615A (en) | Chitosanase gene csnbaa, chitosanase, preparation method and application thereof | |
CN107446941A (en) | Cecropin A antibacterial peptide based on self-aggregation short-peptide induction and preparation method thereof | |
CN111662917A (en) | High specific activity alkaline phosphatase engineering bacteria, engineering bacteria construction and alkaline phosphatase purification method | |
CN110804602A (en) | A kind of L-aspartate β-decarboxylase mutant and its application | |
CN117440963A (en) | Recombinant protein purification method | |
CN112626051B (en) | A kind of 1,3/1,4-xylanase MLX1034 and its encoding gene and application | |
CN107058363A (en) | The method and its application of small-molecule peptide efficient secretory expression are realized based on amyloid | |
CN112266905B (en) | A kind of polypeptide modified amino acid dehydrogenase and its preparation and immobilization method | |
CN102898511A (en) | Purification method in preparation of methicillin staphylococcus aureus-resistant recombinant genetic engineering vaccine candidate antigen I12C | |
CN110746496A (en) | A kind of PAL recombinant protein of Acinetobacter baumannii and its encoding gene and their application | |
CN114249813B (en) | Albumin HSA-Hydrophobic-IB with self-assembly performance and its application | |
CN113151240B (en) | Glucose isomerase, mutant and coding gene and application thereof | |
CN112760312B (en) | Lyase plysX 609 for cracking gram-positive bacteria and application thereof | |
WO2021128432A1 (en) | L-arabinose isomerase isomer and application thereof | |
CN108379559A (en) | Application of the grass carp interferon 1 in preparing antibacterials | |
CN103805580B (en) | Multifunctional bio nano material based on the outer self assembly of S-layer albuminous body | |
CN111116757A (en) | Ferritin fusion protein with galectin EW29 tag, protein cage nanoparticles and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |