CN108682743A - A kind of preparation method of the titania-doped quantum dot of holmium ytterbium magnesium and its application in perovskite battery - Google Patents
A kind of preparation method of the titania-doped quantum dot of holmium ytterbium magnesium and its application in perovskite battery Download PDFInfo
- Publication number
- CN108682743A CN108682743A CN201810526071.3A CN201810526071A CN108682743A CN 108682743 A CN108682743 A CN 108682743A CN 201810526071 A CN201810526071 A CN 201810526071A CN 108682743 A CN108682743 A CN 108682743A
- Authority
- CN
- China
- Prior art keywords
- layer
- solution
- preparation
- perovskite
- transport layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title claims abstract description 42
- -1 holmium ytterbium magnesium Chemical compound 0.000 title claims description 7
- 239000000243 solution Substances 0.000 claims abstract description 55
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002243 precursor Substances 0.000 claims abstract description 23
- 239000011259 mixed solution Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910019427 Mg(NO3)2-6H2O Inorganic materials 0.000 claims abstract description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 64
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 29
- 239000011521 glass Substances 0.000 claims description 25
- 230000004048 modification Effects 0.000 claims description 24
- 238000012986 modification Methods 0.000 claims description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 23
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 22
- 230000005525 hole transport Effects 0.000 claims description 21
- 238000010521 absorption reaction Methods 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 12
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 claims description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 238000004528 spin coating Methods 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 claims description 3
- GNHQSAUHXKRQMC-UHFFFAOYSA-N benzene;chlorine Chemical compound [Cl].C1=CC=CC=C1 GNHQSAUHXKRQMC-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims 6
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 claims 1
- FYYVSJNJBYOWRN-UHFFFAOYSA-N trifluoro(trifluoromethylsulfonylsulfanylsulfonyl)methane Chemical compound FC(S(=O)(=O)SS(=O)(=O)C(F)(F)F)(F)F FYYVSJNJBYOWRN-UHFFFAOYSA-N 0.000 claims 1
- 239000011777 magnesium Substances 0.000 abstract description 44
- 238000006243 chemical reaction Methods 0.000 abstract description 12
- 229910052689 Holmium Inorganic materials 0.000 abstract description 4
- 239000004408 titanium dioxide Substances 0.000 abstract 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 abstract 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 abstract 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 abstract 3
- 230000000052 comparative effect Effects 0.000 description 14
- 229960004592 isopropanol Drugs 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000012190 activator Substances 0.000 description 2
- QHJPGANWSLEMTI-UHFFFAOYSA-N aminomethylideneazanium;iodide Chemical compound I.NC=N QHJPGANWSLEMTI-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- ZASWJUOMEGBQCQ-UHFFFAOYSA-L dibromolead Chemical compound Br[Pb]Br ZASWJUOMEGBQCQ-UHFFFAOYSA-L 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XURZGOTTZHKXTQ-UHFFFAOYSA-N acetonitrile;lithium Chemical compound [Li].CC#N XURZGOTTZHKXTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
- H10K30/15—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
- H10K30/151—Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明涉及一种钬镱镁掺杂二氧化钛的量子点的制备方法,包括以下步骤:1)二氧化钛前驱体的制备;2)量子点的制备:将Ho(NO3)3·5H2O、Yb(NO3)3·5H2O和Mg(NO3)2·6H2O加入二氧化钛前驱体溶液中,得到混合溶液C,将混合溶液C干燥、退火,得到钬镱镁掺杂二氧化钛的量子点;钬镱镁掺杂二氧化钛的量子点可以作为电子传输材料应用于制备钙钛矿电池中,制备得到的钙钛矿电池能将近红外光转换成可见光,并且转换效率较高。The invention relates to a method for preparing quantum dots doped with holmium, ytterbium and magnesium, comprising the following steps: 1) preparation of titanium dioxide precursor; 2) preparation of quantum dots: Ho(NO 3 ) 3 ·5H 2 O, Yb (NO 3 ) 3 5H 2 O and Mg(NO 3 ) 2 6H 2 O were added to the titanium dioxide precursor solution to obtain a mixed solution C, which was dried and annealed to obtain quantum dots of holmium, ytterbium and magnesium doped titanium dioxide The quantum dots of holmium, ytterbium and magnesium doped with titanium dioxide can be used as electron transport materials in the preparation of perovskite batteries. The prepared perovskite batteries can convert near-infrared light into visible light with high conversion efficiency.
Description
技术领域technical field
本发明属于太阳能电池技术领域,具体涉及一种Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的制备及其在钙钛矿电池中的应用。The invention belongs to the technical field of solar cells, and in particular relates to the preparation of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots and its application in perovskite cells.
背景技术Background technique
近年来,钙钛矿太阳能电池成为太阳电池领域的一个研究热点,因为它具有效率高、成本低、制备方法简单等优点。钙钛矿电池的转换效率提高很快,到2017年已经达到了22.1% (Science, 2017, 356:1376)。然而,钙钛矿太阳电池只能吸收太阳光谱的一小部分(280~800 nm),不能吸收近红外光,入射光的能量损失很大,阻碍了电池效率的进一步提高。解决这个问题的一个途径就是,采用上转换发光材料将近红外光转换成电池能够吸收的可见光,从而提高电池转换效率。目前,人们主要采用稀土离子掺杂NaYF4制备上电子传输材料,应用于太阳电池。但是,NaYF4的导电性不好,会阻碍电子的传输(Inorg. Chem.,2014, 53:8045)。在钙钛矿太阳电池中,TiO2是一种常用的电子传输材料,如果采用稀土元素掺杂TiO2制备上电子传输材料,既不影响电子的传输又可以将太阳光中的近红外光转换成可见光,被钙钛矿电池吸收,从而提高电池效率。In recent years, perovskite solar cells have become a research hotspot in the field of solar cells because of their high efficiency, low cost, and simple preparation methods. The conversion efficiency of perovskite cells has increased rapidly, reaching 22.1% by 2017 (Science, 2017, 356:1376). However, perovskite solar cells can only absorb a small part of the solar spectrum (280–800 nm) and cannot absorb near-infrared light, and the energy loss of incident light is large, which hinders further improvement of cell efficiency. One way to solve this problem is to use up-conversion luminescent materials to convert near-infrared light into visible light that the battery can absorb, thereby improving the conversion efficiency of the battery. At present, people mainly use rare earth ions doping NaYF 4 to prepare electron transport materials for solar cells. However, the poor conductivity of NaYF 4 will hinder the transport of electrons (Inorg. Chem., 2014, 53:8045). In perovskite solar cells, TiO 2 is a commonly used electron transport material. If the electron transport material is prepared by doping TiO 2 with rare earth elements, it will not affect the electron transport and can convert the near-infrared light in sunlight. Visible light is absorbed by the perovskite cell, thereby improving cell efficiency.
发明内容Contents of the invention
本发明的目的是提供一种Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的制备方法,由本方法制备的Ho3+-Yb3+-Mg2+掺杂TiO2能将近红外光转换成可见光,并且转换效率较高。将采用这种法制备的Ho3+-Yb3+-Mg2+掺杂TiO2作为电子传输材料,制备钙钛矿太阳电池,拓展了钙钛矿电池对近红外光的吸收,提高了电池的光电转换效率。The object of the present invention is to provide a preparation method of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots, the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 prepared by this method can Convert near-infrared light into visible light with high conversion efficiency. The Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 prepared by this method was used as an electron transport material to prepare a perovskite solar cell, which expanded the absorption of near-infrared light by the perovskite cell and improved the battery performance. photoelectric conversion efficiency.
本发明公开了一种Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的制备方法,包括以下步骤:The invention discloses a preparation method of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots, comprising the following steps:
1)TiO2前驱体的制备:1) Preparation of TiO2 precursor:
将钛酸正四丁脂与乙酰丙酮混合均匀,然后加入异丙醇,得到溶液A,其中钛酸正四丁脂、乙酰丙酮与异丙醇的体积比为 (7~8) : ( 2~3) :100;Mix n-butyl titanate and acetylacetone evenly, then add isopropanol to obtain solution A, wherein the volume ratio of n-butyl titanate, acetylacetone and isopropanol is (7~8): ( 2~3) :100;
将硝酸和水加入异丙醇里,混合均匀,得到溶液B,其中硝酸、水、异丙醇的体积比为 (7~8) : ( 2~3) :100;Nitric acid and water are added in isopropanol, mix uniformly, obtain solution B, wherein the volume ratio of nitric acid, water, isopropanol is (7~8): (2~3):100;
按照A溶液与B溶液 ( 2~3):1的体积比将溶液B与溶液A混合,得到TiO2前驱体溶液。Mix solution B and solution A according to the volume ratio of solution A and solution B (2~3):1 to obtain the TiO2 precursor solution.
2)量子点的制备:将Ho(NO3)3·5H2O、Yb(NO3)3·5H2O和Mg(NO3)2·6H2O加入TiO2前驱体溶液中,得到混合溶液C,将混合溶液C在90~110ºC条件下干燥,然后在450~550ºC条件下退火30~90 min,即得到Ho3+-Yb3+-Mg2+掺杂TiO2的量子点;2) Preparation of quantum dots: Ho(NO 3 ) 3 5H 2 O, Yb(NO 3 ) 3 5H 2 O and Mg(NO 3 ) 2 6H 2 O were added to the TiO 2 precursor solution to obtain a mixed Solution C, dry the mixed solution C at 90~110ºC, and then anneal at 450~550ºC for 30~90 min to obtain Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots;
所述混合溶液C中Ho与Ti、Yb与Ti、Mg与Ti的摩尔比分别为0.5~1.5:100、1~5:100、1~4:100。The molar ratios of Ho to Ti, Yb to Ti, and Mg to Ti in the mixed solution C are 0.5-1.5:100, 1-5:100, and 1-4:100, respectively.
所述步骤1)中溶液B与溶液A混合的具体方式为:将溶液B逐滴加入溶液A中,搅拌6小时。The specific method of mixing solution B and solution A in the step 1) is: adding solution B to solution A drop by drop, and stirring for 6 hours.
使用制备得到的Ho3+-Yb3+-Mg2+掺杂TiO2的量子点能够作为电子传输材料能够应用于钙钛矿电池。The prepared Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots can be used as electron transport materials and can be applied to perovskite batteries.
一种添加所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的钙钛矿电池的制备方法,包括以下步骤:A preparation method of a perovskite battery adding the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots, comprising the following steps:
1)FTO玻璃片处理:将刻蚀的FTO玻璃片清洗,并用紫外光照处理,得到洁净的FTO玻璃片。1) FTO glass sheet treatment: the etched FTO glass sheet is cleaned and treated with ultraviolet light to obtain a clean FTO glass sheet.
2)制备致密层:将0.05~0.1 ml乙酰丙酮钛加入到0.5~1.5 ml正丁醇溶液中混合得到致密层前驱体,将致密层前驱体溶液滴在步骤1)得到的洁净的FTO玻璃片上,旋涂、退火,制得致密层/FTO。2) Preparation of dense layer: add 0.05~0.1 ml titanium acetylacetonate to 0.5~1.5 ml n-butanol solution and mix to obtain a dense layer precursor, drop the dense layer precursor solution on the clean FTO glass sheet obtained in step 1) , spin coating and annealing to obtain a dense layer/FTO.
3)制备电子传输层:将TiO2和无水乙醇按质量比1:6混合得到TiO2浆料,将TiO2浆料滴在致密层上,旋涂、退火,制得电子传输层/致密层/FTO。3) Preparation of the electron transport layer: mix TiO 2 and absolute ethanol at a mass ratio of 1:6 to obtain a TiO 2 slurry, drop the TiO 2 slurry on the dense layer, spin-coat, and anneal to obtain an electron transport layer/dense layer/FTO.
4)制备修饰层:将混合溶液C滴在电子传输层上,旋涂、退火,制得Ho3+-Yb3+-Mg2+掺杂TiO2的修饰层/电子传输层/致密层/FTO。4) Prepare the modification layer: drop the mixed solution C on the electron transport layer, spin coat and anneal to prepare the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 modification layer/electron transport layer/dense layer/ FTO.
5)钙钛矿吸收层:将0.5~1.5 mmol FAI,1~1.5 mmol PbI2,0.1~0.5mmol MABr,0.1~0.5 mmol PbBr2溶解在1mL DMF和DMSO的混合溶液中,再加入40-50µl的的CsI溶液,混合均匀得到钙钛矿前驱体溶液,将钙钛矿前驱体溶液滴在Ho3+-Yb3+-Mg2+掺杂TiO2的修饰层上,旋涂,滴加氯苯,加热得到钙钛矿吸收层/修饰层/电子传输层/致密层/FTO。5) Perovskite absorption layer: Dissolve 0.5~1.5 mmol FAI, 1~1.5 mmol PbI 2 , 0.1~0.5 mmol MABr, 0.1~0.5 mmol PbBr 2 in a mixed solution of 1mL DMF and DMSO, then add 40-50µl CsI solution, mixed evenly to obtain a perovskite precursor solution, drop the perovskite precursor solution on the modified layer of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 , spin coating, drop chlorine Benzene, heated to obtain perovskite absorption layer/modification layer/electron transport layer/dense layer/FTO.
6)制备空穴传输层:将70~80 mg spiro-oMeTAD溶解在1mL氯苯中,随后加入28.8ul 4-叔基吡啶和17.5 ul 浓度为520 mg/ml的双(三氟甲烷磺酰)亚胺锂的乙腈溶液,混合均匀得到空穴传输层溶液,空穴传输层/钙钛矿吸收层/修饰层/电子传输层/致密层/FTO。6) Preparation of hole transport layer: Dissolve 70~80 mg spiro-oMeTAD in 1 mL chlorobenzene, then add 28.8 ul 4-tert-pyridine and 17.5 ul bis(trifluoromethanesulfonyl) at a concentration of 520 mg/ml Acetonitrile solution of lithium imide, mixed uniformly to obtain hole transport layer solution, hole transport layer/perovskite absorption layer/modification layer/electron transport layer/dense layer/FTO.
7)在空穴传输层上热蒸镀一层Au电极得到Ho3+-Yb3+-Mg2+掺杂TiO2的电子传输材料的钙钛矿电池,即Au/空穴传输层/钙钛矿吸收层/修饰层/电子传输层/致密层/FTO。7) A layer of Au electrode is thermally evaporated on the hole transport layer to obtain a perovskite battery of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 electron transport material, that is, Au/hole transport layer/calcium Titanium absorption layer/modification layer/electron transport layer/dense layer/FTO.
步骤1)中所述刻蚀的FTO玻璃清洗的具体方式为:将刻蚀的FTO玻璃片依次放入导电玻璃清洗液、丙酮和异丙醇中,超声清洗各20 min。The specific method of cleaning the etched FTO glass described in step 1) is: put the etched FTO glass piece into the conductive glass cleaning solution, acetone and isopropanol in sequence, and ultrasonically clean it for 20 min each.
所述旋涂的实施参数为:步骤2)中致密层制备时,转速为3500转/分钟;步骤3)中电子传输层制备时,转速为4000转/分钟;步骤4)中修饰层制备时,转速为5000 转/分钟;步骤5)中钙钛矿吸收层制备时,转速为以1000 rpm 10s和6000 rpm 20s的条件;步骤6)中空穴传输层制备时,速度为4000转/分钟。The implementation parameters of the spin coating are: when the dense layer is prepared in step 2), the rotation speed is 3500 rpm; when the electron transport layer is prepared in step 3), the rotation speed is 4000 rpm; when the modification layer is prepared in step 4), , the rotation speed is 5000 rpm; when the perovskite absorbing layer is prepared in step 5), the rotation speed is 1000 rpm 10s and 6000 rpm 20s; when the hole transport layer is prepared in step 6), the speed is 4000 rpm.
所述退火的实施参数为:步骤2)中致密层制备时,退火温度为500ºC、时间为30~60min;步骤3)中电子传输层制备时,退火温度为450ºC、时间为30~60 min;步骤4)中修饰层制备时,退火温度为500ºC、时间为30~120 min;步骤5)中钙钛矿吸收层制备时,退火温度为500ºC、时间为30~60 min;步骤6)中空穴传输层制备时,退火温度为100ºC、时间为60 min。The implementation parameters of the annealing are: when the dense layer is prepared in step 2), the annealing temperature is 500°C and the time is 30-60 minutes; when the electron transport layer is prepared in step 3), the annealing temperature is 450°C and the time is 30-60 minutes; When preparing the modification layer in step 4), the annealing temperature is 500ºC and the time is 30-120 min; when preparing the perovskite absorbing layer in step 5), the annealing temperature is 500ºC and the time is 30-60 min; in step 6), the hole When the transport layer was prepared, the annealing temperature was 100ºC and the time was 60 min.
步骤5)中所述DMF与DMSO的体积比为4:1。The volume ratio of DMF to DMSO in step 5) is 4:1.
所述制备得到的Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的钙钛矿电池,包括依次叠加的FTO玻璃、致密层、电子传输层、修饰层、钙钛矿吸收层、空穴传输层、Au电极;所述Au电极厚80 nm。The prepared Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dot perovskite battery includes sequentially stacked FTO glass, dense layer, electron transport layer, modification layer, perovskite absorption layer, hole transport layer, Au electrode; the Au electrode is 80 nm thick.
本发明具有以下优点:The present invention has the following advantages:
1)本发明采用这种制备方法制备Ho3+-Yb3+-Mg2+掺杂TiO2的量子点,由于Mg2+的加入,使Ho3+-Yb3+掺杂TiO2的上转换发光性能得到增强。可以通过改变硝酸镁的掺杂量,改变上电子传输材料的发光强度,可以获得最强发光强度对应的Mg2+的最佳掺杂量。1) The present invention uses this preparation method to prepare Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots. Due to the addition of Mg 2+ , Ho 3+ -Yb 3+ doped TiO 2 The conversion luminescence performance is enhanced. By changing the doping amount of magnesium nitrate and changing the luminous intensity of the upper electron transport material, the optimal doping amount of Mg 2+ corresponding to the strongest luminous intensity can be obtained.
2)将本发明制备的Ho3+-Yb3+-Mg2+掺杂TiO2的量子点作为电子传输材料,制备钙钛矿太阳电池。由于Ho3+-Yb3+-Mg2+掺杂TiO2的量子点能将近红外光转换成钙钛矿能吸收的可见光,拓展了钙钛矿电池的光谱响应范围,能提高电池转换效率。2) The Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots prepared by the present invention are used as electron transport materials to prepare perovskite solar cells. Since Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots can convert near-infrared light into visible light that perovskite can absorb, it expands the spectral response range of perovskite cells and improves cell conversion efficiency.
附图说明Description of drawings
图1为实施例1所述Ho3+-Yb3+-Mg2+掺杂TiO2量子点的能量传递示意图;Fig. 1 is the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dot energy transfer schematic diagram described in Example 1;
图2为实施例1所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的X射线衍射图(XRD);Figure 2 is the X-ray diffraction pattern (XRD) of the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots described in Example 1;
图3为实施例1所述Ho3+-Yb3+-Mg2+掺杂TiO2量子点的紫外-可见-红外吸收光谱图;Fig. 3 is the ultraviolet-visible-infrared absorption spectrogram of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots described in Example 1;
图4为实施例1和对比例1所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的转换发光图;Fig. 4 is the conversion luminescence diagram of the quantum dots of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 described in Example 1 and Comparative Example 1;
图5为实施例2所述Ho3+-Yb3+-Mg2+掺杂TiO2量子点的钙钛矿电池结构示意图;Fig. 5 is the perovskite cell structure schematic diagram of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots described in Example 2;
图6为实施例2和对比例2所述钙钛矿电池的最高效率对应的电流-电压曲线图。6 is a current-voltage curve corresponding to the highest efficiency of the perovskite battery described in Example 2 and Comparative Example 2.
具体实施方式Detailed ways
下面将结合实施例对本发明的实施方案进行详细描述,但是下列实施例仅用于说明本发明,而不应该为限制本发明的范围。所述室温为25±5℃。Embodiments of the present invention will be described in detail below in conjunction with examples, but the following examples are only used to illustrate the present invention, and should not limit the scope of the present invention. The room temperature is 25±5°C.
本发明中所述钛酸正四丁脂、乙酰丙酮、异丙醇、Ho(NO3)3·5H2O、Yb(NO3)3·5H2O、Mg(NO3)2·6H2O、导电玻璃清洗液(深圳瑞格锐思科技有限公司)、丙酮、无水乙醇、氯苯、碘甲脒(FAI)、碘化铅(PbI2)、溴甲胺(MABr)、溴化铅(PbBr2)、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、CsI溶液、spiro-oMeTAD、氯苯、4-叔基吡啶、双(三氟甲烷磺酰)亚胺锂、乙腈均属于市售产品。In the present invention, n-butyl titanate, acetylacetone, isopropanol, Ho(NO 3 ) 3 ·5H 2 O, Yb(NO 3 ) 3 ·5H 2 O, Mg(NO 3 ) 2 ·6H 2 O , Conductive glass cleaning fluid (Shenzhen Regres Technology Co., Ltd.), acetone, absolute ethanol, chlorobenzene, formamidine iodide (FAI), lead iodide (PbI 2 ), methylamine bromide (MABr), lead bromide (PbBr 2 ), dimethylformamide (DMF), dimethylsulfoxide (DMSO), CsI solution, spiro-oMeTAD, chlorobenzene, 4-tert-pyridine, lithium bis(trifluoromethanesulfonyl)imide , Acetonitrile all belong to commercially available products.
本发明中所述TiO2浆料为商用的TiO2,购买自Dyesol,型号30NR-D。The TiO 2 slurry mentioned in the present invention is commercial TiO 2 purchased from Dyesol, model 30NR-D.
实施例1:Example 1:
一种Ho3+-Yb3+-Mg2+掺杂TiO2上量子点的制备方法,其包括如下步骤:A method for preparing quantum dots on Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 , comprising the steps of:
1)TiO2前驱体的制备:1) Preparation of TiO2 precursor:
将钛酸正四丁脂0.75 ml与乙酰丙酮0.225 ml在室温下混合1h,发生熬合反应,然后加入10 ml异丙醇(iso-propyl),得到溶液A;Mix 0.75 ml of n-tetrabutyl titanate and 0.225 ml of acetylacetone at room temperature for 1 hour, and then add 10 ml of iso-propyl alcohol to obtain solution A;
将硝酸0.045 ml和去离子水0.105 ml加入5 ml异丙醇里,混合搅拌1h,得到溶液B;Add 0.045 ml of nitric acid and 0.105 ml of deionized water into 5 ml of isopropanol, mix and stir for 1 hour to obtain solution B;
将溶液B逐滴加入溶液A,磁力搅拌6小时,得到TiO2前驱体溶液。Solution B was added dropwise to solution A and magnetically stirred for 6 h to obtain the TiO2 precursor solution.
2)量子点的制备:将Ho(NO3)3·5H2O、Yb(NO3)3·5H2O以及Mg(NO3)2·6H2O加入TiO2前驱体溶液中,得到混合溶液C,所述混合溶液C中Ho与Ti、Yb与Ti、Mg与Ti的摩尔比分别为0.5~1.5:100、1~5:100、1~4:100;2) Preparation of quantum dots: Ho(NO 3 ) 3 5H 2 O, Yb(NO 3 ) 3 5H 2 O and Mg(NO 3 ) 2 6H 2 O were added to the TiO 2 precursor solution to obtain a mixed Solution C, the molar ratios of Ho and Ti, Yb and Ti, Mg and Ti in the mixed solution C are 0.5~1.5:100, 1~5:100, 1~4:100 respectively;
将混合溶液C在100℃条件下干燥12小时(除去溶剂),然后在500℃条件下退火30~90min,即得到Ho3+-Yb3+-Mg2+掺杂TiO2的量子点,记为Ho3+-Yb3+-Mg2+:TiO2。Dry the mixed solution C at 100°C for 12 hours (remove the solvent), and then anneal at 500°C for 30-90 minutes to obtain Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots, denoted Ho 3+ -Yb 3+ -Mg 2+ : TiO 2 .
对比例1Comparative example 1
本对比例与实施例1的区别在于省略了Mg(NO3)2·6H2O的添加,量子点材料记为Ho3+-Yb3+:TiO2。The difference between this comparative example and Example 1 is that the addition of Mg(NO 3 ) 2 ·6H 2 O is omitted, and the quantum dot material is recorded as Ho 3+ -Yb 3+ :TiO 2 .
对实施例1和对比例1所述量子点的光学性能进行检测:The optical properties of the quantum dots described in Example 1 and Comparative Example 1 are detected:
一、本实施例所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点能量传递示意图如图1所示,TiO2作为基质材料,Ho3+是激活剂,作为发光中心,Yb3+是敏化剂,能够吸收能量并将能量传递给激活剂Ho3+。1. The schematic diagram of quantum dot energy transfer of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 described in this example is shown in Figure 1. TiO 2 is used as the host material, and Ho 3+ is the activator as the luminescence center , Yb 3+ is a sensitizer that can absorb energy and transfer it to the activator Ho 3+ .
二、检测制备得到的Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的X衍射,如图2所示,位于25.9º、38.7º、48.6º和62.9º的特征峰分别归属于TiO2锐钛矿相TiO2的(101)、(004)、(200)和(204)晶面,位于54.9º的特征峰对应于TiO2金红石相的(211)晶面,这说明本发明制备的TiO2是锐钛矿和金红石相的混合相。2. Detect the X-ray diffraction of the prepared Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots. As shown in Figure 2, the characteristic peaks at 25.9º, 38.7º, 48.6º and 62.9º are respectively It is attributed to the (101), (004), (200) and (204) crystal planes of TiO 2 anatase phase TiO 2 , and the characteristic peak at 54.9º corresponds to the (211) crystal plane of TiO 2 rutile phase, which indicates that The TiO2 prepared by the present invention is a mixed phase of anatase and rutile phases.
三、检测本实施例所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的紫外-可见-红外光吸收情况,如图3所示,由于Yb3+离子的2F7/2→2F5/2的能级跃迁和Ho3+的5I7→5F5的能级跃迁,Ho3+-Yb3+-Mg2+掺杂TiO2的量子点能吸收近红外光。3. Detect the ultraviolet-visible-infrared light absorption of the quantum dots of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 described in this embodiment, as shown in Figure 3, due to the 2 F of Yb 3+ ions The energy level transition of 7/2 → 2 F 5/2 and the energy level transition of Ho 3+ 5 I 7 → 5 F 5 , the quantum dots of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 can absorb near infrared light.
四、在激发光源为980 nm激光器的激发下检测本实施例所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点的转化发光情况,如图4所示,位于547 nm和663 nm的上转换发光峰分别归属于Ho3+的5F4,5S2→5I8和5F5→5I8的能级跃迁。从图中可以看出,由于Mg2+的加入,实施例1所述Ho3+-Yb3+-Mg2+掺杂TiO2的量子点相较于对比例1所述Ho3+-Yb3+掺杂TiO2的量子点上,转换发光强度得到增强。4. Under the excitation of a 980 nm laser as the excitation light source, the conversion luminescence of the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots described in this example was detected, as shown in Figure 4, at 547 nm The upconversion luminescence peaks at 663 nm and 663 nm are assigned to the energy level transitions of 5 F 4 , 5 S 2 → 5 I 8 and 5 F 5 → 5 I 8 of Ho 3+ , respectively. It can be seen from the figure that due to the addition of Mg 2+ , the Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots described in Example 1 are more 3+ doped TiO 2 quantum dots, the conversion luminescence intensity is enhanced.
实施例2Example 2
本实施例中,应用实施例1中制备得到的混合溶液C参与本实施例钙钛矿电池的制备,具体制备方法如下:In this example, the mixed solution C prepared in Example 1 is used to participate in the preparation of the perovskite battery of this example, and the specific preparation method is as follows:
1)FTO玻璃片处理:将FTO玻璃片清洗,并用紫外光照处理20 min,得到洁净的FTO玻璃片;FTO玻璃清洗的具体方式为:将刻蚀(即按照实验常规手段使用Zn粉和稀盐酸FTO玻璃片进行刻蚀处理)的FTO玻璃片依次放入导电玻璃清洗液、丙酮和异丙醇中,超声清洗各20min。1) FTO glass sheet treatment: clean the FTO glass sheet and treat it with ultraviolet light for 20 min to obtain a clean FTO glass sheet; the specific method of FTO glass cleaning is: etching (that is, using Zn powder and dilute hydrochloric acid The FTO glass slices were etched), and the FTO glass slices were placed in conductive glass cleaning solution, acetone and isopropanol in sequence, and ultrasonically cleaned for 20 minutes each.
2)制备致密层:将0.072 ml乙酰丙酮钛加入到1 ml正丁醇中混合均匀,得到致密层前驱体,将致密层前驱体溶液滴在步骤1)得到的洁净的FTO玻璃片上,以3500转/分钟的转速旋涂30 s,然后在500ºC条件下退火30~60 min,制得致密层/FTO;2) Preparation of a dense layer: Add 0.072 ml of titanium acetylacetonate to 1 ml of n-butanol and mix evenly to obtain a dense layer precursor. Drop the dense layer precursor solution on the clean FTO glass sheet obtained in step 1), and mix at 3500 spin coating at a speed of 30 s per minute, and then annealed at 500ºC for 30-60 min to obtain a dense layer/FTO;
3)制备电子传输层:将TiO2和无水乙醇按质量比1:6混合得到TiO2浆料,将TiO2浆料滴在致密层上,以4000转/分钟的转速旋涂30 s,然后在450ºC条件下退火30~60 min,制得电子传输层/致密层/FTO;3) Preparation of the electron transport layer: TiO 2 and absolute ethanol were mixed at a mass ratio of 1:6 to obtain a TiO 2 slurry, and the TiO 2 slurry was dropped on the dense layer, and spin-coated at 4000 rpm for 30 s, Then anneal at 450ºC for 30-60 min to prepare electron transport layer/dense layer/FTO;
4)制备修饰层:将实施例1中得到的混合溶液C滴在电子传输层上,以5000 转/分钟的转速旋涂30 s,然后在500ºC条件下退火30~120 min,制得Ho3+-Yb3+-Mg2+掺杂TiO2量子点的修饰层/电子传输层/致密层/FTO;4) Preparation of the modification layer: drop the mixed solution C obtained in Example 1 on the electron transport layer, spin-coat at a speed of 5000 rpm for 30 s, and then anneal at 500ºC for 30-120 min to obtain Ho 3 + -Yb 3+ -Mg 2+ doped TiO 2 quantum dot modification layer/electron transport layer/dense layer/FTO;
5)制备钙钛矿吸收层:将1 mmol碘甲脒(FAI),1.1 mmol碘化铅(PbI2),0.2 mmol 溴甲胺(MABr),0.2 mmol溴化铅(PbBr2)溶解在1mL二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的混合溶液(DMF:DMSO=4:1,体积比)中,再加入42 µl的1.5 M的CsI溶液(溶剂为DMSO),混合搅拌均匀得到钙钛矿前驱体溶液,将钙钛矿前驱体溶液滴在Ho3+-Yb3+-Mg2+掺杂TiO2的修饰层上,以1000 rpm 10s和6000 rpm 20s的条件下旋涂,并在旋转结束前10s滴加100 ul氯苯,然后将样品放在100ºC加热盘上加热60 min,得到钙钛矿吸收层/修饰层/电子传输层/致密层/FTO;5) Preparation of perovskite absorbing layer: 1 mmol of formamidine iodide (FAI), 1.1 mmol of lead iodide (PbI 2 ), 0.2 mmol of methylamine bromide (MABr), 0.2 mmol of lead bromide (PbBr 2 ) were dissolved in 1 mL In the mixed solution of dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) (DMF:DMSO=4:1, volume ratio), add 42 μl of 1.5 M CsI solution (solvent is DMSO), Mix and stir evenly to obtain a perovskite precursor solution, drop the perovskite precursor solution on the modified layer of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 , at 1000 rpm for 10s and 6000 rpm for 20s Spin coating under the bottom, and drop 100 ul of chlorobenzene 10s before the end of the spin, then place the sample on a heating plate at 100ºC and heat for 60 min to obtain perovskite absorption layer/modification layer/electron transport layer/dense layer/FTO;
6)制备空穴传输层:将72.3 mg spiro-oMeTAD溶解在1mL氯苯中,随后加入28.8 ul 4-叔基吡啶和17.5 ul 浓度为520 mg/ml的双(三氟甲烷磺酰)亚胺锂的乙腈溶液,混合均匀得到空穴传输层溶液,将空穴传输层滴在钙钛矿吸收层上,以4000转/分钟的速度旋涂30s,得到空穴传输层/钙钛矿吸收层/修饰层/电子传输层/致密层/FTO;6) Preparation of hole transport layer: Dissolve 72.3 mg spiro-oMeTAD in 1 mL chlorobenzene, then add 28.8 ul 4-tert-pyridine and 17.5 ul bis(trifluoromethanesulfonyl)imide at a concentration of 520 mg/ml Lithium acetonitrile solution, mixed evenly to obtain a hole transport layer solution, drop the hole transport layer on the perovskite absorption layer, and spin-coat at a speed of 4000 rpm for 30s to obtain a hole transport layer/perovskite absorption layer /modification layer/electron transport layer/dense layer/FTO;
7)制备电极:在空穴传输层上真空热蒸镀一层Au电极得到Ho3+-Yb3+-Mg2+掺杂TiO2的电子传输材料的钙钛矿电池,即Au/空穴传输层/钙钛矿吸收层/修饰层/电子传输层/致密层/FTO;所述Au电极厚度为80 nm。7) Electrode preparation: a layer of Au electrode is vacuum thermally evaporated on the hole transport layer to obtain a perovskite battery of Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 electron transport material, that is, Au/hole transport layer/perovskite absorption layer/modification layer/electron transport layer/dense layer/FTO; the thickness of the Au electrode is 80 nm.
所述钙钛矿电池的结构示意图,如图5所示,1-FTO,2-致密层,3-电子传输层,4-Ho3+-Yb3+-Mg2+掺杂TiO2量子点的修饰层,5-钙钛矿吸收层,6-空穴传输层,7-Au电极。The structural schematic diagram of the perovskite battery, as shown in Figure 5, 1-FTO, 2-dense layer, 3-electron transport layer, 4-Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 quantum dots The modification layer, 5-perovskite absorption layer, 6-hole transport layer, 7-Au electrode.
对比例2Comparative example 2
与实施例2不同之处在于:本对比例制备省略实施例2所述修饰层的制备,即直接在电子传输层上制备钙钛矿吸收层,得到的电池记为Au/空穴传输层/钙钛矿吸收层/电子传输层/致密层/FTO。The difference from Example 2 is that the preparation of this comparative example omits the preparation of the modified layer described in Example 2, that is, the perovskite absorption layer is directly prepared on the electron transport layer, and the obtained battery is recorded as Au/hole transport layer/ Perovskite absorbing layer/electron transport layer/dense layer/FTO.
对实施例2和对比例2的电池光电性能进行检测:The photoelectric performance of the battery of embodiment 2 and comparative example 2 is detected:
一、对实施例2和对比例2所述钙钛矿电池的光伏特性参数进行检测,检测结果如表1所示。1. The photovoltaic characteristic parameters of the perovskite cells described in Example 2 and Comparative Example 2 were tested, and the test results are shown in Table 1.
表1实施例2和对比例2所述钙钛矿电池的光伏特性参数The photovoltaic characteristic parameter of the perovskite cell described in table 1 embodiment 2 and comparative example 2
与对比例2所述钙钛矿电池相比,基于有Ho3+-Yb3+-Mg2+掺杂TiO2电池的短路电流由21.2 mA/cm2提高到22.6 mA/cm2,光电转化效率(PCE)由15.2%提高到16.3%。Compared with the perovskite battery described in Comparative Example 2, the short-circuit current of the battery based on Ho 3+ -Yb 3+ -Mg 2+ doped TiO 2 was increased from 21.2 mA/cm 2 to 22.6 mA/cm 2 , and the photoelectric conversion The efficiency (PCE) increased from 15.2% to 16.3%.
二、检测实施例2和对比例2所述的钙钛矿太阳能电池的电流密度,绘制成电流-电压曲线,如图6所示。图6是实施例2和对比例2所述的钙钛矿太阳能电池的最高效率对应的电流-电压曲线。电流-电压曲线是在AM1.5标准太阳光模拟器(照度为100 mW/cm2)照射下测试的。对比例2的钙钛矿电池的最高效率为15.7%,实施例2的电池的最高效率达到16.8%。2. Detect the current density of the perovskite solar cells described in Example 2 and Comparative Example 2, and draw a current-voltage curve, as shown in FIG. 6 . 6 is the current-voltage curve corresponding to the highest efficiency of the perovskite solar cell described in Example 2 and Comparative Example 2. The current-voltage curve is tested under the illumination of AM1.5 standard solar simulator (illuminance is 100 mW/cm 2 ). The highest efficiency of the perovskite battery of Comparative Example 2 was 15.7%, and the highest efficiency of the battery of Example 2 reached 16.8%.
尽管以用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以做出许多其它的更改和修改,因此,这意味着在所述权利要求中包括本发明范围的所有变化和修改均属于本发明保护范围。Although the invention has been illustrated and described by specific embodiments, it should be appreciated that many other changes and modifications can be made without departing from the spirit and scope of the invention, therefore, it is meant All changes and modifications included in the scope of the present invention in the claims belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810526071.3A CN108682743B (en) | 2018-05-29 | 2018-05-29 | Preparation method of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots and application of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots in perovskite battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810526071.3A CN108682743B (en) | 2018-05-29 | 2018-05-29 | Preparation method of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots and application of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots in perovskite battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108682743A true CN108682743A (en) | 2018-10-19 |
CN108682743B CN108682743B (en) | 2020-05-05 |
Family
ID=63807038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810526071.3A Active CN108682743B (en) | 2018-05-29 | 2018-05-29 | Preparation method of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots and application of holmium-ytterbium-magnesium-doped titanium dioxide quantum dots in perovskite battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108682743B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109651197A (en) * | 2019-01-07 | 2019-04-19 | 南方科技大学 | Phthalocyanin derivative, preparation method thereof, metal phthalocyanine derivative, preparation method and application thereof |
CN113193127A (en) * | 2021-05-07 | 2021-07-30 | 河南大学 | Ytterbium and erbium co-doped perovskite film and application thereof in photoelectric detector |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105694888A (en) * | 2016-02-29 | 2016-06-22 | 武汉理工大学 | A kind of Mg2+ doped NaREF4 up-conversion fluorescent material and preparation method thereof |
CN107267145A (en) * | 2017-05-19 | 2017-10-20 | 河南大学 | A kind of holmium ytterbium lithium codoping titanium dioxide nano material, its preparation method and perovskite solar cell |
-
2018
- 2018-05-29 CN CN201810526071.3A patent/CN108682743B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105694888A (en) * | 2016-02-29 | 2016-06-22 | 武汉理工大学 | A kind of Mg2+ doped NaREF4 up-conversion fluorescent material and preparation method thereof |
CN107267145A (en) * | 2017-05-19 | 2017-10-20 | 河南大学 | A kind of holmium ytterbium lithium codoping titanium dioxide nano material, its preparation method and perovskite solar cell |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109651197A (en) * | 2019-01-07 | 2019-04-19 | 南方科技大学 | Phthalocyanin derivative, preparation method thereof, metal phthalocyanine derivative, preparation method and application thereof |
CN109651197B (en) * | 2019-01-07 | 2021-11-02 | 南方科技大学 | A kind of phthalocyanine derivative and its preparation method, a kind of metal phthalocyanine derivative and its preparation method and application |
CN113193127A (en) * | 2021-05-07 | 2021-07-30 | 河南大学 | Ytterbium and erbium co-doped perovskite film and application thereof in photoelectric detector |
CN113193127B (en) * | 2021-05-07 | 2022-06-10 | 河南大学 | A Ytterbium and Erbium Co-Doped Perovskite Thin Film and Its Application in Photodetectors |
Also Published As
Publication number | Publication date |
---|---|
CN108682743B (en) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jia et al. | Improved photovoltaic performance of perovskite solar cells by utilizing down-conversion NaYF 4: Eu 3+ nanophosphors | |
Hou et al. | High-performance perovskite solar cells by incorporating a ZnGa2O4: Eu3+ nanophosphor in the mesoporous TiO2 layer | |
Parida et al. | Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells | |
Liu et al. | Enhancing near-infrared solar cell response using upconverting transparentceramics | |
Yao et al. | Efficiency enhancement in dye-sensitized solar cells with down conversion material ZnO: Eu3+, Dy3+ | |
Huang et al. | Hydrobromic acid assisted crystallization of MAPbI 3− x Cl x for enhanced power conversion efficiency in perovskite solar cells | |
CN107267145B (en) | Holmium-ytterbium-lithium co-doped titanium dioxide nano material, preparation method thereof and perovskite solar cell | |
Shi et al. | Interface modification by up-conversion material of Ho3+-Yb3+-Li+ tri-doped TiO2 to improve the performance of perovskite solar cells | |
CN107093669B (en) | A perovskite solar cell light absorbing layer | |
CN110518128A (en) | A kind of ACI type two dimension perovskite solar cell and preparation method thereof | |
CN106384784A (en) | Perovskite solar cell provided with composite electron transport layer structure | |
CN105957966A (en) | REO (rare earth oxide) down-conversion material perovskite solar cell and preparation method | |
CN103337369B (en) | NaYF 4: Ln 3+/ C/TiO 2the preparation method of complex light anode | |
Tao et al. | Efficiency enhancement of perovskite solar cells by forming a tighter interface contact of C/CH3NH3PbI3 | |
CN106299139A (en) | The perovskite solaode of a kind of ion doping and manufacture method thereof | |
CN104036963A (en) | Method for preparing all-solid organic-inorganic hybridization perovskite solar battery | |
CN108682743A (en) | A kind of preparation method of the titania-doped quantum dot of holmium ytterbium magnesium and its application in perovskite battery | |
CN108039410B (en) | TiO2-doped material, preparation method and application thereof | |
CN105826430B (en) | Preparation method for multi-functional film of solar cell | |
CN108878657B (en) | Preparation method of high-efficiency carbon-based perovskite solar cell | |
CN105694887A (en) | Preparation method and application of Ho3+-Yb3+-F-co-doped TiO2 up-conversion nanopowder | |
CN103337368B (en) | A kind of preparation method of DSSC doped graphene combination electrode | |
CN105679546A (en) | A kind of InWO4:Eu3+/TiO2 composite photoanode and its preparation method | |
Qamar et al. | Enhanced photon harvesting in dye-sensitized solar cells by doping TiO2 photoanode with NaYF4: Yb3+, Tm3+ microrods | |
CN107170891A (en) | A kind of wide spectrum perovskite solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |