[go: up one dir, main page]

CN108694357A - Method, apparatus and computer storage media for In vivo detection - Google Patents

Method, apparatus and computer storage media for In vivo detection Download PDF

Info

Publication number
CN108694357A
CN108694357A CN201710230110.0A CN201710230110A CN108694357A CN 108694357 A CN108694357 A CN 108694357A CN 201710230110 A CN201710230110 A CN 201710230110A CN 108694357 A CN108694357 A CN 108694357A
Authority
CN
China
Prior art keywords
input data
attack
sample database
module
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710230110.0A
Other languages
Chinese (zh)
Inventor
孙伟
范浩强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Megvii Technology Co Ltd
Beijing Maigewei Technology Co Ltd
Original Assignee
Beijing Megvii Technology Co Ltd
Beijing Maigewei Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Megvii Technology Co Ltd, Beijing Maigewei Technology Co Ltd filed Critical Beijing Megvii Technology Co Ltd
Priority to CN201710230110.0A priority Critical patent/CN108694357A/en
Publication of CN108694357A publication Critical patent/CN108694357A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • G06V40/45Detection of the body part being alive

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明实施例提供了一种用于活体检测的方法、装置及计算机存储介质,该方法包括:获取输入数据;采用检测算法对所述输入数据进行活体检测;如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;将所述标注后的输入数据添加到攻击样本数据库。由此可见,本发明实施例在活体检测的结果为非活体时,对输入数据进行标注,并将标注后的输入数据添加到攻击样本数据库,能够实现自动化标注,避免消耗大量的人力,从而能够极大地节约人力成本。

Embodiments of the present invention provide a method, device, and computer storage medium for living body detection. The method includes: acquiring input data; using a detection algorithm to perform living body detection on the input data; if the result of the living body detection determines the If the input data is non-living, the input data is automatically marked; and the marked input data is added to the attack sample database. It can be seen that, in the embodiment of the present invention, when the result of the liveness detection is non-living, the input data is marked, and the marked input data is added to the attack sample database, which can realize automatic marking and avoid consuming a lot of manpower, thereby enabling Greatly save labor costs.

Description

用于活体检测的方法、装置及计算机存储介质Method, device and computer storage medium for living body detection

技术领域technical field

本发明涉及图像识别领域,更具体地涉及一种用于活体检测的方法、装置及计算机存储介质。The present invention relates to the field of image recognition, and more specifically relates to a method, device and computer storage medium for living body detection.

背景技术Background technique

当前,活体检测系统越来越多地应用于安防、金融、社保等需要身份验证的领域中。例如,使用人脸等进行身份验证时,需要防范照片、面具等攻击。At present, living body detection systems are increasingly used in fields that require identity verification, such as security, finance, and social security. For example, when using face, etc. for identity verification, it is necessary to prevent attacks such as photos and masks.

目前的活体检测系统所采用的检测算法是基于攻击样本数据库和生物特征样本数据库经过训练得到的,而其中的攻击样本数据库需要大量的人力进行标注,而带来了极大的人力开销。The detection algorithm adopted by the current living body detection system is obtained through training based on the attack sample database and the biometric sample database, and the attack sample database requires a large amount of manpower to label, which brings a huge human cost.

发明内容Contents of the invention

考虑到上述问题而提出了本发明。本发明提供了一种用于活体检测的方法、装置及计算机存储介质,能够在基于活体检测的结果对输入数据进行自动标注,从而能够节约人力成本。The present invention has been made in consideration of the above-mentioned problems. The invention provides a method, device and computer storage medium for living body detection, which can automatically label input data based on the living body detection results, thereby saving labor costs.

根据本发明的第一方面,提供了一种用于活体检测的方法,包括:According to a first aspect of the present invention, a method for live detection is provided, comprising:

获取输入数据;get input data;

采用检测算法对所述输入数据进行活体检测;Using a detection algorithm to perform liveness detection on the input data;

如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;If the result of the living body detection determines that the input data is non-living, then automatically label the input data;

将所述标注后的输入数据添加到攻击样本数据库。Adding the marked input data to the attack sample database.

示例性地,还包括:如果所述活体检测的结果确定所述输入数据为活体,则将所述输入数据添加到生物特征样本数据库。Exemplarily, the method further includes: if the result of the living body detection determines that the input data is a living body, adding the input data to a biometric sample database.

示例性地,所述对所述输入数据进行标注,包括:对所述输入数据进行分析,并根据所述分析的结果进行标注。Exemplarily, the labeling the input data includes: analyzing the input data, and labeling according to a result of the analysis.

示例性地,所述分析的结果为所述输入数据所属的攻击类型,所述对所述输入数据进行分析,并根据所述分析的结果进行标注,包括:采用分类算法判断所述输入数据所属的攻击类型,并基于所述攻击类型对所述输入数据进行标注,其中,所述分类算法是由所述攻击样本数据库训练得到的。Exemplarily, the result of the analysis is the attack type to which the input data belongs, and the analyzing the input data and marking according to the result of the analysis includes: using a classification algorithm to determine the attack type to which the input data belongs attack type, and mark the input data based on the attack type, wherein the classification algorithm is trained from the attack sample database.

示例性地,所述对所述输入数据进行分析,并根据所述分析的结果进行标注,还包括:如果无法确定所述输入数据所属的攻击类型,则生成告警信息,以便于管理人员进行人工标注。Exemplarily, the analyzing the input data and marking according to the analysis result further includes: if the type of attack to which the input data belongs cannot be determined, generating an alarm message, so that the administrator can manually label.

示例性地,还包括:定期地采集攻击样本,并将所采集的攻击样本添加到所述攻击样本数据库。Exemplarily, the method further includes: periodically collecting attack samples, and adding the collected attack samples to the attack sample database.

示例性地,还包括:根据所述添加后的攻击样本数据库和所述添加后的生物特征样本数据库进行训练,得到优化后的检测算法。Exemplarily, the method further includes: performing training according to the added attack sample database and the added biometric sample database to obtain an optimized detection algorithm.

示例性地,所述方法由云端执行。Exemplarily, the method is executed by the cloud.

第二方面,提供了一种用于活体检测的装置,包括:In a second aspect, a device for living body detection is provided, including:

获取模块,用于获取输入数据;An acquisition module, used to acquire input data;

活体检测模块,用于采用检测算法对所述输入数据进行活体检测;A live body detection module, configured to use a detection algorithm to perform live body detection on the input data;

标注模块,用于如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;An annotation module, configured to automatically annotate the input data if the result of the liveness detection determines that the input data is non-living;

添加模块,用于将所述标注后的输入数据添加到攻击样本数据库。An adding module, configured to add the marked input data to the attack sample database.

该装置能够用于实现前述第一方面及各个示例所示的用于活体检测的方法。The device can be used to realize the method for living body detection shown in the foregoing first aspect and various examples.

第三方面,提供了一种用于活体检测的装置,包括存储器和处理器,存储器用于存储指令代码;处理器,用于执行所述指令代码,以实现第一方面及各个示例所述的用于活体检测的方法。In a third aspect, a device for living body detection is provided, including a memory and a processor, the memory is used to store instruction codes; the processor is used to execute the instruction codes, so as to realize the first aspect and the various examples Methods for liveness detection.

第四方面,提供了一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面及各个示例所述的用于活体检测的方法。In a fourth aspect, a computer storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the method for living body detection described in the first aspect and various examples is implemented.

由此可见,本发明实施例在活体检测的结果为非活体时,对输入数据进行标注,并将标注后的输入数据添加到攻击样本数据库,能够实现自动化标注,避免消耗大量的人力,从而能够极大地节约人力成本It can be seen that, in the embodiment of the present invention, when the result of the liveness detection is non-living, the input data is marked, and the marked input data is added to the attack sample database, which can realize automatic marking and avoid consuming a lot of manpower, thereby enabling Greatly save labor cost

附图说明Description of drawings

通过结合附图对本发明实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。附图用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中,相同的参考标号通常代表相同部件或步骤。The above and other objects, features and advantages of the present invention will become more apparent by describing the embodiments of the present invention in more detail with reference to the accompanying drawings. The accompanying drawings are used to provide a further understanding of the embodiments of the present invention, and constitute a part of the specification, and are used together with the embodiments of the present invention to explain the present invention, and do not constitute limitations to the present invention. In the drawings, the same reference numerals generally represent the same components or steps.

图1是本发明实施例的电子设备的一个示意性框图;Fig. 1 is a schematic block diagram of the electronic equipment of the embodiment of the present invention;

图2是本发明实施例的用于活体检测的方法的一个示意性流程图;FIG. 2 is a schematic flowchart of a method for living body detection according to an embodiment of the present invention;

图3是本发明实施例的用于活体检测的方法的另一个示意性流程图;FIG. 3 is another schematic flowchart of a method for living body detection according to an embodiment of the present invention;

图4是本发明实施例的用于活体检测的装置的一个示意性框图;FIG. 4 is a schematic block diagram of a device for living body detection according to an embodiment of the present invention;

图5是本发明实施例的用于活体检测的装置的另一个示意性框图。Fig. 5 is another schematic block diagram of the device for living body detection according to the embodiment of the present invention.

具体实施方式Detailed ways

为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。In order to make the objects, technical solutions and advantages of the present invention more apparent, exemplary embodiments according to the present invention will be described in detail below with reference to the accompanying drawings. Apparently, the described embodiments are only some embodiments of the present invention, rather than all embodiments of the present invention, and it should be understood that the present invention is not limited by the exemplary embodiments described here. Based on the embodiments of the present invention described in the present invention, all other embodiments obtained by those skilled in the art without creative effort shall fall within the protection scope of the present invention.

本发明实施例可以应用于电子设备,图1所示为本发明实施例的电子设备的一个示意性框图。图1所示的电子设备10包括一个或多个处理器102、一个或多个存储装置104、输入装置106、输出装置108、图像传感器110以及一个或多个非图像传感器114,这些组件通过总线系统112和/或其它形式互连。应当注意,图1所示的电子设备10的组件和结构只是示例性的,而非限制性的,根据需要,所述电子设备也可以具有其他组件和结构。Embodiments of the present invention may be applied to electronic devices, and FIG. 1 is a schematic block diagram of an electronic device according to an embodiment of the present invention. The electronic device 10 shown in FIG. 1 includes one or more processors 102, one or more storage devices 104, an input device 106, an output device 108, an image sensor 110, and one or more non-image sensors 114. System 112 and/or other forms of interconnection. It should be noted that the components and structure of the electronic device 10 shown in FIG. 1 are only exemplary rather than limiting, and the electronic device may also have other components and structures as required.

所述处理器102可以包括CPU 1021和GPU 1022或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,例如现场可编程门阵列(Field-Programmable GateArray,FPGA)或进阶精简指令集机器(Advanced RISC(Reduced Instruction SetComputer)Machine,ARM)等,并且处理器102可以控制所述电子设备10中的其它组件以执行期望的功能。The processor 102 may include a CPU 1021 and a GPU 1022 or other forms of processing units with data processing capabilities and/or instruction execution capabilities, such as Field-Programmable Gate Array (Field-Programmable GateArray, FPGA) or advanced reduced instruction set machine (Advanced RISC (Reduced Instruction Set Computer) Machine, ARM), etc., and the processor 102 can control other components in the electronic device 10 to perform desired functions.

所述存储装置104可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器1041和/或非易失性存储器1042。所述易失性存储器1041例如可以包括随机存取存储器(Random Access Memory,RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器1042例如可以包括只读存储器(Read-Only Memory,ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器102可以运行所述程序指令,以实现各种期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。The storage device 104 may include one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory 1041 and/or non-volatile memory 1042 . The volatile memory 1041 may include, for example, a random access memory (Random Access Memory, RAM) and/or a cache memory (cache). The non-volatile memory 1042 may include, for example, a read-only memory (Read-Only Memory, ROM), a hard disk, a flash memory, and the like. One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 102 may execute the program instructions to implement various desired functions. Various application programs and various data, such as various data used and/or generated by the application programs, may also be stored in the computer-readable storage medium.

所述输入装置106可以是用户用来输入指令的装置,并且可以包括键盘、鼠标、麦克风和触摸屏等中的一个或多个。The input device 106 may be a device used by a user to input instructions, and may include one or more of a keyboard, a mouse, a microphone, and a touch screen.

所述输出装置108可以向外部(例如用户)输出各种信息(例如图像或声音),并且可以包括显示器、扬声器等中的一个或多个。The output device 108 may output various information (such as images or sounds) to the outside (such as a user), and may include one or more of a display, a speaker, and the like.

所述图像传感器110可以拍摄用户期望的图像(例如照片、视频等),并且将所拍摄的图像存储在所述存储装置104中以供其它组件使用。The image sensor 110 can capture images desired by the user (such as photos, videos, etc.), and store the captured images in the storage device 104 for use by other components.

当注意,图1所示的电子设备10的组件和结构只是示例性的,尽管图1示出的电子设备10包括多个不同的装置,但是根据需要,其中的一些装置可以不是必须的,其中的一些装置的数量可以更多等等,本发明对此不限定。It should be noted that the components and structure of the electronic device 10 shown in FIG. 1 are only exemplary. Although the electronic device 10 shown in FIG. The number of some devices can be more, etc., and the present invention is not limited to this.

本发明实施例也可以应用于服务器,服务器可以称为云端或云端服务器。本发明对此不限定。The embodiment of the present invention can also be applied to a server, and the server can be called a cloud or a cloud server. The present invention is not limited thereto.

图2是本发明实施例的用于活体检测的方法的一个示意性流程图。图2所示的方法包括:Fig. 2 is a schematic flow chart of a method for living body detection according to an embodiment of the present invention. The methods shown in Figure 2 include:

S101,获取输入数据。S101. Obtain input data.

输入数据可以是图片数据或视频数据等。并且,该输入数据包含有生物特征信息,例如,输入数据包含有人脸图像等。The input data may be image data or video data, etc. Moreover, the input data includes biometric information, for example, the input data includes a face image and the like.

示例性地,输入数据可以是实时采集的或者可以是从用户端获取的。Exemplarily, the input data may be collected in real time or may be obtained from a user end.

作为一例,图2所示的方法可以由电子设备执行。可选地,输入数据可以是由该电子设备实时采集的,具体地可以是由图像采集装置实时采集的。例如图像采集装置可以是摄像头或照相机等。可选地,输入数据可以是由电子设备从特定的源获取的,例如可以从存储器中获取先前采集并存储的图片。As an example, the method shown in FIG. 2 may be executed by an electronic device. Optionally, the input data may be collected by the electronic device in real time, specifically by an image collection device in real time. For example, the image acquisition device may be a camera or a camera. Optionally, the input data may be obtained by the electronic device from a specific source, for example, a previously collected and stored picture may be obtained from a memory.

作为另一例,图2所示的方法可以由服务器(或云端)执行。可选地,输入数据可以是由服务器从用户端获取的,也就是说,输入数据可以是由用户端上传至服务器的。其中,用户端可以通过图像采集装置实时采集输入数据,或者,用户端可以从特定的源获取输入数据。其中,用户端可以是用户所在的移动端,例如智能手机、平板电脑等。As another example, the method shown in FIG. 2 may be executed by a server (or cloud). Optionally, the input data may be acquired by the server from the user end, that is, the input data may be uploaded to the server by the user end. Wherein, the user end may collect input data in real time through an image acquisition device, or the user end may obtain input data from a specific source. Wherein, the user end may be a mobile end where the user is located, such as a smart phone, a tablet computer, and the like.

S102,采用检测算法对所述输入数据进行活体检测。S102. Using a detection algorithm to perform liveness detection on the input data.

其中,检测算法可以是根据已有的攻击样本数据库和生物特征样本数据库,经过训练得到的。Wherein, the detection algorithm may be obtained through training based on the existing attack sample database and biometric sample database.

示例性地,检测算法可以是已有的一些基于大数据的机器学习的方法,例如,神经网络(Neural Network,NN)算法、支持向量机(Support Vector Machine,SVM)等。Exemplarily, the detection algorithm may be some existing big data-based machine learning methods, for example, a neural network (Neural Network, NN) algorithm, a support vector machine (Support Vector Machine, SVM) and the like.

以神经网络算法为例,S102可以将输入数据输入至神经网络中,以判断该输入数据是否为活体。Taking the neural network algorithm as an example, S102 may input the input data into the neural network to determine whether the input data is a living body.

若判断的结果为是,即S102的活体检测的结果确定所述输入数据为活体,则将所述输入数据添加到生物特征样本数据库,如图3所示。若判断的结果为否,即S102的活体检测的结果确定所述输入数据为非活体(即攻击),则执行S103。If the judgment result is yes, that is, the result of the living body detection in S102 determines that the input data is a living body, then the input data is added to the biometric sample database, as shown in FIG. 3 . If the result of the judgment is negative, that is, the result of the living body detection in S102 determines that the input data is non-living (that is, an attack), then execute S103.

S103,如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注。S103. If the result of the living body detection determines that the input data is not a living body, automatically mark the input data.

示例性地,对所述输入数据进行标注可以包括对输入数据的属性(如:非活体输入数据)或类型(如攻击类型等)等各种信息进行标注。其中,所述标注为自动标注,即由计算机执行的标注。Exemplarily, labeling the input data may include labeling various information such as attributes of the input data (such as: non-living input data) or types (such as attack types, etc.). Wherein, the labeling is automatic labeling, that is, labeling performed by a computer.

示例性地,可以对所述输入数据进行分析,并根据所述分析的结果进行标注。Exemplarily, the input data may be analyzed, and marked according to the analysis result.

作为一例,可以采用分类算法判断所述输入数据所属的攻击类型,并基于所述攻击类型对所述输入数据进行标注。其中,所述分析的结果为所述输入数据所属的攻击类型,所述分类算法是由所述攻击样本数据库训练得到的。As an example, a classification algorithm may be used to determine the attack type to which the input data belongs, and to mark the input data based on the attack type. Wherein, the result of the analysis is the attack type to which the input data belongs, and the classification algorithm is obtained by training from the attack sample database.

其中,分类算法也可以称为攻击类型算法。示例性地,可以根据已有的攻击样本数据库经训练得到攻击类型算法,并采用该攻击类型算法判断输入数据所属的攻击类型。其中,已有的攻击样本数据库中包括带标注的攻击样本;攻击类型算法可以是基于大数据的机器学习的方法,例如,神经网络算法、SVM等。Wherein, the classification algorithm may also be referred to as an attack type algorithm. Exemplarily, an attack type algorithm may be obtained through training based on an existing attack sample database, and the attack type algorithm may be used to determine the attack type to which the input data belongs. Wherein, the existing attack sample database includes marked attack samples; the attack type algorithm may be a machine learning method based on big data, for example, a neural network algorithm, SVM, and the like.

举例来说,攻击类型可以包括纸张攻击、面具攻击、屏幕翻拍攻击等。其中,基于攻击类型对输入数据进行标注可以为:将输入数据标记为其所属的攻击类型。By way of example, attack types may include paper attacks, mask attacks, screen rip-off attacks, and the like. Wherein, marking the input data based on the attack type may be: marking the input data with the attack type to which it belongs.

假设已有的攻击样本数据库中的攻击类型包括攻击类型A、攻击类型B和攻击类型C。如果通过攻击类型算法确定输入数据属于攻击类型A的概率最大,则可以确定该输入数据所属的攻击类型为攻击类型A。Assume that the attack types in the existing attack sample database include attack type A, attack type B, and attack type C. If it is determined by the attack type algorithm that the probability that the input data belongs to attack type A is the highest, then it can be determined that the attack type to which the input data belongs is attack type A.

示例性地,如果无法确定所述输入数据所属的攻击类型,则生成告警信息,以便于管理人员基于所述告警信息进行人工标注。例如,若输入数据与攻击样本数据库中所有攻击类型的攻击样本均存在一定差距(大于某个预设的阈值),则该输入数据可能属于新的攻击类型,此时可以向管理人员发出告警信息。随后,管理人员可以对该输入数据进行人工的验证和标注。Exemplarily, if the attack type to which the input data belongs cannot be determined, alarm information is generated, so that managers can manually mark based on the alarm information. For example, if there is a certain gap between the input data and the attack samples of all attack types in the attack sample database (greater than a certain preset threshold), the input data may belong to a new attack type, and an alarm message can be sent to the management personnel at this time . Subsequently, managers can manually verify and label the input data.

假设已有的攻击样本数据库中的攻击类型包括攻击类型A、攻击类型B和攻击类型C。如果通过攻击类型算法确定输入数据属于攻击类型A的概率P1、属于攻击类型B的概率P2和属于攻击类型C的概率P3两两之差的绝对值都小于某个特定的数值,或者,如果概率P1、概率P2和概率P3都小于某个预设的概率值,则可以确定输入数据属于新的攻击类型。Assume that the attack types in the existing attack sample database include attack type A, attack type B, and attack type C. If the absolute value of the difference between the probability P1 of the input data belonging to the attack type A, the probability P2 of the attack type B, and the probability P3 of the attack type C is determined by the attack type algorithm is less than a specific value, or if the probability If P1, probability P2, and probability P3 are all less than a certain preset probability value, it can be determined that the input data belongs to a new attack type.

由此可见,本发明实施例中,可以根据已有的攻击样本数据库完成对输入数据的标注,只有在无法确定输入数据所属的攻击类型时,才由管理人员进行人工标注,这样能够极大地减少人工的成本。It can be seen that in the embodiment of the present invention, the input data can be marked according to the existing attack sample database, and only when the attack type of the input data cannot be determined, the manager can manually mark it, which can greatly reduce the Labor costs.

S104,将所述标注后的输入数据添加到攻击样本数据库。S104. Add the marked input data to the attack sample database.

随后将标注后的输入数据添加到攻击样本数据库,能够完成对攻击样本数据库的更新。Then, the marked input data is added to the attack sample database, and the update of the attack sample database can be completed.

示例性地,也可以采集其他的攻击样本添加到该攻击样本数据库中,例如,可以定期地采集攻击样本,并将所采集的攻击样本添加到所述攻击样本数据库。这样,将采集到的攻击样本补充至该攻击样本数据库中,从而能够增加鲁棒性。Exemplarily, other attack samples may also be collected and added to the attack sample database, for example, attack samples may be collected periodically, and the collected attack samples may be added to the attack sample database. In this way, the collected attack samples are added to the attack sample database, thereby increasing the robustness.

作为一例,采集的攻击样本为带有标注的攻击样本,则可以将该带有标注的攻击样本添加到攻击样本数据库。As an example, if the collected attack samples are marked attack samples, the marked attack samples may be added to the attack sample database.

作为另一例,采集的攻击样本为不带标注的攻击样本,则可以对该采集的攻击样本进行标注后再添加到攻击样本数据库。As another example, if the collected attack sample is an unmarked attack sample, the collected attack sample may be marked and then added to the attack sample database.

示例性地,在S104之后,可以利用更新以后的攻击样本数据库进行训练,得到优化的分类算法(或称攻击类型算法)。Exemplarily, after S104, the updated attack sample database may be used for training to obtain an optimized classification algorithm (or attack type algorithm).

示例性地,在S104之后,可以利用更新以后的攻击样本数据库以及更新以后的生物特征样本数据库进行训练,得到优化的检测算法。Exemplarily, after S104, the updated attack sample database and the updated biometric sample database may be used for training to obtain an optimized detection algorithm.

例如,可以定期对分类算法(或称攻击类型算法)和/或检测算法进行优化。或者,可以在攻击样本数据库和/或生物特征样本数据库中的新增样本达到某一阈值时进行优化。或者,可以在其他触发条件成就时进行优化,本发明对此不限定。其中,攻击样本数据库的新增样本为添加到所述攻击样本数据库中的标注后的输入数据,或者,为添加的采集的攻击样本;生物特征样本数据库的新增样本为添加到所述生物特征样本数据库中的输入数据。For example, the classification algorithm (or attack type algorithm) and/or detection algorithm may be optimized regularly. Alternatively, optimization may be performed when the newly added samples in the attack sample database and/or the biometric sample database reach a certain threshold. Alternatively, optimization may be performed when other trigger conditions are fulfilled, which is not limited in the present invention. Wherein, the newly added sample of the attack sample database is the marked input data added to the attack sample database, or the added attack sample; the newly added sample of the biometric sample database is added to the biometric Input data in the sample database.

例如,可以在添加到所述攻击样本数据库中的标注后的输入数据的数量达到第一阈值,和/或,添加到所述生物特征样本数据库中的输入数据的数量达到第二阈值时,根据所述添加后的攻击样本数据库和所述添加后的生物特征样本数据库进行训练,得到优化后的检测算法。For example, when the number of marked input data added to the attack sample database reaches a first threshold, and/or, when the number of input data added to the biometric sample database reaches a second threshold, according to The added attack sample database and the added biometric sample database are trained to obtain an optimized detection algorithm.

由此可见,本发明实施例在活体检测的结果为非活体时,对输入数据进行标注,并将标注后的输入数据添加到攻击样本数据库,能够实现自动化标注,避免消耗大量的人力,从而能够极大地节约人力成本。It can be seen that, in the embodiment of the present invention, when the result of the liveness detection is non-living, the input data is marked, and the marked input data is added to the attack sample database, which can realize automatic marking and avoid consuming a lot of manpower, thereby enabling Greatly save labor costs.

图4是本发明实施例的用于活体检测的装置的一个示意性框图。图4所示的装置40包括:获取模块401、活体检测模块402、标注模块403和添加模块404。Fig. 4 is a schematic block diagram of a device for living body detection according to an embodiment of the present invention. The device 40 shown in FIG. 4 includes: an acquisition module 401 , a living body detection module 402 , a labeling module 403 and an adding module 404 .

获取模块401,用于获取输入数据;An acquisition module 401, configured to acquire input data;

活体检测模块402,用于采用检测算法对获取模块401获取的所述输入数据进行活体检测;A live body detection module 402, configured to use a detection algorithm to perform live body detection on the input data acquired by the acquisition module 401;

标注模块403,用于如果活体检测模块402进行活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;Labeling module 403, for if the result of liveness detection by the liveness detection module 402 determines that the input data is non-living, then automatically mark the input data;

添加模块404,用于将标注模块403标注后的输入数据添加到攻击样本数据库。The adding module 404 is configured to add the input data marked by the marking module 403 to the attack sample database.

示例性地,添加模块404还可以用于:如果活体检测模块402进行活体检测的结果确定所述输入数据为活体,则将所述输入数据添加到生物特征样本数据库。Exemplarily, the adding module 404 may also be configured to: add the input data to the biometric sample database if the living body detection module 402 determines that the input data is a living body as a result of the living body detection.

示例性地,标注模块403可以具体用于:对所述输入数据进行分析,并根据所述分析的结果进行标注。Exemplarily, the labeling module 403 may be specifically configured to: analyze the input data, and perform labeling according to a result of the analysis.

示例性地,所述分析的结果为所述输入数据所属的攻击类型,标注模块403可以具体用于:采用分类算法判断所述输入数据所属的攻击类型,并基于所述攻击类型对所述输入数据进行标注,其中,所述分类算法是由所述攻击样本数据库训练得到的。Exemplarily, the result of the analysis is the attack type to which the input data belongs, and the labeling module 403 may be specifically configured to: use a classification algorithm to determine the attack type to which the input data belongs, and classify the input data based on the attack type The data is marked, wherein the classification algorithm is trained from the attack sample database.

示例性地,该装置40还可以包括提醒模块。如果标注模块403无法确定所述输入数据所属的攻击类型,则提醒模块可以用于生成告警信息,以便于管理人员进行人工标注。Exemplarily, the device 40 may also include a reminder module. If the labeling module 403 cannot determine the type of attack to which the input data belongs, the reminder module can be used to generate alarm information, so as to facilitate manual labeling by managers.

示例性地,该装置40还可以包括采集模块。采集模块可以用于:定期地采集攻击样本。相应地,添加模块404还可以用于将所采集的攻击样本添加到所述攻击样本数据库。Exemplarily, the device 40 may also include a collection module. The collecting module may be used for: collecting attack samples regularly. Correspondingly, the adding module 404 may also be configured to add the collected attack samples to the attack sample database.

示例性地,该装置40还可以包括优化算法模块,如图5所示,该优化算法模块可以用于:根据所述添加后的攻击样本数据库和所述添加后的生物特征样本数据库进行训练,得到优化后的检测算法。Exemplarily, the apparatus 40 may also include an optimization algorithm module, as shown in FIG. 5 , the optimization algorithm module may be used to: perform training according to the added attack sample database and the added biometric sample database, The optimized detection algorithm is obtained.

示例性地,该优化算法模块还可以用于根据所述添加后的攻击样本数据库进行训练,得到优化后的攻击类型算法。Exemplarily, the optimization algorithm module can also be used for training according to the added attack sample database to obtain an optimized attack type algorithm.

示例性地,图4或图5所示的装置40为云端。Exemplarily, the device 40 shown in FIG. 4 or FIG. 5 is a cloud.

图4或图5所示的装置40能够用于实现前述图2或图3所示的用于活体检测的方法。The device 40 shown in FIG. 4 or FIG. 5 can be used to implement the method for living body detection shown in FIG. 2 or FIG. 3 .

另外,本发明实施例还提供了另一种用于活体检测的装置,该装置可以包括处理器和存储器,其中,存储器用于存储指令代码,处理器执行该指令代码时,可以实现前述图2或图3所示的用于活体检测的方法。In addition, the embodiment of the present invention also provides another device for living body detection. The device may include a processor and a memory, wherein the memory is used to store instruction codes, and when the processor executes the instruction codes, the aforementioned Figure 2 can be realized. Or the method for living body detection shown in FIG. 3 .

另外,本发明实施例还提供了一种电子设备,该电子设备可以包括图4或图5所示的装置40。该电子设备可以实现前述图2或图3所示的用于活体检测的方法。In addition, an embodiment of the present invention also provides an electronic device, which may include the apparatus 40 shown in FIG. 4 or FIG. 5 . The electronic device can implement the method for living body detection shown in FIG. 2 or FIG. 3 .

另外,本发明实施例还提供了一种计算机存储介质,其上存储有计算机程序。当所述计算机程序由处理器执行时,可以实现前述图2或图3所示的用于活体检测的方法。In addition, an embodiment of the present invention also provides a computer storage medium on which a computer program is stored. When the computer program is executed by the processor, the aforementioned method for living body detection shown in FIG. 2 or FIG. 3 can be realized.

由此可见,本发明实施例在活体检测的结果为非活体时,对输入数据进行标注,并将标注后的输入数据添加到攻击样本数据库,能够实现自动化标注,避免消耗大量的人力,从而能够极大地节约人力成本。It can be seen that, in the embodiment of the present invention, when the result of the liveness detection is non-living, the input data is marked, and the marked input data is added to the attack sample database, which can realize automatic marking and avoid consuming a lot of manpower, thereby enabling Greatly save labor costs.

尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。Although example embodiments have been described herein with reference to the accompanying drawings, it should be understood that the above-described example embodiments are exemplary only and are not intended to limit the scope of the invention thereto. Various changes and modifications can be made therein by those skilled in the art without departing from the scope and spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention as claimed in the appended claims.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those skilled in the art can appreciate that the units and algorithm steps of the examples described in conjunction with the embodiments disclosed herein can be implemented by electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are executed by hardware or software depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.

在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。In the several embodiments provided in this application, it should be understood that the disclosed devices and methods may be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined or May be integrated into another device, or some features may be omitted, or not implemented.

在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.

类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it should be understood that in the description of the exemplary embodiments of the invention, in order to streamline the disclosure and to facilitate an understanding of one or more of the various inventive aspects, various features of the invention are sometimes grouped together in a single embodiment, figure , or in its description. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the corresponding claims reflect, the inventive point lies in that the corresponding technical problem may be solved by using less than all features of a single disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.

本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。It will be appreciated by those skilled in the art that all features disclosed in this specification (including accompanying claims, abstract and drawings) and all features of any method or apparatus so disclosed may be used in any combination, except where the features are mutually exclusive. process or unit. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.

此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will understand that although some embodiments described herein include some features included in other embodiments but not others, combinations of features from different embodiments are meant to be within the scope of the invention. and form different embodiments. For example, in the claims, any one of the claimed embodiments can be used in any combination.

本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的物品分析设备中的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。The various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art should understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules in the item analysis device according to the embodiment of the present invention. The present invention can also be implemented as an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein. Such a program for realizing the present invention may be stored on a computer-readable medium, or may be in the form of one or more signals. Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.

以上所述,仅为本发明的具体实施方式或对具体实施方式的说明,本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。本发明的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present invention or a description of the specific embodiment, and the protection scope of the present invention is not limited thereto. Any person familiar with the technical field can easily Any changes or substitutions that come to mind should be covered within the protection scope of the present invention. The protection scope of the present invention should be based on the protection scope of the claims.

Claims (18)

1.一种用于活体检测的方法,其特征在于,包括:1. A method for live detection, characterized in that, comprising: 获取输入数据;get input data; 采用检测算法对所述输入数据进行活体检测;Using a detection algorithm to perform liveness detection on the input data; 如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;If the result of the living body detection determines that the input data is non-living, then automatically label the input data; 将所述标注后的输入数据添加到攻击样本数据库。Adding the marked input data to the attack sample database. 2.如权利要求1所述的方法,其特征在于,还包括:2. The method of claim 1, further comprising: 如果所述活体检测的结果确定所述输入数据为活体,则将所述输入数据添加到生物特征样本数据库。If the result of the living body detection determines that the input data is a living body, then adding the input data to a biometric sample database. 3.如权利要求1所述的方法,其特征在于,所述对所述输入数据进行标注,包括:3. The method according to claim 1, wherein said marking said input data comprises: 对所述输入数据进行分析,并根据所述分析的结果进行标注。The input data is analyzed, and marked according to the analysis result. 4.如权利要求3所述的方法,其特征在于,所述分析的结果为所述输入数据所属的攻击类型,4. The method according to claim 3, wherein the result of the analysis is the attack type to which the input data belongs, 所述对所述输入数据进行分析,并根据所述分析的结果进行标注,包括:The analyzing the input data and labeling according to the analysis result includes: 采用分类算法判断所述输入数据所属的攻击类型,并基于所述攻击类型对所述输入数据进行标注,其中,所述分类算法是由所述攻击样本数据库训练得到的。A classification algorithm is used to determine the attack type to which the input data belongs, and the input data is marked based on the attack type, wherein the classification algorithm is obtained by training from the attack sample database. 5.如权利要求4所述的方法,其特征在于,所述对所述输入数据进行分析,并根据所述分析的结果进行标注,还包括:5. The method according to claim 4, wherein said analyzing said input data, and marking according to the result of said analysis, further comprises: 如果无法确定所述输入数据所属的攻击类型,则生成告警信息,以便于管理人员进行人工标注。If the type of attack to which the input data belongs cannot be determined, an alarm message is generated to facilitate manual labeling by managers. 6.如权利要求1所述的方法,其特征在于,还包括:6. The method of claim 1, further comprising: 定期地采集攻击样本,并将所采集的攻击样本添加到所述攻击样本数据库。Collect attack samples regularly, and add the collected attack samples to the attack sample database. 7.如权利要求2或6所述的方法,其特征在于,还包括:7. The method according to claim 2 or 6, further comprising: 根据所述添加后的攻击样本数据库和所述添加后的生物特征样本数据库进行训练,得到优化后的检测算法。Training is performed according to the added attack sample database and the added biometric sample database to obtain an optimized detection algorithm. 8.如权利要求1至7任一项所述的方法,其特征在于,所述方法由云端执行。8. The method according to any one of claims 1 to 7, wherein the method is executed by a cloud. 9.一种用于活体检测的装置,其特征在于,包括:9. A device for living body detection, comprising: 获取模块,用于获取输入数据;An acquisition module, used to acquire input data; 活体检测模块,用于采用检测算法对所述输入数据进行活体检测;A live body detection module, configured to use a detection algorithm to perform live body detection on the input data; 标注模块,用于如果所述活体检测的结果确定所述输入数据为非活体,则对所述输入数据进行自动标注;An annotation module, configured to automatically annotate the input data if the result of the liveness detection determines that the input data is non-living; 添加模块,用于将所述标注后的输入数据添加到攻击样本数据库。An adding module, configured to add the marked input data to the attack sample database. 10.如权利要求9所述的装置,其特征在于,所述添加模块,还用于:10. The device according to claim 9, wherein the adding module is further used for: 如果所述活体检测的结果确定所述输入数据为活体,则将所述输入数据添加到生物特征样本数据库。If the result of the living body detection determines that the input data is a living body, then adding the input data to a biometric sample database. 11.如权利要求9所述的装置,其特征在于,所述标注模块,具体用于:11. The device according to claim 9, wherein the labeling module is specifically used for: 对所述输入数据进行分析,并根据所述分析的结果进行标注。The input data is analyzed, and marked according to the analysis result. 12.如权利要求11所述的装置,其特征在于,所述分析的结果为所述输入数据所属的攻击类型,所述标注模块,具体用于:12. The device according to claim 11, wherein the result of the analysis is the attack type to which the input data belongs, and the labeling module is specifically used for: 采用分类算法判断所述输入数据所属的攻击类型,并基于所述攻击类型对所述输入数据进行标注,其中,所述分类算法是由所述攻击样本数据库训练得到的。A classification algorithm is used to determine the attack type to which the input data belongs, and the input data is marked based on the attack type, wherein the classification algorithm is obtained by training from the attack sample database. 13.如权利要求12所述的装置,其特征在于,还包括提醒模块,用于:13. The device according to claim 12, further comprising a reminder module for: 如果所述标注模块无法确定所述输入数据所属的攻击类型,则生成告警信息,以便于管理人员进行人工标注。If the labeling module cannot determine the attack type to which the input data belongs, an alarm message is generated, so that managers can manually label. 14.如权利要求9所述的装置,其特征在于,还包括采集模块,用于:14. The device according to claim 9, further comprising an acquisition module for: 定期地采集攻击样本;Regularly collect attack samples; 所述添加模块,还用于将所采集的攻击样本添加到所述攻击样本数据库。The adding module is further configured to add the collected attack samples to the attack sample database. 15.如权利要求10或14所述的装置,其特征在于,还包括优化算法模块,用于:15. The device according to claim 10 or 14, further comprising an optimization algorithm module for: 根据所述添加后的攻击样本数据库和所述添加后的生物特征样本数据库进行训练,得到优化后的检测算法。Training is performed according to the added attack sample database and the added biometric sample database to obtain an optimized detection algorithm. 16.如权利要求9至15任一项所述的装置,其特征在于,所述装置为云端。16. The device according to any one of claims 9 to 15, wherein the device is a cloud. 17.一种用于活体检测的装置,其特征在于,包括:17. A device for living body detection, characterized in that it comprises: 存储器,用于存储指令代码;memory for storing instruction codes; 处理器,用于执行所述指令代码,以实现权利要求1至8任一项所述的方法。A processor, configured to execute the instruction code, so as to realize the method described in any one of claims 1-8. 18.一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时以实现权利要求1至8任一项所述方法的步骤。18. A computer storage medium, on which a computer program is stored, wherein when the computer program is executed by a processor, the steps of the method according to any one of claims 1 to 8 are implemented.
CN201710230110.0A 2017-04-10 2017-04-10 Method, apparatus and computer storage media for In vivo detection Pending CN108694357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710230110.0A CN108694357A (en) 2017-04-10 2017-04-10 Method, apparatus and computer storage media for In vivo detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710230110.0A CN108694357A (en) 2017-04-10 2017-04-10 Method, apparatus and computer storage media for In vivo detection

Publications (1)

Publication Number Publication Date
CN108694357A true CN108694357A (en) 2018-10-23

Family

ID=63843296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710230110.0A Pending CN108694357A (en) 2017-04-10 2017-04-10 Method, apparatus and computer storage media for In vivo detection

Country Status (1)

Country Link
CN (1) CN108694357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633647A (en) * 2019-08-21 2019-12-31 阿里巴巴集团控股有限公司 Living body detection method and device
CN112036238A (en) * 2020-07-24 2020-12-04 支付宝实验室(新加坡)有限公司 Face data processing method and device, electronic equipment and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853400A (en) * 2010-05-20 2010-10-06 武汉大学 Multi-Class Image Classification Method Based on Active Learning and Semi-Supervised Learning
CN103150795A (en) * 2013-03-01 2013-06-12 姬志刚 Door control system capable of generating door control open passwords through human body characteristic verification
EP2863339A2 (en) * 2013-10-18 2015-04-22 Daon Holdings Limited Methods and systems for determing user liveness
US20160005050A1 (en) * 2014-07-03 2016-01-07 Ari Teman Method and system for authenticating user identity and detecting fraudulent content associated with online activities
CN105612533A (en) * 2015-06-08 2016-05-25 北京旷视科技有限公司 In-vivo detection method, in-vivo detection system and computer programe products
CN105913024A (en) * 2016-04-12 2016-08-31 上海交通大学 Android mobile terminal detecting method based on LAP operator for resisting replay attacks
CN106096557A (en) * 2016-06-15 2016-11-09 浙江大学 A kind of semi-supervised learning facial expression recognizing method based on fuzzy training sample
CN106407914A (en) * 2016-08-31 2017-02-15 北京旷视科技有限公司 Method for detecting human faces, device and remote teller machine system
US20170053406A1 (en) * 2014-09-09 2017-02-23 EyeVerify Inc. Systems and methods for liveness analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853400A (en) * 2010-05-20 2010-10-06 武汉大学 Multi-Class Image Classification Method Based on Active Learning and Semi-Supervised Learning
CN103150795A (en) * 2013-03-01 2013-06-12 姬志刚 Door control system capable of generating door control open passwords through human body characteristic verification
EP2863339A2 (en) * 2013-10-18 2015-04-22 Daon Holdings Limited Methods and systems for determing user liveness
US20160005050A1 (en) * 2014-07-03 2016-01-07 Ari Teman Method and system for authenticating user identity and detecting fraudulent content associated with online activities
US20170053406A1 (en) * 2014-09-09 2017-02-23 EyeVerify Inc. Systems and methods for liveness analysis
CN105612533A (en) * 2015-06-08 2016-05-25 北京旷视科技有限公司 In-vivo detection method, in-vivo detection system and computer programe products
CN105913024A (en) * 2016-04-12 2016-08-31 上海交通大学 Android mobile terminal detecting method based on LAP operator for resisting replay attacks
CN106096557A (en) * 2016-06-15 2016-11-09 浙江大学 A kind of semi-supervised learning facial expression recognizing method based on fuzzy training sample
CN106407914A (en) * 2016-08-31 2017-02-15 北京旷视科技有限公司 Method for detecting human faces, device and remote teller machine system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAI LI ET.AL: ""A Semi-Supervised 2DPCA Face Recognition Method Based on Self-training"", 《2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES》 *
赵元元: ""基于流形学习与支持向量机的人脸识别研究"", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633647A (en) * 2019-08-21 2019-12-31 阿里巴巴集团控股有限公司 Living body detection method and device
CN112036238A (en) * 2020-07-24 2020-12-04 支付宝实验室(新加坡)有限公司 Face data processing method and device, electronic equipment and storage medium
CN112036238B (en) * 2020-07-24 2024-12-27 蚁盾有限公司 Face data processing method, device, electronic device and storage medium

Similar Documents

Publication Publication Date Title
CN112200081B (en) Abnormal behavior identification method, device, electronic device and storage medium
CN108922622B (en) Animal health monitoring method, device and computer readable storage medium
CN111460967B (en) Illegal building identification method, device, equipment and storage medium
JP6030240B2 (en) Method and apparatus for face recognition
US20200074156A1 (en) Emotion detection enabled video redaction
CN107958230B (en) Facial expression recognition method and device
US11100368B2 (en) Accelerated training of an image classifier
WO2019056503A1 (en) Store monitoring evaluation method, device and storage medium
CN104298983A (en) Tongue fur image acquisition and analysis system with distributed user terminals
CN114550076B (en) Regional abnormal behavior monitoring method, device, equipment and storage medium
CN108509921B (en) Method and apparatus for generating information
KR102104397B1 (en) Method, computing device and program for executing harmful object control
US20170185913A1 (en) System and method for comparing training data with test data
CN110942456B (en) Tamper image detection method, device, equipment and storage medium
CN110610125A (en) Cow face recognition method, device, equipment and storage medium based on neural network
CN107133951B (en) Image tampering detection method and device
CN108563651A (en) A kind of Target Searching Method, device and the equipment of more videos
CN112102235B (en) Human body part recognition method, computer device, and storage medium
WO2024108606A1 (en) Person identity recognition method and system, and device and storage medium
CN113158773A (en) Training method and training device for living body detection model
CN111444803B (en) Image processing method, device, electronic equipment and storage medium
CN108694357A (en) Method, apparatus and computer storage media for In vivo detection
CN110070017B (en) A method and device for generating a false-eye image of a human face
CN109298783B (en) Annotation monitoring method, device and electronic device based on facial expression recognition
CN108875467B (en) Living body detection method, living body detection device and computer storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181023

RJ01 Rejection of invention patent application after publication